
REVIEW ARTICLE

Neural network applications in fault diagnosis and detection:
an overview of implementations in engineering-related systems

Ahmad Azharuddin Azhari Mohd Amiruddin1 • Haslinda Zabiri1 • Syed Ali Ammar Taqvi1,2 •

Lemma Dendena Tufa1

Received: 15 February 2018 / Accepted: 19 November 2018 / Published online: 13 December 2018
� Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
The use of artificial neural networks (ANN) in fault detection analysis is widespread. This paper aims to provide an

overview on its application in the field of fault identification and diagnosis (FID), as well as the guiding elements behind

their successful implementations in engineering-related applications. In most of the reviewed studies, the ANN architecture

of choice for FID problem-solving is the multilayer perceptron (MLP). This is likely due to its simplicity, flexibility, and

established usage. Its use managed to find footing in a variety of fields in engineering very early on, even before the

technology was as polished as it is today. Recurrent neural networks, while having overall stronger potential for solving

dynamic problems, are only suggested for use after a simpler implementation in MLP was attempted. Across various ANN

applications in FID, it is observed that preprocessing of the inputs is extremely important in obtaining the proper features

for use in training the network, particularly when signal analysis is involved. Normalization is practically a standard for

ANN use, and likely many other decision-based learning methods due to its ease of use and high impact on speed of

convergence. A simple demonstration of ANN’s ease of use in solving a unique FID problem was also shown.

Keywords Artificial neural network � Fault detection � Fault diagnosis � Engineering application � Data preprocessing

1 Introduction

Faults in the process industries, equipment, manufacturing

industries, power generation, etc., can result in product

degradation, increased operating costs, increase in shut-

down hours, and environmental degradation [8–10].

However, prompt detection and diagnosis of anomalies can

be vital to ensure loss prevention and financial recupera-

tion. As specific economic requirements and environmental

demands grow more and more stringent, it became quite

clear that companies will require more investment in

reducing the occurrence of faults that may lead to insta-

bilities, resulting in tragic economic and safety implica-

tions. The term fault detection can be used to refer to both

the detection of causes based on system changes and

component fault. In a broad sense, a fault can be defined as

undesired changes that can lead to degradation of the

overall system performance. Tolerable fault ranges do

exist; however, if it is not dealt with for too long, they may

convert into a serious fault which can lead to the major

breakdown of a system component or function.

The failure of a system can be caused by a wide variety

of problems. Typically, the solutions to the problems are

known by empirical studies or first principle derivation. In

such cases, a detailed procedural solution can prove to be

enough when there is sufficient data and knowledge

regarding the system behavior [11–13]. In cases where the

behavior of a system is either unknown or too complex, the

use of artificial neural networks (ANN, or simply NN) is

becoming more attractive as an alternative data-based

solution. Its ease of use, high noise tolerance [14] and

broad applicability for nonlinear systems are only part of

the reasons why researchers have explored its use in vari-

ous general predictive purposes [15, 16] and industrial

fields such as transportation [17], agriculture [18],

& Haslinda Zabiri

haslindazabiri@petronas.com.my

1 Department of Chemical Engineering, Universiti Teknologi

PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia

2 Department of Chemical Engineering, NED University of

Engineering & Technology, Karachi 75270, Pakistan

123

Neural Computing and Applications (2020) 32:447–472
https://doi.org/10.1007/s00521-018-3911-5(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-1821-1028
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3911-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3911-5&domain=pdf
https://doi.org/10.1007/s00521-018-3911-5

electronics [19–21] medicinal informatics [22], and

chemical process industries [23–25]. More specifically in

the process engineering industry, a lot of attention in recent

years has been paid in the application of ANNs in the

adaptive control systems [23, 26–28], modeling and iden-

tification of dynamic processes [29–31], and time series

prediction problems [32, 33]. A growing interest has been

seen for fault detection and diagnosis problem [34–39]

using ANNs. As a viable mathematical tool for solving

nonlinear problems, the self-learning ability is the main

attractive property of neural networks.

While many types of ANNs exist, its basic principles are

similar. ANNs can be thought of as universal approxima-

tors [40], where the arbitrary relation between two vector

spaces can be realized [41]. It is composed of an input

layer, the output layer, and hidden layers between them.

Connecting each layer are neurons (or nodes) containing

weight coefficients that affect the overall structure of the

network. Preprocessing (mapping of data into more con-

ditional form) of the input data is a crucial aspect in ANN

usage to assist in reducing computational costs [42], low-

ering burden of requiring many variables, improving gen-

eralization of the features within the input space, removal

of noise wherever possible, and even as part of the step in

obtaining the appropriate features for the input space

[2, 15, 43]. Other factors to consider are the choice of

training functions (also called ‘‘training method’’), hidden

neuron sizes of each layer, sample size of input space, and

testing conditions.

Within the context of engineering and design, the field

of fault detection and identification/diagnosis (FID/FDI/

FDD) is widely explored [13, 44–47], utilizing various

methods, including neural networks [48]. Exploration of

ANNs for use in fault detection is not a recent venture. The

use of ANN in fault detection has been thoroughly dis-

cussed and explored by Patan [23] within the context of

locally recurrent ANNs applied in industrial process con-

trol. While the monograph discussed a great deal regarding

fault detection and ANN fundamentals for use in chemical

process systems, it is not obvious in detailing the merits of

its use in a broader application.

This paper aims to provide a brief overview of the

application of ANN in detecting anomalies or unexpected

behavior within various engineering fields. Cases of suc-

cessful ANN applications for fault detection, with the

preprocessing techniques and training methods undertaken

(to ensure consistent results), would be of much use to

aspiring researchers looking to adopt its use in their anal-

ysis as an alternative testing method. Therefore, this review

will analyze several methodologies and studies attempting

to detect abnormal behavior within engineering and design,

covering various disciplines. Section 2 will brief on the

nature of ANNs, the most widely used basic ANN

architecture of MLP (multilayer perceptron) and their

associated algorithm and methodologies. Section 3 will go

over some of the preprocessing techniques used to prepare

the input space to be used in ANNs. Section 4 will cover

the reviewed applications of ANN for solving anomaly

detection and identification problems in Sect. 4.1, with the

finer points from all the cases discussed in Sects. 4.2 and

4.3. In Sect. 5, a short tutorial was shown in how ANN is

used to tackle a specific problem in a simple manner.

Within the context of this paper, ‘‘faults’’ refers to any

known or unknown deviation within a system, and the

erratic behavior can be observed qualitatively or quantita-

tively, and is used interchangeably with ‘‘anomalies.’’

2 Artificial neural networks

A basic representation of a neuron is shown in Fig. 1. The

sum of product value, n from the weights, w and inputs,

p and bias, b (1) are passed through the activation (or

transfer) function, (2) of which the generated output, a will

define the transformative characteristic of the particular

neuron in the neural network.

n ¼
XN

i¼1

piwi þ b ð1Þ

a ¼ f nð Þ ð2Þ

The classification of ANNs is rather broad; however,

most are categorized based on the goal of the analysis.

They are mainly function approximation, predictive anal-

ysis, classification/pattern recognition, clustering, among a

few others [49]. The first two relies usually on supervised

learning, where the inputs are assigned a target for the

iterative structuring of the internal ANN weights. For

clustering networks and sometimes classification, it mainly

relies on unsupervised learning where inputs are used

Fig. 1 A single artificial neuron

448 Neural Computing and Applications (2020) 32:447–472

123

without targets, and the data will be sorted out by ‘‘clus-

ters,’’ or groups based on certain properties of the inputs

themselves, e.g., by shape, by color, or by proximity.

Applications and concerns in pattern classification, which

are typically the problems manifested in anomaly detec-

tion, will be highlighted.

It is important to note that there are limitations behind

the usage of NNs. The main weakness is in its inability to

generalize properly for a wide range of scenarios [50]

unless specifically trained to do so. Even if that is to be

considered, the time and effort required to properly

establish the various conditions required to be covered for

one network alone can be burdensome. Another weakness

is in its black-box nature, which limits the understanding of

how the decisions are actually made by the network.

Lastly, the setup of choosing the right network architecture

and configurations, along with the time required in using a

large number of data set, can be tedious. The use of NN for

solving any major problems simply as an ‘‘out-of-the-box’’

solution is only recommended when the problems are very

clearly defined, as the sheer optimization and expertise

required to solve a particular problem is still highly tied to

the problem in which it is applied to [51]. However, when

complemented with other techniques, it proves to be an

invaluable tool for gaining insight into nonlinear operations

in an exploratory manner, as a means to enable an initial

feasibility study for other statistical methods [52], and as a

standalone mechanism, if the initial results proved to be

incredibly effective.

The standard multilayer perceptron (or feed-forward)

neural network (Fig. 2) contains multiple neurons com-

prising hidden layers and hidden sizes/units. A higher

number of layers will compensate for the weakness of the

perceptron’s linear nature and allow for nonlinear calcu-

lations to be mapped [53]. An optimal hidden size/unit will

give better performance, though the optimal number for

each system must be obtained through approximation, trial

and error, or heuristic methods. The user will usually find

an ideal value rather fast by starting from 10, and testing

higher or lower values.

A simple way to describe its setup and usage is that it is

essentially the same as functional analysis, whereby you

have a large sample set of data, each set with a range of

independent parameters and dependent parameters. The

entire set is termed as ‘‘inputs,’’ with the independent

parameter (the ‘‘y’’ of the equation) termed as targets. The

output refers to the generated values from the network. The

supervised learning can take place in an offline/batch

manner, where the network is trained sequentially, across

the entire sample set. Another method is through online

learning, where the long-term memory is involved, and

information decay is a necessary factor. The latter method

will not be explored in depth, however.

A large reason behind why MLP networks are highly

preferred for function approximation tasks is due to its

various back-propagation (BP) methods and optimized

forms which are very efficient in seeking convergence. The

basic BP algorithm in its earlier forms was very slow to

converge for larger networks, though this problem is

eliminated by the use of learning parameters in weight

adjustment and higher-order computation schemes. In the

discussion of loss functions (also known as cost/objective

functions) to use, it is dependent on the studied system,

however, not so much in FID as most problems are easily

reducible with the use of mean square error (MSE) as the

iterative means for gradient changes. Special considera-

tions are mostly for unique types of data such as pattern

recognition-based inputs.

It is important to note that loss functions are not nec-

essarily the same as the performance metrics used to

evaluate the network. For curve fitting applications, MSE is

used both to calculate the weight updates for each training

step while also quantitatively showing how far off the

average prediction errors are in the network behavior as a

performance metric. However for classification problems,

an exercise of judgment is needed for the choice of per-

formance metric. While the MSE can be used as the loss

function to train the network behavior, it will only give you

the real-value functions of your outputs (e.g., for an arbi-

trary system where the vector output of [1, 0] is a value

designated with the ‘‘good’’ class while [0, 1] is designated

as ‘‘bad’’). The users will have to also determine their own

threshold values so that the generated value can be quali-

tatively categorized and become statistically interpretable,

usually in the basic form of true/false accuracies (e.g., from

an output value of [- 0.1, 0.8], would you interpret it as aFig. 2 Multilayer perceptron neural network

Neural Computing and Applications (2020) 32:447–472 449

123

‘‘good’’ class?). Using the same example, assume 20 ran-

dom samples of supposedly ‘‘good’’ data set and another 20

set of ‘‘bad’’ classes of data are fed into a prior-trained

network. Out of the 20 ‘‘good’’ sets, 18 of them predicted a

value close to [1, 0] instead, while 15 of the ‘‘bad’’ sets

were classified with values around [0, 1] value. At a glance,

it manages to predict the ‘‘good’’ behavior at 90% accu-

racy, while it predicted ‘‘bad’’ behavior only at 75%

accuracy. It is also very normal for some of the misclas-

sified values to have seemingly sporadically generated

values such as [0.5, 0.32]. At this point, it is entirely

dependent on the experimenter to consider the next action.

Are the levels of accuracy acceptable? Is this result

acceptable/unacceptable given the sample size? Is true/-

false classification the only important metric (how signifi-

cant are true/false positives to the system)? Should more

preprocessing methods be explored to ensure better

behavior is recognized by the ANN? Are the architecture

and other ANN heuristics properly selected?

Further developed methods such as variable-learning

rate BP and resilient BP that alter the learning parameters

in an iterative manner are some of the answers to that

problem. From a practical standpoint, a method most pre-

ferred for function approximation is the Levenberg–Mar-

quardt BP (LMBP) and for pattern recognition tasks the

scaled conjugate BP [54]. Other supervised training

methods are radial basis functions (RBF), recurrent net-

works, and Hopfield networks. While the speed of con-

vergence of the LMBP is between 16 and 136 times faster

than the standard conjugate BP [55], the selection of the

appropriate training algorithm is still primarily based on

the type of task required. Though the obtained network is a

black-box model, efforts in converting the weighted neu-

rons into a usable white-box model through rule-based

pruning and extraction of the weights have been done [56].

