
ORIGINAL ARTICLE

Predictive modelling of the higher heating value in biomass
torrefaction for the energy treatment process using machine-learning
techniques

P. J. Garcı́a Nieto1 • E. Garcı́a-Gonzalo1 • J. P. Paredes-Sánchez2 • A. Bernardo Sánchez3 •

M. Menéndez Fernández3

Received: 30 January 2018 / Accepted: 9 November 2018 / Published online: 14 November 2018
� Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and

300 �C in the absence of oxygen. Common biomass reactions during torrefaction include devolatilization, depolymer-

ization, and carbonization of hemicellulose, lignin, and cellulose. Torrefaction of biomass improves properties like

moisture content as well as calorific value. The aim of this study was to obtain a predictive model able to perform an early

detection of the higher heating value (HHV) in a biomass torrefaction process. This study presents a novel hybrid

algorithm, based on support vector machines (SVMs) in combination with the particle swarm optimization (PSO) tech-

nique, for predicting the HHV of biomass from operation input parameters determined experimentally during the tor-

refaction process. Additionally, a multilayer perceptron network (MLP) and random forest (RF) were fitted to the

experimental data for comparison purposes. To this end, the most important physical–chemical parameters of this industrial

process are monitored and analysed. The results of the present study are two-fold. In the first place, the significance of each

physical–chemical variables on the HHV is presented through the model. Secondly, several models for forecasting the

calorific value of torrefied biomass are obtained. Indeed, when this hybrid PSO–SVM-based model with cubic kernel

function was applied to the experimental dataset and regression with optimal hyperparameters was carried out, a coefficient

of determination equal to 0.94 was obtained for the higher heating value estimation of torrefied biomass. Furthermore, the

results obtained with the MLP approach and RF-based model are worse than the best obtained with the PSO–SVM-based

model. The agreement between experimental data and the model confirmed the good performance of the latter. Finally, we

expose the conclusions of this study.

Keywords Support vector machines (SVMs) � Particle swarm optimization (PSO) � Artificial neural networks (ANNs) �
Higher heating value (HHV) prediction

1 Introduction

The world is currently facing the challenge to decrease

dependence on fossil fuels and to achieve a sustainable,

renewable energy supply [1]. Biomass can be an important

energy source. Energy generated from biomass is taken

into account carbon–neutral because the carbon dioxide

released during conversion is already part of the carbon

cycle [2, 3]. Increasing the use of biomass for energy can

help to reduce greenhouse gas (GHG) emissions and meet

the targets established in the Kyoto Protocol. Energy from

biomass can be obtained from different thermochemical

(combustion, gasification, and pyrolysis), biological
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(anaerobic digestion and fermentation), or chemical (es-

terification) processes, where direct combustion can pro-

vide short-term energy solution. The growing interest in

biomass as a solid fuel takes into account combustion to

produce steam for electrical power and commercial plant

uses, gasification to give rise to combustible gas (large

partial pressure of nitrogen and CO2, called producer gas)

as well as syngas (carbon monoxide and hydrogen with low

amounts of nitrogen and CO2).

Furthermore, some of the inherent problems of raw

biomass materials compared to fossil fuel resources (low

bulk density, high moisture content, hydrophilic nature,

and low calorific value) make raw biomass difficult to use

on a large scale. To fix ideas, nature provides a large

diversity of biomass with varying characteristics. These

limitations greatly impact logistics and final energy effi-

ciency. High moisture in raw biomass is one of the primary

challenges, as it decreases the efficiency of the process and

increases fuel production costs. High moisture content in

biomass leads to natural decomposition, turning out in loss

of quality and storage issues such as off-gas emissions. In

order to overcome these challenges and make biomass

suitable for energy applications, the material must be pre-

processed. To create highly efficient biomass-to-energy

chains, torrefaction of biomass in combination with den-

sification (pelletisation or briquetting) is a promising step

to overcome logistic economics in large-scale sustainable

energy solutions, i.e. make it easier to transport and store it.

Pellets or briquets are lighter, drier, and more stable in

storage than the biomass they derive from.

Torrefaction, which is a thermochemical pretreatment

process, is a viable technology that significantly alters the

physical and chemical composition of the biomass [4–6].

Several studies have defined the characteristics of the tor-

refaction and its process [7–9]. Torrefaction of biomass

(e.g. wood or grain) is a mild form of pyrolysis at tem-

peratures typically between 200 and 320 �C in an inert

environment [10]. Torrefaction changes biomass properties

to provide a much better fuel quality for combustion and

gasification applications [11–13]. Furthermore, torrefaction

leads to a dry product with no biological activity like rot-

ting. Torrefaction makes the material undergo Maillard

reactions [10–13]. The importance of the torrefied wood

pellet manufacturing industry is increasing due to the

demand of a product with an increased energy density,

easy to handle and to transport, and practical to co-fire in

existing coal plants. Specifically, waste biomass has been

recognised as a renewable and promising source for bio-

fuels via different conversion processes [14]. Throughout

the Earth there are million hectares of tree plantation for-

ests and a total annual residue of million cubic meters

produced from forest harvesting, wood processing plants

and pulp and paper mills. Management and utilization of

these resources is the target of both most EU governments

and industries to achieve goals established by Kyoto and

Paris Protocols. Thermal treatment, i.e. torrefaction, is

considered as a promising method to improve waste

properties for energy applications [15]. When it is applied

to woody biomass, this process removes water and volatiles

through the partial decomposition of hemicellulose. Fig-

ure 1 shows the typical flowchart of the biomass torrefac-

tion process.

