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Abstract
Hybridizing particle swarm optimization (PSO) with differential evolution (DE), this paper proposes an integrated PSO–

DE optimizer and examines the performance of this optimizer. Firstly, a new self-adaptive PSO (SAPSO) is established to

guide movements of particles in the proposed hybrid PSO. Aiming at well trade-offing the global and local search

capabilities, a self-adaptive strategy is proposed to adaptively update the three main control parameters of particles in

SAPSO. Since the performance of PSO heavily relies on its convergence, the convergence of SAPSO is analytically

investigated and a convergence-guaranteed parameter selection rule is provided for SAPSO in this study. Subsequently, a

modified self-adaptive differential evolution is presented to evolve the personal best positions of particles in the proposed

hybrid PSO in order to mitigant the potential stagnation issue. Next, the performance of the proposed method is validated

via 25 benchmark test functions and two real-world problems. The simulation results confirm that the proposed method

performs significantly better than its peers at a confidence level of 95% over the 25 benchmarks in terms of the solution

optimality. Besides, the proposed method outperforms its contenders over the majority of the 25 benchmarks with respect

to the search reliability and the convergence speed. Moreover, the computational complexity of the proposed method is

comparable with those of some other enhanced PSO–DE methods compared. The simulation results over the two real-

world issues reveal that the proposed method dominates its competitors as far as the solution optimality is considered.

Keywords Particle swarm optimization � Differential evolution � Enhanced particle swarm optimization � Convergence

analysis of particle swarm optimization

1 Introduction

Over the past few decades, inspired by modeling of social

interactions among different animals, considerable amount

of excellent work has been done to develop different

evolutionary algorithms (EAs) in order to handle some

complicated optimization problems. Particle swarm opti-

mization (PSO) may be one of the most well-known and

preferred EAs based on this concept. Thanks to its sim-

plicity, population-based nature and promising

convergence speed, PSO has been widely used in different

optimization fields in recent years [1–4]. Unfortunately, the

performance of the conventional PSO is unpromising

owing to its difficulty in well adjusting the global and local

search capabilities, as well as the high likelihood of being

locked into stagnation [5]. Therefore, there exists strong

necessity to overcome these two deficiencies in order to

enhance the performance and widen the real-world appli-

cations of PSO. To this end, many excellent work has

recently been done to improve PSO since the first proposal

of the conventional PSO [6].

Because the three main control parameters, i.e., the

inertia weight, the cognitive and social acceleration

parameters, dramatically affect the global and local search

abilities of PSO, the poor ability of the conventional PSO

in adjusting the global and local search capabilities can be

remedied or overcome via some advanced parameter
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updating rules. Motivated by this idea, the authors in [7]

have proposed a linear parameter updating rule to fine-tune

the three control parameters of particles in their proposed

PSO. Yet, as the search behavior of PSO is highly non-

linear, it may be more flexible to trade-off such two abil-

ities of PSO through nonlinear control parameter updating

rules. To this end, many researchers have committed

themselves to developing different nonlinear parameter

updating strategies [8–11]. Since the three control param-

eters also determine the convergence of PSO and the

convergence property significantly affects PSO’s perfor-

mance, it is of great importance to mathematically address

the convergence when enhancing PSO through nonlinear

parameter updating rules. Unfortunately, the convergence

properties of the proposed PSO approaches in these terrific

studies [8–11] remain uncertain.

Considering the importance and impact of the conver-

gence on the performance of PSO, some excellent resear-

ches have been dedicated to theoretically investigating the

convergence of PSO. Mixing PSO with the evolutionary

game theory, the authors in [12] have proposed a novel

PSO approach, named evolutionary game-based particle

swarm optimization (EGPSO). Despite analytically inves-

tigating the convergence of EGPSO, this method may be

incapable of guaranteeing the convergence of all particles,

since the convergence analysis of this method is conducted

based on the deterministic model, which has neglected

impacts of the stochastic nature of PSO on the convergence

behaviors of particles. In our previous study [13], an

improved PSO method, named self-adaptive SPSO 2011

(SASPSO 2011), was proposed. Although the convergence

of SAPSO 2011 was analytically investigated, this method

has been proven to be a locally convergent approach,

which may hinder its applications on the large-scale and

complex global optimization problems.

Besides the typical flaw noted above, the conventional

PSO may also suffer from the stagnation issue when the

global best memory of the swarm or the personal best

experience of the particle keeps invariant [10]. Attempting

to mitigant this potential issue, the authors in [14] have

proposed a new version of PSO, named standard PSO 2011

(SPSO 2011). By randomly drawing a point in a hyper-

sphere determined by the current position of the particle, a

point a little ‘‘beyond’’ the personal best position of the

particle and a point a little ‘‘beyond’’ the global best

position of the swarm, the non-stagnation property can be

achieved in SPSO 2011. However, since the three main

control parameters of particles in SPSO 2011 remain

invariant and there exists no difference between the social

and cognitive acceleration parameters, this method may be

still incapable of adaptively updating the global and local

search capabilities of particles.

Since PSO belongs to the community of EAs, it is nat-

ural and reasonable that hybridizing PSO with some other

EAs can be a remedy to the potential stagnation issue of

PSO. As both PSO and the hybridized EA pertain to the

family of EAs, integrating PSO with another EA can not

only leverage advantages of two algorithms to enhance the

overall perform of the mixed PSO method, but also relieve

the potential stagnation of PSO. Thus, in order to avoid

particles plugging into iterative stagnation, implementing

different EAs to evolve the global best position of the

swarm or the personal best positions of particles may be

one of the most popular methods [15]. Among the currently

existing hybrid PSO approaches, combining differential

evolution (DE) with PSO has become one of the most

preferred methods, probably thanks to the simplicity and

the formidable reliability of DE [16, 17]. However, since

DE is sensitive to its generation strategies and control

parameters, it is of great significance to set the proper

generation strategies and control parameters of DE in the

context of integrating PSO with DE [16, 17].

Attempting to remedy the two aforementioned draw-

backs of the conventional PSO and enhance the perfor-

mance of PSO, under the background of combing PSO with

DE, this paper proposes a hybrid PSO–DE approach. In

order to strike a good balance between the global and local

search capabilities of particles, a novel self-adaptive PSO

(SAPSO) which adopts a newly established nonlinear

control parameter updating rule to tune the three control

parameters of particles is developed to guide movements of

particles in the proposed hybrid method. Afterward, a

modified self-adaptive DE (mSADE) is presented to evolve

the personal best memories of particles in the proposed

hybrid approach so as to overcome the potential stagnation

issue. Note that since the proposed method integrates

SAPSO with mSADE, it is named SAPSO–mSADE in this

paper. The main works and contributions of this study can

be summarized as follows:

(1) a novel self-adaptive control parameter updating

strategy is proposed to nonlinearly adapt the three

main control parameters of particles in SAPSO in

order to well balance the global and local search

abilities of particles.

(2) the convergence of SAPSO is theoretically studied

and a parameter selection principle, sufficiently

guaranteeing the convergence of SAPSO, is devel-

oped in this paper.

(3) a ranking-based mutation operator and two different

self-adaptive control parameter adaption mecha-

nisms are presented to adjust the scaling factor and

the crossover rate in the mSADE algorithm in order

to release the optimization burden of the proposed

SAPSO–mSADE.
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The performance of the proposed method is validated

through 25 benchmark test functions, as well as two real-

world problems. The numerical simulation results on the 25

benchmarks confirm that: (1) The proposed method is

significantly better than its peers with respect to the solu-

tion optimality over 25 test functions at the confidence

level of 95%; (2) the proposed method performs superior to

its contenders over the most of the 25 test functions in

terms of the search reliability, as well as the convergence

speed; (3) the computational complexity of the proposed

method is comparable with those of some other hybrid

PSO–DE approaches compared. The numerical simulation

results on two real-world issues show that the proposed

method performs superior to the compared methods

regarding the solution optimality.

The remainder of this paper is organized as follows.

Section 2 recalls the conventional PSO and the standard

DE. Section 3 states SAPSO and analytically investigates

the convergence property pertaining to this method. Sec-

tion 5 mainly introduces the design of the SAPSO–

mSADE-based optimization framework after the statement

of mSADE shown in Sect. 4. The numerical simulations,

analysis and comparisons of the proposed method on the 25

selected benchmarks are conducted in Sect. 6. The appli-

cations of the proposed method on two real-world problems

are shown in Sect. 7. Lastly, Sect. 8 draws conclusions and

shows some potential options for future work.

2 The conventional PSO and the standard
DE

2.1 Review of the conventional PSO

Modeling over the collaborative behavior of bird flocking

and fish schooling, Eberhart and Kennedy first proposed

the conventional PSO in 1995. The original aim of this

algorithm is to reproduce social interactions among indi-

viduals to handle some complicated optimization problems

[18]. Each individual in the PSO file is referred to be a

particle and assigned a velocity which is dynamically

updated based on its own flight memory, as well as those of

its companions. From the current iteration k to the next

iteration k þ 1, particles update their velocities and posi-

tions in the conventional PSO as follows [18]:

Vkþ1
m ¼ xVk

m þ c1r1 pbestkm � Xk
m

� �
þ c2r2 gbestk � Xk

m

� �

ð1Þ

Xkþ1
m ¼ Xk

m þ Vkþ1
m ð2Þ

where Vk
m and Xk

m denote the velocity and position of the

mth particle at iteration k, respectively. x is a real coeffi-

cient, standing for the inertia weight parameter. c1 and c2

are two positive real parameters, respectively, denoting the

cognitive and social acceleration parameters. r1 and r2 are

two random numbers uniformly distributed in [0, 1].

pbestkm and gbestk represent the personal best position of

the mth particle and the global best position of the swarm at

iteration k, respectively.

2.2 Review of the standard DE

Each individual in the DE file is called a genome or

chromosome, representing a potential solution to an opti-

mization problem. In the standard DE, the mutation,

crossover and selection operators are three key factors in

determining the evolvement of each individual. After these

three operators, a newly produced offspring is allowed to

the next generation only if it enhances the quality of

solution [19].

Focusing on diversifying the population and avoiding

the potential local optimum, the mutation operator is

applied to yield a trial vector TiðkÞ through randomly

changing the genetic information of three different parent

individuals as follows:

TiðkÞ ¼ Pi3ðkÞ þ Si Pi1ðkÞ � Pi2ðkÞð Þ ð3Þ

where Si denotes the scaling vector. Pi1ðkÞ, Pi2ðkÞ and

Pi3ðkÞ represent three different parent individuals randomly

selected from the swarm.

Following a discrete recombination manner to

reassemble the genetic information of the trial vector with

those of the parent vector, the crossover operator is used to

produce new high-quality offsprings in some unknown

solution spaces. Based on the binomial recombination, a

new offspring can be yielded by the crossover operator in

the standard DE as follows:

UijðkÞ ¼
TijðkÞ; if rij �Cr or j ¼ jr

PijðkÞ; otherwise

�
ð4Þ

where UijðkÞ is the jth element of the new offspring UiðkÞ
and j (j ¼ 1; 2; . . .;D) denotes a specific dimension num-

ber. D is the dimension of an optimization problem. Pij and

TijðkÞ refer to the jth elements of PiðkÞ and TiðkÞ, respec-

tively. jr is an integer randomly generated in [1, D]. rij is a

random number uniformly distributed in [0, 1]. Cr stands

for the crossover rate.

Adopting a one-to-one spawning principle, the selection

operator completes comparisons between the newly pro-

duced offspring and its father generations. The newly

yielded offspring is allowed to the next generation only if it

improves the solution quality, compared with its father

generations. For a minimization problem, the selection

operator in the standard DE can be mathematically given as

follows:
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Piðk þ 1Þ ¼
UiðkÞ; if f ðUiðkÞÞ� f ðPiðkÞÞ
PiðkÞ; otherwise

�
ð5Þ

where f ðUiðkÞÞ and f ðPiðkÞÞ indicate values of the cost

function, that is, the fitness values of UiðkÞ and PiðkÞ,
respectively.