Similarly, if the exact weights within the model are known,

the relative significance of each input parameter in influ-

encing a particular output can be analyzed through a for-

mulation by Garson [57]. To evaluate the neural network

performance in replicating the intended system behavior

when confronted with foreign input data, a general method

used in training the data set is to split the original data set

into multiple sets of data at a specified ratio, the majority

for use in training the network, the remaining for verifi-

cation and fine tuning of network, and for testing its per-

formance against ‘‘foreign data,’’ respectively.

Among the NN architectures, recurrent NNs (also

referred to as dynamic neural networks, DNN) are a rather

viable option to use as it has additional learning capabili-

ties due to their inclusion of dynamically driven feedback

[58]. Unlike a purely static multilayer perceptron, recurrent

NNs utilize not only the input in predicting a particular

output instance, but also any state in between (most

commonly the output) to contribute in predicting the next

output value. The most common form of which is the

nonlinear autoregressive networks with exogenous inputs

(NARX), which uses the output to influence the input in a

feedback loop. This allows for the learning process to

account for temporal changes in the input and output as

well, which makes it an attractive option for dynamic

(time-wise) data set modeling [58]. The inclusion of a

feedback also necessitates new training methods depending

on the architecture, such as back propagation through time

(BPTT) and real-time recurrent learning (RTRL). While

recurrent NNs has its own set of challenges such as

Levenberg-Marquardt have been introduced to alleviate the

problem and difficulties retaining long-term information in

larger time scales [59], the use of detailed nonlinear

sequential estimation algorithms or second-order opti-

mization techniques such as Levenberg–Marquardt. Addi-

tional properties of recurrent NNs such as tapped delays

(which alters the degree of delay from the feedback to the

input, in the form of a memory state) and placement of

feedback lines are present for consideration in addition to

the standard NN heuristics. The authors would like to

disclaim that the cases studied do not involve any use of

NARX. Even in cases where recurrent NNs are involved,

the heuristics and properties involved are not touched upon.

3 Preprocessing of inputs

Preprocessing refers to the conditioning of the input space

prior to using it for training of a network. While the proper

selection of NN architecture is crucial for a network to

properly model the behavior of a system, it will not nec-

essarily guarantee an accurate training process. The general

problems that plague the training of NN are convergence to

local minima instead of global minimum, overfitting (no

generalization/flexibility of trained model), lack of salient

features or variables to represent the model behavior, too

small a sample size, among others. As with most simula-

tion-based analyses, the output generated from the network

is only as good as the inputs used to create the network.

3.1 Normalization

The most widespread and common technique, the benefits

of normalization are most obvious in speeding up conver-

gence rate and improving computational efficiency. A

sigmoid activation function is often used for MLP networks

and if the net sum product of inputs and weights is greater

than 3, the functions essentially become saturated. For

example, an output of 3 will adjust the weights of a neuron

using a sigmoid function at a much smaller rate compared

to a much smaller value of 0.1 (exp(- 3) & 0.05, against

450 Neural Computing and Applications (2020) 32:447–472

123

exp(- 0.1) & 0.905). This will lead to very small gradient

changes, especially if the weights are not small enough to

compensate for the large input values [60]. By normalizing

the value ranges to sufficiently small values, the values

entering the activation functions will operate at a faster

pace. Therefore, normalization of the input space is basi-

cally a standard for most training procedures, and even as

preparation for some preprocessing steps such as principal

component analysis. Normalization for a custom range can

be done according to (3), where z is the normalized value, T

is the top boundary, and B is the bottom boundary. The

maximum and minimum values used should be within the

entire sample set, inclusive of both training and testing sets.

In order to generate the actual output value prior to the

normalization step, a denormalization step is typically

included within most NN creation algorithms.

z ¼ T � Bð Þ x�min xð Þ
max xð Þ �min xð Þ

� �
þ B ð3Þ

While normalization is typically done at the [- 1, 1]

range or [0, 1] range, the proper range selection should

depend on the ranges of the activation function. For

example, a hyperbolic tangent activation function should

use the [- 1, 1] range and a logistic function will use the

[0, 1] range. Various other forms of normalization exist,

and different techniques have shown to affect performance

based on the training method used in the network [42].

3.2 Feature extraction and data transformation

The conditioning of the input space is extremely important

in order to allow a more accurate modeling through neural

networks. Its efficacy can be noted even through a simple

transformation of a data set into natural logarithmic forms

[43]. A dilemma that often plagues machine learning is the

curse of dimensionality [61], i.e., the number of samples

needed to estimate an arbitrary function with a given level

of accuracy grows exponentially with respect to the num-

ber of input variables (i.e., dimensionality) of the function.

Therefore, it is recommended for an input to use the fea-

tures containing the most significant information, in order

to ensure that extremely large data requirements are avoi-

ded, while at the same time the network is able to learn

from the most characteristic inputs of a modeled system.

An imbalance between the trade-off can be rather easily be

detected in the network through any overfitting or under-

fitting seen and evaluated in the training and testing

performances.

Principal component analysis (PCA) is one of the sim-

pler methods in multivariate analysis that can be used to

reduce the number of required parameters of a data set

without much loss of information [62]. Assume a sample

vector X of n samples, and m parameters, represented in a

matrix such that X = n by m. The dimension reduction is

done through forming a covariance matrix of the sample

sizes and total parameters, and use the kth component (or

principal components) of the eigenvector representing the

reduced dimension (such that k\m) to represent the

original matrix in reduced form of Y. A new reduced data

set can be obtained by reversing the process of obtaining

the covariance matrix, using the representative eigenvector.

Essentially, a lower dimension sample is obtained that can

represent the salient quantities of m parameters in a

dimension, usually 2 or 3, represented in the form of

Y = n by k, that is easier to work with.

Feature extraction, primarily in analysis of signals as

input, can be taken from transformation methods such as

Fourier transforms (FT) or wavelet packet decomposition

(wavelet transforms). The wavelet transform is created as a

method to overcome the limitations of the FT, where the

entire range of the time-domain signal was used to obtain a

frequency-domain sinusoidal plot of the signals. The short

time Fourier transform (STFT) was the precursor to the

wavelet method, which simply analyzed a specific time

window of interest for the frequency values [63]. The

wavelet transform, however, also takes into account the

shape and size of the regions. Wavelets are functions

generated from one single function (basis function) called

the mother wavelet by dilations (scaling) and translations

(shifts) in time (frequency) domain [64]. Its main purpose

is to be able to effectively capture signal characteristics at a

higher and more localized resolution [65], allowing for

accurate capturing of features for use in neural networks.

Aside from that, extraction of additional statistical features

from discrete time-based signals or frequency data can be

done simply by taking properties of the overall sample such

as mean, variance, standard deviation, skewness, kurtosis,

and nth-order moments.

3.3 Coding of class targets

Mostly applicable for classification and pattern recognition

problems, the manner in which the class matrices are for-

matted as targets for the input can be assigned in various

ways. For example, a problem involving 4 classes can be

coded in three ways [60]. Firstly is the assignment of sin-

gular values for each input within the sample space, e.g.,

(1), (2), (3), (4) Secondly, two-dimensional values can be

used, in the form of binary classifiers, e.g., (0, 0), (0, 1), (1,

0), (1, 1). Thirdly, very simple n-dimensional values cor-

responding to the n number of classes can be used in the

form of n-ary classifiers, e.g., (0, 0, 0, 1), (0, 0, 1, 0), (0, 1,

0, 0), (1, 0, 0, 0), can be employed for higher class type

requirements. The third method is noted to have shown the

best results and is usually the standard for a first-try basis

[60]. The magnitude of the values can also be used to

Neural Computing and Applications (2020) 32:447–472 451

123

represent the degree of ‘‘intensity’’ for the assigned class,

i.e., (0.1, 0.1, - 0.1, 0.9) shows that the particular set

indicates a 90% accuracy of a match to the 4th class, while

showing minute signs of relativity to the 1st and 2nd class,

and showing anti-correlation to the 3rd class. In this case,

this particular set of values can be (depending on how strict

the threshold is established) determined as belonging to

class 4, for categorical purposes. If the data set shows little

to no correlation, the value will be spread across all spaces.

Furthermore, for studies where severity of the faults is also

involved, the range of values representing the entire fault

can be discretized to a custom range as well [10, 66]. This

will allow for training of inputs that ascribe different

degrees of faultiness for a certain class. It is exactly due to

its simplicity that the testing of different code configura-

tions for target classification merits consideration in the

preprocessing step of a classification problem.

4 Discussion

Neural networks have historically been used for many

purposes, one of them being in FID. Even within the niche

of FID applications in engineering, there are a considerable

number of cases of successful applications in terms of both

early adoption and variety of engineering fields. While this

paper is only a brief review of the simpler implementa-

tions, the cases covered are found to be from the fields of

chemical, electrical, and mechanical engineering. It should

be noted that this is due to how broadly the term FID is

used for the selection of cases for this review. This section

is divided into two main parts. The first part, in Sects. 4.1

and 4.2, is a list of summaries for each studied case of

ANN application in FID used in this review. Each case is

further summarized in Table 2, based on the main problem

solved by the authors, the architecture used, and the

observed preprocessing techniques. The second part, in

Sect. 4.3, is a critical analysis of the similarities and dis-

similarities between all the studied cases based on a few

select characteristics of: problem type, input type, output

type, and time sensitivity of data (static vs dynamic). Each

case and their respective characteristics are summarized in

Table 3. The reasoning behind why the characteristics are

chosen as such is also described within the second part.

4.1 Case studies: applications of NN in FID

While the topics covered are rather broad, this paper covers

mostly NN implementations to solve FID issues within the

engineering and design fields. Hwang et al. [7] used an

MLP BP network to detect and diagnose faults on a pres-

surized water reactor type nuclear plant (Fig. 3). No pre-

processing was noted, and 3 distinct neural networks were

used, the first for parameter identification, the second for

establishing the threshold fault limits, and the third for

detection and diagnosis of faulty condition. A guide for the

inputs and outputs used in each neural network is shown in

Table 1. The first NN is used to determine a nonzero

variable in the dynamic model, the moderator temperature

coefficient of reactivity ac. Obtaining the variable is

important as it deviates from time compared to other

known constants and shares a critical role in determining

just how much the system is allowed to deviate from

nominal performance. As it varies in time, the 5 input used

for the first NN is time plus 4 residual values (difference

between actual output and nominal model output) that has

the greatest sensitivity in affecting the coefficient. The 4

residual values are from the reactor power dP, precursor
concentration dC, fuel temperature dTf, and steam pressure

dPs (all represented within by r(t) block). The NN was

trained with values generated from a simulation, ranging

within ± 2% of its nominal value. The output generated is

the moderator temperature coefficient of reactivity, used to

predict an ‘‘ideal’’ model of the process. The second NN is

the threshold logic generation network, which establishes

the faulty conditions using the determined coefficient ac for
the creation of a new compensated model. This will allow

for better accuracy in detecting faults, ensuring that a better

defined state space for faulty conditions is established. The

2 inputs used are time and the coefficient ac, and the output

generated is the error threshold values for 8 of the model

parameters. The 8 model parameters are reactor power,

precursor concentration, fuel temperature, steam pressure

dPs, cooler temperatures in 1st and 2nd node, temperature

of primary coolant node dTp, and tube metal temperature

dTm. The third network is for the fault detection and

diagnosis. While the fault magnitude of each failed sensor

and the actuator can be obtained from each parameter’s

residuals, the feedback loop of the system ultimately causes

each residual to affect the steam pressure. Thus, the steam

pressure not only has its own residual value, but carries the

other parameters’ as well. This leads to the input of the

third NN to be steam pressure residual dPs at 3 different

time instances, dPs(tk), dPs(tk-1), and dPs(tk-2). The 2

output nodes are associated with the failure condition of the

dPs sensor and the actuator. The two tests were done on the

network; the detection scheme was able to successfully

determine the magnitude of the residual error and at the

same time classify the source of the residual (the sensor

belonging to which actual malfunctioning parameter).

Despite using a total of 3 networks for the entirety of this

fault detection process, it was noted that the FID system

was not designed to feedback the information to the con-

troller for automatic correction to take place, though the

corrective step did not state any sort of manual action taken

either.

452 Neural Computing and Applications (2020) 32:447–472

123

Paya et al. [67] used an MLP BP network to detect and

classify 6 different vibrational signals from a gearbox. The

6 signals were generated from distinct gear and bearing

conditions. Wavelet transforms were used as a

preprocessing step on discrete time-domain signals using

the Daubechies D4 mother wavelet, as it was the com-

monly used wavelet for the time. The network conditions

were hard to interpret as the author was using the term

Fig. 3 Block diagram of the

fault detection and diagnosis

scheme used by Hwang et al. [7]

Table 1 Summary of Hwang et al.’s application [7] in terms of neural network activity

First neural network (parameter identification) Second neural network (error threshold

generation)

Third neural network (fault

detection)

Inputs Outputs Inputs Outputs Inputs Outputs

Residuals of 1–4

1. Reactor power dP

2. Precursor

concentration dC

3. Fuel temperature

dTf
4. Steam pressure dPs

5. Time

Moderator temperature coefficient

of reactivity ac (to obtain 4 other

variables)

1.