To fix ideas, the main purpose of this study is to estimate

the application of the support vector machines (SVMs)

approach in combination with the evolutionary optimiza-

tion technique known as particle swarm optimization

(PSO) as well as the multilayer perceptron (MLP) and

random forest (RF) technique to identify the higher heating

value (HHV) in the biomass torrefaction process, com-

paring the results obtained [16–24]. SVM models are based

on the statistical learning theory and are a new class of

techniques that can be used for predicting values from very

different fields [19, 21, 23]. SVMs are associated to con-

trolled supervised learning procedures used for grouping

and regression, whose skill is well-recognized for being

universal approximators of any multivariate functions to a

high level of accuracy. The theory of statistical learning

and minimization of structural risk are theoretical funda-

ments for the learning algorithms of SVMs [20, 24].

In order to carry out the optimization stage corre-

sponding to the kernel optimal hyperparameters setting in

the SVM training, we have implemented the particle swarm

optimization (PSO) technique with successful results.

Indeed, particle swarm optimization (PSO) is one of the

oldest swarm intelligence (SI) methods relied on bio-in-

spired algorithms [25]. The PSO technique is a population-

based search algorithm based on the simulation of the bird

flocking [26–28]. PSO uses the model of information

sharing just like other SI-based evolutionary algorithms

computations like Ant Colony Optimization (ACO)

[29, 30], Artificial Bee Colony (ABC) technique [31–34],

among others.

With this aim, hybrid PSO optimized SVM (PSO–SVM)

models were used as automated learning tools, training

them in order to predict the HHV of torrefied biomass from

other operation parameters in a biomass torrefaction pro-

cess. The SVM technique has been proven to be an

effective tool to predict natural parameters. Researchers

have successfully used it in a wide variety of environ-

mental fields like forest modelling [35], estimation of solar

radiation [36, 37], prediction of the air quality [38], study

of water properties [39, 40] among others.

In addition, a multilayer perceptron (MLP) is a model of

artificial feedforward neural network which maps sets of

input data onto a set of proper outputs. The statistical

learning theory relies on the MLP technique, which is a
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new type of mathematical technique suitable to prognos-

ticate values in quite a variety of fields [17, 41]. An MLP is

made up of multiple layers of nodes in a directed diagram,

with each layer fully connected to the next one. Excluding

the input nodes, each node is a neuron (or processing ele-

ment) with a nonlinear activation function. MLP uses a

backpropagation, which is a supervised learning technique

to train the network. MLP is a variation of the standard

linear perceptron with the capacity to tell apart data that are

not linearly separable from the separable ones.

Based on decision trees and combined with aggregation

and bootstrap ideas, random forests (RF) technique, were

introduced by Breiman [42]. They are a powerful non-

parametric statistical method allowing to consider regres-

sion problems as well as two-class and multiclass

classification problems, in a single and versatile frame-

work. The RF algorithm presents several advantages

[20, 42, 43]: (1) it runs efficiently on large datasets; (2) it is

not sensitive to noise or over-fitting; (3) it can handle

thousands of input variables without variable deletion; and

(4) it has fewer parameters compared with that of other

machine-learning algorithms like MLP or support vector

regression (SVR).

In summary, a hybrid PSO optimized SVM (PSO–SVM)

model as well as a MLP model and a RF-based model were

used as automated learning tools, training them in order to

foretell the HHV in a biomass torrefaction process from the

operation physical–chemical input parameters measured

experimentally.

The HHV is an essential property of advanced biomass

fuels for the design of future thermal conversion systems.

The torrefaction is a complex chemical process to upgrade

biomass [44, 45]. Empirical and semi-empirical correla-

tions are available in the literature to estimate the HHV of

biomass fuels based on basic analysis data obtained from

chemical analysis composition. To approximate the HHV

of biomass various advanced empirical models have been

developed based on basic analysis data by several

researchers [46–48].

Ghugare et al. [49] showed a genetic programming (GP)

for developing HHV prediction models, respectively, using

the parameters of the proximate and ultimate analyses as

the model’s input variables. Estiati et al. [50] and Ozveren

[51] evaluate the feasibility of using artificial neural net-

works (ANN) and empirical correlations in HHV. How-

ever, the application of a hybrid algorithm from the

operation parameters determined experimentally during the

torrefaction process has been not applied to define HHV

until now. This study tries to cover this gap.

This study is organized as follows. Firstly, we describe

the necessary materials and methods to carry out this study.

Secondly, we show and discuss the obtained results.

Finally, we expose the main conclusions drawn from the

results.

2 Materials and methods

The most common methods currently used to calculate the

heating of biomass are the formula derived by Dulong, or

experimentally, the use of a bomb calorimeter which is

burdensome [52]. There have been numerous mathematical

equations, which were created based on data from biomass

composition, such as proximate or elemental analyses of

biomass [53]. For example, Demirbas has contributed

greatly in the estimation of calorific values of biomass fuels

with thermal studies [54].

2.1 Experimental dataset

The biomass dataset used in this research work is a col-

lection of experimental elemental compositions and their

corresponding HHVs. The characterisation of torrefied

biomass involves a great variety of raw materials. In this

sense, the data have been determined according to condi-

tions established by ASTM standard rule and taking as

validation reference a research database [55]. In this sense,

the data used for the SVM analysis were collected from a

Fig. 1 Typical flowchart of the

biomass torrefaction process
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certified laboratory and the total number of data processed

was about 300 values. These values are obtained, in the

context of previous studies, from the analysis of over one

hundred samples, which include both raw and torrefied

biomass. Moreover, in order to make decisions in the

conversion chains for bioenergy and bioproducts from

torrefaction, researchers and decision makers need models

to envision the viable alternatives and evaluate their per-

formance [56–60].

It has been considered lignocellulosic biomass in the

torrefaction process from agricultural and forestry activity

to define a flexible model useful for solid residual biomass.

