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Abstract
This paper introduces a new evolutionary computing method inspired by the seed transmission process of garden balsam.

Garden balsam, a beautiful and attractive flower, randomly ejects the seeds within a certain range by virtue of mechanical

force originating from cracking of mature seed pods, which is different from natural expansion of most species of plants.

The seeds scattered to suitable growth area will have greater reproductive capacity in the next generation, followed by

iteration until the most suitable point for growth in a particular space is eventually found. This phenomenon can more

intuitively show the process of searching the problem solution space in the optimization problem. The garden balsam

optimization algorithm proposed in this paper incorporates two different types of search processes and has a mechanism to

maintain population diversity. Through the optimization experiment on 24 constrained optimization problems, the results

obtained by using this algorithm are compared with those of some known meta-heuristic search algorithms. The statistical

analysis of the experimental results has been implemented by Friedman rank test and Holm–Sidak test. The comparison

results verify the effectiveness of the algorithm.

Keywords Artificial intelligent � Evolutionary computing � Swarm intelligence � Garden balsam optimization algorithm �
Function optimization

1 Introduction

Optimization problem runs through all aspects of human

activity. Optimization idea is invariably demonstrated from

the division of labor in primitive hunting, to the intensive

cultivation in agricultural production, and to job scheduling

in industrial production [1]. Early optimization mainly

relied on empirical analysis. With the improvement in the

knowledge level, people began to resort to more accurate

mathematical methods to describe and solve optimization

problems [2]. Since the twentieth century, new means for

optimization has been available thanks to rapid develop-

ment of electronic computer technology and artificial

intelligence technology, enabling people to effectively deal

with many complex optimization problems that could not

be solved in the past, thus greatly promoting social pro-

gress and development [3].

During research on optimization problems, researchers

are often inspired by nature [4]. For example, in the evo-

lution of species, genes not adapted to the environment are

gradually eliminated, while those adapted to the environ-

ment are more likely to be retained to further enhance the

competitiveness of species through the optimization of

combinations. Inspired by this, Holland proposed genetic

algorithms (GA) [5] to solve optimization problems. In the

cooling process of metal, each molecule evolves to the

lowest energy state possible, making sequence of all

molecules changed from disorderly to orderly. Inspired by

this, Kirkpatrick et al. [6] proposed simulated annealing

algorithm (SA). Based on colony cooperative foraging
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behavior, Dorigo et al. [7] proposed an ant colony opti-

mization (ACO) algorithm. By simulating the flight pat-

terns of birds, Kennedy and Eberhart [8] proposed a

particle swarm optimization (PSO) algorithm. By simu-

lating the self-organizing pattern of bee colonies, Karaboge

proposed artificial bee colony (ABC) algorithm [9]. In

addition, there are such optimization algorithms as differ-

ential evolution (DE) [10], teaching–learning-based opti-

mization (TLBO) [11], invasive weed optimization (IWO)

[12] and fireworks algorithm (FWA) [13], bat algorithm

(BA) [14] and bacterial foraging optimization (BFO)

algorithm [15].

Inspired by the seed transmission mode of garden bal-

sam, the author proposed a new optimization algorithm—

garden balsam optimization algorithm. Garden balsam is an

annual herbaceous flower with English name ‘‘Touch me

not’’ and ‘‘Don’t touch me’’ in American language because

its fruit will crack at slight touch and eject seeds. The fruit

of garden balsam known as capsule scatters the seeds

around the parent through its own mechanical force of

cracking at maturity. Garden balsam growing in good

growth environment has robust plant, full capsules and

forceful cracking, capable of producing more seeds and

spreading them to a wider range [16]. This is how garden

balsam optimization (GBO) algorithm comes into being.

The algorithm though with relatively simple mechanism

has been proved to effectively converge to obtain the

optimal solution.

The remainder of this paper is organized as follows.

Section 2 describes and summarizes the natural reproduc-

tion process of garden balsam. Section 3 describes GBO

algorithm and its features. Section 4 describes the experi-

mental research on the proposed algorithm and compares it

with other meta-heuristic algorithms. Section 5 discusses

the statistical analysis of the comparison results. Finally,

Sect. 6 sums up the conclusions of this paper.

2 Garden balsam’s natural reproduction
process

During the long-term interaction between plants and the

environment, seeds and fruits develop a series of mecha-

nisms suitable for transmission. The seed transmission

mode and process constitute an important content of evo-

lutionary ecology. Common transmission factors include

air, water, animals and self-spread [17], where self-spread

means mechanical ejection force is produced to eject seeds

after fruit of certain plants matures, dries and cracks. These

fruits are found in dehiscent type of dried fruits. Studies

have found that second transmission is often a case in seeds

relying on self-spread. Garden balsam in this paper belongs

to self-spread types.