3 The proposed SAPSO

3.1 Modeling of the self-adaptive strategy
in SAPSO

When designing a highly promising PSO-based optimizer

for different optimization problems, it is essential to strike

a good trade-off between the global and local search

powers of PSO [7, 10, 11]. Ideally, on one hand, the global

search ability needs to be promoted in the early phases of

the evolutionary process, so that particles can search

through the whole solution space, rather than converging

toward the currently population best solution [7, 10, 11].

On the other hand, the local search power must be

strengthened in the latter stages of the evolutionary process

to promote particles to local search, so that the likelihood

of finding the optimal solution can be enhanced [7, 10, 11].

It is well known that such two capabilities heavily

depend on the three control parameters of particles. The

basic philosophies regarding how different control param-

eters affect these two abilities of PSO can be distilled as

follows: (1) A large inertia weight parameter facilitates the

global search ability, while the local search capability

benefits more from a small inertia weight [7, 10, 11]; (2) a

large cognitive component, comparing to the social com-

ponent, leads particles to search through the entire solution

space and thus promotes the global search capability

[7, 10, 11]; (3) comparing to the cognitive component, a

large social component encourages particles to local search

and consequently enhances the local search capability

[7, 10, 11].

Motivated by all concerns stated above, in order to well

balance the global and local search abilities of PSO, this

paper first proposes a self-adaptive PSO (SAPSO). Parti-

cles in the proposed SAPSO stick to moving rules defined

in the conventional PSO to update their velocities and

positions as follows [18]:

Vkþ1
m ¼ xVk

m þ c1r1 pbestkm � Xk
m

� �
þ c2r2 gbestk � Xk

m

� �

ð6Þ

Xkþ1
m ¼ Xk

m þ Vkþ1
m ð7Þ

where all variables in (6) and (7) have same definitions as

those in (1) and (2).

For well trade-offing the global and local search abilities

of particles, we propose a self-adaptive strategy to fine-tune

the three control parameters of particles in SAPSO as

follows:

xm ¼ ðxs � xf Þ exp � dxk
bm

� �
þ xf ð8Þ

c1m ¼ ðc1s � c1f Þexp � dc1k

bm

� �
þ c1f ð9Þ

c2m ¼ ðc2s � c2f Þ exp
dc2k

bm

� �
þ c2f ð10Þ

dx ¼ xs � xf

kmax
ð11Þ

dc1 ¼ c1s � c1f

kmax
ð12Þ

dc2 ¼ c2s � c2f

kmax
ð13Þ

bm ¼
���
���gbestk � pbestkm

���
��� ð14Þ

where subscripts ‘‘s’’ and ‘‘f’’ in each variable indicate the

initial and final values of the corresponding control

parameter. bm is a positive parameter that denotes the

Euclidean distance between the personal best position of

the particle and the global best position of the swarm. kmax

is a predefined constant parameter, indicating the maxi-

mum iteration number.

It is notable that the initial and final values of each

control parameter in the proposed self-adaptive strategy are

predefined based on the empirical experience of the deci-

sion makers. Here, we set that xf\xs, c1s [ c1f and

c2s\c2f in the newly developed self-adaptive strategy

defined by (8)–(14). As particles exhibit nonlinear search

behaviors, it is probably more suitable and flexible to

balance the global and local search abilities of PSO through

nonlinear control parameter updating strategies [10].

Inspired by this concern, as shown in (8)–(14), the three

control parameters of particles are nonlinearly tuned by the

developed self-adaptive strategy in SAPSO. Also, probably

in virtue of the fast growing nature of the exponential

function, it has been discovered that adjusting the control

parameters of particles based on the exponential manner

may enhance the convergence speed of PSO [20]. Moti-

vated by such a discovery, in order to enhance the con-

vergence speed of SAPSO, the three control parameters of

particles in this algorithm are updated based on an expo-

nential manner, as shown in (8)–(10) in the developed self-

adaptive strategy.
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3.2 Parametric analysis under the self-adaptive
strategy in SAPSO

It is clearly evident from (8) to (10) that xm and c1m decrease

(c2m increases) with the iteration number k increasing. This

implies that SAPSO is more likely to strength the global

search at the beginning of the evolution, based on the basic

philosophies noted above. As the evolution continues, since

xm and c1m become smaller, while c2m grows greater, the

local search ability of SAPSO is probably more favored and

preserved in the latter stages of the evolution.

In addition to the iteration number k, trade-offs between

the global and local search capabilities of SAPSO are also

adapted based on the parameter bm. From (8) to (10), it is

trivial that changes in xm and c1m become smaller, while

the variation in c2m grows larger as bm increases. This

implies that the global search ability of SAPSO is possibly

to be more dominant in the case where the value of bm
remains large. In contrast, for a small value of bm, the local

search ability of this algorithm can quickly dominate and

take over the global search power.

Actually, it can be observed from (14) that a large value

of bm indicates that the personal best position of the par-

ticle is far away from the global best position of the swarm.

In such a case, it is logical to strengthen the global search

ability of SAPSO so as to promote particles to move closer

to the global best position of the swarm as quickly as

possible. Contrarily, a small value of bm implies that the

particle’s personal best position is near to the global best

position of the swarm. In such a case, it is logically rea-

sonable to facilitate the local search capability of SAPSO

in order to encourage particles to search carefully in a local

solution space nearby the global best solution space, so that

the possibility of finding a high-quality global best solution

can be increased.

On balance, via adopting the developed self-adaptive

strategy defined by (8)–(14), the three control parameters

of particles in SAPSO can be adaptively updated based on

a manner complying with the basic philosophies in the field

of PSO development. Hence, particles in the proposed

SAPSO are expected to improve their capabilities in find-

ing high-quality solutions.

3.3 Convergence analysis of SAPSO

The analytical convergence investigation of PSO aims to

discover different control parameter boundaries to theo-

retically guarantee the convergence of PSO. Because each

dimension in velocity and position vectors of the particle in

SAPSO adjusts independently from the remaining in (6)

and (7), without loss of generality, SAPSO can be sim-

plified into a one-dimensional case to study its

convergence. For simplicity and without loss of generality,

we omit subscript ‘‘m’’ in each variable in (6) and (7). The

one-dimensional SAPSO can be then written into a

dynamic system as follows:

Xðk þ 1Þ
Vðk þ 1Þ

� 	
¼

1 � c x

�c x

� �
XðkÞ
VðkÞ

� 	
þ

c

c

� 	
P ð15Þ

where

c ¼ c1r1 þ c2r2 ð16Þ

P ¼ c1r1 � pbest þ c2r2 � gbest
c

ð17Þ

Based on the dynamic system theory, the characteristic

equation to the dynamic system denoted by (15) is obtained as:

g2 � ð1 þ x� cÞgþ x ¼ 0 ð18Þ

Then, two roots, represented by g1;2, to (15) are:

g1;2 ¼
1 þ x� c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ x� cÞ2 � 4x

q

2

ð19Þ

According to the dynamic system theory, (15) converges iff

magnitudes of its two characteristic roots are less than 1

[21]. Therefore, we have that (15) converges, iff:

Maxf g1j j; g2j jg\1 ð20Þ

From (19), it appears that g1;2 can be two real or complex

roots. Both these two cases are discussed separately in

order to easily analyze the convergence of SAPSO.

(a) The case where g1;2 are both complex roots, repre-

sented by g1;2 2 C, where C is the set of all complex

numbers.

Lemma 1 For (15), it is trivial that g1;2 2 C, iff:

1 þ x� 2
ffiffiffiffi
x

p
\c\1 þ xþ 2

ffiffiffiffi
x

p
ð21Þ

Proof From (18), it is evident that:

g1;2 2 C , ð1 þ x� cÞ2 � 4x\0 ð22Þ

Expanding the right-hand inequality of (22), we can easily

prove that Lemma 1 holds. h

Next, we will find conditions on x and c, which can

guarantee the convergence of (15) in the case where

g1;2 2 C. Here, recall that (15) converges if and only if

Maxf g1j j; g2j jg\1 holds.

Lemma 2 Under the situation where g1;2 2 C, (15)

converges, iff:

1 þ x� 2
ffiffiffiffi
x

p
\c\1 þ xþ 2

ffiffiffiffi
x

p

0�x\1

�
ð23Þ
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Proof It is notable that the magnitude of any complex

number H can be obtained by Hj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

r þ H2
c

p
, where Hr

and Hc represent the real and imaginary parts of H,

respectively. Thus, for g1;2 2 C, it is clear that:

Maxf g1j j; g2j jg ¼ g1j j ¼ g2j j ¼
ffiffiffiffi
x

p ð24Þ

Hence, for g1;2, it is clear that:

Maxf g1j j; g2j jg\1 ,
ffiffiffiffi
x

p
\1 ð25Þ

According to Lemma 1, for g1;2 2 C, (21) must satisfy.

Thereafter, considering both conditions that g1;2 2 C and

Maxf g1j j; g2j jg\1, it is trivial that, for g1;2 2 C, (15)

converges, iff:

1 þ x� 2
ffiffiffiffi
x

p
� c� 1 þ xþ 2

ffiffiffiffi
x

p

0�x\1

�
ð26Þ

This completes the proof of Lemma 2. h

For g1;2 2 C, the convergence region of SAPSO concern-

ing different control parameter planes is shown in Fig. 1.

(b) The case where g1 and g2 are two real roots, repre-

sented by g1;2 2 R, where R denotes the real-valued

domain.

Lemma 3 For (15), it is evident that g1;2 2 R, iff:

c 2 R; for x\0

or

c� 1 þ x� 2
ffiffiffiffi
x

p
\0; for x� 0

or

c� 1 þ xþ 2
ffiffiffiffi
x

p
; for x� 0

ð27Þ

Proof It is trivial from (18) that:

g1;2 2 R , ð1 þ x� cÞ2 � 4x� 0 ð28Þ

Expanding the right-hand inequality of (28), we can have

that c belongs to any real number, denoted as c 2 R in (27),

in the case where x\0 or c� 1 þ x� 2
ffiffiffiffi
x

p
\0 or c� 1 þ

xþ 2
ffiffiffiffi
x

p
in the case where x[ 0. Thus, this completes

the proof of Lemma 3. h

Next, we will find conditions on c and x to guarantee

the convergence of (15) in the case where g1;2 2 R. Triv-

ially, we can obtain from (19) and (20) that

Maxf g1j j; g2j jg\1 holds, iff:

� 1\
1 þ x� c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ x� cÞ2 � 4x

q

2

�
1 þ x� cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ x� cÞ2 � 4x

q

2
\1

ð29Þ

Expanding (29) yields:

c� x� 3\�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ x� cÞ2 � 4x

q
\c� xþ 1 ð30Þ

Since g1;2 2 R, it is evident that:

ð30Þ ,
c� x� 3\�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ x� cÞ2 � 4x

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ x� cÞ2 � 4x

q
\c� xþ 1

8
><

>:
ð31Þ

Simplifying the right-hand inequalities in (31) produces:

ð30Þ ,
2xþ 2 � c[ 0

c[ 0

�
ð32Þ

In the case where g1;2 2 R, (27) must hold based on the

conclusion drawn in Lemma 3. Thus, taking both condi-

tions that g1;2 2 R and Maxf g1j j; g2j jg\1 into account, in

the case where g1;2 2 R, (15) converges, iff:

0\c\2xþ 2; �1\x\0

0\c� 1 þ x� 2
ffiffiffiffi
x

p
or 1 þ xþ 2

ffiffiffiffi
x

p
� c\2xþ 2;

0�x\1

8
><

>:

ð33Þ

Figure 2 shows the convergence domain of SAPSO in the

case where g1;2 2 R.

