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Abstract
Imperfect lightness conditions usually lower the visual quality of an image by bringing in unclear image details and poor

image contrast. Traditional low-light enhancement models based on one single input are often limited in avoiding the effect

of over-enhancement or under-enhancement. Models based on fusing multiple input sources usually perform well in

relieving this issue, as they can harmonize the complementary visual appearances of a same scene provided by different

sources. Nevertheless, these models still have difficulty in dealing with the situation that only one input is at hand, which

usually happens in many practical situations. In this paper, we propose a low-light enhancement model that artificially

enriches input sources and then seamlessly fuses them. Specifically, with an input image, we first generate multiple

enhanced images based on a lightness-aware camera response model. These images are then fused at mid-level based on a

patch-based image decomposition model. To validate our model, we conduct qualitative and quantitative comparisons with

several state-of-the-art single-source and multi-source models on a collection of real-world images. Experimental results

show that our model better improves the image quality in terms of visual naturalness and aesthetics.
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1 Introduction

Nowadays, taking and sharing photographs has become a

common life style in recent years. Various interesting

image-based applications have emerged, such as image

retrieval [1], classification [2, 3], clustering [4, 5], styl-

ization [6], and segmentation [7]. Despite the advances in

photographing devices, low-quality images can still be

produced due to various reasons. On one hand, many

people are not familiar with the basic shooting skills, e.g.,

rule of thirds, exposure setting, and so on. In this context,

intelligent systems have been designed to help people

choose a proper content composition [8, 9]. On the other

hand, the visual appearance of a photograph can be

affected by imperfect imaging conditions, such as low

lightness, foggy weather, and motion blur. Therefore,

enhancement models at the pixel level are also highly

desired. Typical applications include detail enhancement

[10], color transfer [11], low-light enhancement [12],

dehazing [13], motion deblur [14], to name but a few.

In this paper, we focus on solving the issue of low

lightness, which is often encountered in the photograph

shooting activities. We can generally divide the poor

lightness into two types. The first one is the globally low

lightness, where there is only a few weak light sources

existing in the imaging scene, e.g., a nighttime outdoor

place and a dimly lit indoor place in Fig. 1. The second one

is the unbalanced lightness, where a good light source

exists, but fails to well illuminate the whole scene, e.g.,

backlight and sidelight in Fig. 1. To address the first type

of low lightness, many enhancing models have been pro-

posed, such as histogram-based models [15–19], aiming at

stretching the histogram to a larger range of intensity val-

ues. However, they are limited to the second type of

unbalanced lightness conditions, as these models tend to

over-enhance the originally well-illuminated regions.

Retinex-based models [20–22] are able to relieve this issue

to some extent, but they are still less effective in tackling

complex lightness conditions. Commonly, all the above
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models try to improve the contrast via manipulating only

one single input.

The advance in photographing device benefits the task of

low-light enhancement by providing more input data.

Specifically, a same scene can be recorded with multiple

images with different exposures, which effectively expand

the intensity range for an image, especially for the originally

dark regions. The multiple sources pave the way for the

development of fusion-based enhancing models [23–25].

However, these models depend on the enriched data sources,

which can be still unavailable in many situations. For

example, we only get access to only one single low-light

image from the Internet in most cases. If we still use the road

map of multi-source fusion, we have to artificially generate a

few intermediate enhanced images as the inputs in advance.

Following this road map, only with one single low-light

image, we propose a low-light enhancement model via

generating and fusing multiple sources. With a lightness-

aware camera response model, multiple initial enhance-

ments simulating differently exposed images are firstly

produced. They are then fused at mid-level based on a

patch-based image representation, in which image patches

from each source are decomposed into several signals and

are fused, respectively. The final enhancement is obtained

by recomposing the fused signals back again. The high-

lights of our research are twofold. First, we extend the

ability of camera response function in terms of adapting to

different lightness configurations. Second, the mid-level

fusion show more competitive performance than the cur-

rent state-of-the-art enhancing models, including the ones

based on single source and multiple sources.