Whole plant of garden balsam, an annual herb of

sapindales, balsam family and Impatiens L., is divided into

six parts of roots, stems, leaves, flowers, fruits and seeds.

Because its flower head, wings, tail and feet all look like

phoenix shape, it is also known as Buttercup. Garden

balsam has varied flower colors including pink, red, purple,

pinkish purple. By smashing its petals or leaves, wrapping

it around nails with leaves, the nail can be died with bright-

colored red; thus, it is very popular with girls. The plant,

capsule and self-spread of henbane are shown in Fig. 1.

Garden balsam fruit in oval shape is developed from the

pistil, which includes a few to more than twenty seeds

according to growth state and pollination. According to

fruit classification knowledge in botany, the fruit of garden

balsam is capsule whose most important feature is that the

fruit is formed by two or more carpellate pistils, it cracks in

diverse ways, and the fruit is cracked into five circinate

carpels which eject seeds by mechanical force for self-

spread reproduction [18].

Studies have shown aril to be the key structure for the

seed transmission by elasticity. The aril mainly consists of

vesicular cells which undergoes serious dehydration and

contraction during maturation. The unbalanced contraction

between cells produces torsion which gradually accumu-

lates with the maturation. When the critical point is

exceeded, the vesicles split and roll over the seed tip,

obliquely projecting the seeds in the form of bounce. The

relationship diagram between seed quality and ejection

shows that, for a farther ejection distance, the seed mass is

larger, and the relationship is more obvious in case of dry

weight than fresh weight. The seed density distribution

increases first and then decreases with the enlarging

transmission distance.

The steps in the dispersion process of garden balsam

population can be summarized as follows:

1. Population initialization: A few seeds are randomly

scattered in a specific area, taking root and producing

the first-generation population;

2. Progeny reproduction: Each individual plant in the

first-generation population will demonstrate different

growth conditions due to the different natural condi-

tions in the growth area. The more robust plants will

yield more fruits and then generate more seeds.

3. Mechanical transmission: According to the transmis-

sion properties of garden balsam, the seeds will be

ejected by mechanical transmission to the surrounding

areas of the parent after the fruit matures. The plants in

good growth state will have full fruit, more powerful

ejection force, and the seeds will be ejected farther.

4. Second transmission: In the real world, individual

seeds will be randomly transmitted to other places by
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the influence of natural forces such as animals, running

water and wind to increase the population diversity.

5. Elimination through competition: There is a maximum

limit for population size within a specific region. When

the population reaches its maximum, individuals with

poor fitness will be eliminated in competition within

the population.

3 Garden balsam optimization algorithm

The garden balsam optimization algorithm establishes the

corresponding mathematical model by simulating the

propagation and expansion behavior of garden balsam. A

parallel explosive search manner is then formed by intro-

ducing random factors and selection strategies, which then

develops into a global search method for solving optimal

solution to complex optimization problem.

From Fig. 2, it can be seen that the algorithm iterates

from the beginning and adopts mechanical propagator,

second propagator, mapping rule and selection strategy in

turn until the termination condition is satisfied; that is,

accuracy requirement of the problem is satisfied or the

maximum number of iterations is reached.

3.1 Initialize a population

Determine the initial population number Ninit and the

maximum population size Nmax, the maximum number of

iterations itermax, the number of problem dimensions D, the

upper limit Smax and lower limit Smin for the possible seed

number, nonlinear index n, zoom factor F, initial value Ainit

of seed diffusion amplitude, seed number Nsec in second

transmission and search space range. The initial population

is obtained via uniform distribution to ensure diversity of

the initial population of GBO algorithm. The initial

population generated by this method can be randomly

distributed in the entire search space.

3.2 Mechanical transmission

Seeds can grow into individual plants. Plants in good

growth environment (with better fitness function) have

robust rhizomes, have full capsules and produce more

seeds. The mechanical force is stronger when the capsule

cracks at seed maturity, and the seed ejection distance is

larger. Meanwhile, consideration should also be given to

the balance between early global exploration capabilities

and later local exploitation capabilities.

The number of seeds produced by an individual (garden

balsam plant) in the reproductive process concerns the indi-

vidual’s fitness value. A better fitness value means more

produced seeds. For minimization, let individuals with

Fig. 1 a Plant, b capsule and

c self-spread

Fig. 2 Framework of garden balsam optimization algorithm
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minimum fitness values reproduce as many offspring as

possible, while individuals with the greatest fitness value

reproduce as few offspring as possible. That is, let number of

seeds produced by an individual with minimum fitness value

be Smax and number of seeds produced by an individual with

the maximum fitness value be Smin, while the number of seeds

produced by an individual between the minimum fitness value

and the maximum fitness value follows a linear relationship

of downward rounding with the fitness value.