Finally, combining convergence conditions of SAPSO

in the cases where g1;2 2 C and g1;2 2 R together, it is

conclusive that SAPSO converges, iff:

0\c\2xþ 2

�1\x\1

�
ð34Þ

Since c ¼ c1r1 þ c2r2, the necessary and sufficient condi-

tion for the convergence of SAPSO given by (34) can be

rewritten as follows:

0\c1r1 þ c2r2\2xþ 2

�1\x\1

�
ð35Þ

Note that the convergence condition given by (35) is the

necessary and sufficient condition for the convergence of

SAPSO. The real convergence domain of SAPSO is

demonstrated in Fig. 3. Only if any control parameter

selection of x and c (here, c ¼ c1r1 þ c2r2 ) locates in the

region denoted by Fig. 3b, the convergence of SAPSO can

be necessarily and sufficiently guaranteed.

3.4 The convergence-guaranteed parameter
selection rule for SAPSO

Similar to the most PSO methods, the stochastic nature of

SAPSO imposes difficulties on rigorously establishing an

exact relationship between the stochastic nature and the

convergence condition of this algorithm. Therefore, after
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analytically investigating the convergence of SAPSO, it is

necessary to study the convergence of this method without

considering its stochastic nature, so that a sufficient con-

vergence condition can be easily discovered for this

approach. To this end, followed by the proof of the fol-

lowing lemma, this study provides a parameter selection

rule which can sufficiently guarantee the convergence of

SAPSO. Note that the stochastic nature of SAPSO is

attributed to existences of two random numbers r1 and r2 in

(35).

Lemma 4 Without considering its stochastic nature,

SAPSO converges, if:

2xþ 2[ c1 þ c2

�1\x\1

c1; c2 [ 0

8
><

>:
ð36Þ

Proof As c1 and c2 are two positive parameters, and r1

and r2 are uniformly distributed in [0, 1], it is trivial that

c1 � c1r1 and c2 � c2r2. Therefore, we have:

2xþ 2[ c1 þ c2

�1\x\1

c1; c2 [ 0

8
><

>:
)

0\r1c1 þ r2c2\2xþ 2

�1\x\1

�

ð37Þ

Because the right-hand side inequalities in (37) denote the

necessary and sufficient condition for the convergence of

SAPSO, as shown in (35), the proof of Lemma 4 is com-

pleted according to the logical relationship given by (37). h

It is notable that Lemma 4 provides a sufficient con-

vergence condition for SAPSO. From this lemma, one can

easily observe that the convergence of SAPSO is

Fig. 1 The convergence region and of SAPSO for g1;2 2 C. a 3-D presentation of x, c and Maxf g1j j; g2j jg, b 2-D projection of x and c, c 2-D

projection of x and Maxf g1j j; g2j jg, d 2-D projection of c and Maxf g1j j; g2j jg
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determined by values of the three control parameters. Also,

from the developed self-adaptive strategy defined by (8)–

(14), it is clear that values of these control parameters in

SAPSO are decided by the initial and final values corre-

sponding to these control parameters. This implies that the

initial and final values of the three main control parameters

have profound impacts on the convergence of SAPSO.

Thus, as shown in Lemma 4, after obtaining a sufficient

convergence condition for SAPSO, we still need to dis-

cover how to set the initial and final values of the three

control parameters in the self-adaptive strategy defined by

(8)–(14), so that the sufficient convergence condition given

by Lemma 4 can be satisfied. To this end, a parameter

selection rule regarding how to set the initial and final

values of the three control parameters is provided for

SAPSO in the following lemma. By adopting this

parameter selection rule, the convergence of SAPSO can be

sufficiently guaranteed.

Lemma 5 SAPSO sufficiently converges, if the initial and

final values of the three control parameters of each particle

satisfy the following conditions:

2xf þ 2[ c1s þ c1f

1[xs [xf [ � 1

c1s ¼ c2f [ c1f ¼ c2s [ 0

8
><

>:
ð38Þ

Proof If c1s ¼ c2f and c1f ¼ c2s, it is evident from (9),

(10), (12) and (13) that c1 þ c2 = c1s þ c1f for any particle

at any iteration in the self-adaptive strategy proposed in

SAPSO. Here, it is worth mentioning that the subscript m is

omitted from each variable for simplicity. Moreover, from

(8) to (10), one can easily observe that xf �x�xs,

Fig. 2 The convergence domain of SAPSO for g1;2 2 R. a 3-D presentation of x, c and Maxf g1j j; g2j jg, b 2-D projection of x and c, c 2-D

projection of x and Maxf g1j j; g2j jg, d 2-D projection of c and Maxf g1j j; g2j jg
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c1f � c1 � c1s and c2s � c2 � c2f for any particle at any

iteration in the proposed self-adaptive strategy. Therefore:

2xf þ 2[ c1s þ c1f

1[xs [xf [ � 1

c1s ¼ c2f [ c1f ¼ c2s [ 0

8
><

>:
)

2xþ 2[ c1 þ c2

�1\x\1

c1; c2 [ 0

8
><

>:

ð39Þ

As proven in Lemma 4, because the right-hand side

inequalities in (39) denote the sufficient condition for the

convergence of SAPSO, the proof of Lemma 5 can be

completed based on the relationship given by (39). h

Since the initial and final values of the three control

parameters are predefined, the convergence conditions

given by (38) can be easily met via setting proper initial

and final values of these control parameters. In other

words, the convergence of SAPSO can be easily guaran-

teed through setting proper initial and final values corre-

sponding to these control parameters in the self-adaptive

strategy defined by (8)–(14). In this paper, we empirically

set that xs ¼ 0:9, xf ¼ 0:4, c1s ¼ c2f ¼ 2 and c1f ¼ c2s ¼
0:1 in the self-adaptive strategy proposed in SAPSO. Fig-

ure 4 displays the convergence position and velocity tra-

jectories of the particle in SAPSO under this suggested

parameter settings.

3.5 The equilibrium point of SAPSO

After the convergence analysis of SAPSO stated above, the

remaining mission is to discover the equilibrium point,

namely, to answer toward which stable point particles in

SAPSO converge if the convergence condition given by

Fig. 3 The real convergence domain of SAPSO. a 3-D presentation of x, c and Maxf g1j j; g2j jg, b 2-D projection of x and c, c 2-D projection of

x and Maxf g1j j; g2j jg, d 2-D projection of c and Maxf g1j j; g2j jg
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(34) is met. Calculating limits on both sides of (15)

produces:

lim
k!1

Xðk þ 1Þ ¼ lim
k!1

XðkÞ þ x lim
k!1

VðkÞ þ c lim
k!1

ðP� XðkÞÞ

lim
k!1

Vðk þ 1Þ ¼ lim
k!1

Xðk þ 1Þ � lim
k!1

XðkÞ

8
<

:

ð40Þ

When each particle in SAPSO converges, it is clear that

limk!1 Xðk þ 1Þ ¼ limk!1 XðkÞ and limk!1 Vðk þ 1Þ ¼
limk!1 VðkÞ. Therefore, after substituting these two

equations into (40), the equilibrium point of SAPSO is

obtained as:

lim
k!1

XðkÞ ¼ P ¼ c1r1 � pbest þ c2r2 � gbest
c

lim
k!1

VðkÞ ¼ 0

8
><

>:
ð41Þ

where c ¼ c1r1 þ c2r2. pbest and gbest, respectively,

denote the personal best position of the particle and the

global best position of the swarm. r1 and r2 are two random

numbers uniformly distributed in [0,1].

4 The statement of mSADE

In the developed mSADE algorithm, a ranking-based

mutation operator presented in [22] is used to yield a trial

vector in order to increase the chance of finding high-

quality solution. Moreover, two different strategies are

developed to adaptively adjust the scaling factor and the

crossover rate in mSADE in order to release the burden of

the optimizer. Below, the ranking-based mutation operator

is first described. Then, the two self-adaptive strategies

used to update the aforementioned control parameters in

mSADE are detailed.

Based on the natural selection principle, since good

species contain ‘‘better’’ genetic information, high-quality

offspring can be generated by mutating those good species.

Inspired by such a consideration, in order to yield ‘‘better’’

new offspring, a ranking-based mutation strategy is first

used in mSADE. Given the size of the swarm as NP, all

parent individuals are first sorted in an ascending order

based on their fitness values in the ranking-based mutation

strategy. Then, the rank value of each parent individual i is

assigned as follows [22]:

RSi ¼ NP� i ð42Þ

where i is the index number of the parent individual

(i ¼ 1; 2; . . .;NP).

According to the rank value assigned to each parent

individual, the selection probability that each parent indi-

vidual is allowed to the mutation operator is computed as:

SPi ¼
RSi
NP

ð43Þ

After calculating the selection probability of each parent

solution, three different parent individuals are selected

based on the roulette wheel mechanism to participate in the

mutation operator defined by (3). Following the above

ranking-based strategy, the parent individuals containing

‘‘better’’ genetic information can be authorized to the next

generation with higher possibilities, and thus, the likeli-

hood of producing high-quality new offspring can be

increased.

To adaptively adjust the crossover rate, a self-adaptive

strategy is proposed in mSADE as:
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Fig. 4 Convergence position and velocity trajectories of the particle in SAPSO under the suggested parameter settings. a Position trajectory,

b velocity trajectory
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Criðk þ 1Þ ¼
CriðkÞ; if f ðUiðkÞÞ� f ðPiðkÞÞ
Nð0:5; 0:1Þ; otherwise

�

ð44Þ

where N(0.5, 0.1) denotes a number randomly produced by

a normal distribution function of average 0.5 and standard

deviation 0.1.

f ðUiðkÞÞ� f ðPiðkÞÞ indicates that the current crossover

rate of the ith solution has a higher chance to enhance the

quality of candidate solutions at the next generation. Thus,

the possibility of producing high-quality solutions can be

increased by preserving the current crossover rate at the

next generation. On the other way around,

f ðUiðkÞÞ[ f ðPiðkÞÞ implies that the chance of generating

promising solutions may be lowered by applying the cur-

rent crossover rate at the next generation. Therefore,

changing the current crossover rate may be more suitable at

the next generation in such a case. Moreover, since no

additional parameter is introduced in the above self-adap-

tive strategy, the optimization difficulties can be decreased

via this self-adaptive strategy.

For easily controlling the scaling factor, a population

diversity-based mechanism is proposed to update the

scaling factor in mSADE as follows:

Si;j ¼ 1 � PDi;jðkÞ ð45Þ

PDi;jðkÞ ¼
PNP

i¼1

ffiffiffiffiffiffiffiffi
Ediv

p

NP � maxð
ffiffiffiffiffiffiffiffi
Ediv

p
Þ

ð46Þ

Ediv ¼
XD

j¼1

Pi;jðkÞ � PjðkÞ
� �2 ð47Þ

PjðkÞ ¼
1

NP

XNP

i¼1

Pi;jðkÞ ð48Þ

where Si;j refers to jth element in Si. PDi;jðkÞ is the nor-

malized diversity for the jth dimension of individual

i. PjðkÞ stands for the mean of the jth dimension over all

individuals in the swarm.

Adopting the population diversity based on the mecha-

nism defined by (45)–(48), the mutation step length, that is,

SiðPi1ðkÞ � Pi2ðkÞÞ shown in (3), can be dynamically

updated based on the difference between the diversity of

each solution and the mean diversity of the population.

Again, since the scaling factor in mSADE is adaptively

changed based on the self-adaptive strategy defined by

(45)–(48), no additional control or factor parameter is

needed to update the scaling factor, which thus helps to

reduce the optimization burden of mSADE.

5 The optimization framework of SAPSO–
mSADE

Based on the analysis and statements shown in Sect. 3.5, it

can be discovered from (41) that the position of each

particle in SAPSO eventually converges toward to a

stochastically weighted average of its personal best posi-

tion and the global best position of the swarm in the case

where the convergence condition given by (34) is satisfied.

It is clear from (41) that if the particle’s personal best

position equals to the global best position of the swarm

[i.e., pbest ¼ gbest in (41)] and the global best position of

the swarm remain unchanged, just like the most PSO

algorithms, the position of each particle in SAPSO keeps

invariant as the evolutionary process continues, which

indicates that the stagnation issue emerges in SAPSO.