The rest of this paper is organized as follows. Section 2

introduces the related works. Section 3 presents the details

of the proposed model. Qualitative and quantitative com-

parisons are reported in Sect. 4. We finally conclude our

research in Sect. 5.

2 Related works

In this section, we briefly review the related works of low-

light image enhancement. We divided them into single-

source models and multi-source models.

For the single-source group, a representative enhancing

model is based on the manipulation of image histogram

[15–19]. Based on the observation that the histogram of a

low-light image heavily tails at low-intensity region, the

histogram-based models mainly target at equalizing the

intensity distribution across the whole intensity range

[15–18] or reshaping the histogram into a desired distri-

bution [19]. Since a histogram usually ignores most spatial

information of an image, these models are often limited in

tackling local lightness variation. As a result, they tend to

produce the over-enhanced or under-enhanced effect.

Differently, Retinex-based models [20, 21, 26, 27] assume

that an image is composed of an illumination layer and a

reflectance layer. The former layer represents the illumination

of the imaging scene, and the latter layer represents the

inherent characteristics of object surface. A straightforward

way for the Retinex-based models is to change the illumina-

tion layer, keep the reflectance layer unchanged, and recom-

pose the two layers back again [26, 27]. The key component of

Retinex-based enhancement models lies in the successful

illumination–reflectance decomposition.

Since the image decomposition is ill-posed in nature, it

often needs an alternative optimization process to

Fig. 1 First row: Images with less lit regions under various conditions: nighttime, indoor, backlight, and sidelight. Second row: enhanced images

based on our model
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approximate the two layers, which can be unstable and

time-consuming. Enhancement models based on simplified

Retinex model are thereof proposed [22, 28]. These models

still assume that an image is the combination of the two

layers. The difference is that they roughly estimate the

illumination layer with a simple MaxRGB technique and

refine the MaxRGB image with an edge-preserving filter,

which plays a vital role in these simplified Retinex models.

For example, choosing a different filtering model can lead

to slightly different enhancing effects, especially for image

regions with complex patterns [28].

There is another interesting assumption that the inverse

of a low-light image resembles a hazy image. By applying

dehazing techniques, the darkness can be eliminated as

haze in the reverse low-light image [29–31]. However,

methods based on this assumption tend to generate unre-

alistic effect on salient object boundaries.

The single-source-based enhancement models are usu-

ally controlled by one or two parameters, e.g., (simplified)

Retinex-based models, or completely parameter-free, e.g.,

histogram-based models, which act as a uniform enhancing

strength imposed on the whole image region. Therefore,

they are less spatially aware of image contents with dif-

ferent illumination conditions. In this context, they tend to

produce improper local enhancing effects.

For the multi-source group, the above issue can be lar-

gely relieved by jointly considering multiple sources as the

inputs for the enhancement model, which are potentially

complementary to each other. With advanced imaging

hardware, multiple source images of a same scene can be

almost simultaneously collected with different exposures.

The key left for the enhancement task is the seamless fusion

of these input images, which adaptively combines the dif-

ferent appearances of a same image region, and thereof

avoids the over-/under-enhancement. Bertalmio and Levine

[24] propose to encode the gradient and color information

from a short-exposed image and a long-exposed image into

an image functional, and perform variational minimization

to obtain the final fusion. Kou et al. [25] use a multi-reso-

lution technique for achieving the seamless fusion. Addi-

tionally, they propose to improve the fused result by further

enhancing image details. Specifically, they propose an

improved image filter that extracts high-frequency details

from multiple inputs and add them into the fused image. Ma

et al. [23] propose a novel patch decomposition model that

separates an image patch into three kinds of signals. Then,

the decomposed signals from each source are linearly or

nonlinearly fused. The resultant enhancement is finally

obtained by recomposing the signals back again.