This hypothesis has permitted to define a nonconditioned

model of biomass type and to get a flexible model. With

respect to the input variables, we have selected the main

ones controlled in the biomass torrefaction process. The

dataset used for the three different models (PSO–SVM-

based model, MLP-based model and RF-based model) is

relied on several physical–chemical parameters. The use of

biomass as a fuel in thermal applications requires knowl-

edge of its heating value (HV) [61]. The HV reflects the

energy content of a fuel in a standardised fashion and it is

often expressed as the HHV [62]. Indeed, the HHV refers

to the heat released by the complete combustion of a unit

volume of fuel leading to the production of water vapour

and its eventual condensation. The values of HHV are

usually expressed on the basis of dry weight (i.e. dry basis).

The experimental or direct determination of the HV of a

biomass used to measure the change in enthalpy between

the reactants and product by an adiabatic bomb calorimeter

is very expensive. Therefore, the determination of its ele-

mental and especially its proximate composition is a good

alternative. In this way, proximate analysis is used to

determine the weight percentage of moisture, volatile

material (VM), fixed carbon (FC) and ash in a biomass,

while elemental analysis involves the determination, again

in weight percentage, of C, H, N or O [63].

The main driven input parameters in the biomass tor-

refaction process have been previously defined by Chen

et al. [12]. Hence, the physical–chemical input variables of

the model are as follows [4–13]:

• Fixed carbon (FC): it is the difference between the sum

of volatile matter and ash contents by percentage.

• Volatile matter (VM): it refers to the components of

coal, except for moisture, which are liberated at high

temperature in the absence of air.

• Reaction temperature (RT): it is the temperature for the

torrefaction process.

• Residence time (Rt) (or torrefaction process time): it is

the average amount of time that a particle stays in

torrefaction conditions.

• Atomic O/C ratio: it is the empirical relation between

oxygen and carbon contents.

• Atomic H/C ratio: it is the empirical relation between

hydrogen and carbon contents.

2.2 Support vector machine (SVM) method

Support vector machines (SVMs) are a set of related

supervised learning methods used for classification and

regression [18–24]. Note that SVMs were originally

developed for classification, and were later generalized to

solve regression problems [35, 36, 40, 64]. This last

method is called support vector regression (SVR). The

regression function y ¼ f xð Þ for a given data set

D ¼ xi; yið Þf gni¼1, is obtained by SVR in the linear form as

follows:

f xð Þ ¼ wTxþ b ð1Þ

where w and b are, respectively, the weight vector and

intercept of the model, and they need to be obtained by an

optimal fitting of the dataset available in D. In nonlinear

cases, it is mandatory to start by mapping the input low-

dimensional vectors with a nonlinear function U : <p ! F,

where F is the feature space of U [37–39, 65, 66]. After-

wards, it is possible to write the regression function as

follows [19, 22]:

f xð Þ ¼ wTU xð Þ þ b ð2Þ

Next, SVR introduces the e-insensitive loss function

given by [18, 20, 23]:

d ¼ y� f xð Þj je¼
0; y� f xð Þj j � e

y� f xð Þj j � e otherwise

�
ð3Þ

which does not take into account the error if the difference

between the prediction value calculated by Eq. (2) and the

real value is smaller than e. Figure 2 illustrates the e-in-
sensitive loss function. Moreover, the vector w and

Fig. 2 Regression with e-insensitive tube for one-dimensional

problem
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coefficient b can be found by solving a convex optimiza-

tion problem, which balances the empirical error and the

generalization ability. In SVR, the empirical error is

measured by means of the e-insensitive loss function and

the generalization ability is related to the Euclidean norm

of w [20, 23]. Thus, the optimization problem for the

identification of the regression model can be written in the

following way [18–23]:

Minimize J w; nþi ; n
�
i

� �
¼ 1

2
wk k2þC

Xn
i¼1

nþi þ n�i
� �

s:t:

yi � wTU xð Þ � b� eþ nþi
wTU xð Þ þ b� yi � b� eþ n�i i ¼ 1; . . .; n

nþi ; n
�
i � 0

8><
>:

ð4Þ

where C expresses the parameter of penalty or cost

between empirical and generalization errors and nþi ; n
�
i

represent the slack variables defined in Fig. 2. The solution

to this quadratic optimization problem (QP) by Lagrangian

dual method [23, 67] provides the numerical method to

calculate the prediction value:

f xð Þ ¼ wTU xð Þ þ b ¼
Xn
i¼1

aþi � a�i
� �

K x; xið Þ þ b ð5Þ

where aþi ; a
�
i represent the Lagrange multipliers of the dual

form of the optimization problem and K xi; xj
� �

represents

the kernel function [23, 67], and can be described as:

K xi; xj
� �

¼ U xið ÞTU xj
� �

ð6Þ

The kernel function defines the space feature, where

data are regressed. Hence, selecting an appropriate one

during the SVM regression is essential. There is some

description of the different kernel functions used here in

the bibliography [21, 23, 67]:

• Radial basis function (RBF kernel):

K xi; xj
� �

¼ e�r xi�xjk k2

ð7Þ

• Polynomial kernel:

K xi; xj
� �

¼ rxi � xj þ a
� �b ð8Þ

• Sigmoid kernel:

K xi; xj
� �

¼ tanh rxi � xj þ a
� �

ð9Þ

where a, b and r are parameters defining the kernel’s

behaviour.

In conclusion, we have to choose a kernel and relevant

hyperparameters able to map the nonlinearly separable data

into a feature space where they are linearly separable if we

want to solve a regression problem for data that are not

linearly separable with an SVM.