Since the stagnation issue would significantly damage the

search efficiency of SAPSO, there exists strong necessity to

remedy or overcome this potential issue in SAPSO.

Based on the analysis noted above, in order to remedy

the stagnation issue of SAPSO, there could be three can-

didate options: (1) only evolving the personal best position

of each particle using some other EAs; (2) merely evolving

the global best position of the swarm based on some other

EAs; and (3) simultaneously evolving the personal best

position of the particle and the global best position of the

swarm via some other EAs. When remedying the stagna-

tion issue of SAPSO following the second mentioned

option, particles in SAPSO may take time to converge

toward the global best position of the swarm, since the

global best position of the swarm is kept evolving, which

would lead the convergence speed of SAPSO to be greater

than using the first option. When improving the stagnation

issue of SAPSO based on the third mentioned choice, the

search efficiency of SAPSO could be better than the

aforementioned two options. However, since the global

best position of the swarm and the personal best position of

the particle need to be simultaneously evolved, this option

would be the most computationally expensive among the

three mentioned options.

Considering the concerns stated above, to alleviate the

stagnation issue of SAPSO, this paper implements the first

option mentioned above, that is, merely evolving the per-

sonal best positions of particles based on some other EAs.

As an extension of this study, we may examine the feasi-

bilities and superiorities of applying the another two

aforementioned options in SAPSO in the near future. As

stated previously, probably thanks to its simplicity and the

formidable reliability of DE, hybridizing DE with PSO to

remedy the stagnation issue could be one of the most

preferred methods [15–17]. Thus, this paper targets the

mSADE algorithm to be integrated with SAPSO and
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completes the design of a SAPSO–mSADE-based opti-

mization framework in order to enhance search reliability

of this framework. In the designed SAPSO–mSADE-based

framework, mSADE is applied to evolve the personal best

positions of particles in SAPSO at each iteration.

Here, it must be highlighted that the idea of applying DE

to evolve the personal best memories of particles in PSO is

not novel in this paper. Some other terrific studies adopting

the same idea can be also found in [15–17]. Moreover, we

need to call the attention of the reader that since mSADE

belongs to the community of EAs, which deals with pop-

ulation-based computation, some other well-established

EAs, such as genetic algorithm (GA) [23] and ant colony

optimization algorithm (ACO) [24], to name but a few, can

be also considered as potential replacements of mSADE in

the developed SAPSO–mSADE-based framework to obtain

similar results shown in this paper. Since both SAPSO and

mSADE pertain to the family of EAs, the developed

SAPSO–mSADE-based optimization framework may be

more suitable for hybridizing two different EAs. This may

imply that some other classical optimization methods

which do not belong to the community of EAs may be

unsuitable to replace mSADE in this developed optimiza-

tion framework.

The pseudo-code of the SAPSO–mSADE-based opti-

mization framework for a minimization problem is sum-

marized in Table 1, where NP denotes the size of the

swarm. This optimization framework involves two mod-

ules: the explore module represented by SAPSO and the

memory module denoted by mSADE. Since the global and

local search capabilities of SAPSO can be well adjusted by

the newly proposed self-adaptive strategy defined by (8)–

(14), particles in the explore module may be promoted to

search through the entire solution space to reduce the

possibility of missing promising solution areas in the early

stages of the evolution. On the other hand, in the latter

phases of the evolution, particles are probably encouraged

to turn into local search to improve the quality of the final

solution searched by the swarm. Since mSADE is a global

search method which can not only encourage individuals to

search on particular search space, but also encourage par-

ticles to search toward some unexplored space areas,

applying the memory module denoted by mSADE to

evolve the personal best memories of particles may prevent

particles plugging into stagnation.

6 Numerical simulations

6.1 Descriptions of benchmark test functions

As shown in Table 2, 25 benchmark test functions issued

from the literature [25–27] are selected to validate the

efficiency of the proposed method. Based on their different

characteristics, these benchmarks can be roughly divided

into three categories, as shown in Table 2. The first cate-

gory contains 4 high-dimensional functions (F1–F4) with a

regular local optimal and separable variables. The second

category contains 3 classical low-dimensional functions

(F5–F7) having multiple local optimum and non-separable

variables. There are 18 complex functions (F8–F25)

extracted from CEC 2005 [27] involved in the last cate-

gory. The global optimal solutions of these 18 complex

functions are either shifted within the solution space or

rotated beyond the edge of the solution space. For more

Table 1 The pseudo-code of

SAPSO–mSADE
1. Randomly generate an initial population
2. Obtain gbest of the swarm and pbest of each particle at the initial iteration
3. while not exit condition do
4. for i = 1 : NP do
5. Update the velocity and position of particle i using (6) and (7)
6. Calculate the fitness value of particle i
7. Update the personal best solution pbest of particle i
8. end for
9. Update the global best solution gbest of the swarm
10. Sort individuals in BP in ascending order based on their fitness values
11. for each individual in BP do
11. Conduct the mutation operation using (3) and the ranking-based strategy defined by (42)-(43)
12. Conduct the crossover operation based on (4)
13. Conduct the selection operation based on (5)
14. end for
15. for i = 1 : NP do
16. Update control parameters of particle i using the self-adaptive strategy in SAPSO defined by (8)-(14)
17. Update the crossover rate of particle i in mSADE using (44)
18. Update the scaling factor of particle i in mSADE by (45)-(48)
19. end for
20. end while
21. Output gbest
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details about these benchmarks, the reader is referred to

[25–27].

6.2 Evaluation of the combination SAPSO
and mSADE

In order to test the effectiveness of combining SAPSO with

mSADE in the proposed SAPSO–mSADE, five different

cases are compared for solving F1, F2, F10 and F23 shown

in Table 2. In the first case, denoted as Case 1, only the

conventional PSO is applied to handle these 4 selected

benchmarks. In the second case, denoted by Case 2, merely

the performances of the standard DE are examined over the

4 benchmarks. The third case, presented by Case 3, just

investigates the performances of mSADE over these 4

selected problems. The fourth case, denoted by Case 4,

only examines the performances of SAPSO over the 4

benchmarks. In the last case, denoted as Case 5, these 4 test

functions are only handled by the proposed SAPSO–

mSADE.

For each test function, a Monte Carlo experiment with

25 runs is conducted in each tested case. In each studied

case, the size of each method is empirically set to be 40 and

the maximum iteration number of each method is given as

1E?05 in each run of the Monte Carlo test. Besides, the

evolution of each considered case exists only if the itera-

tion number of each algorithm reaches the given maximum

iteration number or the error of the final solution searched

by an algorithm reaches a predefined accuracy level, as

shown in Table 2. The simulation parameters of SAPSO–

mSADE are set to be: xs ¼ 0:9 , xf ¼ 0:4, c1s ¼ c2f ¼ 2

and c1f ¼ c2s ¼ 0:1 based on the convergence analysis

results shown in Sect. 3.4. For each test function, the

search accuracy metric measured by Emean is adopted to

indicate the solution optimality of each method in each

studied case. It is worth noting that Emean of a given method

for a test function in a multiple-run Monte Carlo

Table 2 Benchmark functions (‘‘D’’ is the dimension and ‘‘n’’ is the accuracy level)

Functions Name Search space Optimal D n

Group1: Separable

F1 Rosebrock [- 30, 30] 0 30 1E-10

F2 Rastrigin [- 5.12, 5.12] 0 30 1E-10

F3 Ackely [- 32, 32] 0 30 1E-10

F4 Griewwank [- 600, 600] 0 30 1E-10

Group2: Non-separable

F5 Six-hump Camel-back [- 5, 5] - 1.032 2 1E-10

F6 Golden-Price [- 2, 2] 3 2 1E-10

F7 Schaffer F6 [- 100, 100] 0 2 1E-10

Group3: CEC 2005

F8 Shifited sphere [- 100, 100] - 450 30 1E-06

F9 Shifted Schwefel 1.2 [- 100, 100] - 450 30 1E-06

F10 Shifted rotated high conditioned elliptic [- 100, 100] - 450 30 1E-06

F11 Shifted Schwefel 1.2 with noise in fitness [- 100, 100] - 450 30 1E-06

F12 Schwefel’s problem 2.6 [- 100, 100] - 310 30 1E-06

F13 Shifted Rosenbrock [- 100, 100] 390 30 1E-02

F14 Shifted rotated Griewank without bounds [0, 600] - 180 30 1E-02

F15 Shifted rotated Ackley with global optimum on bounds [- 32, 32] - 140 30 1E-02

F16 Shifted Rastrigin [- 5, 5] - 330 30 1E-02

F17 Shifted rotated Rastrigin [- 5, 5] - 330 30 1E-02

F18 Shifted rotated Weierstrass [- 0.5, 0.5] 90 30 1E-02

F19 Schwefel’s problem 2.13 [- p, p] - 460 30 1E-02

F20 Rosenbrock’s function F8F2 [- 5, 5] - 130 30 1E-02

F21 Shifted rotated expanded Scaffer’s F6 [- 300, 300] - 300 30 1E-02

F22 Hybrid composition function [- 5, 5] 120 30 1E-02

F23 Rotated hybrid composition function [- 5, 5] 120 30 1E-02

F24 Rotated hybrid composition function with noise in fitness [- 5, 5] 120 30 1E-01

F25 Rotated hybrid composition with a narrow basin for the global optimum [- 5, 5] 10 30 1E-01
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experiment means the average value of the solution value

searched by the method in each run of the Monte Carlo

experiment [25].

The statistical results of Emean obtained by each method

for each test function are summarized in Table 3. The

convergence graphs of Emean gained by different algorithms

Table 3 Statistical results of

Emean obtained by different

methods over different

benchmarks (‘‘STD’’ denotes

the standard deviation)

Fun. Items Case 1 Case 2 Case 3 Case 4 Case 5

F1 Emean 1.0147E?01 8.9535E?00 3.8789E-01 6.8296E-02 3.6480E206

STD 3.4702E?00 3.0817E?00 2.2172E-01 8.2956E-03 6.5036E-06

F2 Emean 9.6112E?01 6.4075E?01 1.1166E?01 6.4651E?00 6.9817E204

STD 4.4623E?01 2.9748E?01 7.8303E?00 4.5333E?00 1.8580E-03

F10 Emean 3.0981E?07 1.7936E?07 2.9926E?05 1.2387E?05 2.5652E100

STD 3.3042E?07 1.9129E?07 1.9796E?05 8.2226E?04 7.2667E?00

F23 Emean 9.0657E?02 8.0943E?02 1.4962E?02 1.1495E?02 5.7744E101

STD 4.0121E?02 3.0151E?02 1.2058E?02 1.7845E?01 1.4302E?01

The best result among all tested methods over each test case regarding to each performance index is

highlighted in bold

0 2 4 6 8 10

x 104

10−6

10−4

10−2

100

102

104

lo
g[

F(
x)

−F
(x

* )]

Function Evaluation Number

Case 1
Case 2
Case 3
Case 4
Case 5

(a)

0 2 4 6 8 10

x 104

10−4

10−3

10−2

10−1

100

101

102

103

lo
g[

F(
x)

−F
(x

* )]

Function Evaluation Number

Case 1
Case 2
Case 3
Case 4
Case 5

(b)

0 2 4 6 8 10

x 104

100

102

104

106

108

1010

lo
g[

F(
x)

−F
(x

* )]

Function Evaluation Number

Case 1
Case 2
Case 3
Case 4
Case 5

(c)

0 2 4 6 8 10

x 104

101

102

103

104

lo
g[

F(
x)

−F
(x

* )]

Function Evaluation Number

Case 1
Case 2
Case 3
Case 4
Case 5

(d)

Fig. 5 Convergence graphs of Emean obtained by different cases for different test functions. a F1, b F2, c F10, d F23
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for the 4 test functions are visualized in Fig. 5. It is

apparent from Table 3 that Case 5 is followed by Case 4,

Case 3, Case 2 and Case 1 in terms of Emean for each test

function. This indicates that the order obtained is SAPSO–

mSADE, SAPSO, mSADE, the standard DE and the con-

ventional PSO in terms of Emean over these 4 benchmark

problems, which, to a certain degree, can reflect the

effectiveness and superiority of the hybridization SAPSO

with mSADE in the proposed SAPSO–mSADE.