Time

2. ac

Threshold ranges of

1. Cooler temperature at first

node dTc1
2. Cooler temperature at second

node dTc2
3. Primary cooler node

temperature, dTp
4. Tube metal temperature, dTp
5. dPs

6. dP

7. dC

8. dTf

1. dPs(tk)

2.

dPs(tk-1)

3.

dPs(tk-2)

Fault conditions of

dPs at

1. Actuator

2. Sensor

Neural Computing and Applications (2020) 32:447–472 453

123

‘‘input nodes’’ to represent input layer entirely, rather than

discussing the features and samples separately. The number

of features used was 2, which are wavelet number and

amplitude. For each bearing condition, 10 sample sets of

the features were used. Six output nodes corresponding to 1

normal bearing conditions and 5 different fault conditions

were used. The bearing conditions are: good bearing and

faulty blip gear; good bearing and faulty shaved gear;

faulty bearing and good gear; faulty bearing and faulty blip

gear; and faulty bearing and faulty shaved gear. The cost

function used in determining implementation success was

mean squared error (MSE), in which the authors indicated

the values 5 as ‘‘good’’ and 1 as ‘‘excellent’’ performance.

It was noted that the paper had studied the wavelets indi-

vidually and could not obtain any meaningful classification

behind the data alone. The use of wavelets as inputs in the

ANN, however, yielded not only very good MSE training

results (0.013), but the test performance gave an overall

classification rate of 96%.

Aminian and Aminian [20] used a 3-layer MLP BP

ANN to determine faulty components within an electronic

circuit by analyzing its impulse response. In order to obtain

their input data, the analog circuit signals were prepro-

cessed with wavelet decomposition using the Haar mother

wavelet, PCA, and normalization. The faults in this case

are differences in nominal values of the circuit compo-

nents. The inputs used are 5 features from the prepro-

cessing, and the outputs are the 9 fault classes assigned to

each target sample. The output is considered faulty if the

predicted value of the network is not within 0.1 MSE. The

authors have noted that the selection of the right wavelet

coefficient for the appropriate system can ensure optimal

ANN performance; this is likely due to the fact that it is the

most important preprocessing step in determining the input

space to be used for the system. The results, in comparison

with a similar work using ANN [21], have shown similar

performances in fault diagnosis performance but achieved

with a simpler architecture which utilizes less processing

time, due to the aforementioned preprocessing techniques.

Kumar [5] used two types of ANN for the detection of

various textile defects, through segmentation of static

images and gray-value signal projections. Normalization

was used for both networks as a preprocessing step. The

first method (Fig. 4) utilizes an MLP LMBP network, with

the fault analysis objective of being able to recognize the

type of defect through training and testing of image

features. The training of each individual image defect was

done separately to see if the a characteristic image was

observable for each defect (2 types of weaving styles with

4 fabric defect types each; totaling 8 class of defects). The

training was not done with the ‘‘defect class’’ as the output,

however. The inputs are simply preprocessed photos of the

defects, and the output is an image highlighting the defects

in a characteristic pattern. Raw data obtained from the

images are characterized using three different pitch sizes,

to obtain feature vectors in the form of sub-images to

represent any defects through gray-level color variations.

The pitches were preprocessed with normalization and

histogram equalization, followed by PCA decomposition

into smaller dimensions (features). The inputs used range

from 6 to 11 features, followed by a median filtering post-

process of the output to finalize the feature extraction. The

training error (as high as magnitudes of 10-7 and as low as

10-11) indicated a successful application for prediction.

The author’s exact wording of using ‘‘5 nodes in the input

layer’’ (among other values when referring to the size of

the input layers) may have been a misinterpretation of

terms, as he might actually be referring to the size of the

hidden layer to be 5.

A secondary ANN method was also employed using two

separate linear feed-forward networks. The input for each

neural networks is scanning the raw vibration free images

for defects in both 1-dimensional horizontal and vertical

signals, preprocessed with normalization (Fig. 5). The

objective of this NN is similar, which is to locate defects on

the image of a fabric containing a defect and recognize the

type of defect. The author hypothesized that by reducing

the search space from 2D to 1D, there will be a difference

in textile defect detection performance. Data points sam-

pled along the horizontal and vertical spaces of an image of

the fabric, in the form of gray-level projection signals, were

collected and used as the input. The threshold gray values

as a reference for detecting defective signals were calcu-

lated with defect-free images. In the testing stage using

fabric images with defects, the magnitude of the coloration

difference at certain pixels can be seen to indicate defective

surfaces on the fabric. Comparing the performance of both

ANNs in detecting textile defects, the first method is pre-

ferred as it holds the advantage of being able to perform for

lower resolution images in detecting defects.

Banjanovic-Mehmedovic et al. [68] used three different

ANNs of MLP, Elman recurrent NN, and PNN for the

Fig. 4 Flowchart of the feed-forward network used by Kumar (first method of image segmentation) [5]

454 Neural Computing and Applications (2020) 32:447–472

123

detection of anomalies, through classification. The class of

‘‘anomalous condition’’ is represented by operating vari-

ables not within nominal operating range, while ‘‘normal

condition’’ is represented by variables within nominal

operating ranges. Two separate networks were created for

the anomaly detection of two different equipment sections

utilizing different input spaces, which are steam super-

heaters and steam drums. Six input features were used for

each equipment section, each of them representing process

variables related to each representative section. Two sets of

data per equipment section (one of nominal variable per-

formance, the other of anomalous performance) with

sample size of 962 each were used for training and testing.

The performance metrics used were accuracy (ACC), true

positive rate (TPR), true negative rate (TNR), positive

precision (PR), negative precision (NPR), and optimal

prediction score (F1). The MLP and Elman recurrent NN

were also tested under differing neuron size, learning rate,

momentum, and epoch number. The training and testing

was done through k-fold cross-validation with k = 10,

taking precaution in performing the validation multiple

times and taking the mean to reduce stochastic variability

of the results. The detection performance of the PNN

model achieved the best results, showing the total accu-

racy, PR, NPR, and F1 score of 99.9%.

Samanta et al. [4] investigated the effect of genetic

algorithms (GA) on the performance of ANNs for the

detection of bearing faults (Fig. 6). It is also noted that the

experiment exploited various statistical elements of the

generated signal in order to maximize trial choices.

Experimental data were prepared from normal and defec-

tive bearings, acquiring two sets of 24,576 samples, each

segmented into 24 bins of 1024 samples. The signal inputs

used were obtained from horizontal and vertical vibrations,

which constructed the magnitude parameter z, which also

lead to the extraction of the features: mean, RMS, variance,

skewness, kurtosis, and normalized fifth to ninth central

movements (9 features). The 9 features also provided

derivative and integral signals each, totaling the features to

27 (10–27). Another set of features was made from running

the 9 initial features into high and low pass filters (28–45),

totaling the final feature count to 45 for use in the input

vectors. Three different normalization schemes (zero

mean ± 1, zero mean with standard deviation of 1, and

zero mean with maximum absolute value) were tested with

the 45 features. The ANNs used to train and test the inputs

and their 2 bearing conditions assigned as targets (normal

and faulty) are feed-forward MLP, RBF, and probabilistic

neural network (PNN), all using the MSE as the perfor-

mance function. In conclusion, the inputs whereby 6

Fig. 5 Diagram of the linear feed-forward network used by Kumar (secondary method of linear color projection) [5]

Neural Computing and Applications (2020) 32:447–472 455

123

selected features were chosen from GA gave 100% clas-

sification performance for most of the ANN testing.

Additionally, even though all ANN gave similar perfor-

mance results, the training time of PNN was the lowest.

The features generated from lower-order statistics (1–9)

generally gave better performance; however, the inclusion

of higher-order moments was also included in the 6 fea-

tures selected through GA for use in the ANN, justifying its

presence. The classification success of the statistical nor-

malization scheme (with zero mean ± 1 and standard

deviation of 1) is slightly better than the magnitude nor-

malization scheme for lower number of features (up to 3).

However, the test success deteriorated with the scheme of

statistical normalization for higher number of features.

Training time increased somewhat with higher number of

features. The zero mean with maximum absolute values

normalization did not have a noticeable impact in

improving the classification performance.

Zhou et al. [2] created a novel multi-step fault detection

system (Fig. 7) for identifying the source of faults within

erratic parameter readings. The network was shown to be

effective when implemented for cardiorespiratory param-

eters generated from a COSMED K4b2 metabolic mea-

surement system. PCA and singular value decomposition

were used as the preprocessing step for feature extraction

for fault identification and generating the error threshold in

such a large parameter system, and an MLP BP NN was

used for identifying whether the fault is a temporary tran-

sient reading or due to a broken sensor. The original data

set consists of an unnumbered sample size, each repre-

sented by a huge set of 22 parameters. The number of

principal components used is determined as 3, based on

CPV (cumulative percent variance) analysis. The principal

components obtained from PCA are then divided into

groups through k-means clustering. From the clustering,

two clouds of data showing corresponding patterns were

shown to be found. From the two clouds of data, two

separate states of faulty and non-faulty were successfully

seen for the fault identification system to use as a means of

classification. The main criterion for detecting faults is the

SPE (square prediction error), a method used for multi-

variate normal data sets [69]. The features generated from

the preprocessing step were shown to be within stable SPE

readings in tests. When a fault is detected, indicated by the

SPE reading going beyond tolerable limits, a BP NN is

used to train the past 10 readings, i.e., X(tk-10), where

k = 0, 1… 10, an X represents the 22 parameter set. The

behavior is then simulated to predict the future behavior of

the parameters virtually, forward in time. The type of

Fig. 6 Flowchart of diagnostic procedure used by Samanta et al. [4]

Fig. 7 Multi-step scheme used by Zhou et al. [2]

456 Neural Computing and Applications (2020) 32:447–472

123

inputs used was identified as the full 22 parameters rep-

resented by the 10 previous time instances, with the output

being the expected values for all parameters (except for the

anomalous O2-related parameters) at the next time instan-

ces. If the future patterns only show transient movement,

i.e., the pattern does not exceed the tolerable SPE thresh-

old; it will be counted as a transient reading. Should the

reading continue to break the SPE threshold, the fault

alarm is activated. Furthermore, the variable containing the

faulty sensor can be located thanks to any noticeably large

error (of the 11th time-sample prediction and the previous

10) among the 22 predicted parameters from the BP NN.

Pandya et al. [1] used an MLP NN to identify and

classify different defective conditions of ball bearings

based on features extracted from the vibration signal. The

preprocessing step (summarized in Fig. 8) involves running

the signals through wavelet packet transform of ‘‘rbio5.5’’

family (Reverse biorthogonal 5.5), followed by the

extraction of sub-band energy content and kurtoses of the

wavelet coefficient for use as features in the input vector.

The total input nodes used are based on utilizing the kur-

toses and sub bad energy as the features taken from the first

3 key coefficients of decomposition, both for horizontal

and vertical signals (totaling 2 * 3 * 2 = 12 input nodes).

Normalization of the inputs is then done for the entire

samples of 1000 data sets prepared, at a range of 0.1 and

0.9. Each input was equally assigned one of 5 different

output classes (4 faulty conditions and 1 normal) as targets.

The overall classification rate is highly successful at a rate

of 97%.

Feng and Xu [70] used a Kohonen self-organizing NN to

investigate the classification of 5 different fault types in

liquid propellant rocket engine ground-testing beds. The

faults classified by the NN are 5 different fault modes. The

research was done using two types of ground-testing bed

fault data; a mechanism-based model, and an experts sys-

tem-based statistical model. While the sample size gener-

ated for each model is different, each sample has 5

parameters as input features. The 5 parameters are: pres-

sure of hydrogen reducing valve, pressure of hydrogen

tank, pressure of hydrogen pipeline, pressure of hydrogen

pump, and flow of hydrogen pipeline. The research is

conducted primarily to see the difference of NN perfor-

mance with and without PCA preprocessing done to the

input set, for both model cases, leading to a total of four

separate NN tests conducted. Details of the reduced

dimension used after PCA were not described. The NN for

the mechanism-based model data set was assigned 5 clus-

ters, 4 of which are different fault modes, and one of

normal conditions. A total of 150 samples were generated

from a simulation model, 100 being used as training and 50

for testing. The NN for the statistical model used 16 total

clusters; 15 different fault modes and one of normal con-

ditions. For this mode, 100 samples were generated from

the model, 20 being used as training and 80 for testing. For

both models tested, the data set preprocessed by PCA

performed considerably better at classifying the inputs and

took significantly less network training time (from * 92%

identification ratio to * 96%, and decreased training time

by close to 90%).