2.3 Particle swarm optimization (PSO) approach

The particle swarm optimization (PSO) approach is a

mathematical optimization/search technique of meta-

heuristic kind [25]. Usually the PSO is used in search

spaces with many dimensions. The PSO methods were

originally attributed to researchers Kennedy, Eberhart and

Shi [26]. At first they were conceived to elaborate models

of social behaviour, such as the movement described by

living organisms in a flock of birds or a bank of fish. The

algorithm was then simplified and proved to be suitable to

solve optimization problems. PSO allows the optimization

of a mathematical problem using a population of candidate

solutions, denoted as particles, moving throughout the

search space according to mathematical rules that take into

account the position and velocity of the particles. The

motion of each particle is influenced by its best local

position so far, as well as by the best global positions

encountered by other particles as the particles travel

through the search space. The theoretical basis of this

performance is to make the particle cloud converge quickly

to the best solutions. Furthermore, PSO is a metaheuristic

technique, as it assumes no hypotheses about the problem

to be optimized and can be applied in large spaces of

candidate solutions.

Let S be the number of particles in the cloud, each of

which has a position xi 2 <n, in the search space and a

speed vi 2 <n. Similarly, we will represent the initial

position of the particle as x0i and its velocity as v0i , both

chosen randomly. The best positions correspond to the best

values of the fitness function evaluated for each particle.

Positions and velocities of each particle are updated taking

into account these values as follows [27, 28, 64, 68, 69]:

vkþ1
i ¼ xvki þ /1 gk � xki

� �
þ /2 Iki � xki

� �
ð10Þ

xkþ1
i ¼ xki þ vkþ1

i ð11Þ

Three are the components on which the velocity of each

particle, i, at iteration k, relies on: (a) the constant inertia

weight x, concerned by the velocity term in iteration k,vki ;

(b) the term termed cognitive learning, which is the dif-

ference between the particle’s current position xki and the

particle’s best position found up until now (called lki , local

best); and (c) the term of social learning, which is the

difference between the global best position found up until

now in the whole swarm (called gk, global best) and the

particle’s current position xki . The two last terms are con-

cerned in Eq. (10) by factors /1 ¼ c1r1 and /2 ¼ c2r2. In
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these two multipliers, c1 and c2 are constants, while r1 and

r2 are random numbers distributed uniformly in the interval

[0, 1]. Also, the Standard PSO 2011 [70] has been used in

this study. This involves some improvements with respect

to the preliminary implementations [26–28, 70]. Therefore,

the PSO parameters are chosen here as:

x ¼ 1

2 ln 2
and c1 ¼ c2 ¼ 0:5þ ln 2 ð12Þ

The swarm topology determines how particles are con-

nected among them to interchange information with the

global best. In the actual Standard PSO each particle

reports only K particles, usually three, randomly chosen.

2.4 Multilayer perceptron neural network

Artificial neural networks (ANNs) are a computational

model based on a large set of simple neuronal units (arti-

ficial neurons), approximately similar to the behaviour

observed in axons of neurons in biological brains [17, 41].

The multilayer perceptron (MLP) is a kind of artificial

neural network (ANN) made up of multiple layers that

allows to solve problems that are not linearly separable.

Indeed, the multilayer perceptron (MLP) consists of an

input layer and an output layer and one or more hidden

layers of nonlinearly activating nodes [41]. It is a modifi-

cation of the standard linear perceptron so that it uses three

or more layers of neurons (nodes) with nonlinear activation

functions (Fig. 3).

This kind of artificial neural network implements the

function f : X � <n ! Y � <c, which can be written as

follows [17]:

fðxÞ ¼/ðwðxÞÞ¼ð/ � wÞðxÞ
/ :X � <n ! U � <m

w :U � <m ! Y � <c

ð13Þ

so that U is the space of hidden variables, known as the

characteristics space. Based on the defined architecture, it

is possible to write [41] that wjðxÞ ¼ wðwT
j xþ wj0Þ, where

w is the activation function for the hidden layer units; wj0 2
< is its threshold value and wj 2 <n is the vector of

parameters for the units. The w function can be sigmoid,

logistical or hyperbolic tangent. On the other hand,

/jðuÞ ¼ /ðcTj uþ cj0Þ, where / is the activation function of

the output layer units, cj 2 <m is the vector of weights for

the units and cj0 2 < is its threshold value. Similarly, / is

the identity function, Heaviside function or any dichoto-

mous function, normally used as the activation function.

The MLP gives places to the following implemented

function [17, 41]:

f ðxÞ ¼
Xm
j¼1

cjwðwT
j xþ wj0Þ þ c0 ð14Þ

2.5 Random forest regression algorithm

The random forest (RF) regression algorithm is an

ensemble-learning algorithm that combines a large set of

regression trees. A regression tree represents a set of con-

ditions or restrictions that are hierarchically organized and

successively applied from a root to a leaf of the tree

[71–75]. The RF begins with many bootstrap samples that

are drawn randomly with replacement from the original

training dataset. A regression tree is fitted to each of the

bootstrap samples. For each node per tree, a small set of

input variables selected from the total set is randomly

considered for binary partitioning. The regression tree

splitting criterion is based on choosing the input variable

with the lowest Gini Index:

IG tX xið Þ
� �

¼ 1�
Xm
j¼1

f tX xið Þ; j
� �2 ð15Þ

where f tX xið Þ; j
� �

is the proportion of samples with the value

xi belonging to leave j as node t [74, 75]. The predicted

value of an observation is calculated by averaging over all

the trees. Two parameters need to be optimized in the RF:

(1) ntree: the number of regression trees (default value is

500 trees); and (2) mtry: the number of input variables per

node (default value is 1/3 of the total number of variables).

