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Abstract
Feature selection is one of the important methods of data preprocessing, but the general feature selection algorithm has the

following shortcomings: (1) Noise and outliers cannot be ruled out so that the algorithm does not work well. (2) They only

consider the linear relationship between data without considering the nonlinear relationship between data. For this reason,

an unsupervised nonlinear feature selection algorithm via kernel function is proposed in this paper. First, each data feature

is mapped to a kernel space by a kernel function. In this way, nonlinear feature selection can be performed. Secondly, the

low-rank processing of the kernel coefficient matrix is used to eliminate the interference of noise samples. Finally, the

feature selection is performed through a sparse regularization factor in the kernel space. Experimental results show that our

algorithm has better results than contrast algorithms.

Keywords Feature selection � Kernel function � Sparse regularization factor

1 Introduction

Nowadays, with the development of computer science and

technology, information era is coming. As the emergence

of big data and cloud computing, it brought a large number

of high-dimensional data [1]. For various reasons, it is

sometimes difficult to obtain a lot of data, and you will also

encounter the problem of dimensional disaster when pro-

cessing data [2]. In order to alleviate these problems, the

typical data preprocessing method-feature selection has

received more and more attention. Preprocessing the data

through feature selection can improve the data quality [3],

reduce the data dimension, and make the data mining

algorithm achieve better results. Therefore, it is very nec-

essary for a large number of high-dimensional data to find a

subset that can represent the original data features

well [4–6].

Feature selection includes linear feature selection and

nonlinear feature selection. Linear feature selection repre-

sents a linear relationship between data, and then finds a

subset that represents the original features [7]. In practical

applications, data features may contain strong relation-

ships [8, 9]. However, in low-dimensional space, these

relationships are nonlinear and then lead to difficulties in

mining, resulting in insufficient excavation. There are

many previous feature selection algorithms [10–12], but

they usually cannot represent the nonlinear relationship

between data [13, 14]. For this reason, this paper first

proposes a nonlinear feature selection with the kernel

method. Specifically, this paper uses the kernel function to

map each feature of the data to the high-dimensional space,

so that the nonlinear relationship between them is linearly

separable in the high-dimensional space. It considers the

global information of the data (low-rank constraint) and the

nonlinear relationship (through Gaussian kernel) for feature

selection. A better feature selection algorithm is proposed,

which is called the Unsupervised Nonlinear Feature

Selection Algorithm via Kernel Function (KF_NFS).

Firstly, this paper processes the original data to obtain

the kernel matrix by kernel function, which solves the

limitation that can only perform linear feature selection.

Secondly, in order to achieve the best feature selection
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model, we use original data itself to fit it. The kernel

coefficient matrix is performed different sparsity of degree

(using ‘2;p-norm) and low-rank constraint (removing noise

samples). Finally, a l1-norm of vector is embedded to

perform nonlinear feature selection. Because this algorithm

considers the nonlinear relationship and global information

of the data, it is better than the general linear feature

selection method. The final result of the experiment shows

that the feature selected by this algorithm can achieve

better results in classification accuracy.

Our algorithm has the following advantages:

• No matter whether it is high-dimensional data or low-

dimensional data, the Gaussian kernel function [i.e.,

kðxi; xjÞ ¼ expð� xi�xjk k2

2

2r2 Þ] is suitable. By adjusting its

width r, it can be found that it is usually better and

more applicable than other kernel functions such as the

linear kernel. At the same time, each feature of the data

is mapped into a kernel matrix, so that the relationship

between the features can be mined more thoroughly.

• Because the algorithm has a low-rank constraint on the

kernel coefficient matrix and a nonlinear relationship

between the features in the high-dimensional space, the

unimportant features and noise samples are effectively

removed, and the algorithm accuracy is improved. At

the same time, we add a ‘2;p-norm sparse regularization

factor to the algorithm. By adjusting the value of p, we

can remove unrelated features well.

• The objective function of this paper is optimized by the

method of accelerated proximal gradient descent. The

optimization algorithm is an accelerated gradient des-

cent algorithm, which is much lower in time complexity

than the general gradient descent algorithm. Our

algorithm can quickly converge through it. At the same

time, it can ensure that the objective function gradually

decreases during each iterative solution process. Finally

it obtains the optimal solution.

2 Related work

The kernel function was introduced into the field of

machine learning long ago. It has promoted the develop-

ment of SVM to some extent [15]. It was initially proposed

to avoid the computational obstacles in high-dimensional

data. There are many commonly used kernel functions.

Since the gaussian kernel can implement a nonlinear

mapping, and it has less parameters than a polynomial

kernel, we use the Gaussian kernel in this paper.

Unsupervised learning was proposed early. With the

development of unsupervised learning, it was applied to

various fields in machine learning. It is also widely used in

feature selection algorithms. For example, Shao et al. [16]

proposed that online unsupervised multi-view feature

selection. It improves feature selection by combining fea-

ture of different views while using consistency and com-

plementarity. Shi et al. [17] proposed a robust spectral

learning for unsupervised feature selection. The feature

selection algorithm is made more stable by constructing the

Laplacian matrix of the graph with local learning. In

addition, the method of retaining similar data points is

better than different data points; Wei et al. [18] proposed a

unsupervised feature selection by preserving stochastic

neighbors.