Taqvi et al. [10] used an MLP LMBP network for

detecting anomalous behavior within the operation of a

distillation column through classification of faults using

steady state output variables as the input vector, which

were generated from an Aspen Plus� simulation of a dis-

tillation column. Normalization was done on the 6 vari-

ables in the input vector, and the deviation ranges tested are

of ± 2.5%, ± 5%, and ± 7.5% from nominal operation

values. Each sample was classed by a fault as the target,

and 6 total potential fault conditions were used. The fault

conditions are increment/decrement in feed rate, incre-

ment/decrement in reflux flow rate, and high/low steam

flow rate. Additionally, the faults were classified based on

fault intensities, i.e., the classes were not simply binary

values of 0 or 1, but rather a decimal value, between 0 and

1 based on how severe the output variables of the column

was. The results show that 5 faults were satisfactorilyFig. 8 Flowchart of implementation by Pandya et al. [1]

Neural Computing and Applications (2020) 32:447–472 457

123

diagnosed, and only Fault 1 (decrement in feed flow rate)

was not satisfactorily predicted.

Gastaldello et al. [3] used an MLP (LMBP) network for

identifying the location of faults in underground electrical

cables through noninvasive means. Two hidden layers were

used, and the inputs (of 4 cable variables per sample) and

targets (location of fault) are generated from simulation

software for use in training as well as testing (Fig. 9). It

was noted that the network performance for detecting faults

occurring in 300-m-length cables was not successful, likely

due to scarcity of samples for said cable lengths. However,

looking into its predictive capabilities for various other

cable lengths from as low as 100 m up to 4300 m, the

average error of fault location predictions was only off by

3.08% when using 326 training samples, and 0.25% when

458 samples were used, which indicates satisfactory per-

formance for every other cable length. The authors noted

that further investigation of using other network topologies

will be necessary.

Ziani et al. [71] used an MLP for the fault diagnosis of

bearings, using GA as the primary optimization algorithm

for selection of signal features for use in training. Com-

pared to a similar study [4], the statistical features used are

significantly less, and involve fewer NN testing configu-

rations. What is uniquely done is the use of power spectral

density (PSD) calculations to obtain spectral features, and a

wider range of frequencies sampled for statistical features.

Five total signal classes were used, 4 of which is of faulty

behavior, and 1 normal. The signals of each class were

taken from four different speeds, totaling to 20 unique

time-domain samples. The samples were split further into 2

groups, forming 40 sets. The samples are then processed

into 4 different frequency bands. From the frequency

bands, 6 statistical features which are: root mean square,

variance, skewness, kurtosis, normalized 5th moments, and

6th moments, were taken. The statistical feature count is up

to 24. Four additional features were sampled by taking the

PSD from each of the frequency ranges, totaling the sta-

tistical feature count to 28. The global data set consists of

40 time-domain samples (20 for training, 20 for testing)

with 28 combined features (24 statistical, 4 spectral). The

network performance using this data set has shown to be

acceptable with the spectral features, but not so well with

the statistical and combined features. This is likely due to

the curse of dimensionality taking effect, as 24 and 28 is

much too high of a parameter count for such a small sample

size. Additionally, the number of iteration stopped at 7 and

11 for the statistical and combined features, respectively,

indicating a problem of convergence toward local minima.

When training using features selected through GA (the

number of features selected was reduced to 4 and 2),

classification performance was at 100% for four random

trials.

Sharma et al. [66] used a MLP BP network with

momentum for detecting the presence and severity of

process faults in an ammonia (NH3) stripping column. Six

classes of faults (low/high feed rate, low/high feed com-

position, and low/high reboiler vapor rate) were used as

targets for the 6 parameters (mol fraction of NH3 in bot-

toms, mol fraction of NH3 in distillate, bottoms tempera-

ture, bottoms distillate, bottoms rate, and pressure drop)

input vector. The input data set is also varied in a way such

that not only does it has a specific fault target, but there are

also specific severities of each fault target. The inputs are

also normalized, and the discretization of the fault severi-

ties was made between the range of [0, 1] for input devi-

ations of ± 5%, ± 12.5%, and ± 20% from nominal

value. This means the target values are equivalent to 0.25,

0.625, or 1.0 for the three different severities, respectively.

The objective of the classification is similar to Taqvi’s case

[10], in that not only the type of fault is to be detected, but

also the severity of the fault. It is worth noting that the

authors also studied samples with multiple fault classes

assigned as targets (double faults and triple faults). The

classification efficiency of the outputs was evaluated by the

root MSE (RMSE), maximum average percentage error

(MAPE), and Pearson correlation coefficient. The terms

‘‘recall’’ and ‘‘generalization’’ used by the authors refer to

the training and testing step of the ANN, respectively. The

network was reported to be able to detect and classify most

of the faults correctly in both training and testing stages

except for samples classed with the low feed composition

fault. While unmentioned, the performance of the network

in the testing stage for severity prediction was not shown to

be very consistent for ± 5% severity faults, and all levels

of severity for the low vapor rate fault. Through the

Fig. 9 Diagram of overall

methodology used by

Gastaldello et al. [3]

458 Neural Computing and Applications (2020) 32:447–472

123

analysis of importance of each parameter using Garson’s

method [57], the bottoms composition, bottoms tempera-

ture, and distillate temperature were found to be of little

significance in contributing to the fault classification per-

formance. A new network using the same samples but only

3 input parameters (eliminating the three parameters of

lesser significance) was trained and was found to perform

similarly to the 6 input NN for single fault classification

(i.e., only low feed composition fault was not classified

properly). The multiple fault detection performance was

shown to be better using the 3 input NN, compared to the 6

input NN, while triple fault detection was not achievable

for both networks.

A similar study was done by Behbahani et al. [72] for a

CO2 absorption/stripping column, using an MLP BP with

momentum, using 5 normalized inputs (sweet gas flow,

sweet gas temperature, rich solvent flow, rich solvent

temperature, and column pressure drop) and 8 classes of

faults (low/high flow of feed, low/high concentration of

CO2 in feed, low/high flow of liquid absorber, and low/

high concentration of monoethanolamine in absorber). The

ranges of fault severity within the samples are of ± 5%,

± 10%, ± 25%, ± 50% deviation from normal values.

The classification efficiency of the outputs was evaluated

by the MSE and MAPE. The training and testing perfor-

mance for the prediction of single faults was found to be

very successful, along with the detection of test samples

containing double faults. Detection of triple faults was not

successful, noted by the authors to be due to the training of

the network done using only single fault samples.

In another study with a much simpler basis, an attempt

at detecting faulty behavior using an RBF network was

done for a distillation column containing a binary mixture

of toluene/methylcyclohexane by Manssouri et al. [73]

Attached to the first output class of ‘‘normal operating

behavior’’ (with value of 1) are 6 input parameters which

are heating power, preheating power, distillate rate, feed

rate, pressure drop, and preheating temperature. An alter-

native set of data where the heating power is increased by

100% of its stable operating range (leading to changes in

preheating temperature and pressure drop) was also pre-

pared, which was labeled as the second class of ‘‘abnormal

operating behavior’’ (with value of 0). After training the

network with an unspecified amount of data and testing

with 50 sets of normal operating data, it was seen that the

model managed to classify the operating data as ‘‘normal’’

at close to 80% of its intended output value of 1. When

tested with 24 samples of the abnormal operating data, the

trajectory of the output class did begin to lean toward the

value of 0, averaging around 0.38 across all 24 samples.

This is likely due to the relatively small abnormality

change of only 3 variables in total, leaving still about 3 of

the other variables in near stable operating state.

Mekki et al. [6] used an MLP to model and detect faulty

behavior of partial shading of photovoltaic modules. Pre-

processed by normalization, the 2 inputs used are temper-

ature and solar irradiance, and the 2 outputs to be predicted

are output current and voltage. The network was trained

using a multitude of BP algorithms, each at 10,000 epochs,

to find the network that gave the best performance

regardless of convergence speed. The chosen training

algorithm that gave the best performance was resilient BP,

which gave an MSE value of 0.00101 and a regression

coefficient R2 of 0.999. The ‘‘fault’’ in this case is the

number of shaded photovoltaic cells. The mean absolute

error (MAE) between the measured performance (current

or voltage) and the estimated performance is used to

diagnose the magnitude of this fault. It should be noted that

the behavior of the ANN model very closely follows the

actual measurement in a linear manner, meaning the R2

value is close to 1, and the MSE is almost zero at normal

operation state, indicating a near flawless model that can be

used as a reference. With reference to Fig. 10, a faulty state

is detected when the error between the measured and pre-

dicted performance exceeds the threshold value SI and Sv,

which are defined as the minimum detectable value of the

residual error (number of shaded cells (NSC) required to

cause noticeable drop in performance). When a fault is

detected (significant shading occurs), the MAE value is

Fig. 10 Fault detection scheme by Mekki et al. [6]

Neural Computing and Applications (2020) 32:447–472 459

123

used to diagnose the magnitude of the fault. The developed

model manages to obtain a linear behavior based on the

MAE and NSC, and the authors also managed to success-

fully plot the faulty trend (performance loss against NSC)

in a linear fashion as well.

Jamil et al. [74] used an MLP (LMBP) for fault detec-

tion and classification in an electrical power transmission

system. Two separate networks were made for the attempt

in detection and classification of a fault. It was noted the

inputs from each trial were normalized. The first trial was

done using 6 inputs (three phases of voltage and current

waveforms) to simply detect whether a fault occurred

(Output was set to a binary decision of [0, 1].) The results

showed an overwhelming ability to successfully detect the

occurrence of a fault. The second trial of fault classification

used the same inputs and was assigned 10 target classes

represented by 4-dimensional outputs based on one of the

three phases of the transmission line and output for the

ground. Ten distinct faulty class values were able to be

made using in such a manner, e.g., Fault 1 = [1 0 0 1],

Fault 2 = [0 1 0 1], etc. The regression fit showed an

overall R2 value of 0.93788, and a classification efficiency

of 78.1% from the classification confusion matrix, which

was deemed by the authors to be successful in classifying

for all 10 faults. A noticeable aspect of the authors’

implementation was in the topology of the neural network,

totaling five layers with a size configuration of 6–10–5–3–1

(with each number referring to the size of the layer) for the

first trial, and 6–38–4 size configuration for the second

trial.

With reference to the use of dynamic NNs for dynamic

data sets, a few examples of recurrent NN usage are also

noted. For the detection and isolation of faults of an

industrial gas turbine, Nozari et al. [75] devised an MLP

with tapped delay lines for identification of faults, assisted

by a local linear neuro-fuzzy model to ensure its fault

detection thresholds are robust and adaptable to noise.

While the case above [75] utilizes process residuals as the

input to the fault predictors, a similar method was per-

formed by Taqvi et al. [76], however utilizing the direct

process variables as inputs, for the detection faults in a

distillation column using a nonlinear autoregressive net-

works with exogenous (NARX) NN. Lastly, Kiakojoori

and Khorasani [77] used two dynamic NNs; the Elman NN

and NARX NN, to predict the simultaneous occurrence of

compressor fouling and turbine erosion within a gas turbine

engine. For this case, the Elman NN (where the feedback

loop occurs within a separate bank of delays in the weight

space) reported better performance compared to the NARX

NN (where the feedback loop occurs from the output space

directly to the weights).

4.2 Standard practices in ANN application

As seen in column 3 of Table 2, a majority of the cases

studied (nearly 90%) uses MLP as the preferred NN

architecture in their research, utilizing at most 1 or 2 layers.

This is mostly due to the higher prominence of supervised

learning problems encountered within FID, leaving unsu-

pervised learning as an unpopular option. The preprocess-

ing of inputs is shown to be extremely important in

obtaining successful results, as a few of the studies even

have included a comparative analysis to show its efficacy

over largely unprocessed inputs [2, 4, 20, 67, 70, 71].

Therefore, in the discussion of neural network usage, a

more prominent topic to touch upon is more so the method

of preprocessing the input space than the neural network

usage itself (putting aside the complexity of the applied

FID case as a separate issue). The application of the inputs

themselves into MLP ANNs is however relatively easy,

which enables it as an attractive option for quick testing an

input–output behavior model.