6.3 Comparison of the proposed approach
with some other EAs

After evaluating the effectiveness of hybridizing SAPSO

with mSADE in the proposed method, the performance of

the proposed method is also examined and evaluated over

25 benchmark test functions as shown in Table 2. For a

rigorous evaluation, the performance of the proposed

SAPSO–mSADE is compared with those of 7 well-estab-

lished EAs: IDPSO [6], EGPSO [12], SPSO 2011 [14],

FGIWPSO [20], HPSO-DE [28], NPSO-DE [29] and AH-

DEa [30]. The simulation parameters for these compared

methods are issued from their original literature and sum-

marized in Table 4. Also, a Monte Carlo experiment with

25 runs of each method over each test function is con-

ducted. The existence condition of each method described

in Sect. 6.2 is adopted for each method over each test

function in this subsection.

Apart from the solution optimality evaluated by the

search accuracy metric Emean, the success rate (SR), the

average number of function evaluations (NFE) and the

computational burden (CB) are adopted as another three

evaluation metrics in order to examine different properties

of the proposed method. Here, SR stands for the percentage

of trials when a method converges to the actual optimal

solution with a predefined accuracy level. This metric is

widely applied to measure the search reliability of a given

method [25]. NFE represents the average function calls

when a method converges to the actual optimal solution

with a predefined accuracy level, which is used to denote

the average convergence speed of a given method and

calculated as NFE ¼ 1=N
PN

i¼1 FEi, where N denotes the

total runs of a Monte Carlo experiment and FEi is the

number of function evaluations of the ith run of the Monte

Carlo experiment [25]. CB is a performance index imple-

mented to denote the computational complexity of a given

method [27].

6.3.1 Evaluation of the solution optimality

After performing the Monte Carlo experiment described

above, the statistical results of Emean of different methods

for each test function are summarized in Table 5. The

convergence graphs of Emean of different methods for each

test function are demonstrated in ‘‘Appendix A’’. From

Table 5, it is clear that, with the exceptions of F3, F7, F11,

F15 and F20, the proposed method dominates its contenders

in terms of Emean. Therefore, it can be intuitively inferred

that the proposed method is highly competitive over the

majority of the 25 test functions with respect to the solution

optimality.

However, it is important to note that, based on the

analysis stated above, we cannot conclusively claim that the

proposed method performs superior to its competitors over

the 25 test functions in terms of the solution optimality,

since the average Emean performances of different methods

significantly diversify for different test functions, as shown

in Table 5. In order to detect whether all the tested methods

perform significantly different over the 25 test functions and

highlight the significance of the average Emean performance

improvement of the proposed method over its peers, we

conduct a statistical comparison detailed below.

In the statistical comparison, a ranked-based analysis is

first conducted to examine the average rank of the mean

Emean performance of each method over the 25 test func-

tions. According to simulation results reported in Table 5,

the ranks of and average rank of the mean Emean perfor-

mance of each method for the 25 benchmarks are sum-

marized in Table 6. From this table, one can note that the

order of the mean Emean performance over the 25 test

functions is that the proposed method is followed by

EGPSO, AH-DEa, FGIWPSO, NPSO-DE, HPSO-DE,

Table 4 Simulation parameters

for different compared methods
Method Parameter settings

HPSO-DE xmax ¼ 0:9, xmax ¼ 0:4, c1 ¼ c2 ¼ 2, F ¼ 0:4, CR ¼ 0:9

NPSO-DE x ¼ 0:6, c1 ¼ c2 ¼ 1:7, F 2 ½0:9; 1:0�, CR 2 ½0:95; 1:0�
EGPSO x 2 ½0; 0:72�, /1 2 ½0; 1:19� /2 2 ½0; 1:19�
SPSO 2011 x ¼ 1

2 lnð2Þ, /1 ¼ /2 ¼ 1
2
þ lnð2Þ

FGIWPSO xs ¼ 0:8, c1 ¼ 2:8, c2 ¼ 1:3

AH-DEa F ¼ 0:5, CR 2 ½0:1; 1�
IDPSO xmax ¼ 0:9, xmin ¼ 0:4
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Table 5 Statistical results of Emean of different methods for different benchmarks

Fun. Items Methods

FGIWPSO HPSO-DE NPSO-DE IDPSO SPSO 2011 EGPSO AH-DEa Proposed

F1 Emean 4.7355E-06 3.2324E-01 4.2636E?00 5.6913E-02 4.4117E?00 2.5611E-02 4.8775E-06 3.6480E206

STD 1.1354E-05 1.8476E-01 1.4675E?00 6.9130E-03 1.5088E?00 3.1108E-03 1.1694E-05 6.5036E-06

F2 Emean 3.7410E?00 2.9387E?00 1.4893E-03 3.7618E?00 3.2038E?01 3.3669E?00 1.6834E?00 6.9817E204

STD 2.0163E?00 2.0606E?00 3.4448E-03 1.7236E?00 1.4874E?01 1.8146E?00 9.0732E-01 1.8580E-03

F3 Emean 1.7200E-06 6.0174E-07 9.2201E211 2.2772E-04 2.3346E?00 3.0960E-06 2.6986E-09 1.6866E-09

STD 4.5462E-06 2.9625E-06 7.8881E-12 2.5336E-05 1.4418E?00 8.1831E-06 6.5802E-09 4.1126E-09

F4 Emean 6.6937E-02 3.2021E-02 5.3083E-05 2.0442E-02 1.0218E-01 3.0662E-03 1.0040E-02 8.4473E208

STD 3.5505E-02 1.4546E-02 2.0833E-04 1.6698E-02 7.1652E-02 2.5047E-03 5.3257E-03 3.4986E-07

F5 Emean 5.9537E-11 5.4967E-11 3.2694E-10 4.3795E-10 2.9545E-10 1.2502E-10 1.6390E-10 3.6422E211

STD 2.4828E-11 2.5747E-11 1.3206E-09 1.6935E-09 2.2888E-10 5.2139E-11 9.2754E-11 2.0612E-11

F6 Emean 1.3937E-10 5.4987E-11 3.5705E-07 5.1392E-07 2.6571E-08 2.9267E-10 1.9245E-10 4.2303E211

STD 1.6259E-10 3.7241E-11 7.2570E-07 1.0703E-06 3.3395E-08 3.4144E-10 1.3034E-10 3.2882E-11

F7 Emean 1.3374E-10 7.4679E-11 8.7643E-11 2.7484E-08 3.3045E-09 5.2275E211 1.6048E-10 7.6943E-11

STD 1.8138E-10 2.4449E-11 9.9324E-12 6.4754E-09 7.5054E-10 1.7114E-11 2.1765E-10 1.9380E-11

F8 Emean 8.0967E-07 8.5205E-07 7.4197E-07 8.1278E-07 6.8637E-07 9.6092E-07 1.2145E-06 6.2124E207

STD 1.4925E-07 1.2103E-07 1.7459E-07 1.4592E-07 1.8874E-07 2.6423E-07 2.2388E-07 1.3079E-07

F9 Emean 9.0571E-07 9.3464E-07 1.0164E-01 7.9753E-07 7.9462E-06 7.6562E-07 7.0098E-07 5.8269E207

STD 1.2452E-07 6.3320E-08 2.14423E-01 1.8412E-07 2.4443E-05 1.7675E-07 4.7490E-08 9.6628E-08

F10 Emean 9.3845E?04 1.0320E?05 2.7153E?01 2.9137E?04 8.15282E?06 3.8013E?01 3.8477E?00 2.5652E100

STD 6.2292E?04 6.8521E?04 1.1636E?02 2.4203E?04 8.69542E?06 1.6363E?02 1.0900E?01 7.2667E?00

F11 Emean 8.6542E-07 9.0743E-07 5.2459E?03 4.5164E-05 4.8528E-04 6.7746E-05 6.8067E207 9.0756E-07

STD 1.0845E-07 7.4364E-08 3.5072E?03 2.1663E-04 7.8640E-04 3.2494E-04 6.7921E-08 9.0561E-08

F12 Emean 3.0318E-04 7.1245E-03 4.3180E-01 2.1206E?02 1.9086E?03 2.3748E-01 6.0635E-05 9.3985E207

STD 1.5112E-03 1.9008E-03 6.0602E-01 1.9136E?02 2.2541E?03 3.3331E-01 3.0224E-04 4.2855E-08

F13 Emean 1.0451E-02 3.2989E?00 9.9228E?01 1.6865E?02 9.0712E?07 2.2916E-02 1.6494E?00 9.1667E203

STD 1.3432E-02 8.0473E?00 1.2911E?02 3.1855E?02 1.2288E?08 1.6509E-02 4.0236E?00 6.6038E-03

F14 Emean 6.4353E?02 1.2671E?03 1.5873E?03 1.3594E?03 9.0930E?02 1.4319E-02 2.5058E-02 7.1596E203

STD 3.6900E?02 6.6959E?01 6.6959E?01 3.5869E?00 6.3554E?00 4.2033E-03 7.3559E-03 2.1016E-03

F15 Emean 2.0312E?01 2.0314E?01 1.8736E?01 2.0167E?01 2.0336E?01 2.0207E?01 1.8623E101 2.0069E?01

STD 7.8060E-02 6.2178E-02 5.5644E?00 8.1921E-02 1.2153E-01 8.2084E-02 5.5310E?00 9.8883E-02

F16 Emean 3.0699E?00 4.3407E?00 8.2101E-03 4.7361E?00 3.4027E?01 1.5349E?00 1.4778E-02 6.9441E203

STD 1.6998E?00 2.2149E?00 5.8237E-03 1.4441E?00 1.3627E?01 8.4993E-01 1.0482E-02 2.6884E-03

F17 Emean 1.9222E?01 8.8873E?00 7.5998E-03 4.0993E?00 4.7345E?01 1.3679E-02 9.6112E?00 6.2944E203

STD 9.2523E?00 2.9386E?00 4.2942E-03 1.4735E?00 1.6779E?01 7.7296E-03 4.6261E?00 2.5634E-03

F18 Emean 4.8554E?00 5.7172E?00 6.1377E?00 7.6244E?00 8.1170E?00 4.6184E?00 5.3371E?00 4.2784E100

STD 1.7027E?00 7.1441E-01 1.3008E?00 7.3287E-01 1.9916E?00 5.7710E-01 5.1301E-01 1.5006E?00

F19 Emean 2.1894E?03 2.3377E?03 8.5970E?03 1.0148E?04 1.0933E?04 4.3789E?02 1.7533E?03 4.5961E100

STD 6.2552E?03 1.5185E?03 8.1213E?03 4.3325E?03 6.9697E?03 1.2510E?03 1.1389E?03 9.2593E?00

F20 Emean 7.4523E-03 1.0271E?00 6.4913E-01 6.6579E-01 2.8148E?00 3.8743E203 9.7369E-01 7.7487E-03

STD 2.2861E-03 2.1153E-01 1.5243E-01 2.2159E-01 2.0639E?00 1.0970E-03 2.2864E-01 1.9662E?04

F21 Emean 1.1694E-02 3.0335E?00 2.9808E?00 1.8252E?00 3.9238E?00 8.1856E-03 2.2356E?00 6.8850E203

STD 7.4431E-03 2.6348E-01 3.7941E-01 3.6191E-01 3.9607E-01 5.2101E-03 2.8455E-01 2.4370E-03

F22 Emean 3.6369E?02 3.5321E?02 3.2988E?02 3.1584E?02 4.9305E?02 3.1788E?02 3.3163E?02 3.0449E102

STD 1.2694E?02 1.0086E?02 1.2743E?02 1.4357E?02 1.1981E?02 1.7677E?02 1.5075E?02 1.3723E?02

F23 Emean 7.7298E?01 1.1509E?02 1.3323E?02 1.0450E?02 3.2377E?02 7.0341E?01 9.7877E?01 5.7744E101

STD 2.7613E?01 1.0978E?02 2.0911E?02 1.6510E?02 4.5561E?02 2.5032E?01 2.7511E?01 1.4302E?01
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IDPSO and SPSO 2011. From such an observation,

although the proposed method is highly powerful in solving

the 25 benchmark functions in terms of the solution opti-

mality, it is still insufficient to conclude that this method

preforms significantly different or even better than the

other methods over these 25 test functions.