The number of seeds produced by individual Xi :

Si ¼
fmax � f Xið Þ
fmax � fmin

� Smax � Sminð Þ þ Smin ð1Þ

where Si denotes the number of seeds produced by the i-th

plant; f Xið Þ denotes the fitness value of the i-th plant, fmax

is the maximum fitness value in the current population, fmin

is the minimum fitness value in the current population; Smax

means the maximum number of seeds produced by garden

balsam, Smin means the minimum number of seeds pro-

duced by garden balsam.

The calculation expression of the seed diffusion range is

as follows:

Ai ¼
itermax � iterþ 1

itermax

� �n

� fmax � f Xið Þ þ 1

fmax � fmin

� Ainit ð2Þ

where iter is the current number of evolutionary iterations,

itermax is the maximum number of evolutionary iterations;

f Xið Þ, fmax and fmin have the same meaning as in formula

(1); n is a nonlinear harmonic factor, usually set to n = 3

[19]. From formula (2), it can be seen that the seed diffu-

sion range is initially large and later smaller; seeds pro-

duced by well-adapted plants have a larger diffusion range,

and smaller vice versa. This mechanism effectively guar-

antees the early exploration capability and later exploita-

tion ability of the algorithm.

In the process of seed transmission, different displacement

distances for different dimensions enable better seed diversity.

The seed mechanical transmission mode in garden balsam

optimization algorithm is shown in Algorithm 1.

where U 0; 1ð Þ represents a random number uniformly dis-

tributed in the interval [0,1] and roundðÞ represents a round-

ing operation.

3.3 Second propagator

In the natural world, individual seeds are affected by nat-

ural factors such as wind, water flow and animal transport

after mechanical diffusion, and then, second transmission

occurs, a process that can effectively increase population

diversity. The second transmission mechanism introduced

by garden balsam optimization algorithm makes it possible

that seeds are not only be sown in the vicinity of the plants,

but also be spread farther away, thus improving the ability

of the algorithm to explore the solution space. The process

of second transmission is as follows: Nsec seeds are ran-

domly selected and subject to mutation operations. Dif-

ferential mutation is adopted here to produce mutation

seeds.

Differential mutation is a mutation to improve perfor-

mance of garden balsam optimization algorithm using

difference information between individuals. By differential

mutation method, variant individuals can be improved,

population diversity can be enhanced, and the population

can be prevented from falling into a local optimal solution.

Its manifestation is as follows:

xki1 ¼ xkB þ F xki2 � xki3
� �

ð3Þ

where xki1 is the position of the target individual in the k-

dimension, xkB is the position of the best individual of the

current population in the k dimension and F is the zoom

factor used to zoom the difference vector, which is gen-

erally set to 0–2; xki2 and xki3 are the positions of two

dissimilar individuals in the k dimension. The second

transmission algorithm in garden balsam optimization

algorithm is shown in Algorithm 2.
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3.4 Competitive exclusion rules

As the number of iterations of the algorithm continues to

increase, when the sum of the population and the resulting

progeny population reaches the preset maximum population

size Nmax, the algorithm performs a competitive exclusion

operation. The rule is to rank all individuals in the current

population according to the fitness value, retain individuals

with good fitness values (elite solutions), randomly select the

remaining individuals and eliminate excess individuals. The

number of elite solutions is calculated according to formula

(4) and rounded up to an integer. The population size remains

unchanged at Nmax hereafter. That is, the algorithm first

seizes suitable field by individual’s rapid reproduction and

then retains the more competitive individuals in the rela-

tively stable environment to continue searching for space.

The number of elite solutions has gradually increased with

the evolution of iterations. That is, taking early global

exploration into account, the later local exploitation capa-

bility can be guaranteed.

This mechanism gives opportunity for individuals with

low fitness value to reproduce. Their offspring with better

fitness values can survive. This method of first making

plants rapidly reproduces and grows to adapt to the

environment; then, retaining some more competitive indi-

viduals in a relatively stable environment for further

environmental exploration can be also regarded as a sim-

ulation of r and k selections of organisms [20]. Nbest indi-

cates the number of elite solutions.