A glance of column 4 in Table 2 shows that the use of

normalization is practically a standard, and is encouraged

to be used at all times. Even in cases where not explicitly

mentioned [3, 7, 68], it is highly likely that the analysis

methods reviewed had a normalization step incorporated

by default. Research involving signals as the source of

interest can benefit from wavelet decomposition to extract

more salient features to use as inputs in the neural network

[1, 20, 67]. For cases where a large amount of parameters

are involved per sample, the use of PCA can be of interest

to reduce the dimensional properties of the input space to

reduce any possible redundancy within the samples, which

can promote better network generalization and computa-

tional efficiency [2, 5, 20, 70]. This is especially seen from

Zhou et al.’s [2] case, where the use of PCA manages to

highlight 2 distinct groups correlating to separate behaviors

of ‘‘faulty’’ and ‘‘non-faulty’’ ranges from the staggering

number of 22 variables. From cases where optimization

methods for parameter selection are used, it is seen that a

smaller number of parameters in the input space can be

completely sufficient to represent the behavior of certain

systems [4, 66, 71]. Thus, a conservative estimate of the

appropriate number of input parameters for modeling a

system using NN can be approximated as between 1 and 6,

though it highly depends on the system in mind. Using

more than that is certainly an explorable option, though it

might come at the cost of higher computational costs and

notably higher sample size requirement. If the information

is readily available and plentiful in size, it is advisable to

proceed with using as many parameters as availably pos-

sible at first. This is because one solution to overcome the

problem of bad NN generalization is to attempt to model

460 Neural Computing and Applications (2020) 32:447–472

123

the system behavior with as many features as possible,

regardless of its importance. The evaluation of which

parameter to discard can be done in the preprocessing step

[4, 66], or if either parameter numbers are small enough or

processing time will not be an issue, they can be discarded

manually through simple trial and error. Conversely, if the

Table 2 Summary of reviewed applications

Authors Objective NN architecture Preprocessing Source

Hwang et al.

(1993)

Detect and diagnose faults on a mathematical model

of a pressurized water reactor type nuclear plant

MLP (BP) [7]

Paya et al.

(1997)

Detect and classify 6 different vibrational signals

from a gearbox

MLP (BP) Wavelet (D4), normalize [67]

Aminian and

Aminian

(2000)

Determination of faulty components within an

analog electronic circuit by impulse response

analysis

MLP (BP) Wavelet (Haar), PCA,

normalize

[20]

Kumar (2003) Detection of various textile defects through

segmentation of static images

MLP (LMBP), linear feed-

forward ANN

PCA, normalize [5]

Sharma et al.

(2004)

Fault detection and severity diagnosis of an

ammonia stripping column

MLP (BP ? momentum) Normalize [66]

Samanta et al.

(2004)

Classification of various faulty bearing behaviors MLP (LMBP), RBF, PNN Various statistical feature

extraction, genetic algorithms,

normalize

[4]

Manssouri

et al. (2008)

Fault detection in a distillation column RBF Normalize [73]

Behbahani

et al. (2009)

Fault detection of a CO2 absorption/stripping

column

MLP (BP ? momentum) Normalize [72]

Feng and Xu

(2011)

Performance analysis of fault classification in liquid

propellant rocket engine ground-testing beds

SOM (Kohonen) Normalize, PCA [70]

Gastaldello

et al. (2012)

Prediction of fault location within underground

electrical cables

MLP (LMBP) [3]

Pandya et al.

(2012)

Diagnosis of ball bearing fault type based on input

features obtained from preprocessed vibration

signals

MLP Wavelet (rbio5.5), sub-band

energy ? kurtosis feature

extraction, PSD, normalize

[1]

Ziani et al.

(2012)

Diagnosis of ball bearing fault type based on input

features obtained from preprocessed vibration

signals, optimized through GA

MLP Various statistical feature

extraction, genetic algorithms,

normalize, PSD

[71]

Zhou et al.

(2014)

Identification of fault across multiple processes

(example case shown for faults of pulmonary

readings through parameter behavior

reconstruction)

MLP (BP) PCA, k-means clustering [2]

Jamil et al.

(2015)

Fault detection and classification in an electrical

power transmission system

MLP (LMBP) Normalize [74]

Mekki et al.

(2016)

Modeling and detecting faulty behavior of partial

shading of photovoltaic modules

Various MLP BP methods

(preferred method chosen

as resilient BP)

Normalize [6]

Taqvi et al.

(2017)

Identification and diagnosis of faulty process

behavior of a distillation column

MLP (LMBP) Normalize [10]

Banjanovic-

Mehmedovic

et al. (2017)

Detection of anomalous thermal power plant

process behavior through classification.

MLP (LMBP), Elman,

PNN

[68]

Nozari et al.

(2012)

Detection and isolation of faults in an industrial gas

turbine, with fault thresholds generated from

neuro-fuzzy method

Recurrent MLP (LMBP),

Local linear neuro-fuzzy

modeling

Normalize [75]

Kiakojoori and

Khorasani

(2016)

Prediction, monitoring, and prognosis of engine

turbine degradation under multiple fault severities

and conditions

NARX (LMBP), Elman

recurrent NN

[77]

Taqvi et al.

(2018)

Detection of faults in distillation column, with

thresholds obtained using Shewhart control charts

NARX (LMBP) Normalize [76]

Neural Computing and Applications (2020) 32:447–472 461

123

network is seen to be lacking robustness, the addition of

more sample sizes with wider data variation ranges can be

a suggestible action to take [3].

4.3 Characteristics of the reviewed cases

The main characteristics selected for evaluation from each

cases are shown according to Table 3, which is much more

specific than the general summaries of the cases shown in

Table 2. Within Table 3, the characteristics are organized

according as; type of problem the authors are concerned

with in the ANN application (2nd column), input param-

eters of the network (3rd column), classification format of

the data seen in the targets and output (4th column), and

whether a static (with sample size shown) or dynamic data

set is involved (5th column). They are chosen based on the

input–output sizes used in constructing the model and

required analysis within each case. Unless annotated

otherwise, the selected inputs and outputs are from the

models with the best performance in tandem with the most

efficient preprocessing configuration (for the case where

multiple ANN architectures are tested). It is done in this

manner to be made appropriate for the intended audience of

this paper; new researchers wanting to explore ANN as an

option for performing data-driven analysis by looking into

how it was done by others.

What is key in ANN usage is the proper establishment of

both the materials with which the black-box model has to

work with (the input) and how both the researcher and

machine can interpret the result (the output). A thorough

discussion of ANN’s performance relative to other process

history-based FID methods is explored by Venkatasubra-

maniam et al. [47], with a heavy emphasis on chemical

process application. The discussion was made particularly

by comparing the capabilities of ANN against other options

for process control that is available at the time. The com-

parison was done using semiquantitative characteristics

such as quickness of diagnosis, isolability, robustness,

among others. In comparison with the classical options of

using an observer and expert systems, ANNs are highly

regarded for its quick detection speed, good isolation

capabilities, robust generality through learning, novelty

detection capabilities, and compact storage options. Their

main drawback is the lack of explanatory detail behind the

model development and function (due to its black-box

nature). In comparison with another data-driven model

called Bayesian networks (BN) done by Tidriri et al. [78],

both are shown to be rather equal in capabilities in similar

measures of robustness, calculation speed, etc. However,

the BN method suffers from the requirement of various

prior probability data, a problem owing to the large training

data required of the system beforehand. While ANN is

described largely in a positive note by the authors, many of

the disadvantages associated with ANN in the review of

Venkatasubramaniam et al. (lack of multiclassing capa-

bilities, inability to describe classification errors) are

mostly alleviated today by the increasing development in

not only the algorithms used within the ANN models, but

also the accessibility to such new technologies for the

average end user, partly in thanks to the inclusion and

simplifications done by numerical computation software

developers of products such as MATLAB and TensorFlow.

Furthermore, the vast difference between the types of

problems encountered by each of the studied cases cannot

be assessed by general descriptors alone. An example of

this is in the analysis of robustness and adaptability. Within

any arbitrarily selected case, its robustness (or flexibility)

can only be judged based on how well designed the inputs

are made to cover the expected behavior within the scope

of the studied phenomenon. For example, multiple class

problems within electrical transmission lines are far too

different than multiple faults within a chemical process to

be reliably compared. Whether an ANN is capable of

generalizing the studied behavior is highly reliant on the

researcher’s expertise and interpretation of the specific

subject matter, and how it is expressed through the input

and output design. In a similar vein, it can be said that

neural networks both lack adaptability in the sense that it

always requires the reconstruction of a new set of data for

each new system required to be studied, while at the same

time is adaptable by definition of its design as a universal

function approximator. This may not always be the case

depending on how the contextually broad the problem is

defined, though such cases are mostly an exception rather

than the norm. Even within the similarly established ball

bearing fault cases [1, 4, 67], disregarding the different

type of experimental methods used for obtaining data, there

are unstated physical differences such as type of motors

used to generate the vibrational signals, quality of ball

bearings, manufacturer brand, and so on.

4.4 Problem type assigned to each case

In this minor subsection, the characteristic of problem type

from each reviewed cases (column 2 of Table 3) are

examined. The labels for each problem type are made

based on several criteria. If the faults are known to some

extent by the experimenter, and a simple qualitative label

was to be required for each characteristic fault based on the

behavior of the inputs, the type of problem is labeled as

‘‘fault type classification.’’ The salient features from these

problems are the deterministic classes, i.e., a specific

numerical value is assigned for each class. Outside of any

possible difficulties with the input parameter selection, it is

one of the easiest problems to solve using ANN in terms of

implementation and analysis. Any form of increasing

462 Neural Computing and Applications (2020) 32:447–472

123

Table 3 Summary of characteristics for each reviewed application

Authors Problem type Inputs Outputs (and targets, for supervised

learning)

Dynamic or static Source

Hwang et al.

(1993)

Parameter

identification,

error threshold

generation, and

fault detection

4 reactor variables ? time, 2

variables (time ? coefficient),

and 3 past steam pressure

residuals

Coefficient for predicting process

behavior, 8 error thresholds, and

type of fault

Dynamic [7]

Paya et al.

(1997)

Fault type

classification

Dominant wavelet number and

amplitude (per fault class)

6 different classes (5 faulty, 1

normal)

Static (30 samples

for each of 6

class, totaling

180)

[67]

Aminian and

Aminian

(2000)

Fault type

classification

Wavelet coefficients from

impulse response signal

(reduced by PCA, taken from 5

different levels of wavelet

decomposition)

9 different faulty class values (higher

or lower values from nominal

readings)

Static (50 samples

for each of 9

classes, totaling

450)

[20]

Kumar (2003a) Fault detection Image vector matrix reduced by

PCA (dependent on type of

defect)

Characteristic image of segmented

defects

Static [5]

Kumar (2003b) Linear

classification

Color normalized projection line

(horizontal and vertical line, on

2 separate networks)

Decision of either ‘‘defect’’ or ‘‘non-

defect’’ on that line (through error

calculation between line’s color

and reference color)

Static (640

vertical signals,

480 horizontal

signal)

[5]

Sharma et al.

(2004)

Fault detection and

diagnosis

3 process variables (cut down

from 6 with Garson’s equation

of relative variable importance)

6 types of fault at severities

between ± 5% ± 20%, inclusive

of double faults and triple faults

(output containing multiple classes)

Static [66]

Samanta et al.

(2004)

Fault type

classification

Various parameters generated

from signals of vibrating ball

bearings (6 parameters used in

most optimized network)

2 classes (faulty vs non-faulty); 2

vector output for MLP and RBF, 1

vector (1 or 0 value) for PNN

Static (288

samples, each

with 45 features

before

preprocessing)

[4]

Manssouri

et al. (2008)

Fault type

classification

6 process variables 2 class (normal operation, abnormal

operation)

Static (74 samples

for testing; of

which 50 is

normal, 24 is

abnormal)

[73]

Behbahani

et al. (2009)

Fault detection and

diagnosis

5 process variables 8 types of fault at severities

of ± 5%, ± 10%, ± 25%,

and ± 50% (separate testing of

double faults are successful, failed

for triple faults)

Static (200 for

training, 60 for

testing)

[72]

Feng and Xu

(2011)

Fault identification 5 parameters (150 samples each;

100 for training, 50 for testing)

Self-generated groups/clusters of

faults

Static [70]

Gastaldello

et al. (2012)

Fault detection and

diagnosis

(through curve

fitting)

4 parameters relating to the cable

properties

Location of cable fault Static (458

samples)

[3]

Pandya et al.

(2012)

Fault type

classification

12 parameters (3 sub-band

energies ? 3 kurtoses, each

having horizontal and vertical

parts) extracted from wavelet

transform

5 different classes of faults Static (1000

samples, 70%

train, 20%

validation, 10%

test)

[1]

Ziani et al.

(2012)

Fault type

classification

2 parameters (selected from 28

with GA)

5 different classes (1 normal, 4

faulty)

Static (20 for

training, 20 for

testing)

[71]

Zhou et al.