For the situation when only one image is at hand, the

technical road map of multi-source fusion needs an

expansion, and the stage of source generation becomes

indispensible. In [32], along with the original input, Fu

et al. generate two intermediate enhanced images by

applying two intensity transform techniques. Hao et al. [33]

produce an intermediate enhancement based on the sim-

plified Retinex model and fuse it with the original image by

designing a content-aware weight map. Ying et al. [34]

propose a novel bio-inspired enhancement model, in which

the source is generated by a simulated camera response

model [35]. Different from [34], the model in this paper

avoids the heuristic judgment on if an image pixel is

underexposed and thus is more flexible in generating more

intermediate enhancing results.

Of note, there has been learning-based research for the

low-light enhancement task [36, 37], which demonstrates

very promising performance. For these methods, a collec-

tion of sufficient and reliable image pairs (normal lightness

vs. low lightness) is vital to the training procedure.

3 Proposed method

3.1 Overall framework

Suppose the input I0 2 RW�H�3 is a color image repre-

sented in RGB space. The technical road map of our model

is shown in Fig. 2. The model contains two main parts, i.e.,

lightness-aware source generation (described in Sect. 3.2)

and multi-source fusion (described in Sect. 3.3).

Of note, the data flow in the first part is explained as

follows. We first convert the RGB input into the HSV space

and then only send the V channel into the generator. The

reason is that the generator only aims at simulating different

illumination conditions. After that, we replace the original

V channel with the generated V channel and keep the other

two channels unchanged. Then, for all the sources, we con-

vert the HSV image back into the RGB space, which is used

in the following stage of image decomposition.

3.2 Generation of fusion source

We generate the fusion sources based on the camera

response model, which is jointly described by camera

response function (CRF) and the brightness transform

function (BTF). The former is only determined by a camera

itself, while the latter is determined by the camera and the

exposure ratio k. The general form of CRF can be repre-

sented as:

V ¼ f Eð Þ: ð1Þ

Here, V 2 RW�H is the V channel in the HSV space (ob-

served pixel intensity of an image). E is the ideal scene

irradiance. By choosing exposure ratios, different observed

images can be obtained, e.g., V0 ¼ f Eð Þ (a trivial case as

k ¼ 1), V1 ¼ f kEð Þ.
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On the other hand, the mapping between V0 and V1 can

be also described by the brightness transform function,

which represents the mapping between two observed

images of a same scene with different exposures:

V1 ¼ g V0; kð Þ ð2Þ

Based on Eqs. 1 and 2, we have:

g f Eð Þ; kð Þ ¼ f kEð Þ ð3Þ

According to [34, 35], we specify the BTF as a simple

form: V1 ¼ g V0; kð Þ ¼ bVc
0. Of note, b and c are related to

both the camera and the exposure ratio. Based on the

comparametric equation [38], we have f kEð Þ ¼ bf Eð Þc.
Except for the trivial case of c ¼ 1, we can obtain the

closed form of CRF as:

f Eð Þ ¼ eb 1�Eað Þ; a ¼ logk c; b ¼ ln b
1� c

ð4Þ

Here, a and b are build-in parameters of a camera. They

can be empirically chosen as a = - 0.3293, b = 1.1258,

which are suitable for most cameras [35]. Therefore, we

can thus obtain the BTF parameters b and c:

b ¼ eb 1�kað Þ; c ¼ ka ð5Þ

Then, the brightness transform function can be further

parameterized by the exposure ratio k:

V1 ¼ g V0; kð Þ ¼ eb 1�kað ÞVka

0 ð6Þ

In our application, we can take V0 as the original image

at hand and V1 as a generated source.