In order to detect whether all considered methods per-

form significantly different over the 25 test functions, the

nonparametric Friedman test [31] on the average rank of

the mean Emean performance is performed at a confidence

level of 95%. Because this study compares 8 methods over

25 test functions, the F-statistic value of the Friedman test

equals to 2.0645 at a confidence level of 95%. Note that the

F-statistic value of the Friedman test at a confidence level

of a% can be gained using the MATLAB command:

f invða;K � 1; ðK � 1ÞðN � 1ÞÞ, where K and N denote the

number of methods and the number of test functions,

respectively. From Table 6, the obtained Friedman test

value (Fscore) is equal to 27.8433. For the calculation of

Fscore of K methods over N problems, the reader is referred

to [31]. Since the F-statistic value of the Friedman test is

less than the Fscore value, the null hypothesis that assumes

Table 5 (continued)

Fun. Items Methods

FGIWPSO HPSO-DE NPSO-DE IDPSO SPSO 2011 EGPSO AH-DEa Proposed

F24 Emean 1.0818E?02 1.2087E?02 1.5554E?02 1.3816E?02 2.9269E?02 1.1053E?02 1.0878E?02 1.0373E102

STD 2.7871E?02 3.0011E?02 3.4121E?02 3.2313E?02 4.1650E?02 2.6303E?02 2.5572E?02 2.4513E?02

F25 Emean 7.2802E?02 8.0967E?02 8.9600E?02 9.6230E?02 1.0356E?03 7.8355E?02 7.6984E?02 4.3975E102

STD 4.5612E?02 5.1231E?02 5.0132E?02 6.7813E?02 2.0012E?03 4.7842E?02 4.6623E?02 3.5671E?02

The best result among all tested methods over each test case regarding to each performance index is highlighted in bold

Table 6 Rank values of Emean

results of different methods for

the 25 benchmarks (‘‘AVR.’’

denotes the average rank of each

method over the 25

benchmarks)

FGIWPSO NPSO-DE HPSO-DE IDPSO SPSO 2011 EGPSO AH-DEa Proposed

F1 2 6 7 5 8 4 3 1

F2 6 5 4 7 8 3 2 1

F3 5 4 1 7 8 6 3 2

F4 7 6 4 5 8 3 2 1

F5 3 2 7 8 6 4 5 1

F6 4 2 7 8 6 5 3 1

F7 5 2 4 7 8 1 6 3

F8 4 6 3 5 2 7 8 1

F9 6 7 8 5 4 3 2 1

F10 6 7 3 5 8 4 2 1

F11 2 3 8 6 7 5 1 4

F12 3 4 6 7 8 5 2 1

F13 2 5 6 7 8 3 4 1

F14 4 6 8 7 5 2 3 1

F15 5 6 2 7 8 4 1 3

F16 5 6 2 7 8 4 3 1

F17 7 5 2 4 8 3 6 1

F18 3 5 6 7 8 2 4 1

F19 4 5 6 7 8 2 3 1

F20 2 7 4 5 8 1 6 3

F21 3 7 6 4 8 2 5 1

F22 7 6 5 2 8 3 4 1

F23 3 6 7 5 8 2 4 1

F24 2 5 7 6 8 4 3 1

F25 2 5 6 7 8 4 3 1

AVR. 4.02 5.12 5.16 6.00 7.28 3.44 3.52 1.40
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each method performs equally over all considered bench-

mark problems can be rejected. Therefore, it allows us to

conclude that the 8 methods perform significantly different

at a confidence level of 95% over the 25 benchmark

problems as far as the Emean performance is concerned.

Although the nonparametric Friedman test confirms that

the 8 methods are significantly different over the 25

benchmarks at the confidence level of 95%, it cannot suf-

ficiently conclude that the proposed SAPSO–mSADE sig-

nificantly dominates its peers at the same confidence level.

In order to highlight the Emean performance improvement

of the proposed method over its competitors, the pairwise

post hoc Bonferroni–Dunn test is conducted at the confi-

dence level of 95% in the conducted statistical comparison.

In order to detect whether or not a given method performs

significantly better than another method at the confidence

level of a% using the hoc Bonferroni–Dunn test, one only

needs to check whether the difference of the average ranks

between those two methods is greater than the critical

difference (CD) of the Bonferroni–Dunn test. If yes, one

can claim that the given method is significantly better than

its competitor at a confidence level of a% [31]. Here, the

value of CD can be calculated by qa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 1Þ=ð6NÞ

p
for

K methods over N benchmark test functions, where qa is a

constant parameter [31].

Again, since this paper compares 8 methods over 25

benchmarks, the value of CD of the pairwise post hoc

Bonferroni–Dunn test equals to 1.8637. Moreover, it can be

easily observe from Table 6 that the differences of the

average ranks between our proposed method and EGPSO,

AH-DEa, FIGWPSO, NPSO-DE, HPSO-DE, IDPSO and

SPSO 2011 are 2.04, 2.12, 2.68, 3.72, 3.76, 4.60 and 5.88,

respectively. Since all these difference values of the aver-

age ranks between our proposed method and its peers are

greater than the value of CD, we can sufficiently conclude

that the proposed method performs significantly better than

its contenders over the 25 benchmark test functions in

terms of Emean (i.e., the solution optimality) at a confidence

level of 95%.

6.3.2 Evaluation of search reliability

This subsection uses the performance index SR to examine

the search reliability of each method. After the execution of

Table 7 Simulation results of

SR obtained by different

methods for different test

functions

FGIWPSO NPSO-DE HPSO-DE IDPSO SPSO 2011 EGPSO AH-DEa Proposed

F1 0.12 0.00 0.00 0.00 0.00 0.20 0.00 0.24

F2 0.04 0.04 0.00 0.00 0.00 0.04 0.04 0.04

F3 0.04 0.48 1.00 0.00 0.00 0.00 0.08 0.88

F4 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.12

F5 1.00 1.00 0.92 0.92 0.16 0.40 0.20 1.00

F6 0.64 1.00 0.28 0.24 0.00 0.40 0.32 1.00

F7 0.92 1.00 1.00 0.00 0.00 1.00 0.32 1.00

F8 1.00 1.00 1.00 1.00 1.00 0.56 0.20 1.00

F9 1.00 1.00 0.60 1.00 0.88 1.00 1.00 1.00

F10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F11 1.00 1.00 0.00 0.84 0.00 0.24 1.00 1.00

F12 0.96 0.00 0.00 0.00 0.00 0.00 0.96 1.00

F13 0.88 0.04 0.00 0.00 0.00 0.08 0.04 0.92

F14 0.00 0.00 0.00 0.00 0.00 0.12 0.04 1.00

F15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F16 0.04 0.00 0.92 0.00 0.00 0.04 0.28 1.00

F17 0.00 0.00 0.96 0.00 0.00 0.28 0.00 1.00

F18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F19 0.12 0.00 0.00 0.00 0.00 0.12 0.00 0.24

F20 1.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00

F21 0.64 0.00 0.00 0.00 0.00 0.72 0.00 0.96

F22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The best result among all tested methods over each test case regarding to each performance index is

highlighted in bold
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the proposed Monte Carlo experiment, the simulation

results of SR obtained by different methods over the 25 test

functions are reported in Table 7. From this table, it can be

seen that F10, F15, F18, F22, F23, F24 and F25 can be never

solved by any method considered in this study, probably

due to the challenging fitness landscape of these functions.

Apart from these 7 functions, the remaining 18 functions

can be completely or partially solved by at least one tested

method. Here, a function can be completely, partially or

never solved by a method if SR of the method for the test

function satisfies: SR ¼ 1, 0\SR\1 or SR ¼ 0,

respectively.

From Table 7, it is clear that the proposed method can

completely solve 11 test functions over the 18 test func-

tions that can be completely or partially solved. Obviously,

the number of test functions that can be completely solved

by the proposed method is all greater than those of the

other methods compared. Also, as confirmed in Table 7, the

number of test functions that can be partially solved by the

proposed method equals to 7, which is ranked first or

second among the 8 methods in the case where the test

function can be partially solved. Since SR is a performance

metric used to denote the search reliability, it is conclusive

that the proposed method is highly promising over the 25

benchmarks in terms of the search reliability.

The reasons why the proposed method is formidable in

the search reliability may be explained by the following

two facts: (1) Since the global search ability of the pro-

posed method is promoted in the early phases of the evo-

lution via the proposed self-adaptive strategy in SAPSO,

the likelihood of missing promising solution areas can be

decreased in early stages of the evolution; (2) since the

personal best experience of particles in the proposed

method is evolved by mSADE, particles in the proposed

method can be avoided falling into stagnation as far as

possible, which thus helps to strengthen the search relia-

bility of this method.

6.3.3 Evaluation of the average convergence speed

The target of this subsection is to examine the mean con-

vergence speed of each method based on the NFE perfor-

mance criterion. After conducting a Monte Carlo

experiment with 25 runs for each test function shown in

Table 8 Simulation results of NFE obtained by different methods for different functions

FGIWPSO NPSO-DE HPSO-DE IDPSO SPSO 2011 EGPSO AH-DEa Proposed

F1 9.7145E?04 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 9.1199E?04 1.0000E?05 9.0475E104

F2 9.6793E104 9.9020E?4 1.0000E?05 1.0000E?05 1.0000E?05 9.6952E?04 9.7032E?04 9.9363E?04

F3 9.8699E?04 2.1422E?04 1.9174E104 1.0000E?05 1.0000E?05 1.0000E?05 8.3897E?04 7.9017E?04

F4 1.0000E?05 1.0000E?05 9.4291E?04 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 9.2932E104

F5 6.5580E?03 6.5070E?03 1.4340E?04 2.8888E?04 9.1716E?03 1.2460E?04 3.0796E?03 2.5660E103

F6 6.7811E?04 4.2960E?03 8.5531E?04 7.8470E?03 1.0000E?05 8.2400E?04 8.5920E?03 1.8730E103

F7 1.3318E?04 1.2729E?04 1.1329E?04 1.0000E?05 1.0000E?05 2.4186E?04 1.8636E?04 8.5900E103

F8 3.9640E?03 7.9070E?03 6.3440E?03 6.6810E?03 5.6590E?03 1.1318E?04 9.1190E?03 2.4360E103

F9 1.9390E?04 3.2219E?04 7.6966E?04 2.2960E?04 4.1257E?04 1.9745E?04 7.4104E?04 1.4582E104

F10 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05

F11 1.9454E104 6.2921E?04 1.0000E?05 5.6241E?04 1.0000E?05 7.4887E?04 3.2098E?04 3.7763E?04

F12 1.8691E104 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 3.0444E?04 2.6406E?04

F13 2.6294E?04 9.6521E?04 1.0000E?05 1.0000E?05 1.0000E?05 3.6273E?04 9.6886E?04 2.4929E104

F14 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.9622E?04 3.4627E?04 1.1542E104

F15 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05

F16 9.7389E?04 1.0000E?05 2.3371E?04 1.0000E?05 1.0000E?05 9.8360E?04 3.2593E?04 2.0731E104

F17 1.0000E?05 1.0000E?05 2.1630E?04 1.0000E?05 1.0000E?05 3.3434E?04 1.0000E?05 1.8592E104

F18 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05

F19 9.5412E?04 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 9.7647E?04 1.0000E?05 8.8316E104

F20 1.4598E104 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 2.7527E?04 1.0000E?05 1.9662E?04

F21 5.1678E?04 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 5.6381E?04 1.0000E?05 3.8852E104

F22 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05

F23 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05

F24 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05

F25 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05 1.0000E?05

The best result among all tested methods over each test case regarding to each performance index is highlighted in bold
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Tables 2, 8 summarizes the simulation results of NFE

obtained by different methods for different benchmarks. As

shown in this table, since F10, F15, F18, F22, F23, F24 and

F25 can be never solved by any considered method, the

NFE results of each method for these test functions equal to

the given maximum iteration number.