Nbest ¼
iter

itermax

Nmax ð4Þ

3.5 Cross-border mapping rules

In the process of transmission, seeds may fall outside the

scope of feasible areas. Such kind of seeds is meaningless,

and they must be pulled back to the feasible area according

to certain rules. The garden balsam optimization algorithm

handles this situation using random mapping rule. That is,

the out-of-bounds seeds are mapped using formula (5),

which guarantees that all individuals remain in the feasible

space.

xk
0

i ¼ xkLB þ U 0; 1ð Þ xkUB � xkLB
� �

ð5Þ

where xkUB denotes the upper boundary of k dimension, xkLB
denotes the lower boundary of k dimension and U 0; 1ð Þ is
the same as in Algorithm 3.

Neural Computing and Applications (2020) 32:16783–16794 16787

123



3.6 Discussion

Exploration and exploitation are two important features of

population-based (or population) optimization algorithms.

In optimization algorithm, exploration indicates global

search capacity by investigating different unknown

regions, while exploitation indicates local search capability

by locally searching the optimal point. Therefore, if a

population-based algorithm can achieve balance between

exploration and exploitation of search space, then the

algorithm is considered as effective. An inherent weakness

of most population-based stochastic algorithms is prema-

ture convergence, while premature convergence and stag-

nation are important considerations in designing natural

algorithms.

Population diversity is the key to the performance of

population optimization algorithms. It can ensure that the

algorithm jumps out of the local extreme points and con-

verges to the global optimal point. Greater population

diversity means wider individual distribution in the algo-

rithm and higher possibility of finding the optimal solution

without significantly affecting convergence ability of the

algorithm. The diversity of garden balsam optimization

algorithm is mainly reflected in the following three aspects.

1. Diversity of seed number and ejection distance

Under the action of the ejection propagator, differ-

ent parents produce different numbers of seeds accord-

ing to their own fitness values, and the ejection

distance also differs. For parents with good fitness

values, more seeds are produced and ejected further.

For those with poor fitness values, fewer seeds are

produced and ejected for a smaller distance. Hence, the

diversity of seed number and ejection distance is

guaranteed.

2. Variety of transmission modes

To simulate the second transmission mechanism in

the natural world, the garden balsam optimization

algorithm is designed with a second propagator, and a

specific number of seeds are randomly selected for

differential mutation operations to enable secondary

displacements of these seed positions. The second

propagator has nothing to do with the parent fitness

value, but concerns its own coordinate value. Second

propagator is essentially different from mechanical

propagator, which guarantees transmission diversity.

3. Diversity of selection mode

When the population size reaches the upper limit, the

algorithm initiates an elitist random selection strategy, in

which the number of elite solutions gradually increases

with the evolutionary iterations. This guarantees the global

exploration in the early iteration and also ensures local

exploitation capabilities in the later period.

4 Experimental investigation

Experimental comparison was made between garden bal-

sam optimization algorithm and mature optimization

algorithms including PSO, DE, ABC, BBO, DE, TLBO to

verify the algorithm’s usability and performance in terms

of function optimization. The constrained optimization test

set given in CEC 2006 was used in the experiment, which

contained 24 constrained optimization functions. Detailed

mathematical formulas and characteristics of each function

are given in the literature [21]. These functions concerning

continuous, unbiased constrained optimization problems

have varying degrees of complexity and multimodality,

each with different numbers of variables and data ranges.

Table 1 Parameter values of

each algorithm
PSO algorithm BBO algorithm GBO algorithm

Population size: 50,

Inertia weight: 0.6

Cognitive parameter: 1.65

Social parameter: 2

Population size: 50

Immigration rate: 1

Emigration rate: 1

Mutation factor: 0.01

Population size: 50

Initial size: 5

Second transmission size: 5

Max seed size: 5

ABC algorithm DE algorithm TLBO algorithm

Number of employed bees: 25

Number of onlooker bees: 25

Limit: number of generations

Population size: 50

Crossover factor: 0.5

Constant factor: 0.5

Population size: 50

ABC algorithm DE algorithm TLBO algorithm

Number of employed bees: 25

Number of onlooker bees: 25

Limit: number of generations

Population size: 50

Crossover factor: 0.5

Constant factor: 0.5

Population size: 50
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Table 2 Comparative results of test functions obtained by different algorithms

Function PSO DE ABC BBO TLBO GBO

G01

(- 15.00)

Best - 15 - 15 - 15 - 14.977 - 15 - 15

Worst - 13 - 11.828 - 15 - 14.5882 - 6 - 15

Mean - 14.71 - 14.555 - 15 - 14.7698 - 10.782 - 15

G02

(- 0.803619)

Best - 0.669158 - 0.472 - 0.803598 - 0.7821 - 0.7835 - 0.7816

Worst - 0.299426 - 0.472 - 0.749797 - 0.7389 - 0.5518 - 0.4735

Mean - 0.41996 - 0.665 - 0.792412 - 0.7642 - 0.6705 - 0.7731

G03

(- 1.0005)