2.6 Accuracy measures

In this study, in order to predict the HHV in a biomass

torrefaction process using six different kernels, a SVR

technique in combination with PSO approach has been

built [18, 23, 67]: linear, superlinear, quadratic, cubic,

sigmoid and RBF kernel functions. Additionally, a multi-

layer perceptron (MLP) approach and random forest (RF)

technique were also fitted with comparison purposes.
Fig. 3 Diagram of an MLP network with h neurons in the hidden

layer, d neurons in the input layer and a single neuron in the output

layer
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The goodness of fit and performance of the studied

models for the HHV estimation in a biomass torrefaction

process were evaluated and compared using four com-

monly used statistical indicators, i.e. coefficient of deter-

mination (R2), root mean square error (RMSE), mean

absolute error (MAE) and mean bias error (MBE). The

mathematical equations of the statistical indicators are

described below.

A dataset takes values ti, each of which has an associ-

ated modelled value yi. The former are called the observed

values and the latter are often referred to as the predicted

values. Variability in the dataset is calculated through

different sums of squares:

• SStot ¼
Pn

i¼1 ti � �tð Þ2: the total sum of squares, pro-

portional to the sample variance.

• SSreg ¼
Pn

i¼1 yi � �tð Þ2: the regression sum of squares,

also called the explained sum of squares.

• SSerr ¼
Pn

i¼1 ti � yið Þ2: the residual sum of squares.

In the prior sums, �t is the mean of the n observed data:

�t ¼ 1

n

Xn
i¼1

ti ð16Þ

Bearing in mind the above sums, the general definition

of the coefficient of determination is [76, 77]:

R2 � 1� SSerr

SStot
ð17Þ

A coefficient of determination value of 1.0 points out

that the regression curve fits the data perfectly. Similarly,

the mathematical expressions for the other three statistics

used in this study (RMSE, MAE and MBE) are as follows

[76, 77]:

RMSE �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ti � yið Þ2
s

ð18Þ

MAE ¼ 1

n

Xn
i¼1

ti � yij j ð19Þ

MBE ¼ 1

n

Xn
i¼1

ti � yið Þ ð20Þ

Higher values of R2 are preferred, i.e. closer to 1 means

better model performance and regression line fits the data

well. Conversely, the lower the RMSE, MAE and absolute

MBE values are, the better the model performs.

3 Results and discussion

The operation physical–chemical input variables consid-

ered in this research work are shown in Table 1. The total

number of predicting variables used to construct the hybrid

PSO–SVM-based model, MLP approach and RF-based

model was 6. Moreover, the output predicted variable is the

HHV of torrefied biomass consequence of a previous tor-

refaction process. Indeed, we have built different models

(specifically, the PSO–SVM-based model, the MLP

approach and RF-based model) taking as dependent vari-

able the calorific value of biomass after a torrefaction

process.

Additionally, it is well known that the SVM techniques

depend strongly on the SVM hyperparameters namely: the

regularization factor C (see Eq. 4); the hyperparameter e
that defines the e-insensitive tube (allowable error); a,

b and r that represents the parameters that depend on the

chosen kernel function. There exist a vast body of literature

in relation to the choice of hyperparameters for SVMs

[18, 23]. Some methods often utilized to establish suit-

able hyperparameters are [23, 67]: grid search, genetic

algorithms, artificial bee colony (ABC) and so on. The grid

search is a brute force method and, as such, almost any

optimization method increases its efficiency.

Hence, bearing this in mind, we have chosen PSO

optimization technique as a suitable, efficient and simple

method [27, 28] for tuning the SVR parameters and a novel

hybrid PSO–SVM-based model was applied to evaluate the

HHV (output variable) from the other six remaining vari-

ables (input variables) in order to predict the calorific value

of torrefied biomass in a torrefaction process [5, 6, 56–60],

studying their influence in order to optimize its calculation.

In this way, Fig. 4 shows the flowchart of the parameter

selection process used over the training dataset for the

PSO–SVR-based model with cubic kernel.

The particles xi are vectors that contain the parameters

to tune: for instance, xi ¼ Ci; ei; ri; ai; bið Þ for the cubic

kernel. In the first iteration, we initialize them randomly.

According to the PSO algorithm, as described previously,

the particles for the next iteration are calculated so that the

objective function value for the particles is calculated in

each step. Specifically, the objective function value is the

minus five-fold cross-validation coefficient of determina-

tion for each particle or proposed set of solution parameters

[78, 79]. The dataset has been splitted in training and

testing datasets with a proportion of 80% and 20% of the

samples, respectively. The training dataset is divided in 5

sets. We train the SVR with a set composed of 4 of this sets

and obtain a model. This model is checked with the

remaining fold of the training dataset and its coefficient of

determination is obtained. This is repeated for each of the 5
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sets and the mean coefficient of determination is consid-

ered the one associated to this particle or possible solution.

If the termination criteria are met, the global best xi con-

tains the optimized parameters. Once the optimal parame-

ters have been found we proceed to generate the model

with the training data. This model is then tested with the

20% of the data that has been held out entirely of the

previous process, and different goodness-of-fit indexes are

obtained (R2, RMSE, MAE and MBE).

As per this reasoning, the parameters have been opti-

mized with PSO, using the standard PSO 2011 version [70]

and the regression modelling has been carried out with

SVR-e using the LIBSVM library [80].

The searching in the parameter space has been made

keeping in mind that the SVM algorithm changes its results

significantly when its parameters increase or decrease a

power of 10. For instance, we have worked with powers of

ten and the searched parameters have been the exponents

(except for the parameter b) being the five-dimensional

search space. For instance, in case of cubic kernel

�6; 4½ 	 
 �10; 0½ 	 
 �6; 1½ 	 
 �6; 0½ 	. That is, C values

(regularization parameter) in 10�6; 104
� �

, e values in

10�10; 100½ 	, r values in 10�6; 101
� �

and a values in

10�6; 100
� �

are utilized in the optimization phase. The

stopping criterion is fulfilled if there is no improvement in

the R2 after ten iterations, along with a maximum number

of iterations equal to 500.