Then, we estimate the exposure ratio k as follows. We

first remove the small-scale image details from V0 by using

the fast guided filter [39]. Then, we extract the low-light

regions of low lightness determined by a threshold g:

M gð Þ ¼ fV0 pð Þjp\gg ð7Þ

In another word, M approximately indicates the set of

low-light pixels in the original image. The exposure ratio

estimation can be formed as an optimization problem:

~kg ¼ argmax
k

H g M gð Þ; kð Þð Þ; ð8Þ

where H �ð Þ is the entropy and can be estimated from the

image histogram of M.

From the above modeling, the determination of low-

light regions has large impact on the optimal exposure

ratio. As exemplified in Fig. 1, low-light images can be

divided into various specified conditions. Therefore, a

single and ad hoc setting of the threshold g (e.g., 0.5 in

[34]) is limited to describe the complex lightness condi-

tions for an arbitrary image. We use a set of threshold

values g1; g2; . . .; gN�1f g to obtain different ~k values that

cater to the generation of multiple sources for fusion.

3.3 Patch-based fusion

Without losing generality, we totally obtain N sources

I0; I1; . . .; IN�1f g for the fusion process. For an image patch

P of each source, we adopt the patch-based image

decomposition [23]:

P ¼ P� lPk k � P� lP
P� lPk k þ lP ¼ ~P

�
�
�
� �

~P
~P
�
�
�
�
þ lP

¼ c � sþ l ð9Þ

In Eq. 9, for each M �M squared patch, we stack its

RGB channels together into a 3M2-length column vector P.

Here, �k k is the L2 norm, c is the patch scale, s is the patch

structure, and l is the patch mean intensity. These decom-

posed elements can be seen as a mid-level representation of

an image. In the following, the three components are sep-

arately fused.

Fig. 2 Framework of our model
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First, a nonlinear max-fusion is applied to the patch

scale cn:

ĉ ¼ max
0� n�N�1

cn ð10Þ

Second, a linear weight fusion is constructed for the

patch structure sn:

�s ¼
PN�1

n¼0 cqnsn
PN�1

n¼0 c
q
n

ð11Þ

From Eq. 11, we observe that the fused �s is jointly

determined by snf g of the multiple sources. The fusion

weights are determined by the exponential of patch scales

cnf g, where q� 0 is a hyper-parameter. The obtained �s is

further normalized as ŝ ¼ �s= �sk k. From Eqs. 10 and 11, we

Table 1 Summary of our algorithm

Fig. 3 A gallery of all experimental images
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observe that the fusion tends to weigh more on strong

patches and still considers the impact of weak patches.

Third, we also use a weighted linear fusion for the patch

mean ln:

l̂ ¼
PN�1

n¼0 L l0n; ln
� �

ln
PN�1

n¼0 L l0n; ln
� � ð12Þ

In Eq. 12, L �; �ð Þ describes how well the lightness of ln is

in In:

Fig. 4 Visual comparison of the enhanced results based on all the seven models. (Better with an enlarged view and a bright screen display)
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L l0n; ln
� �

¼ exp �
l0n � 0:5
� �2

2r2g
� ln � 0:5ð Þ2

2r2l

 !

; ð13Þ

where l0n is the global mean of In, rg and rl control the
spreads of the Gaussian distribution tails.

Finally, we disconnect the stacked ŝ back into the RGB

channels and reconstruct them with the obtained ĉ and l̂

according to Eq. 9:

P̂/ ¼ ĉ � ŝ/ þ l̂ ð14Þ

where / 2 R;G;Bf g enumerates the three color channels.

We use a sliding window with the stride length of B ¼
bM=2c to reconstruct each patch of the result image, and

the pixels in overlapping regions are averaged. In this way,

the reconstructed If is taken as the final result. In our

research, the fusion parameters M; q; rg; rl are typically set

as in [23].

3.4 Algorithm summary

The whole algorithm is summarized in Table 1. We can

easily see that the computational complexity of the whole

algorithm is jointly determined by the total pixel number,

number of fusion sources, and the patch size. In experi-

ments, we empirically found that there exists a balance

between the number of fusion sources and the computa-

tional efficiency. We choose N = 4 sources for our research

(including the original image) and set g as 0.4, 0.5, and 0.6

in our experiments.