Best - 1 - 0.99393 - 1 - 1.0005 - 1.0005 - 1.0005

Worst - 0.464 - 1 - 1 - 0.0455 0 0

Mean 0.764813 - 1 - 1 - 0.3957 - 0.8 - 0.9862

G04

(- 30665.539)

Best - 30,665.539 - 30,665.539 - 30,665.539 - 30,665.539 - 30,665.5387 - 30,665.5387

Worst - 30,665.539 - 30,665.539 - 30,665.539 - 29942.3 - 30,665.5387 - 30,665.5387

Mean - 30,665.539 - 30,665.539 - 30,665.539 - 30,411.865 - 30,665.5387 - 30,665.5387

G05

- 5126.486

Best 5126.484 5126.484 5126.484 5134.2749 5126.486 5126.486

Worst 5249.825 5534.61 5438.387 7899.2756 5127.714 5126.6876

Mean 5135.973 5264.27 5185.714 6130.5289 5126.6184 5126.5265

G06

(- 6961.814)

Best - 6961.814 - 6954.434 - 6961.814 - 6961.8139 - 6961.814 - 6961.814

Worst - 6961.814 - 6954.434 - 6961.805 - 5404.4941 - 6961.814 - 6961.814

Mean - 6961.814 - 6954.434 - 6961.813 - 6181.7461 - 6961.814 - 6961.814

G07

2 24.3062

Best 24.37 24.306 24.33 25.6645 24.3101 24.3025

Worst 56.055 24.33 25.19 37.6912 27.6106 25.0079

Mean 32.407 24.31 24.473 29.829 24.837 24.4051

G08

(- 0.095825)

Best - 0.095825 - 0.095825 - 0.095825 - 0.095825 - 0.095825 - 0.095825

Worst - 0.095825 - 0.095825 - 0.095825 - 0.095817 - 0.095825 - 0.095825

Mean 2 0.095825 2 0.095825 2 0.095825 2 0.095824 2 0.095825 2 0.095825

G09

2 680.6301

Best 680.63 680.63 680.634 680.6301 680.6301 680.6301

Worst 680.631 680.631 680.653 721.0795 680.6456 680.6425

Mean 680.63 680.63 680.64 692.7162 680.6336 680.6315

G10

2 7049.28

Best 7049.481 7049.548 7053.904 7679.0681 7250.9704 7049.3912

Worst 7894.812 9264.886 7604.132 9570.5714 7291.3779 7251.4592

Mean 7205.5 7147.334 7224.407 8764.9864 7257.0927 7089.5347

G11

- 0.7499

Best 0.749 0.752 0.75 0.7499 0.7499 0.7499

Worst 0.749 1 0.75 0.92895 0.7499 0.7499

Mean 0.749 0.901 0.75 0.83057 0.7499 0.7499

G12

(- 1)

Best - 1 - 1 - 1 - 1 - 1 - 1

Worst - 0.994 - 1 - 1 - 1 - 1 - 1

Mean - 0.998875 - 1 - 1 - 1 - 1 - 1

G13

(- 0.05394)

Best 0.085655 0.385 0.76 0.62825 0.44015 0.2988

Worst 1.793361 0.99 1 1.45492 0.95605 0.9372

Mean 0.569358 0.872 0.968 1.09289 0.69055 0.5138

G14

(- 47.764)

Best 2 44.9343 54.6979 2 45.7372 2 44.6431 2 46.5903 2 47.7322

Worst 2 37.5000 257.7061 - 12.7618 - 23.3210 - 17.4780 - 46.2908

Mean - 40.8710 175.9832 - 29.2187 - 40.1071 - 39.9725 - 46.6912

G15

- 961.715

Best 961.715 962.664 961.715 961.7568 961.715 961.7164

Worst 972.317 1087.3557 962.1022 970.317 964.8922 961.7312

Mean 965.5154 1001.4367 961.7537 966.2868 962.8641 961.7253

G16

(– 1.9052)

Best - 1.9052 - 1.9052 - 1.9052 - 1.9052 - 1.9052 - 1.9052

Worst - 1.9052 - 1.1586 - 1.9052 - 1.9052 - 1.9052 - 1.9052

Mean - 1.9052 - 1.6121 - 1.9052 - 1.9052 - 1.9052 - 1.9052
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The comparative algorithm selected in the experiment

has been previously used by different people in attempts to

solve various constrained optimization problems [25–37].

The results show good effect of these algorithms on con-

strained optimization problem. In addition, it was found in

the literature survey that the algorithm under consideration

was successfully applied in a variety of engineering

applications, with expected results achieved.