Thus, in order to optimize the SVM parameters, the PSO

module is used. The PSO looks for the best hyperparam-

eters (i.e. C, r, e and a for cubic kernel) by comparing the

error in every iteration. For example, the search space is

organized in four dimensions for the cubic kernel function,

one for each parameter. The optimal hyperparameters for

the six types of kernels analysed here can be consulted in

‘‘Appendix’’.

Likewise, and for comparison purposes, in order to

predict its calorific value in a torrefaction process a mul-

tilayer perceptron (MLP) and RF-based model have been

fitted to the experimental data corresponding to the HHV of

torrefied biomass. Weka software has been used for these

two methods [81, 82] and grid search was used to tune its

parameters. In this sense, an artificial neural network

(ANN) is typically determined by three types of parameters

[17, 41]: the learning process for updating the weights of

the interconnections (e.g. learning rate, searched in

10�3; 100½ 	), the interconnection pattern among different

layers (tuned using from 2 to 12 layers) of neurons (see

Fig. 3), the activation function that converts a neuron’s

weighted input to its output activation and the momentum

factor, searched in 10�10; 100½ 	, in order to avoid oscillating
weight changes of the ANN. Similarly, the ANN optimal

parameters for the multilayer perceptron (MLP) can be also

consulted in ‘‘Appendix’’. Analogously, for random forest

(RF) technique, the number of input variables (mtry) tried

at each split was searched between 1 and 6, and a value of 4

was the optimal value. The number of trees (ntree) in the

Table 1 Set of operation

physical–chemical input

variables used in this study and

their names along with their

mean, standard deviation,

median and MAD (median

absolute deviation)

Input variables Name of the variable Mean Standard deviation Median MAD

Fixed carbon (wt%) FC 26.50 9.42 23.90 7.71

Volatile matter (wt%) VM 68.32 12.47 70.40 10.09

Reaction temperature (�C) RT 264.33 28.79 270.00 23.57

Residence time (min) Rt 48.21 34.83 30.00 23.28

Atomic O/C ratio O_C 0.47 0.13 0.50 0.10

Atomic H/C ratio H_C 1.24 0.23 1.29 0.18

wt% means weight percentage

Fig. 4 Flowchart of the parameter selection process that uses the

training dataset for the PSO–SVM-based model with cubic kernel
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search phase varied between 1 and 1000 and 94 was the

best value.

Moreover, Table 2 depicts the determination and cor-

relation coefficients for the PSO–SVM-based models for

the six kernels (linear, superlinear, quadratic, cubic, sig-

moid and RBF kernels, respectively), multilayer perceptron

and RF-based model fitted here for the HHV in a biomass

torrefaction process.

According to the statistical calculations, the SVM with

the cubic kernel function is the best model to evaluate the

HHV of torrefied biomass, since the fitted SVM with

superlinear kernel function has a coefficient of determina-

tion R2 equals 0.9427. These results point out an important

goodness of fit, that is to say, a very good agreement is

achieved between our model and the observed data.

Every assessment of the importance of the variables in

the prediction of an independent variable is tentative and

has a relative value. As an indicator of the relative

importance of the independent variables, the weights of the

SVM–PSO-based model with linear kernel have been

chosen. They are shown in Table 3. They have been scaled

dividing them by the greatest weight in absolute value and

multiplying it by one hundred and are shown in Fig. 5.

Hence, for the PSO–SVM model, the most significant

variable in HHV prediction is the Volatile matter followed

by Fixed Carbon, Atomic O/C ratio, Reaction temperature,

Atomic H/C ratio and, finally, Residence time.

Volatile matter is an important component used for the

quality characterization of biomass. Indeed, volatile matter

is a key component of solid fuels used to measure com-

bustion characteristics [83, 84]. The second variable in the

ranking is the carbon content that is a leading parameter in

the common analysis in the HHV of a conventional fuel

according to Dulong formula [52]. The third most

important variable, atomic O/C ratio, is the quotient

between oxygen and carbon contents. As the carbon con-

tent in the biomass grows with the temperature and longer

residence times, while hydrogen and oxygen contents

decrease, the HHV increases while the corresponding O/C

and H/C atomic ratios decrease.

The reaction temperature has a lower influence in the

HHV because the reaction takes place within a thin range

of temperatures that cannot be altered. If atomic H/C ratio

grows, HHV increases slightly due to its implication in the

combustion reactions. Finally, the residence time is the

least important input variable. This variable is less signif-

icant because after a threshold time, the torrefaction reac-

tion is exhausted.

Additionally and for comparison purposes, we have

constructed a reduced PSO–SVM-based model with cubic

kernel that uses as independent variables Fixed carbon,

reaction temperature and residence time. This has allowed

us to obtain a simpler and reliable model to determine the

HHV for future applications since a coefficient of deter-

mination equal to 0.9 has been obtained.

Table 2 Coefficient of determination R2ð Þ, root mean square error

(RMSE), mean absolute error (MAE) and mean bias error (MBE) for

the test data for the hybrid PSO–SVM-based models (with linear,

superlinear, quadratic, cubic, sigmoid and RBF kernels), multilayer

perceptron (MLP) approach and RF-based model fitted in this study

for the higher heating value (HHV) in a biomass torrefaction process

Model R2 RMSE MAE MBE

Linear-SVM 0.8623 0.6115 0.4857 - 0.1230

Superlinear-SVM 0.8587 0.6195 0.4896 - 0.1384

Quadratic-SVM 0.7864 0.7618 0.5708 - 0.1107

Cubic-SVM 0.9427 0.3944 0.3193 0.0012

Sigmoid-SVM 0.8062 0.7257 0.5644 - 0.1597

RBF–SVM 0.9081 0.4995 0.3997 0.0455

Multilayer perceptron 0.9046 0.5092 0.4202 0.0424

Random Forest 0.5886 1.0571 0.8642 0.0671

Table 3 Weights of the variables in the fitted PSO–SVM-based

model with linear kernel for the HHV of torrefied biomass

Variable Weight

Volatile matter (wt%) 0.9892

Fixed carbon (wt%) 0.9090

Atomic O/C ratio - 0.6259

Reaction temperature (�C) 0.1755

Atomic H/C ratio 0.1420

Residence time (min) 0.0538

wt % means weight percentage

Fig. 5 Relative importance of the input variables to predict the HHV

of torrefied biomass in the fitted PSO–SVM-based model with linear

kernel
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Fig. 6 Comparison between