4 Experiments

4.1 Experimental settings

In experiments, a total of 35 images were collected from

the Internet or taken by the authors. As shown in Fig. 3,

images taken at different outdoor and indoor scenes have

various lightness conditions, e.g., nighttime, backlight,

sidelight, and so on. We introduce six models for com-

parison: Single-source models include multi-scale Retinex-

based model (MSRCR) [20], Dehazing-based model

(DEHAZE) [30], LIME model (LIME) [22], while multi-

source models include bio-inspired model (BIMEF) [34],

multi-fusion model (MF) [32], lightness-aware simplified

Retinex model (LA-Retinex) [33]. The codes of first five

models were publicly available from the project webpage

of [34], while the codes of [33] were implemented in our

previous research. All of them were run on a laptop with

2.6G Hz CPU and 8G RAM.

4.2 Visual comparisons

We first conduct visual comparisons. In Fig. 4a, we present

the enhanced results of the three images with dim lightness.

We have the following observations. First, all the models

are able to reveal the image details hidden in the darkness,

especially for the single-source models. Second, all the

single-source models are prone to generating over-en-

hanced results, like the inappropriately boosted edges and

Table 2 Quantitative BTMQI scores [36]

Input MF BIMEF LA-Retinex Proposed

1 6.5878 4.5735 4.9437 5.5423 4.2190

2 6.3720 4.0927 3.9075 4.4490 4.1746

3 7.2208 4.6509 5.5581 5.1587 4.2323

4 6.0125 3.2141 3.6453 3.9582 3.3125

5 6.1847 4.9536 6.0146 6.5771 4.7097

6 7.4190 3.1839 3.6623 3.6592 3.0270

7 5.4813 2.7359 3.8007 3.3349 2.6670

8 7.3200 3.1428 3.5406 3.7384 3.4612

9 5.3990 3.4674 4.4319 4.5723 3.2071

10 6.2633 5.3523 6.2086 5.9362 5.2680

11 6.2635 5.3452 5.4245 6.7638 5.9759

12 4.5570 2.4024 1.9915 2.2189 2.1526

13 4.5230 2.5870 2.4351 2.9699 2.0999

14 5.0670 2.6293 4.1233 3.3595 2.5413

15 4.9756 2.7189 3.0887 3.2874 2.6776

16 4.9923 3.7847 3.9701 4.1527 3.3465

17 2.7429 3.5937 3.5300 2.7628 2.7230

18 2.3961 4.3094 3.3738 3.7400 3.5146

19 2.6597 3.3691 3.2607 3.6066 2.7974

20 7.2735 2.7968 3.3818 4.4263 3.3552

21 5.7561 4.9557 5.4313 4.3126 3.3926

22 6.9872 4.5954 5.0727 5.5365 4.5685

23 6.9646 4.8717 5.4949 6.124 5.4167

24 6.6746 2.1805 1.6504 2.6584 2.0925

25 4.1777 3.4732 3.6408 4.8487 3.7679

26 5.9833 2.4182 2.8964 3.3035 2.5492

27 4.3502 2.3895 2.4301 2.8676 2.3122

28 3.2677 3.5747 2.4506 2.5768 2.7637

29 7.3812 3.9731 4.7241 5.7694 5.8768

30 3.6550 2.8941 2.5203 3.3041 2.1831

31 7.6865 7.1174 7.3682 7.6409 6.9120

32 5.0009 3.6898 4.5481 4.2073 2.7662

33 5.4931 2.7966 3.0804 3.8307 2.4030

34 5.7504 2.5032 2.8529 2.7184 2.4364

35 3.9162 4.1092 3.6193 2.8941 3.4462

1st num. 2 8 4 1 20

2nd num. 1 17 6 2 9
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Table 3 Quantitative aesthetic scores (color harmony, color vividness, and lightness) [37]