4.1 Experimental setting

The proposed garden balsam optimization algorithm was

compared with PSO, BBO, DE, ABC and TLBO under the

same experimental platform. The function was evaluated

for 240,000 times, and each was run 100 times [22–24].

The parameters of each algorithm in the experiment are

shown in Table 1. In addition, ‘‘static penalty’’ method is

applied to all competitive algorithms as constraint handling

technology to maintain the consistency of the technology.

The computational code for individual algorithms has been

provided by developers of these algorithms.

4.2 Results and discussion

Targeting at the 24 constrained optimization functions in

the test set, the best, worst and mean solutions are inde-

pendently run by the six algorithms involved in the com-

parison experiment for 100 times as shown in Table 2. The

data of the comparative algorithm are taken from the lit-

erature [22–24].

The convergence speed of meta-heuristic algorithm is an

important standard for evaluating its performance. So far,

GBO algorithm convergence performance has been com-

pared with the other five algorithms on four functions (G1,

G3, G8 and G24). The test functions selected show dif-

ferent objective function characteristics (that is, G1 is a

quadratic type, G3 is a polynomial, G8 is nonlinear, and

G24 is linear). The convergence curve is shown in Fig. 3. It

can be seen from the figure that GBO algorithm has better

convergence performance than other algorithms.

Table 2 shows in the last column the result of 100

independent runs of garden balsam optimization algorithm

on the G01–G24 benchmark function. Each run is evalu-

ated for 240,000 times, and the ‘‘worst,’’ ‘‘best’’ and

Table 2 (continued)

Function PSO DE ABC BBO TLBO GBO

G17

– 8853.5396

Best 8857.514 9008.5594 8854.6501 8859.713 8853.5396 8853.5396

Worst 8965.401 9916.7742 8996.3215 8997.145 8919.6595 8913.6934

Mean 8899.4721 9384.268 8932.0444 8941.9245 8876.5071 8879.5402

G18

(–0.86603)

Best - 0.86603 - 0.65734 - 0.86531 - 0.86603 - 0.86603 - 0.86603

Worst - 0.51085 - 0.38872 - 0.85510 - 0.86521 - 0.86294 - 0.86607

Mean - 0.82760 - 0.56817 - 0.86165 - 0.86587 - 0.86569 - 0.86605

G19

– 32.6555

Best 33.5358 39.1471 32.6851 33.3325 32.7916 32.6912

Worst 39.8443 71.3106 32.9078 38.5614 36.1935 33.1784

Mean 36.6172 51.8769 32.768 36.0078 34.0792 32.2341

G20

– 0.24979

Best 0.24743 1.26181 0.24743 0.24743 0.24743 0.24743

Worst 1.8732 1.98625 0.28766 1.52017 1.84773 0.28766

Mean 0.97234 1.43488 0.26165 0.80536 1.22037 0.26051

G21

– 193.274

Best 193.7311 198.8151 193.7346 193.7343 193.7246 193.4458

Worst 409.132 581.2178 418.4616 330.1638 393.8295 242.3719

Mean 345.6595 367.2513 366.9193 275.5436 264.6092 197.1178

G22

– 236.4309

Best 1.68E?22 1.02E?15 1.25E?18 2.82E?08 4.50E?17 4.96E?02

Worst 3.25E?23 6.70E?16 2.67E?19 1.25E?18 4.06E?19 7.81E?17

Mean 1.63E?23 1.41E?16 1.78E?19 4.10E?17 1.61E?19 9.58E?07

G23

(– 400.055)

Best - 105.9826 2.3163 - 72.6420 - 43.2541 - 385.0043 - 397.9034

Worst 0 74.6089 0 0 0 - 132.0517

Mean - 25.9179 22.1401 - 7.2642 - 4.3254 - 83.7728 - 367.1852

G24

(- 5.5080)

Best - 5.5080 - 5.5080 - 5.5080 - 5.5080 - 5.5080 - 5.5080

Worst - 5.5080 - 5.4857 - 5.5080 - 5.5080 - 5.5080 - 5.5080

Mean - 5.5080 - 5.4982 - 5.5080 - 5.5080 - 5.5080 - 5.5080

The bold values indicate best result

16790 Neural Computing and Applications (2020) 32:16783–16794

123



‘‘mean’’ operation results are compared with five other

mature algorithms. The optimal solution was found in

garden balsam optimization algorithm on 16 benchmark

functions. Failure to find the optimal solution on the

remaining eight benchmark functions also occurred in the

other five functions. The balsam optimization algorithm

outperforms the rest of the comparative algorithms in mean

(M) on 15 test functions.