higher heating values (HHVs)

observed and predicted by RF-

based model, the MLP approach

and PSO–SVM-based model: a

RF-based model (R2 ¼ 0:59); b

MLP network (R2 ¼ 0:90); c
PSO–SVM-based model with

cubic kernel (R2 ¼ 0:94); and d
reduced PSO–SVM-based

model with cubic kernel

(R2 ¼ 0:90)
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To sum up, this research work was able to forecast the

HHV of torrefied biomass in agreement to the actual

experimental values observed using the PSO–SVM-based

model with great accurateness and success. Indeed, Fig. 6

shows the comparison between the HHV values observed

and predicted by using RF-based model (see Fig. 6a), the

MLP (see Fig. 6b) and PSO–SVM-based model with cubic

kernel with all the independent variables (see Fig. 6c) and

with only three independent variables: Fixed carbon,

reaction temperature and residence time (see Fig. 6d). It is

very recommendable the use of a SVM model with cubic

kernel in order to obtain the best effective approach to

nonlinearities of this regression problem.

Regarding the uncertainty of the parameters of the fitted

methods, it has been studied, in particular, for the SVR

with the cubic kernel and the MLP. In both cases, a region

around the optimal parameters (see Tables 4, 5 in ‘‘Ap-

pendix’’) has been taken into account. For SVR with a

cubic kernel, 1000 sets with the four parameters of the

method (C, e, r and a) have been generated randomly in the

search space. The corresponding RMSEs for the testing set

have been computed for each set. With this 1000 RMSE

values, a one-sample Kolmogorov–Smirnov test has been

performed and the result has been that it fails to reject the

null hypothesis that the data comes from a standard normal

distribution, against the alternative that it does not come

from such distribution, at the 5% significance level. A

histogram of the RMSE values with the fitted normal

density function has been plotted (Fig. 7a). The same

procedure has been applied to the three parameters of the

MLP method (momentum, learning rate and the number of

hidden layers) with similar results, that is, the RMSEs for

the testing dataset that corresponds to the 1000 set of

randomly chosen parameters also follow a normal distri-

bution (Fig. 7b).

4 Conclusions

Based on the experimental and numerical results, the main

findings of this research work can be mentioned as follows:

• Firstly, torrefaction changes biomass properties to

provide a much better fuel quality for combustion and

gasification applications. Indeed, the resultant solid fuel

has a higher energy density, improved storage and

handling properties. Consequently, the development of

alternative energetical diagnostic techniques is very

recommendable for energy management. In this way,

the new hybrid PSO–SVM-based method with a cubic

kernel function utilized in this research work is a very

good choice to evaluate the HHV of the torrified

biomass.

• Secondly, a hybrid PSO–SVM-based model with a

cubic kernel function was successfully implemented to

predict the calorific value of torrefied biomass from the

other measured input operation variables, in order to

lower costs in the quality assessment of these biomass

higher heating values.

• Thirdly, a high coefficient of determination equal to

0.94 was achieved when this hybrid PSO–SVM-based

model with a cubic kernel function was applied to the

experimental dataset corresponding to the torrified

biomass HHV.

• Fourthly, the significance order of the input variables

involved in the prediction of the calorific value of

torrified biomass was established. This is one of the

main findings in this research work. Specifically, the

Fig. 7 Uncertainty analysis for specified parameters of the methods:

a distribution of the RMSEs for the PSO–SVM method with cubic

kernel; b distribution of the RMSEs for the MLP network
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input operation variable volatile matter could be

considered the most influential parameter in the

prediction of the HHV in a biomass torrefaction

process.

• Fifthly, the influence of the kernel parameters setting of

the SVMs on the torrified biomass calorific value’s

regression performance was determined.

• Finally, the results indicate that the hybrid PSO–SVM

regression method considerably improves the general-

ization capability achievable with only the SVM-based

regressor.

In summary, this innovative methodology could be used

in other biomass torrefaction processes with similar or

different types of biomass with success, but it is always

necessary to take into account the specificities of each

biomass and experiment. Consequently, a PSO–SVM-

based model is an effective practical solution to the prob-

lem of the determination of the torrefied biomass HHV in a

biomass torrefaction process.
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Appendix

Table 4 shows the optimal hyperparameters of the six fitted

SVM-based models found with the particle swarm opti-

mization (PSO) technique for the higher heating value

(HHV) of torrefied biomass.

In this research work, the ANN optimal parameters for

the multilayer perceptron (MLP) are depicted in Table 5.

Additionally, mean value and standard deviation of

the coefficients of determination R2ð Þ, corresponding to

the different folds for the training data are shown in

Table 6.