Input MF BIMEF LA-Retinex Proposed

1 - 0.0360, - 0.4115,

- 0.3933

0.4122, 0.2954,

- 0.0896

0.2842, - 0.0219,

- 0.2109

0.4293, 0.1294,

- 0.0803

0.4745, 0.3697,
- 0.0193

2 0.4389, - 0.0004,

0.0661

0.5277, 0.1326, 0.2406 0.4996, 0.1246, 0.1814 0.5204, 0.1134, 0.2488 0.5641, 0.1606, 0.2651

3 0.3454, 0.3671,

- 0.1579

0.5216, 0.7047, 0.1538 0.5296, 0.6230, 0.0977 0.4920, 0.7058, 0.1478 0.5039, 0.7700, 0.1679

4 0.3192, - 0.2669,

- 0.1687

0.6936, 0.1215, 0.1381 0.5499, 0.0227, 0.0155 0.5630, 0.0677, 0.0510 0.6380, 0.1252, 0.1524

5 - 0.1217, - 0.7752,

- 0.4543

0.0262, - 0.3318,

- 0.1414

- 0.0609, - 0.5700,

- 0.2805

- 0.0225, - 0.4072,

- 0.1856

0.0865, - 0.2009,
- 0.0193

6 0.0007, 0.4923, 0.2070 0.2872, 0.9973, 0.5317 0.2368, 0.8536, 0.2984 0.2447, 0.9250, 0.4157 0.2451, 1.0000, 0.4681

7 - 0.2144, - 0.4635,

- 0.3403

0.0504, - 0.2351,

- 0.0771

- 0.1331, - 0.3301,

- 0.3086

- 0.0416, - 0.3310,

- 0.1831

0.0314, - 0.2308,
- 0.0723

8 0.0382, - 0.3148,

- 0.4133

0.0978, - 0.0258,
- 0.3926

0.0815, - 0.1274,

- 0.4810

0.0787, - 0.0821,

- 0.4505

0.0532, - 0.0544,

- 0.4454

9 - 0.1017, - 0.3245,

- 0.3010

0.2413, 0.0915,

- 0.0057
0.1499, 0.0165,

- 0.1977

0.2649, 0.1219,
- 0.0440

0.2020, 0.0240,

- 0.0422

10 0.1509, 0.0347, 0.1447 0.4665, 0.4359, 0.4544 0.4099, 0.4755, 0.2446 0.3836, 0.4252, 0.4114 0.4526, 0.4437, 0.5158

11 0.1118, - 0.1360,

- 0.0832

0.4023, 0.5281, 0.3824 0.3444, 0.2804, 0.1781 0.4156, 0.4790, 0.3588 0.4772, 0.5791, 0.4796