The success rate of the six algorithms in 100 indepen-

dent runs on G01–G24 benchmark function is shown in

Table 3. In the eight test functions (i.e., G02, G10, G13,

G14, G19, G20, G22 and G23), all algorithms achieved a

success rate of 0. In other test functions, the GBO algo-

rithm is equal or superior to the other five algorithms.

Table 4 shows the ‘‘mean number’’ of function evalua-

tion needed for the six algorithms to achieve a global

optimum in 100 independent runs on G01–G24 reference

functions (except G02, G10, G13, G13, G14, G19, G20,

G22 and G23 functions). It can also be seen that relatively

superior results are obtained in garden balsam optimization

algorithm on all benchmark functions except G01 and G12.

Garden balsam optimization algorithm also has good

function evaluation standard deviation in evaluation of

most functions.

5 Statistical tests

It can be seen from the results in Tables 2, 3 and 4 that

garden balsam optimization algorithm outperforms other

competitive algorithms in performance. However,

Fig. 3 Convergence of each

algorithm on four functions

Table 3 Success rate of various algorithms for test functions

Function PSO BBO DE ABC TLBO GBO

G01 38 0 94 100 26 100

G02 0 0 0 0 0 0

G03 59 23 41 67 74 95

G04 100 16 100 100 100 100

G05 61 0 93 28 92 97

G06 100 21 100 100 100 100

G07 21 0 26 28 23 42

G08 100 94 100 100 100 100

G09 84 26 95 89 91 100

G10 0 0 0 0 0 0

G11 100 57 19 100 100 100

G12 100 100 100 100 100 100

G13 0 0 0 0 0 0

G14 0 0 0 0 0 0

G15 53 0 73 42 81 86

G16 100 18 100 100 100 100

G17 0 0 0 0 58 72

G18 56 0 61 73 64 79

G19 0 0 0 0 0 0

G20 0 0 0 0 0 0

G21 12 0 24 36 35 61

G22 0 0 0 0 0 0

G23 0 0 0 0 0 0

G24 100 27 100 100 100 100
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Table 4 Mean number of