(2014)

Time series

prediction

22 time variant parameters taken

from 10 past time instances

Predicted behavior of 22 parameters

at 11th time instance, and onwards

Dynamic [2]

Neural Computing and Applications (2020) 32:447–472 463

123

complexity will mostly be from the preprocessing done to

obtain the features and the initial problem formulation of

the class group types, which will vary in difficulty based on

how intricate the studied system is. On the other hand, if

there are no observable distinct groups, unsupervised

learning through a self-organizing ANN is another alter-

native tool that will assist in both affirming or rejecting any

hypothetical fault classes that may or may not be present. If

the number of classes to be considered is seemingly higher

than expected, Jamil et al.’s [74] case can be used as an

example to follow. While a higher class count might

necessitate a larger output vector, it might also require an

exponentially larger training sample size. To overcome this

problem, Jamil et al. used a combination of permutative

vector space to map out all fault classes and a higher than

usual hidden layer size of 36 to expedite the training pro-

cess. However, seeing as the reported prediction perfor-

mance in the testing stage is imperfect on its own right, it is

still recommended to use the n-ary style of class formatting

to cover all faults (as shown in Sect. 3.3) for the initial

attempt.

In cases where the outputs carry both qualitative and

quantitative properties, the problem is labeled as ‘‘fault

detection and diagnosis.’’ It is labeled as such mainly due

to how the faults have not only a specific class, but also a

level of how severe the fault can grow depending on the

possible abnormality range of the input parameters. In a

sense, it is very much similar to a curve fitting problem

with multiple dependent variable terms; however, the term

values are segregated between constraints. Mostly repre-

sented by the chemical process fields in this review

[10, 66, 72], the level of severities is typically there to

allow for a fault class to be expressed in varying degrees of

harm levels such as ‘‘tolerable’’ or ‘‘critical.’’ If an accurate

model of faulty process behavior can be achieved using the

process variables alone as indicators, it may serve as an

alternate fallback simulation to find out if a fault can be

detected proactively before it may even occur. Outside the

purpose of FID, it can also be used to observe how much

quantitative influence a particular variable has toward one

type of output variable in a more realistic and non-isolated

condition.

As stated in Sect. 2, loss functions and the performance

metrics are not necessarily the same. The use of MSE

(mean square error) is widely popular and is regarded as

the most commonly used loss function [79] in most ANN

architectures. Despite this shared similarity, it was seen

that the performance criteria are never explicitly consistent

across all the cases studied. In the classification cases for

example, most of the networks use MSE as the loss func-

tion; however, the manner in which the results were dis-

cussed was done using concepts of classification accuracy

Table 3 (continued)

Authors Problem type Inputs Outputs (and targets, for supervised

learning)

Dynamic or static Source

Jamil et al.

(2015)

Fault type

classification

6 inputs (voltage and current

readings at 3 different phases)

4 output nodes (of phases A, B, C and

ground), totaling to 10 distinct

faults inclusive of multiple class

faults

Static (792 for

each class,

totaling 8712)

[74]

Mekki et al.

(2016)

Curve

fitting/model

generation

2 parameters; temperature and

solar irradiance

2 outputs; current and voltage

generation

Static (3000

samples, 70%

training, 30%

testing)

[6]

Taqvi et al.

(2017)

Fault type

classification

6 process variables 6 types of faults at severities

of ± 2.5%, ± 5%, and ± 7.5%

Static [10]

Banjanovic-

Mehmedovic

et al. (2017)

Fault type

classification

6 process variables 2 classes of either ‘‘normal data’’ or

‘‘anomaly data’’

Static [68]

Nozari et al.

(2012)

Fault detection and

isolation

2 input variables; valve angle,

fuel flow

4 output variables; (compressor

torque, outlet temperature,

combustion chamber outlet

temperature, pressure)

Dynamic [75]

Kiakojoori and

Khorasani

(2016)

Fault detection and

diagnosis

1 process variable; fuel flowrate 1 process variable; turbine output

temperature

Dynamic [77]

Taqvi et al.

(2018)

Fault detection 3 input variables; (top and bottom

compositions, column pressure)

3 output variables; (reflux flow,

reboiler duty, condenser duty)

Dynamic [76]

464 Neural Computing and Applications (2020) 32:447–472

123

[1, 4, 20, 67, 74]. Depending on the problem, the metrics

used in analyzing the performance of the trained network

will differ. For a standard fitting or modeling task where

outputs are evaluated quantitatively (such as the cases of

Gastaldello et al. [3] and Mekki et al. [6]), the combined

use of MSE and R2 is usually sufficient in determining the

accuracy of the network in modeling the expected behavior

between the inputs and outputs. For cases where a deter-

ministic fault class is preferred (such as the qualitative

labeling of Fault 1 as [1, 0], Fault 2 as [0, 1], etc.) the use of

true/false classification is indispensable for the discussion

of network performance. The many statistical classification

derivatives such as true positive rate (recall/sensitivity),

true negative rate (specificity), confusion matrix of overall

classification performance, and many others would be the

additional suggested metric to use, based on the analytical

needs of the study. An example being in process control

loop monitoring, where a system producing false positives

can be extremely dangerous, necessitating a higher priority

for models that perform well at obtaining true positive

performance [80].

Another unexplored advancement among all the studied

cases, however, is the use of cross-entropy (CE) as a per-

formance metric. Unlike MSE (as shown in (4) where y is

the actual probability, and ŷ is the predicted probability

over number of samples N), which processes each sample

set as with a functional real-value output, CE looks into the

probability of one set of data belonging to either one of the

2 classes within the target vector. Compared to the absolute

type of error generated by the MSE, the error type of CE is

relative to the number of classes used in training, allowing

outputs to be expressed through more than just real values

of [1, 0] or [0, 1]. Depending on how correlated a particular

sample set is to a certain class, CE will also take into

account the weight of a predicted probability such as [0.76,

0.24] or [0.19, 0.81] relative to the total class targets

trained. Note that this is mainly assuming the softmax

activation function is used, so the classes are normalized

between 1 and 0. While this does seem inapplicable to fault

detection and diagnoses cases with varying severities, it is

still suggested for use in cases where the classes are

deterministic and dependent on each other. Even when

used as a loss function, it has the ability to more accurately

calculate posterior probabilities, especially within a limited

amount of samples, when compared to MSE [81]. While it

has also shown promise for use as a loss function in

training classification problems, its use as a performance

metric is noteworthy on its own. Shown in (5) is the sim-

plified version of the CE index performance metric for a

two-class application, where H is the average cross-entropy

score. A lower overall score is more desirable, and it can

easily be applied over the outputs generated from a net-

work’s training or testing session, as another means of

numerically assessing the performance of a classification

network with deterministic classes.

MSE y; byð Þ ¼ 1

N

XN

i¼1

yi � byið Þ2 ð4Þ

H y; byð Þ ¼ 1

N
�
XN

i¼1

yi log byið Þ
 !

ð5Þ

4.5 Input and output format within the ANN
of each case

In this subsection, the characteristic of inputs and outputs

used in each reviewed cases (columns 3 and 4 of Table 3)

is examined. This is the stage where the context of the

research matters most, and the best course of action is to

use due diligence and design the most appropriate input

vector data and the outputs needed from them using

whatever data that are most appropriate for the FID prob-

lem in mind. If signals or any image-like data are con-

cerned, feature extraction through the use of statistical

moments (especially when physically generated signals are

involved [4, 71]), PCA, and wavelet transform is highly

recommended. In fact, the methods described in Sect. 3 are

only a minute fraction of the many data transformation

strategies employable to obtain a varying data set format.

The use of a large sample size just as important to ensure

that there is sufficient information to ensure that the

behavior learned of the system is robust to generalization.

It is also important to remember that the behavior learned

from the ANN is only as good as the inputs and outputs fed

into it.

A rather difficult task highlighted across the cases is the

prediction of parameters with multiple class targets. While

it is successful for the prediction of the occurrence of up to

2 simultaneous faults in all the cases, the results for 3

simultaneous faults leave a lot to be desired. Even in Jamil

et al.’s [74] case where the prediction was considered a

success, the confusion matrix classification percent leaves a

lot of room for improvement. The use of SVM, Bayesian

network, and other machine learning techniques that are

also suited for classification tasks [78] can be considered as

an alternative if multi-class target problems are needed to

be solved.

On a separate tangent, it was noticed that there was a

lack of clarity in presentation of inputs and outputs in some

of the papers studied. While a few of them can be excused

as the earliest entries in ANN use within FID, the lack of

clarity in data presentation observed (no numerical

tables showing the input parameter set, no clear distinction

between total sample size per class and input vector size,

odd clumping up of both training and testing data set) can

Neural Computing and Applications (2020) 32:447–472 465

123

be a careful reminder of how important it is to ensure the

input and output data format is arranged and presented as

clearly as possible, either through graphical or tabular

means. As this issue is mostly pervasive in older papers, it

is likely that the increasing availability of accessible ANN

tools and resources over time resulted in a natural pro-

gression toward higher understanding among ANN users in

documenting their methodologies. Hwang et al.’s [7] paper

stood out as rather interpretable, despite being the oldest

out of the studied cases. The difficulty in understanding

applications of ANN, particularly of the cross-disciplinary

variety, mostly stems from the fact that it is a foreign

subject matter to mostly all but the authors and the interest

groups surrounding the case or field in which it is applied.

In order to relieve this problem to some extent, researchers

are encouraged to explore ways for further reducing the

premise of the ANN input–output structure in a clearer

manner (wherever and whenever appropriate, of course) so

that it may be better appreciated, and perhaps even be

adapted, by audiences from outside the particular expertise

in which the ANN is applied. The easiest course of action

is to include a full diagram of the ANN structure,

describing clearly the number of inputs entering the ANN

(parameters and targets) as well as the outputs. If the inputs

themselves are obtained through relatively complicated

preprocessing steps, it would be extremely helpful to

include a flowchart describing the data transformation in a

step-by-step manner from the starting source material into

the final format that will be used as inputs or targets.

Additionally, a sample table showing a brief but exact set

of the numerical values of the input or output, e.g., as seen

in Pandya et al.’s [1] and Gastaldello et al’s [3], would also

greatly assist in the direct numerical demonstration of what

goes in and out of the ANN for easier reference to the

reader. An exemplary format that highly improves read-

ability of the experiment and results can be seen from

Banjanovic-Mehmedovic et al.’s [68] case. The authors

have condensed the information of the input data and the

NN performance through a graph of how the inputs vary in

a minimalistic manner by previewing 3 parameters across a

time-sample axis, and have done the same to clearly show

the classification performance of varying network types. In

the end, while this may have no bearing on the experi-

mental results whatsoever, clearer documentation is always

crucial for posterity.

4.6 Static (time invariant) or dynamic (time
variant) data set

In this subsection, the characteristic of problem type from

each reviewed cases (column 5 of Table 3) is examined.

The main difference to be understood between static (dis-

crete) or dynamic (varying with time) data is whether the

output is influenced by the parameters alone, or if it is also

influenced by how the input changes with time. An easy

example to consider is the ball bearing application exam-

ples [1, 4, 67]. The vibrational inputs are associated as

having a direct relation with the type of fault in the form of

a discrete time data set. For FID applications in which live

monitoring is a concern, the use of dynamic time is much

more prominent. The main tasks requiring dynamic time

data are for step-ahead/forward predictions, or for model-

ing time-sensitive data for faults involving an iterative loop

of some sort (for which the latter case, recurrent neural

networks are a viable option to consider). In cases where

static data sets are used, the total sample set of data used

for the training and testing of the network are shown (in

cases where explicitly stated by authors). This is merely to

show the range of sample data counts involved in the

learning process of the ANN, for the readers to consider as

a gauge. It should be noted that the parameter count is just

as important, and the consideration for total number of

sample sets to gather should go hand in hand with the

number of features to use per data set.

Static NNs alone are supposedly unfit for solving

dynamic problems; however, the limitations can be over-

come. In the case of Hwang et al. [7], the limitations of

dynamic data were resolved by using multiple neural net-

works as an artificial form of multiple ‘‘memory’’ states.

While Zhou et al. [2] posed a problem that was inherently

dynamic in nature, the vast number of interrelated param-

eters played a much larger role in influencing the output,

rendering it as a solvable problem using only several time

instances backwards as the input (not more than 10 time

instances), without the inclusion of any tapped delay lines

for the training process. In the three cases where recurrent

NNs are explicitly used, the time instances reaches a rather

realistically longer length, which necessitates the use of an

NN capable of providing dynamic solutions. In Taqvi

et al.’s case [76], the investigated state space reaches

within the 1–2 h length time span, while the turbine engine

problem explored by Kiakojoori and Khorasani [77]

requires prediction of reportedly up to 200 cycles of

operation under highly intensive conditions. Therefore, for

the consideration of problems involving dynamic data sets,

it is important to look at the projected time range to be

explored for the case before deciding to choose a simple

static NN, or begin immediately with a dynamically pur-

posed NN.