From Table 8, it is clearly trivial that the proposed

method and FGIWPSO are ranked first and second in terms

of the NFE performance index, since these two approaches

can, respectively, provide 13 and 4 best NFE results over

the remaining 18 test functions that can be completely or

partially solved. Apparently, the proposed method per-

forms 3.25 times better than the second best algorithm, i.e.,

FGIWPSO, as far as the average convergence speed is

concerned. Thus, it allows us to claim that the proposed

method is highly powerful with respect to the average

convergence speed. As stated previously, probably thanks

to the fast growing nature of the exponential function,

exponentially adjusting the control parameters of PSO may

facilitate the convergence speed of PSO. This may interpret

the potential reason why the proposed method is highly

competitive in the convergence speed, since the control

parameters of particles in the proposed method are expo-

nentially adjusted.

6.3.4 Evaluation of the computational complexity

The computational complexity of each method is examined

through the performance index computational burden (CB)

[27] in this subsection. Following the procedure proposed

in [27], the value of CB of a given method is calculated by

ð bT 2 � T1Þ=T0, where bT 2, T1 and T0, respectively, denote

the computation time consumed by the corresponding

mathematical operations described in [27] in seconds. The

reader is referred to [27] for more information about the

computation methods of bT 2, T1 and T0.

In this subsection, the 30-dimensional test function F10

as shown in Table 2 is used to investigate the computa-

tional complexities of different methods. After conducting

each mathematical operation suggested in [27], the simu-

lation results of bT 2, T1 and T0 of each method are shown in

Table 9. From this table, SPSO 2011 exhibits the best

performance, while the proposed method is ranked sixth

among the 8 methods in the computational complexity.

Such observation is reasonable because the three control

parameters of SPSO 2011 keep invariant and no additional

computation resource is needed to update the three control

parameters of this method, which thus reduces the com-

putational complexity of this method. Since the proposed

method integrates SAPSO and mSADE together, the pro-

posed method is inevitably more computationally compli-

cated than the non-enhanced PSO and DE methods

compared.

However, it is of great importance to highlight that

despite being more computationally complicated than

SPSO 2011 and FGIWPSO, AH-DEa, EGPSO and IDPSO,

the proposed method significantly dominates these methods

in terms of the solution optimality, the search reliability

and the average convergence speed, as confirmed in former

contents of this section. Also, it is worth highlighting that

even if the proposed method is not as promising as those

non-enhanced PSO and DE methods compared, the pro-

posed method performs better than the two enhanced PSO–

DE methods, i.e., NPSO-DE and HPSO-DE in terms of the

computational complexity. Therefore, considering all the

concerns raised, it allows us to conclude that the proposed

method is highly promising and can be considered as a vital

alternative in the field of soft computation.

6.4 Scalability analysis

So far, the performance of the proposed method is only

validated by 25 30-dimensional test functions. However,

the scalability of the proposed method on higher dimen-

sional optimization problems remains uncertain. In order to

study the scalability of the proposed method, 8 complex

benchmarks F18–F25 shown in Table 2 are selected in a

50-dimensional case in this subsection. For rigorous vali-

dation, the performance of the proposed method is com-

pared with those of the seven aforementioned methods.

For each 50-dimensional test function, the Monte Carlo

experiment with 25 runs is conducted for each method. The

maximum iteration number of each method in each run of

the Monte Carlo experiment is set to be 3E?05. The

evolution of each method in each run of the Monte Carlo

experiment exists if the iteration number of the method

Table 9 Results of the computational complexities of different methods

FGIWPSO NPSO-DE HPSO-DE IDPSO SPSO 2011 EGPSO AH-DEA Proposed

T0 1.7666E-01 1.7666E-01 1.7666E-01 1.7666E-01 1.7666E-01 1.7666E-01 1.7666E-01 1.7666E-01

T1 4.3807E?00 4.3807E?00 4.3807E?00 4.3807E?00 4.3807E?00 4.3807E?00 4.3807E?00 4.3807E?00

bT 2
1.4101E?02 8.9871E?03 8.6123E?03 4.6123E?02 1.2314E102 4.5778E?02 3.4371E?02 8.5012E?03

CB 7.7340E?02 5.0847E?04 4.8726E?04 2.5860E?03 6.7224E102 2.5665E?03 1.9208E?03 4.8097E?04

The best result among all tested methods over each test case regarding to each performance index is highlighted in bold
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reaches the given maximum iteration number or the error

of the final solution searched by a method reaches a pre-

defined accuracy level as shown in Table 2. For each test

function, only the average solution optimality measured by

Emean is considered in the scalability examination in this

subsection.

After executing the Monte Carlo experiment described

above, the statistical results of Emean gained by different

methods over each test function are provided in Table 10.

The evolution curves of Emean obtained by different

methods for these 50-dimensional problems are visualized

in ‘‘Appendix B’’. From Table 10, it can be found that the

proposed method exhibits the best performance over the 8

large-scale test functions in terms of Emean (i.e., the solu-

tion optimality), which, to some degrees, can reflect the

scalability of the proposed method.

6.5 Parameter sensitivity study

In order to gain insight on how different parameter settings

affect the performance of the proposed method, this sub-

section investigates the sensitivity of the performance of

the proposed method to different parameter settings

regarding NP (population size), x (inertia weight),

c1(cognitive acceleration parameter) and c2 (social accel-

eration parameter). In the sensitivity investigation, only

Functions F10 and F15 depicted in Table 2 are selected in

this subsection. The same Monte Carlo experiment depic-

ted in Sect. 6.2 is adopted for each parameter sensitivity

study. The descriptions and simulation results of different

parameter settings for these two functions are given below.

(1) Settings of NP: Population size NP is an important

parameter in PSO, which greatly influences PSO’S

the performance and computation time. To investi-

gate impacts of the population size on the perfor-

mance and computation time of the proposed

method, different parameter settings of NP varying

from 10 to 100 are considered for the two selected

test functions. The rest simulation parameters of the

proposed method are remained as the same as those

in Sect. 6.2.

The simulation results of Emean and the computational

burden (CB) of the proposed method over the two selected

test functions are shown in Table 11. From this table, it can

be observed that the average solution optimality can be

improved, whereas the computational burden is signifi-

cantly increased as the population size increases. Also, it

can be seen from Table 11 that the performance of the

average solution optimality is not promising in the case

where the population size is less than 30. Besides, the

improvements of the average solution optimality are

insignificant in the case where the population size is greater

than 50, as shown in Table 11. Since the decision makers

may prefer to obtain an acceptable solution at a lower

computation cost in real-world applications, we empirically

set the population size of the proposed method to be 40 by

compromisingly considering the solution optimality and

the computation time.

Table 10 The statistical results of Emean obtained by different methods for the 50-dimensional test functions

Fun. Items Methods

FGIWPSO NPSO-DE HPSO-DE IDPSO SPSO 2011 EGPSO AH-DEa Proposed

F18 Emean 7.7686E?00 9.1476E?00 9.8203E?00 1.2199E?01 1.2987E?01 7.3894E?00 7.9294E?00 6.8454E100

STD 2.7244E?00 1.1430E?00 2.0814E?00 1.1725E?00 3.1865E?00 1.0311E?00 1.12188E?00 1.1012E?00

F19 Emean 1.0242E?04 1.0936E?04 4.0216E?04 4.7473E?04 5.1144E?04 9.4946E?02 1.2065E?03 2.1500E101

STD 2.9261E?04 7.1037E?03 3.7991E?04 2.0267E?04 3.2604E?04 4.0535E?02 1.1397E?03 4.3315E?01

F20 Emean 1.1911E?01 1.2217E?01 5.4700E-01 5.1652E?01 3.5734E?01 1.4218E-01 1.8845E?01 1.3675E201

STD 2.7971E?00 4.0662E?00 7.6780E-02 3.7873E?01 8.3913E?00 4.0262E-02 3.8816E?00 4.1950E-02

F21 Emean 1.3078E?01 4.5175E?01 6.0361E?01 8.8730E?01 9.7113E?01 3.9466E-01 1.4333E?01 2.0138E201

STD 1.6646E?00 8.9572E?00 7.6830E?00 7.7070E?00 9.8029E?00 2.5120E-01 1.2449E?00 7.1282E-02

F22 Emean 1.9768E?03 9.1748E?02 1.3920E?03 5.9294E?02 5.5130E?03 4.1290E?02 4.6288E?02 3.3139E102

STD 6.9871E?02 4.6713E?02 6.3145E?02 2.6713E?02 1.0342E?03 2.5341E?02 2.6581E?02 2.3123E?02

F23 Emean 1.9055E?03 2.2990E?03 2.9312E?03 2.5321E?03 7.1230E?03 1.4306E?02 2.2107E?03 1.0259E102

STD 4.6785E?02 5.3014E?02 6.0153E?02 5.9834E?02 7.0014E?02 1.6123E?02 4.9013E?02 1.5314E?02

F24 Emean 1.5398E?02 2.6591E?03 3.3396E?03 3.4219E?03 6.4392E?03 2.2822E?03 2.3799E?03 1.2158E102

STD 5.1322E?02 1.2018E?03 1.6532E?03 1.6898E?03 3.2001E?03 1.0357E?03 1.1376E?03 4.5613E?02

F25 Emean 1.6200E?04 1.6541E?04 5.3201E?03 1.9677E?04 3.1082E?04 1.6543E?04 8.2277E?02 6.0800E102

STD 9.7816E?03 98824E?03 4.1123E?03 1.1876E?04 2.5643E?04 98835E?03 6.7813E?02 5.6712E?02

The best result among all tested methods over each test case regarding to each performance index is highlighted in bold
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(2) Settings of x, c1 and c2: Since these three control

parameters play key roles in affecting the perfor-

mance of the proposed method, the sensitivities of the

performance of the proposed method to these param-

eters are investigated. Three different cases are

executed to investigate the sensitivities of the perfor-

mance of the proposed method to different parameter

settings of x, c1 and c2, respectively. In the first case,

the inertia weight decreases from 0.9 to 0.4. In the

second case, the cognitive acceleration parameter

decreases from 2 to 0.1. The third case investigates

settings of the social acceleration parameter increas-

ing from 0.1 to 2. Note that when one parameter varies

in each individual case, the other two control param-

eters are kept as the same as those in Sect. 6.2.