function evaluations required to

reach global optimum value by

comparative algorithms for

G01–G24 over 100 independent

runs

Function PSO BBO DE ABC TLBO GBO

G01 Mean_FE 33,750 – 6988.89 13,200 9750 12,570

Std_FE 3872.01 – 157.674 708.676 4171.93 6312.43

G02 Mean_FE – – – – – –

Std_FE – – – – – –

G03 Mean_FE 84,610 157,950 136,350 121,950 178,083 67,400

Std_FE 35,670 5939.7 78,988.3 64,296.1 43,819.3 29,776.2

G04 Mean_FE 14,432 189,475 14,090 29,460 5470 10,135

Std_FE 309.23 35,390.7 1499.22 2619.25 804.225 1413.63

G05 Mean_FE 57,921 – 108,572 197,749 46,888 43,356

Std_FE 14,277.4 – 41,757.1 20,576.8 19,623.2 34,164.3

G06 Mean_FE 14,923 140,150 17,540 69,310 11,600 15,395

Std_FE 1789.32 22,273.9 1214.91 3753.65 2056.43 2566.61

G07 Mean_FE 97,742 – 147,650 114,351 147,550 92,916.7

Std_FE 2984.2 – 4737.62 11,384.4 5020.46 17,237.3

G08 Mean_FE 622 4290 725 670 680 635

Std_FE 189.78 4418.32 259.54 249.666 181.353 171.675

G09 Mean_FE 34,877 194,700 57,205 149,642 37,690 23,235

Std_FE 12,280.1 29,557.1 10,779.1 73,436.8 26,350.6 10,806.2

G10 Mean_FE – – – – – –

Std_FE – – – – – –

G11 Mean_FE 23,312 35,490 205,250 29,140 3000 53,270

Std_FE 1231.41 30,627.4 8273.15 12,982.5 1354.83 18,215.2

G12 Mean_FE 1204 1865 1150 1190 2480 2190

Std_FE 341.3 2240.54 263.523 747.514 917.484 824.554

G13 Mean_FE – – – – – –

Std_FE – – – – – –

G14 Mean_FE – – – – – –

Std_FE – – – – – –

G15 Mean_FE 41,972 – 36,391.7 157,800 52,287.5 36,756.3

Std_FE 4073.9 – 5509.21 57,558.5 47,937.1 28,670.6

G16 Mean_FE 7114 85,200 12,565 19,670 7840 13,045

Std_FE 643.3 16,122 1155.19 714.998 2709.74 1358.6

G17 Mean_FE – – – – 126,980 65,600

Std_FE – – – – 46,591.8 65,053.8

G18 Mean_FE 23,769 – 170,140 114,120 19,226 35,360

Std_FE 1009.78 – 20,227.7 58,105.8 5762.16 7731.14

G19 Mean_FE – – – – – –

Std_FE – – – – – –

G20 Mean_FE – – – – – –

Std_FE – – – – – –

G21 Mean_FE 39,937 – 89,500 99,150 108,533 28,037.5

Std_FE 4302.2 – 14,283.6 3647.94 8677.17 7032.35

G22 Mean_FE – – – – – –

Std_FE – – – – – –

G23 Mean_FE – – – – – –

Std_FE – – – – – –

G24 Mean_FE 2469 84,625 4855 5400 2710 3715

Std_FE 245.5 2015.25 429.761 618.241 864.677 575.929

– Indicates that algorithm is failed to obtained a global optimum value for that function, Mean_FE mean

number of function evaluations. Std_FE standard deviation of function evaluations
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Friedman rank test and Holm–Sidak test are necessary to

prove the significance of the proposed algorithm.

Table 5 shows Friedman rank tests in which the ‘‘best’’

and ‘‘mean’’ solutions are obtained on G01–G24 function

(G22 function is excluded as no algorithm succeeds on G22

function). Therefore, it can be easily seen from Friedman

rank test results in the table that the proposed garden bal-

sam optimization algorithm ranks the first with regard to

the ‘‘best’’ and ‘‘mean’’ solutions for all the considered test

functions. Table 6 shows the Friedman rank test result of

obtained solution ‘‘success rate.’’ Since there was no dif-

ference in comparative algorithm between the 10 bench-

mark functions, only 14 samples were involved in the test,

and the proposed garden balsam optimization algorithm

ranked the first in the test result.

The Friedman rank test can demonstrate the significant

difference between different algorithms in performance

when the same problem is handled. It is used to rank

algorithms according to the result data in the form of order,

but cannot specify any statistical difference in the results.

Holm–Sidak test as a post hoc test method can be used to

determine statistical differences between algorithms.

Table 7 shows the Holm–Sidak test results in which the

‘‘best’’ and ‘‘mean’’ solutions are obtained on G01–G24

function. The p values obtained by all the algorithms from

Holm–Sidak test show the statistical difference between

the proposed garden balsam optimization algorithm and

other algorithms.

6 Conclusion

This paper introduces a new numerical random search

algorithm that simulates natural behavior—garden balsam

optimization algorithm. The process and characteristics of

natural transmission of garden balsam are described in

detail. The simulation process involves the design of gar-

den balsam optimization algorithm, including mechanical

propagator, second propagator, competitive selection

strategy and cross-border mapping rule. At the same time,

the algorithm’s steps, pseudo-codes and flow charts are

given. The characteristics of garden balsam optimization

algorithm and the effect of each factor on the algorithm

performance are analyzed. Meanwhile, comparative

experiment is made. Seen from the experimental results,

GBO has a good performance in the aspects of optimal

solution, mean solution, success rate and convergence

speed. Finally, statistical analysis is made for the experi-

mental work. Seen from the statistical test results of

Friedman rank test and Holm–Sidak test, GBO is superior

to other natural optimization algorithms in terms of con-

strained optimization problem.
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Table 5 Friedman rank test for the ‘‘best’’ and ‘‘mean’’ solutions obtained for G01–G24 functions

Algorithms Friedman value Normalized value Rank Algorithms Friedman value Normalized value Rank

PSO 82.5 2.01 3 PSO 82 2.73 3

BBO 124 3.02 5 BBO 136 4.53 6

DE 82.5 2.01 3 DE 84 2.8 4

ABC 96 2.34 6 ABC 90 3 5

TLBO 57 1.39 2 TLBO 61 2.03 2

GBO 41 1 1 GBO 30 1 1

Table 6 Friedman rank test for the ‘‘success rate’’ of the solutions

obtained for G01–G24 functions

Algorithms Friedman value Normalized value Rank

PSO 53.5 2.06 5

BBO 83 3.19 6

DE 47 1.81 4

ABC 42 1.62 2

TLBO 42.5 1.63 3

GBO 26 1 1

Table 7 Holm–Sidak test for the ‘‘best’’ and the ‘‘mean’’ solutions

obtained for G01–G24 functions

Test for best solution Test for mean solution

Algorithma p value Algorithma p value

1–3 0.01,204 1–3 0.01102

1–5 0.15318 1–5 0.31052

1–4 0.21983 1–4 0.44458

1–2 0.21992 1–2 0.45587

1–6 0.97641 1–6 0.87543

a1—GBO, 2—PSO, 3—BBO, 4—DE, 5—ABC, 6—TLBO
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