12 - 0.1272, - 0.4043,

- 0.3672

0.1220, - 0.1521,

- 0.3746

0.0136, - 0.2853,

- 0.4149

0.1482, - 0.1785,

- 0.3007

0.2440, - 0.0477,
- 0.2605

13 - 0.1952, - 0.9039,

- 0.5887

0.0718, - 0.2114,

- 0.2037

- 0.1529, - 0.4748,

- 0.4784

- 0.0109, - 0.2308,

- 0.2993

0.1034, - 0.1232,
- 0.1825

14 0.3846, 0.6511,

- 0.1326

0.4330, 0.6516, 0.0045 0.3724, 0.6000,

- 0.0573

0.4112, 0.6195,

- 0.0165

0.4942, 0.7860, 0.0779

15 - 0.0627, - 0.5050,

- 0.3697

0.4264, - 0.0396,

- 0.0039

0.2680, - 0.1340,

- 0.0847

0.3550, - 0.0906,

- 0.0438

0.3893, - 0.0202,
0.0497

16 0.2157, 0.4714,

- 0.1165

0.3510, 0.6728, 0.1280 0.2701, 0.5352,

- 0.0292

0.2823, 0.5688,

- 0.0170

0.3538, 0.7002, 0.1451

17 0.1442, - 0.1937,

- 0.3217

0.3828, - 0.1299,

- 0.2192

0.3070, - 0.1221,

- 0.2381

0.4632, - 0.1299,

- 0.1937

0.6234, - 0.0917,
- 0.0402

18 0.0286, - 0.3311,

- 0.3357

0.0847, - 0.2191,

- 0.2953

0.0647, - 0.3016,

- 0.3693

0.0247, - 0.3672,

- 0.3548

0.2566, - 0.1466,
- 0.2641

19 0.5073, 0.1183,

- 0.1033

0.5798, 0.3806, 0.3160 0.5453, 0.3102, 0.1889 0.5509, 0.2170, 0.2726 0.6242, 0.3738, 0.3469

20 - 0.0581, - 0.1223,

0.0906

0.2503, 0.6079, 0.3466 0.1285, 0.3254, 0.1997 0.2048, 0.5924, 0.4058 0.1269, 0.3628, 0.2614

21 0.0368, - 0.3988,

- 0.4124

0.4959, 0.1743,

- 0.2766

0.5246, 0.1463,

- 0.3554

0.5071, 0.1313,

- 0.2824

0.5457, 0.2300,
- 0.2296

22 - 0.0241, - 0.6598,

- 0.6724

0.0612, - 0.2784,

- 0.6044

0.0406, - 0.3742,

- 0.6377

0.1127, - 0.1560,

- 0.4879
0.1366, - 0.1317,
- 0.4956

23 - 0.0212, - 0.7583,

- 0.5118

0.1012, - 0.5247,

- 0.3971

0.0238, - 0.6681,

- 0.4562

0.0845, - 0.5520,

- 0.3374

0.1323, - 0.5090,
- 0.3152

24 - 0.0116, - 0.3208,

- 0.5269

- 0.0162, - 0.4020,

- 0.1052

- 0.0502, - 0.4643,

- 0.3605

- 0.0980, - 0.4642,

- 0.0653

0.0690, - 0.2603,
0.1390

25 0.1590, - 0.0207,

- 0.2188

0.3437, 0.4594,
- 0.0876

0.3025, 0.2718,

- 0.1123

0.3034, 0.2787,

- 0.1040

0.3353, 0.4230,
- 0.0803

26 0.0866, - 0.3156,

- 0.4094

0.4239, 0.1832,
- 0.1084

0.3406, - 0.0220,

- 0.2552

0.3849, 0.0790,

- 0.1231

0.4378, 0.1330,
- 0.0076

27 0.0493, - 0.7645,

- 0.5315

0.4012, - 0.4433,

- 0.1075

0.2632, - 0.5868,

- 0.2892

0.3772, - 0.4815,

- 0.1319

0.4706, - 0.3380,
- 0.0421

28 0.2272, - 0.2115,

- 0.4494

0.4312, - 0.1168,

- 0.2382

0.3570, - 0.1805,

- 0.3319

0.4358, - 0.0984,

- 0.2074
0.4520, - 0.0854,
- 0.2389
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textures (DEHAZE, LIME), or unrealistically change of

global appearance (MSRCR). In contrary, the results based

on multi-source models have much more balanced light-

ness configurations and are more visually appealing. In

Fig. 4b, we present the enhanced results of the three ima-

ges partially with low-light regions. We have similar

observations as in Fig. 4a that multi-source models per-

form better than single-source ones. Furthermore, by taking

a closer look, our model produces fewer artifacts and

brings in more vivid colors. For example, our model has

more natural appearance on the wall and medal region at

the first row of Fig. 4b than MF and LA-Retinex. The color

of grass, trees, and sunset region of our model is brighter

than BIMEF in the second and third examples of Fig. 4b.