Table 6 Standard deviation and mean value of the coefficients of

determination R2ð Þ, corresponding to the different folds for the

training data for the hybrid PSO–SVM-based models (with linear,

superlinear, quadratic, cubic, sigmoid and RBF kernels), multilayer

perceptron (MLP) approach and RF-based model for the higher

heating value (HHV) in a biomass torrefaction process

Model MeanðR2Þ StdðR2Þ

Linear-SVM 0.8706 0.0174

Superlinear-SVM 0.8671 0.0357

Quadratic-SVM 0.7792 0.0398

Cubic-SVM 0.9615 0.0280

Sigmoid-SVM 0.7889 0.0709

RBF–SVM 0.9195 0.0276

Multilayer perceptron 0.9019 0.0331

Random forest 0.5261 0.0949

Table 4 Optimal hyperparameters of the six fitted SVM-based models with linear, superlinear, quadratic, cubic, sigmoid and RBF kernels found

with the PSO technique for the higher heating value (HHV) of torrefied biomass

Kernel Values of optimal hyperparameters

Linear Regularization factor C ¼ 1:1212
 101, e ¼ 1:9243
 10�6

Superlinear Regularization factor C ¼ 9:9931
 100, e ¼ 2:4479
 10�7, r ¼ 9:0719
 10�1, a ¼ 5:3015
 10�3, b ¼ 1:72

Quadratic Regularization factor C ¼ 7:7783
 103, e ¼ 3:0514
 10�2, r ¼ 5:4671
 10�4, a ¼ 6:0286
 10�1, b ¼ 2

Cubic Regularization factor C ¼ 1:6098
 102, e ¼ 3:5890
 10�2, r ¼ 1:2470
 10�1, a ¼ 4:5399
 10�3, b ¼ 3

Sigmoid Regularization factor C ¼ 3:0068
 102, e ¼ 1:2703
 10�2, r ¼ 1:0728
 10�2, a ¼ 1:0857
 10�2

RBF Regularization factor C ¼ 1:9315
 102, e ¼ 5:7783
 10�2, r ¼ 1:0001
 10�1

Table 5 ANN parameters of the fitted multilayer perceptron (MLP)

of torrefied biomass in a torrefaction process for the higher heating

value (HHV)

Parameters Values

Number of hidden neurons 9

Learning rate 0.1

Momentum factor 0.00001

Activation function Tangent sigmoid transfer function
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L, Obersteiner M (2013) Global bioenergy scenarios: future forest

development, land-use implications, and trade-offs. Biomass

Bioenergy 57:86–96

4. Shankar Tumuluru J, Sokhansanj S, Hess JR, Wright CT,

Boardman RD (2011) REVIEW: a review on biomass torrefac-

tion process and product properties for energy applications. Ind

Biotechnol 7(5):384–401

5. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011)

Biomass upgrading by torrefaction for the production of biofuels:

a review. Biomass Bioenergy 35(9):3748–3762

6. Bach Q-V, Skreiberg Ø (2016) Upgrading biomass fuels via wet

torrefaction: a review and comparison with dry torrefaction.

Renew Sustain Energy Rev 54:665–677

7. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of

wood: part 1—weight loss kinetics. J Anal Appl Pyrol

77(1):28–34

8. Chew JJ, Doshi V (2011) Recent advances in biomass pretreat-

ment: torrefaction fundamentals and technology. Renew Sustain

Energy Rev 15(8):4212–4222

9. Bates RB, Ghoniem AF (2012) Biomass torrefaction: modeling of

volatile and solid product evolution kinetics. Biores Technol

124:460–469

10. Basu P (2013) Biomass gasification, pyrolysis and torrefaction:

practical design and theory. Academic Press, New York

11. Nhuchhen DR, Basu P, Acharya B (2014) A comprehensive

review on biomass torrefaction. Int J Renew Energy Biofuels

2014:1–56

12. Chen WH, Peng J, Bi XT (2015) A state-of-the-art review of

biomass torrefaction, densification and applications. Renew

Sustain Energy Rev 44:847–866

13. Matali S, Rahman NA, Idris SS, Yaacob N, Alias AB (2016)

Lignocellulosic biomass solid fuel properties enhancement via

torrefaction. Procedia Eng 148:671–678

14. Motghare KA, Rathod AP, Wasewar KL, Labhsetwar NK (2016)

Comparative study of different waste biomass for energy appli-

cation. Waste Manag 47:40–45

15. Liu X, Wang W, Gao X, Zhou Y, Shen R (2012) Effect of

thermal pretreatment on the physical and chemical properties of

municipal biomass waste. Waste Manag 32(2):249–255

16. Vapnik V (1998) Statistical learning theory. Wiley, New York

17. Haykin S (1999) Neural networks: a comprehensive foundation.

Pearson Education Inc., Singapure

18. Cristianini N, Shawe-Taylor J (2000) An introduction to support

vector machines and other kernel-based learning methods.

Cambridge University Press, New York

19. Schölkopf B, Smola AJ, Williamson R, Bartlett P (2000) New

support vector algorithms. Neural Comput 12(5):1207–1245

20. Hastie T, Tibshirani R, Friedman J (2003) The elements of sta-

tistical learning. Springer, New York

21. Hansen T, Wang CJ (2005) Support vector based battery state of

charge estimator. J Power Sources 141:351–358

22. Li X, Lord D, Zhang Y, Xie Y (2008) Predicting motor vehicle

crashes using support vector machine models. Accid Anal Prev

40:1611–1618

23. Steinwart I, Christmann A (2008) Support vector machines.

Springer, New York

24. Kulkarni S, Harman G (2011) An elementary introduction to

statistical learning theory. Wiley, New York

25. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:

Proceedings of the fourth IEEE international conference on

neural networks, vol 4. IEEE Publisher, Perth, pp 1942–1948

26. Eberhart RC, Shi Y, Kennedy J (2001) Swarm intelligence.

Morgan Kaufmann, San Francisco

27. Clerc M (2006) Particle swarm optimization. Wiley-ISTE,

London

28. Olsson AE (2011) Particle swarm optimization: theory, tech-

niques and applications. Nova Science Publishers, New York
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