5 A brief application tutorial

To describe the relative significance behind each choice to

be made when using NN for solving a problem, this section

will show the steps taken to tackle an FID problem

466 Neural Computing and Applications (2020) 32:447–472

123

previously unexplored with NN; detection of a control

valve suffering from stiction (static friction). Valve stiction

is defined by Choudhury et al. [82] as the sticky resistance

of a valve, represented by both the deadband and stickband

(S) when it is opening from a stationary position, and a slip

jump (J) representing the sudden release of potential

energy stored by the actuators due to static friction in the

form of kinetic energy as the valve is moving, in the

intermediate process of adjusting the flow rate. This

problem is interesting due to the relative difficulty of

spotting a valve suffering from stiction without the use of

invasive testing methods [83], with various non-invasive

stiction detection methods reporting considerably varying

results [84]. While the sticky condition is known to have

quantifiable levels of severity like most faults, it is still

important to be able to first identify its appearance.

Attempts to quantify the severity of valve stiction using

NN were conducted before by Farenzena and Trierweiler

[85]; however, a simple class-based approach was not

attempted, thus only rendering the work as useful if the

valve was known to be suffering from stiction a priori.

Detection of stiction with NN was reportedly done before

within the work of Venceslau [86]; however, the case

within does not show explicit results demonstrating how

the developed NN was able to differentiate between valves

suffering from stiction or other possible problems. In

essence, the scope of the problem is to solve a pattern

recognition problem through classification using NN.

Using the Neural Network Toolbox in MATLAB, each

subsection that follows is the order in which the problem is

handled.

5.1 Input and output formatting (with
preprocessing)

Since the analysis will be made with a distinction of either

‘‘stiction’’ or ‘‘non-stiction,’’ the output will be established

as a simple binary vector. A large range of oscillatory

conditions may be sampled within the non-stiction class;

however, for this example the output classes are made

considering only 3 other cases: a signal with no oscillation,

an oscillatory signal from aggressive tuning, and a signal

carrying external oscillatory disturbance. The 3 faulty cases

will be simulated separately; however, they all share the

target label of ‘‘non-stiction.’’ The case of selecting the

right input form goes hand in hand with the preprocessing

step. It is noted that the normalization step (from (3)) is

considered to be a default step as part of the preprocessing.

For the case of valve stiction, the parameters to be

considered are the output from controller signals (OP) and

the process variable (PV) response signals. While the actual

valve position within the actuator can be a key parameter in

identifying a sticky valve, such information is not always

available unless smart valves (which are expensive not

always available) are in place. From the previous work,

several features were extracted from the PV–OP signals for

use [85] as input parameters. For this example, the discrete

time data from the PV and OP signals will be directly used

as input materials, without any feature extraction. While

this can be improved upon later on, it is assumed that 500

time instances of PV and OP will contain enough oscilla-

tory information that can represent stiction behavior. In

order to fit the properties of both PV and OP into a single

parameter [86] (to allow its use in the inputs), a transfor-

mation will take place where the ith time iteration (from

both PV and OP) is converted into a single parameter, D as

shown in (6). For our case, the value of i is designated as

500. Note that this limitation of requiring exactly 500 time

instances will carry on for any future inputs wanting to

obtain an output from the final NN developed.

Di ¼
ffi
PVi � PVcð Þ2þ OPi � OPcð Þ2

q
ð6Þ

where Di is the new value of the particular PV–OP time

instance, PVc is the mean of the 500 sampled PV time

instances, and similarly OPc is the mean for the 500 OP

time instances.

With the input and output premise established, the

training data are ready to be generated using a process

simulation modified with a stiction model. Using Choud-

hury’s stiction model, the stickiness of a valve can be

varied based on the stick ? deadband (S) and slip jump

(J) parameter. Through multiple variances of S and J

parameters, 164 samples representing stiction behavior

were generated, and a combined number of 108 samples

were generated representing non-stiction behavior, totaling

to an input sample size of 272. The steps taken for gen-

erating each individual sample are summarized in Fig. 11.

The complete input vector in the form of Di,j where i is the

time instance and j is the jth data set, is shown in (7).

Finally, a table partially showing the values representative

of both fault classes, within samples 1–5 (from non-stiction

samples) and 268–272 (from stiction samples) of the input,

D at each time instance t, and their respective targets, are

shown in Table 4.

D1;1 D2;1 D3;1 D500;1

D1;2 D2;2 D2;3 � � � D500;2

D1;3 D3;2 D3;3 D500;3

..

. . .
. ..

.

D1;272 D2;272 D3;272 � � � D500;272

2

666664

3

777775
ð7Þ

5.2 Selection of NN architecture and heuristics

It is advised that scaled conjugate gradient is used as the

training method for problems involving pattern

Neural Computing and Applications (2020) 32:447–472 467

123

recognition, with softmax as the activation function in the

output layer [54]. For the hidden layer, a standard tangent

sigmoid activation function is used mostly by rule of

thumb. Initial training of the NN using neuron sizes

between 8 and 12 does not show marginal improvement in

performance; therefore, the default value of 10 was used.

Two layers in total were employed, comprising one hidden

layer and one output layer. The selected structure of the

NN used in this example is shown in figure.

5.3 Cross-validation and performance evaluation

The performance of the NN is evaluated using two metrics

of cross-entropy (CE) and classification accuracy. What is

unique regarding this study is the availability of industrial

loops from real process plants which can be used for

benchmarking. The industrial loops themselves contain

samples where stiction is known to be present, as well as

samples that show oscillations due to various other known

causes. From Fig. 12 it was seen that the NN was able to

learn well due to the steady decrease with no large jumps in

the CE value, indicating a smooth progression toward a

global solution. The most important indicator to look at in a

classification problem is the accuracy. From the cross-

validation performance results shown in Fig. 13, the results

are deemed as acceptable for the current application,

especially when considering the CE values obtained which

are 0.4434 for the training stage, 0.8146 for the validation

stage, and 0.8343 for the testing stage. The confusion

matrix does show, however, that there is a noticeable bias

toward assigning a ‘‘stiction’’ class output (Class 2 in the

confusion matrix), rather than ‘‘non-stiction.’’ Further re-

training of the network does not yield a lower CE result,

showing that it has learned to the best that the training

samples will allow. This shows that the 3 oscillatory cases

outside of stiction that was lumped together into a single

class of ‘‘non-stiction’’ could perhaps be done more ele-

gantly by separating them into their own classes and

including more samples. The ratio used for the cross-val-

idation split is at a ratio of 70–15–15. The current model is

then exported as a network file, ready to be tested with

external data.

5.4 Further performance evaluation

With the availability of benchmarking data, the robustness

of the developed network can be further put to the test to

see if it has managed to learn enough to generalize across

various different conditions where stiction may occur. The

loops within the industrial benchmark consist of loops

Fig. 11 Block diagram of steps

involved in the creation of a

single sample

Table 4 Partial sample of input and output space for the valve stiction detection neural network

D

1 2 3 4 5 6 ��� 500 Output/target vector

Sample 1 1.64932 1.77929 1.96846 1.72238 1.85769 0.38597 0.14392 1 0

Sample 2 0.07311 0.44778 0.21135 0.13658 0.04711 0.29733 0.72089 1 0

Sample 3 0.11268 1.01943 0.47849 0.47019 0.51168 0.23771 0.79119 1 0

Sample 4 0.08839 0.59679 0.36629 0.32501 1.07678 1.06179 0.19313 1 0

Sample 5 0.20078 0.92713 0.60762 0.34494 0.87157 0.41849 0.25313 1 0

:

Sample 268 2.46043 1.84422 2.01761 1.88621 2.85631 1.97594 2.03201 0 1

Sample 269 2.03263 2.02271 2.03743 1.71096 1.86786 1.88185 1.20506 0 1

Sample 270 1.55363 1.30276 1.29516 1.89016 1.41655 1.07027 1.61999 0 1

Sample 271 1.64008 1.61751 1.69076 1.9358 1.43621 2.05148 2.11358 0 1

Sample 272 2.49685 2.50854 1.82463 1.74064 2.31479 1.95953 1.44422 0 1

468 Neural Computing and Applications (2020) 32:447–472

123

across many industries including chemicals, pulp and paper

mills, commercial building, and metal processing [84].

From the 93 data sets, we have used 80 to verify the stic-

tion detection model that was developed.

The classification performance of the developed NN

against the benchmark test is shown in Fig. 14. Across 43

loops labeled as stiction, 34 were correctly predicted as

stiction, while across 37 non-stiction loops, 27 were pre-

dicted correctly. While some of the output vectors assigned

are likely on the fuzzier side (such as giving results of

[0.53, 0.47]), a roughly 75% averaged accuracy for pre-

dicting the industrial loops is considered to be very good in

comparison with other stiction detection methods [87],

which has results varying from 50 to 80% detection rate.

Therefore, it can be concluded that even though the input

format was rather crude, in the sense that (1) no feature

extraction was done, (2) a large discrete time data set was

directly used instead to represent each sample, and (3) a

rather small training sample size used; the predictive per-

formance was shown to be able to be very robust to various

Fig. 12 Learning performance of the NN

Fig. 13 Confusion matrix of

classification performance from

cross-validation stage

Neural Computing and Applications (2020) 32:447–472 469

123

types of process loops when tested against real samples

from industrial data.

6 Conclusion

Neural networks have seen a lot of interesting applications

for a long time across many fields. It functions as a simple

black-box model to study the relationship between the

variables of a system. In this review, its application in

solving various FID problems in engineering is explored.

On its own it can be a valuable tool; however, its accuracy

in modeling a particular system behavior can be drastically

improved by preprocessing the inputs into a more con-

ducive format for the neural network to study. From all the

cases looked into, neural networks have definitely shown

its worth in solving FID problems for various engineering

disciplines. The steps involved in formulating the research

premise for studying FID with neural networks are made

simple enough due to developments of simpler and more

intuitive computational software. With the ever increasing

ease of accessibility to the tool, it can now be considered as

a standalone or additional testing method for use in cor-

roborating the results of not only FID problems, but many

others as well. Using a demonstration, it was seen that even

something as simple as directly using discrete time data

without advanced preprocessing has shown how easy and

effective neural networks are in terms of constructing the

premise up to the stage of utilizing the developed network

with interpretable results.

Acknowledgements The authors would like to thank MOSTI Grant

Science Fund 0153AB-B67 for the funding provided for this work.

The authors would also like to thank Universiti Teknologi PETRO-

NAS (UTP) for the support provided for this research.

References

1. Pandya DH, Upadhyay SH, Harsha SP (2012) ANN based fault

diagnosis of rolling element bearing using time-frequency

domain feature. Int J Eng Sci Technol 4(6):2878–2886

2. Zhou J et al (2014) Fault detection and identification spanning

multiple processes by integrating PCA with neural network. Appl

Soft Comput 14:4–11

3. Gastaldello D et al (2012) Fault location in underground systems

using artificial neural networks and PSCAD/EMTDC. In: IEEE

16th international conference on intelligent engineering systems

(INES) 2012. IEEE, Lisbon, pp 423–427

4. Samanta B, Al-Balushi KR, Al-Araimi SA (2004) Bearing fault

detection using artificial neural networks and genetic algorithm.

EURASIP J Adv Signal Process 2004(3):785672

5. Kumar A (2003) Neural network based detection of local textile

defects. Pattern Recognit 36(7):1645–1659

6. Mekki H, Mellit A, Salhi H (2016) Artificial neural network-based

modelling and fault detection of partial shaded photovoltaic

modules. Simul Model Pract Theory 67(Supplement C):1–13

7. Hwang BC, Saif M, Jamshidi M (1993) Neural based fault

detection and identification for a nuclear reactor. IFAC Proc Vol

26(2, Part 5):547–550

8. Patton RJ, Frank PM, Clark RN (2013) Issues of fault diagnosis

for dynamic systems. Springer, Berlin

9. Rajakarunakaran S et al (2008) Artificial neural network

approach for fault detection in rotary system. Appl Soft Comput

8(1):740–748

10. Taqvi S et al (2017) Artificial neural network for anomalies

detection in distillation column. In: Modeling, design and simu-

lation of systems: 17th Asia simulation conference, AsiaSim

2017, Melaka, Malaysia. Springer, Singapore

11. López-Mata E et al (2016) Development of a direct-solution

algorithm for determining the optimal crop planning of farms

using deficit irrigation. Agric Water Manag 171:173–187

12. Choudhury S, Jain M, Shah S (2008) Stiction-definition, mod-

elling, detection and quantification. J Process Control

18(3–4):232–243

13. Chen J, Patton RJ (1999) Robust model-based fault diagnosis for

dynamic systems. Kluwer, New York, p 354

14. Schmitz GPJ, Aldrich C, Gouws FS (1999) ANN-DT: an algo-

rithm for extraction of decision trees from artificial neural net-

works. IEEE Trans Neural Netw 10(6):1392–1401

15. Muhammad T, Halim Z (2016) Employing artificial neural net-

works for constructing metadata-based model to automatically

select an appropriate data visualization technique. Appl Soft

Comput 49(Supplement C):365–384

16. Zhang G, Eddy Patuwo B, Hu MY (1998) Forecasting with

artificial neural networks: the state of the art. Int J Forecast

14(1):35–62

17. Dougherty M (1995) A review of neural networks applied to

transport. Transp Res Part C Emerg Technol 3(4):247–260

18. Jayas DS, Paliwal J, Visen NS (2000) Review paper (AE—au-

tomation and emerging technologies): multi-layer neural net-

works for image analysis of agricultural products. J Agric Eng

Res 77(2):119–128

19. Catelani M, Gori M (1996) On the application of neural networks

to fault diagnosis of electronic analog circuit. Measurement

17(2):73–80Fig. 14 Confusion matrix from industrial loop benchmarking

470 Neural Computing and Applications (2020) 32:447–472

123

20. Aminian M, Aminian F (2000) Neural-network based analog-

circuit fault diagnosis using wavelet transform as preprocessor.