Tables 12, 13 and 14 summarize simulation results of

Emean regarding different settings of x, c1 and c2, respec-

tively. The corresponding fitness curves of Emean regarding

different settings of these three control parameters for F10

and F15 are visualized in Figs. 6 and 7, respectively. One

can make an observation from Tables 12, 13 and 14 that the

three main control parameters of particles can heavily affect

the overall performance of the proposed method. Moreover,

it is clear from these two tables that the proposed method is

highly promising in terms of the solution optimality in the

cases where x and c1 decrease, whereas c2 increases. This

observation may further help to interpret the reasons why

the three control parameters of particles in the proposed

SAPSO–mSADE are updated based on the self-adaptive

control parameter updating rule defined by (8)–(14). It is

clear from (8) to (14) that x and c1 of each particle decrease,

whereas c2 of each particle increases with the iteration

number increasing. These variation tendencies of the three

control parameters in the proposed method may imply that

the global search ability of the proposed method could be

enhanced in the early stages of the evolution, while the local

search ability of the proposed method would be facilitated

in the latter phases of the evolution, based on the discov-

eries found in [7, 10, 11]. When the global search abilities of

particles are enhanced in the early stages of the evolution,

they are more likely to be encouraged to search the entire

solution space, so that the possibility of missing some high-

quality solution areas would be decreased in the early

evolution stages. On the other hand, when local search

Table 11 Simulation results of

Emean and CB for F10 and F15

under different settings of the

population size

Fun. Items Population size

10 20 30 40 50 60 70 80 90 100

F10 Emean 34.69 14.31 2.671 2.565 2.061 1.795 1.697 1.473 1.351 1.174

CB (E?04) 0.803 2.503 3.118 3.981 4.596 6.125 6.712 7.739 7.925 9.338

F15 Emean 20.39 20.33 20.20 20.07 20.06 20.05 20.04 20.03 20.03 20.02

CB (E?04) 0.765 2.472 3.043 3.788 4.709 5.303 6.511 7.415 7.649 8.602

Table 12 Simulation results of

Emean for F10 and F15 under

different settings of x

Fun. Inertia weight settings

0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40

F10 17.34 12.07 8.98 7.37 5.868 3.790 2.834 2.772 2.630 2.600 2.590

F15 25.49 25.25 25.11 25.07 25.06 25.05 25.04 25.03 25.02 25.02 25.18

Table 13 Simulation results of

Emean for F10 and F15 under

different settings of c1

Fun. Cognitive acceleration parameter settings

2.00 1.81 1.62 1.43 1.24 1.05 0.86 0.67 0.48 0.29 0.10

F10 14.31 10.71 8.487 6.754 4.986 3.325 3.198 3.081 3.001 2.943 2.870

F15 27.55 27.52 27.49 27.45 27.44 27.43 27.42 27.40 27.38 27.35 27.30

Table 14 Simulation results of

Emean for F10 and F15 under

different settings of c2

Function Social acceleration parameter settings

0.10 0.29 0.48 0.67 0.86 1.05 1.24 1.43 1.62 1.81 2.00

F10 30.53 14.94 10.33 5.853 4.988 4.879 4.753 4.662 3.949 3.107 2.743

F15 29.74 29.53 29.47 29.46 29.45 29.41 29.36 29.33 29.32 29.28 29.28
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abilities of particles are enhanced in the latter stages of the

evolution, they could be encouraged search carefully in a

local region in the latter phases of the evolution, which may

increase the possibility of finding the high-quality solution.

7 Applications of the proposed method
on two real-world problems

Since the 25 selected benchmarks shown in Table 2 are

unconstrained optimization problems, despite investigating

the effectiveness and superiorities of the proposed method

over the 25 benchmarks in the former contents of this

paper, the feasibilities of the proposed method on some

constrained optimization problems remain unknown. In

order to examine the feasibilities of the proposed method

on some real-world constrained optimization problems, the

proposed method is tested by two real-world problems: the

tension compression spring design problem and the three-

bar truss design problem [13]. For a rigorous examination,

the performances of the proposed method are compared

with those of SPSO 2011 [14] and the bare-bone PSO

(BBPSO) [25]. The needed simulation parameters of the

proposed method are set to be as the same as those in
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Fig. 6 Fitness curves of Emean for F10 under different parameter settings. a Settings of x, b settings of c1, c settings of c2
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Sect. 6.2. The simulation parameters of SPSO 2011 and

BBPSO are referred to their corresponding literature.

Since the real optimums of these two real-world prob-

lems remain uncertain, a Monte Carlo experiment with 10

runs is conducted for each considered method on each real-

world problem in order to reduce the random discrepancy.

In each run of the Monte Carlo experiment, the population

size and the maximum iteration number of each method are

set to be 40 and 500, respectively. The evolution of each

method does not exist until the iteration number of each

method reaches the given maximum iteration number in

each run of the Monte Carlo experiment. It is important to

note that, differing from the 25 benchmarks stated above,

the solution optimality of each method for each selected

real-world problem is indicated by the fitness value,

namely the value of the cost function of each problem, due

to the uncertainties of the real optimal solutions of these

two real-world problems. After conducting the described

Monte Carlo experiment for each problem, the statistical

results of the fitness value obtained by different methods

for each studied real-world problem are reported and

compared. Because the two selected real-world problems

are constrained optimization problems, the adaptive

relaxation method presented in [13] is adopted to deal with

constraints of these two problems in this section in order to

diversify solutions. For more details about these two real-

world problems and the mentioned constraint tackling

method, the reader is referred to [13].
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Fig. 7 Fitness curves of Emean for F15 under different parameter settings. a Settings of x, b settings of c1, c settings of c2
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After executing the Monte Carlo experiment described

above, the statistical results of the fitness values obtained

by different methods for the tension compression spring

design problem are shown in Table 15. Table 16 exhibits

the details of the best solution searched by each method for

the tension compression spring design problem. The aver-

age fitness curves of different methods obtained in the

Monte Carlo experiment for the tension compression spring

design problem are visualized in Fig. 8. Table 17 sum-

marizes the statistical results gained by each method for the

three-bar truss design problem. The detailed information of

the best solution found by each method for the three-bar

truss design problem is reported in Table 18. Figure 9

displays the average fitness curves of different methods

gained in the Monte Carlo experiment for the three-bar

truss design problem.

From Tables 15 and 17, it is clear that the proposed

method can provide the best average fitness values for these

two real-world issues among the three methods. This indi-

cates that the proposed method generally dominates the

other two methods for solving these two problems in terms of

the solution optimality. Moreover, it can be found from these

two tables that the proposed method also provides the best

performances in terms of the best and worst fitness values in

the Monte Carlo experiment. Based on these analysis and

comparisons, it can be inferred that the proposed method

generally performs better than the other two methods with

respect to the solution optimality over these two real-world

problems. Besides, it can be seen from Tables 16 and 18 that

the best solutions found by the three methods to these two

problems are all feasible solutions since all variables of the

best solutions searched by each method meet their

corresponding constraints and the best solutions found by

each method satisfy all constraints of these two problems.

This, to some extent, can reflect the feasibilities of the three

methods on these two real-world problems.

8 Conclusions and future work

Aiming at overcoming the typical flaws of the conventional

PSO and enhancing the performance of PSO, this paper

proposes an integrated PSO–DE method. Attempting to

well balance the global and local search capabilities, a new

SAPSO which adopts a newly established self-adaptive

Table 15 Statistical results of the fitness value obtained by different

methods for the tension compression spring design problem

Items Methods

BBPSO SPSO 2011 SAPSO–mSADE

Best 1.5702E-02 1.3937E-02 1.2751E202

Worst 8.0405E-01 3.4768E-02 1.3628E202

Mean 1.5073E-01 2.2641E-02 1.3067E202

Std 2.3628E-01 6.1343E-03 2.8310E204

The best result among all tested methods over each test case regarding

to each performance index is highlighted in bold

Table 16 The details of the best solution searched by different methods for the tension compression spring design problem

Methods Variables and Constraints Fitness value

x1 x2 x3 g1 g2 g3 g4

BBPSO 0.0648 0.7591 2.9236 - 9.0730E-03 - 4.0399E-03 - 4.4043E?00 - 4.5074E-01 1.5702E-02

SPSO 2011 0.0528 0.3728 11.392 - 2.6010E-01 - 2.9278E-01 - 2.0896E?00 - 3.0392E-01 2.2641E-02

SAPSO–mSADE 0.0538 0.4107 8.7090 - 4.3891E-05 - 1.8577E-04 - 4.1475E?00 - 6.9029E-01 1.3628E-02
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Fig. 8 The curves of the average fitness values obtained by different

methods for the tension compression spring design problem

Table 17 Statistical results of the fitness value obtained by different

methods for the three-bar truss design problem

Items Methods

BBPSO SPSO 2011 SAPSO–mSADE

Best 2.6390E?02 2.6401E?02 2.6389E102

Worst 2.6409E?02 2.6501E?02 2.6391E102

Mean 2.6395E?02 2.6446E?02 2.6389E102

Std 6.2269E-02 3.9206E-01 5.2990E203

The best result among all tested methods over each test case regarding

to each performance index is highlighted in bold
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control updating rule to adjust the three main control

parameters of particles is first developed to guide move-

ments of particles in the proposed integrated method.

Moreover, a parameter selection principle, guaranteeing

the convergence of SAPSO, is provided for this algorithm

after the convergence investigation of this algorithm.

Besides, a mSADE algorithm is presented to evolve the

personal best experience of particles in the proposed hybrid

PSO method so as to mitigant the potential stagnation

issue. For releasing the burden of the optimizer and

diversifying solutions, a ranking-based mutation operator

and two self-adaptive strategies are developed to update the

scaling factor and the crossover rate in mSADE.

The performance of the proposed method is verified

through 25 benchmark test functions against 7 well-known

EA methods under four widely accepted performance

metrics. The simulation results over the 25 benchmarks

confirm that the proposed method is highly competitive in

terms of the search reliability and the convergence speed.

Also, the proposed method significantly dominates its peers

at a confidence level of 95% over the 25 benchmarks with

respect to the solution optimality. Moreover, despite being

more computationally expensive than some other non-en-

hanced PSO methods, the computational complexity of the

proposed method is comparable with those of the enhanced

PSO–DE methods compared. The feasibilities and

superiorities of the proposed method on real-world appli-

cations are evaluated through two real-world problems.

The numerical simulation results on two real-world issues

reveal that the proposed method outperforms its competi-

tors in terms of the solution optimality. Thus, it is con-

clusive that the proposed method can be treated as a vital

alterative in the field of evolutionary computation.

The method and results presented in this study raise

some interesting issues that deserve some future study.

Firstly, a convergence-guaranteed parameter selection

principle can be provided for the proposed method after the

second-order convergence analysis (i.e., the convergence

of the variance of the particle’s position) of the proposed

method. Despite studying the convergence of the proposed

method to an equilibrium point, the local or global opti-

mality of this point remains unknown, which can be con-

sidered as the second future work of this study. Thirdly,

how different mutation operation models affect the per-

formance of the proposed method can be studied. Last and

but not least, the effectiveness of the proposed method can

be tested by some more complicated real-world applica-

tions against some more state-of-the-art EAs.
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Appendix A

The fitness curves of Emean of different methods for the 25

30-dimensional test functions are listed in this appendix

(See Figs. 10, 11 and 12).

Table 18 The details of the best

solution searched by different

methods for the three-bar truss

design problem

Methods Variables and constraints Fitness value

x1 x2 g1 g2 g3

BBPSO 0.7898 0.4053 - 4.3261E-05 - 1.4675E?00 - 5.3251E-01 2.6409E?02

SPSO 2011 0.7766 0.4437 - 7.0040E-05 - 1.4245E?00 - 5.7554E-01 2.6401E?02

SAPSO–mSADE 0.7887 0.4081 - 2.7555E-13 - 1.4642E?00 - 5.3572E-01 2.6389E?02
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Fig. 9 The curves of the average fitness values obtained by different

methods for the three-bar truss design problem
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Fig. 10 Convergence graphs of Emean of different PSO variants for functions F1–F10. a F1, b F2, c F3, d F4, e F5, f F6, g F7, h F8, i F9, j F10
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Fig. 11 Convergence graphs of Emean of different PSO variants for functions F11–F18. a F11, b F12, c F13, d F14, e F15, f F16, g F17, h F18
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Fig. 12 Convergence graphs of Emean of different PSO variants for functions F19–F25. a F19, b F20, c F21, d F22, e F23, f F24, g F25
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Appendix B

The fitness curves of Emean of different methods for the 8

50-dimensional test functions are listed in this appendix

(Fig. 13).
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Fig. 13 Convergence graphs of Emean obtained by different methods for different 50-dimensional test functions. a F18, b F19, c F20, d F21, e F22,
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