The reasons are twofold. On one hand, the patch-based

computation makes our method robust to artifacts to some

extent. On the other hand, as the RGB channels of

I0; I1; . . .; IN�1f g are jointly considered in the decomposi-

tion and fusion, our method is able to improve the color

distribution.

4.3 Quantitative comparisons

We also conduct quantitative comparisons on all the

models based on multi-source fusion. We use a non-ref-

erence image quality evaluator BTMQI [40] and a visual

aesthetic scoring network [41] and show all the scores in

Tables 2 and 3. Of note, since our task does not change the

image content composition, we only use the fine-grained

scores of color harmony, color vividness, and lightness

produced by the network trained in [41]. In the tables, we

use bold font/Italics to highlight the best/the second best

performance, respectively.

From both tables, our model has the best performance

among all four fusion-based models, which again validates

the effectiveness of our model. Specifically, we also have

some additional observations. First, the MF model has the

second best performance. This confirms the usefulness of

the fusion road map, in which good results can be obtained

even by combining several simple enhancement models as

in [32]. Second, for a few cases, the input images can have

higher scores than those of their enhanced results. This

observation indicates that enhancement does not neces-

sarily improve the visual quality all the time. The reason is

that the models for comparison are still not fully quality-

aware or aesthetics-aware, although they try to harmonize

the complementary appearances across the multiple sour-

ces with different fusion techniques.

5 Conclusions

In this paper, we propose a low-light enhancement model

via generating and fusing multiple sources, which facili-

tates the situation that only one single input image is at

hand. We empirically validate our model on various low-

light images. Compared with single-source models and

other multi-source models, our model produces better

results in terms of visual naturalness and aesthetics. As

mentioned above, although our model is able to improve

the visual aesthetics of an image, it is still limited as the

enhancement process itself is not aesthetics-aware. In the

Table 3 (continued)

Input MF BIMEF LA-Retinex Proposed

29 0.1423, 0.2290,

- 0.1184

0.2622, 0.4236,

- 0.0426

0.3123, 0.3917,
- 0.0598

0.2621, 0.3440,

- 0.0206

0.2715, 0.4351, 0.0272

30 0.5654, 0.2904,

- 0.0550

0.6424, 0.5505, 0.1107 0.6135, 0.4953, 0.0448 0.6810, 0.5677, 0.1235 0.6385, 0.5952, 0.1535

31 0.4830, - 0.1991,

- 0.1809

0.6342, 0.0227, 0.0924 0.6372, - 0.0245,

- 0.0218

0.4578, - 0.2018,

- 0.0709

0.5669, 0.2685, 0.2923

32 0.1418, - 0.4914,

- 0.4242

0.5126, 0.0356,

- 0.1458

0.3819, - 0.1339,

- 0.2346

0.4480, - 0.0338,

- 0.1599

0.5639, 0.0966,
- 0.0393

33 0.2403, - 0.5509,

- 0.4969

0.6012, 0.1863,
- 0.0296

0.5390, - 0.2188,

- 0.2951

0.5971, 0.1675, 0.0387 0.6063, 0.1602, 0.0474

34 0.0595, - 0.2644,

0.0329

0.1856, - 0.0753,

0.1876

0.1692, - 0.0576,
0.1525

0.1012, - 0.1656,

0.1060

0.1399, - 0.0639,

0.2547

35 - 0.1799, - 0.2760,

- 0.4009

- 0.0103, - 0.0714,

- 0.3704

- 0.0750, - 0.0918,

- 0.3894

0.0123, - 0.1141,

- 0.3958

0.0241, - 0.0295,
- 0.3540

1st

num.

0 17 5 5 78

2nd

num.

2 61 4 23 15
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following research, we plan to extend our model by

equipping it with an aesthetics optimization process [42].

We also note that the determination of the low-light region

in this paper is still heuristic to some extent. We can

consider the technique of unsupervised feature selection

[43–46] to accurately delineate the image regions with low

lightness.
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