IEEE Trans Circuits Syst II Analog Digit Signal Process

47(2):151

21. Spina R, Upadhyaya S (1997) Linear circuit fault diagnosis using

neuromorphic analyzers. IEEE Trans Circuits Syst II Analog

Digit Signal Process 44(3):188–196

22. Dreiseitl S, Ohno-Machado L (2002) Logistic regression and

artificial neural network classification models: a methodology

review. J Biomed Inform 35(5):352–359

23. Patan K (2008) Artificial neural networks for the modelling and

fault diagnosis of technical processes. Springer, Berlin

24. Hussain M (1999) Review of the applications of neural networks

in chemical process control—simulation and online implemen-

tation. Artif Intell Eng 13(1):55–68

25. Bhat NV et al (1990) Modeling chemical process systems via

neural computation. IEEE Control Syst Mag 10(3):24–30

26. Miller WT, Werbos PJ, Sutton RS (1995) Neural networks for

control. MIT Press, Cambridge

27. Antsaklis PJ (1990) Neural networks for control systems. IEEE

Trans Neural Netw 1(2):242–244

28. Koivo HN (1994) Artificial neural networks in fault diagnosis and

control. Control Eng Pract 2(1):89–101

29. Narendra KS, Parthasarathy K (1990) Identification and control

of dynamical systems using neural networks. IEEE Trans Neural

Netw 1(1):4–27

30. Nelles O (2013) Nonlinear system identification: from classical

approaches to neural networks and fuzzy models. Springer, Berlin

31. Rutkowski L, Rutkowski L (2004) New soft computing tech-

niques for system modeling, pattern classification and image

processing. Springer, Berlin

32. Zhang J, Man K (1998) Time series prediction using RNN in

multi-dimension embedding phase space. In: 1998 IEEE inter-

national conference on systems, man, and cybernetics. IEEE

33. Haykin S (1994) Neural networks: a comprehensive foundation.

Prentice Hall PTR, Upper Saddle River

34. Janczak A (2004) Identification of nonlinear systems using neural

networks and polynomial models: a block-oriented approach, vol

310. Springer, Berlin

35. Patan K, Parisini T (2005) Identification of neural dynamic

models for fault detection and isolation: the case of a real sugar

evaporation process. J Process Control 15(1):67–79

36. Frank PM, Köppen-Seliger B (1997) New developments using AI

in fault diagnosis. Eng Appl Artif Intell 10(1):3–14

37. Calado J et al (2001) Soft computing approaches to fault diag-

nosis for dynamic systems. Eur J Control 7(2–3):248–286

38. Korbicz J et al (2012) Fault diagnosis: models, artificial intelli-

gence, applications. Springer, Berlin

39. Zhang J, Roberts PD (1992) On-line process fault diagnosis using

neural network techniques. Trans Inst Meas Control

14(4):179–188

40. Svozil D, Kvasnicka V, Pospichal J (1997) Introduction to multi-

layer feed-forward neural networks. Chemometr Intell Lab Syst

39(1):43–62

41. Stinchcombe M, White H (1989) Universal approximation using

feedforward networks with non-sigmoid hidden layer activation

functions. In: International 1989 joint conference on neural net-

works, Washington DC, USA, vol 1, pp 613–617

42. Nawi NM, Atomi WH, Rehman MZ (2013) The effect of data

pre-processing on optimized training of artificial neural networks.

Procedia Technol 11(Supplement C):32–39

43. Al-Naser M, Elshafei M, Al-sarkhi A (2016) Artificial neural

network application for multiphase flow patterns detection: a new

approach. J Petrol Sci Eng 145:548–564

44. Gertler J (1998) Fault detection and diagnosis in engineering

systems. Marcel Dekker, New York

45. Isermann R, Ballé P (1997) Trends in the application of model-

based fault detection and diagnosis of technical processes. Con-

trol Eng Pract 5(5):709–719

46. Venkatasubramanian V, Rengaswamy R, Kavuri SN (2003) A

review of process fault detection and diagnosis: part II: qualita-

tive models and search strategies. Comput Chem Eng

27(3):313–326

47. Venkatasubramanian V et al (2003) A review of process fault

detection and diagnosis: part III: process history based methods.

Comput Chem Eng 27(3):327–346

48. Venkatasubramanian V (2003) A review of process fault detec-

tion and diagnosis: part I: quantitative model-based methods.

Comput Chem Eng 27(3):293–311

49. Basheer IA, Hajmeer M (2000) Artificial neural networks: fun-

damentals, computing, design, and application. J Microbiol

Methods 43(1):3–31

50. Śmieja FJ (1993) Neural network constructive algorithms: trading

generalization for learning efficiency? Circuits Syst Signal Pro-

cess 12(2):331–374

51. Westreich D, Lessler J, Funk MJ (2010) Propensity score esti-

mation: neural networks, support vector machines, decision trees

(CART), and meta-classifiers as alternatives to logistic regres-

sion. J Clin Epidemiol 63(8):826–833

52. Santı́n D, Delgado FJ, Valiño A (2004) The measurement of

technical efficiency: a neural network approach. Appl Econ

36(6):627–635

53. Gurney K (1997) An introduction to neural networks. UCL Press,

London

54. Demuth HB, Beale MH (2000) Neural network toolbox; for use

with MATLAB; computation, visualization, programming; user’s

guide, version 4. Math Works

55. Reed RD, Marks RJ (1998) Neural smithing: supervised learning

in feedforward artificial neural networks. MIT Press, Cambridge,

p 346

56. Setiono R (1997) Extracting rules from neural networks by

pruning and hidden-unit splitting. Neural Comput 9(1):205–225

57. Garson G (1991) Interpreting neural-network connections. AI

Expert 6:46–51

58. Haykin SS, Haykin SS (2009) Neural networks and learning

machines, 3rd edn. Prentice Hall, New York

59. Bengio Y, Simard P, Frasconi P (1994) Learning long-term

dependencies with gradient descent is difficult. Trans Neural

Netw 5(2):157–166

60. Hagan M, Demuth H, Beale M, Jesús O (2014) Neural network

design. University of Colorado, Boulder

61. Chen L (2009) Curse of dimensionality. In: Liu L, ÖZsu MT

(eds) Encyclopedia of database systems. Springer, Boston,

pp 545–546

62. Smith LI (2002) A tutorial on Principal Components Analysis.

Computer Science Technical Report No. OUCS-2002-12. http://

hdl.handle.net/10523/7534. Accessed 2 Feb 2018

63. Merry RJE (2005) Wavelet theory and applications: a literature

study, p 41. https://pure.tue.nl/ws/files/4376957/612762.pdf.

Accessed 20 Dec 2017

64. Dolley Shukla JS (2013) Wavelets: basic concepts. Int J Electr

Electron Eng Telecommun 4:33

65. Mallat SG (1989) A theory for multiresolution signal decompo-

sition: the wavelet representation. IEEE Trans Pattern Anal Mach

Intell 11(7):674–693

66. Sharma R et al (2004) Neural network applications for detecting

process faults in packed towers. Chem Eng Process

43(7):841–847

67. Paya BA, Esat II, Badi MNM (1997) Artificial neural network

based fault diagnostics of rotating machinery using wavelet

transforms as a preprocessor. Mech Syst Signal Process

11(5):751–765

Neural Computing and Applications (2020) 32:447–472 471

123

http://hdl.handle.net/10523/7534
http://hdl.handle.net/10523/7534
https://pure.tue.nl/ws/files/4376957/612762.pdf

68. Banjanovic-Mehmedovic L et al (2017) Neural network based

data-driven modelling of anomaly detection in thermal power

plant. Automatika 58:69–79

69. Misra M et al (2002) Multivariate process monitoring and fault

diagnosis by multi-scale PCA. Comput Chem Eng

26(9):1281–1293

70. Feng Z, Xu T (2011) Comparison of SOM and PCA-SOM in fault

diagnosis of ground-testing bed. Procedia Eng 15(Supplement

C):1271–1276

71. Ziani R et al (2012) Bearing fault diagnosis using neural network

and genetic algorithms with the trace criterion. In: Fakhfakh T

et al (eds) Condition monitoring of machinery in non-stationary

operations: proceedings of the second international conference

‘‘condition monitoring of machinery in non-stationary opera-

tions’’ CMMNO’2012. Springer, Berlin, pp 89–96

72. Behbahani RM, Jazayeri-Rad H, Hajmirzaee S (2009) Fault

detection and diagnosis in a sour gas absorption column using

neural networks. Chem Eng Technol 32(5):840–845

73. Manssouri I, Chetouani Y, Kihel BE (2008) Using neural net-

works for fault detection in a distillation column. Int J Comput

Appl Technol 32(3):181–186

74. Jamil M, Sharma SK, Singh R (2015) Fault detection and clas-

sification in electrical power transmission system using artificial

neural network. SpringerPlus 4(1):334

75. Abbasi Nozari H et al (2012) Model-based robust fault detection

and isolation of an industrial gas turbine prototype using soft

computing techniques. Neurocomputing 91:29–47

76. Taqvi SA, Tufa LD, Zabiri H et al (2018) Fault detection in

distillation column using NARX neural network. Neural Comput

Applic. https://doi.org/10.1007/s00521-018-3658-z

77. Kiakojoori S, Khorasani K (2016) Dynamic neural networks for

gas turbine engine degradation prediction, health monitoring and

prognosis. Neural Comput Appl 27(8):2157–2192

78. Tidriri K et al (2016) Bridging data-driven and model-based

approaches for process fault diagnosis and health monitoring: a

review of researches and future challenges. Annu Rev Control

42:63–81

79. LeCun Y et al (1998) Efficient BackProp. In: Orr GB, Müller K-R

(eds) Neural networks: tricks of the trade. Springer, Berlin,

pp 9–50

80. Starr KD, Petersen H, Bauer M (2016) Control loop performance

monitoring—ABB’s experience over two decades. IFAC-Paper-

sOnLine 49(7):526–532

81. Kline DM, Berardi VL (2005) Revisiting squared-error and cross-

entropy functions for training neural network classifiers. Neural

Comput Appl 14(4):310–318

82. Shoukat Choudhury MAA, Thornhill NF, Shah SL (2005) Mod-

elling valve stiction. Control Eng Pract 13(5):641–658

83. Choudhury MAAS, Kariwala V, Shah SL, Douke H, Takada H,

Thornhill NF (2005) A simple test to confirm control valve

stiction. IFAC Proc 38(1):81–86. https://doi.org/10.3182/

20050703-6-CZ-1902.01589

84. Jelali M, Huang B (2010) Detection and diagnosis of stiction in

control loops: state of the art and advanced methods. Springer,

London

85. Farenzena M, Trierweiler JO (2009) A novel technique to esti-

mate valve stiction based on pattern recognition. In: de Brito

Alves RM, do Nascimento CAO, Biscaia EC (eds) Computer

aided chemical engineering. Elsevier, Amsterdam, pp 1191–1196

86. Venceslau AR, Guedes LA, Silva DR (2012) Artificial neural

network approach for detection and diagnosis of valve stiction.

In: 2012 IEEE 17th conference on emerging technologies and

factory automation (ETFA). IEEE

87. Bacci di Capaci R, Scali C (2018) Review and comparison of

techniques of analysis of valve stiction: from modeling to smart

diagnosis. Chem Eng Res Des 130:230–265

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

472 Neural Computing and Applications (2020) 32:447–472

123

https://doi.org/10.1007/s00521-018-3658-z
https://doi.org/10.3182/20050703-6-CZ-1902.01589
https://doi.org/10.3182/20050703-6-CZ-1902.01589

	Neural network applications in fault diagnosis and detection: an overview of implementations in engineering-related systems
	Abstract
	Introduction
	Artificial neural networks
	Preprocessing of inputs
	Normalization
	Feature extraction and data transformation
	Coding of class targets

	Discussion
	Case studies: applications of NN in FID
	Standard practices in ANN application
	Characteristics of the reviewed cases
	Problem type assigned to each case
	Input and output format within the ANN of each case
	Static (time invariant) or dynamic (time variant) data set

	A brief application tutorial
	Input and output formatting (with preprocessing)
	Selection of NN architecture and heuristics
	Cross-validation and performance evaluation
	Further performance evaluation

	Conclusion
	Acknowledgements
	References