Semi-supervised learning has also been applied to fea-

ture selection algorithms, such as Chang et al. [19] pro-

posed a convex formulation for semi-supervised multi-

label feature selection. This algorithm is different from the

traditional semi-supervised algorithm. By limiting the

training sample tags, the algorithm can select more repre-

sentative features and reduce the computational complex-

ity. Jian et al. [20] proposed multi-label informed feature

selection; the algorithm uses the tag’s relevance to select

partitioning features and guides feature selection by

decomposing multiple tag information into a low-dimen-

sional space. Feature selection based on global structure

and local structure of data is a very novel method. For

example, Liu et al. [21] proposed global and local structure

preservation for feature selection. Another feature selection

algorithm implements embedding learning and sparse

regression at the same time, so that the effect is very

obvious. For example, Hou et al. [22] proposed joint

embedding learning and sparse regression—a framework

for unsupervised feature selection. It combines embedded

learning and sparse regression to work together.

In 1998, nonlinear feature selection had been pro-

posed [23], which presents multiple techniques such as

multidimensional scaling and Sammonia mapping in the

same framework. But it does not use the kernel function for

nonlinear learning, and the effect is not the best. Min

et al. [24] proposed a deep nonlinear feature mapping for

large-margin KNN classification. This method uses the

nonlinear mapping to improve the traditional KNN algo-

rithm and achieves good results. This explains the value of

nonlinear research to a certain extent. Jawanpuria

et al. [25] proposed on p-norm path following multiple

kernel learning for nonlinear feature selection. This method

uses the p-norm to reduce the cost of optimization, com-

pared to other path-based algorithms, which reduces

training time. We have also consulted a lot of literature,

and we will not list them here. The study of nonlinear

learning has been around for a while; its research and

development have great significance.
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3 Our method

In this section, we first introduce the symbols used in this

article and then explain our proposed KF_NFS algorithm,

in Sects. 3.1 and 3.2, respectively, and then elaborate the

proposed optimization method in Sect. 3.3. Finally, we

analyze the convergence of the objective function in

Sect. 3.4.

3.1 Notations

For the data matrix X 2 Rn�d, the i-th row and the j-th

column are denoted as Xi and Xj respectively, and the

elements of the i-th row and the j-th column are denoted as

xi;j. The trace of the matrix X is denoted by trðXÞ, XT

denotes the transpose of the matrix X, and X�1 represents

the inverse of the matrix X. We denote the l2;p-norm of a

matrix X and l1-norm of a vector as kXk1 ¼
Pd

j¼1 jxjj,

kXk2;p ¼ ½
Pn

i¼1 ð
Pd

j¼1 jXijj
2Þ

p=2

�1=p.

3.2 KF_NFS algorithm

Assume a given sample data set X 2 Rn�d, where n and d

represent the number of samples and the number of fea-

tures, respectively. Here we divide the d-dimensional data

matrix into d matrices, each of which is a matrix

Xi 2 Rn�1; i ¼ 1; . . .; d. Then each element of Xi is treated

as an independent sample or feature xij 2 R; j ¼ 1; . . .; n.

Xi is converted into the kernel matrix KðiÞ 2 Rn�n by

projecting it into the heat kernel space:

KðiÞ ¼

kðxi1; xi1Þkðxi1; xi2Þ. . .kðxi1; xinÞ
kðxi2; xi1Þkðxi2; xi2Þ. . .kðxi2; xinÞ

. . .. . .. . .. . .

kðxin; xi1Þkðxin; xi2Þ. . .kðxin; xinÞ

ð1Þ

The unsupervised feature selection algorithm aims to mine

more representative features in the data, thus paving the

way for the next experiment. In the absence of the class

label Y, using the data matrix X as a response matrix can

better preserve the internal structure of the data’s original

features [26]. Since there is a linear relationship between

features and features, there is also a nonlinear relationship.

Therefore, the algorithm first converts the data matrix X

into d kernel matrices KðiÞ; i ¼ 1; . . .; d through a Gaussian

kernel function. In order to fully exploit the nonlinear

relationship between features, get the following formula:

X ¼
Xd

i¼1

aiK
ðiÞW ð2Þ

where: W 2 Rn�d denotes the kernel coefficient matrix,

a 2 Rd�1 is used to perform feature selection and is

equivalent to the feature weight vector; ai corresponds to

an element of the vector a, K ið Þ 2 Rn�n is the kernel

matrix. In order to make X get a better fitting effect, people

usually use the lF-norm to detect residuals, and minimizing

the residuals can better fit the data, that is:

min
a;W

X�
Xd

i¼1

aiK
ðiÞW

�
�
�
�
�

�
�
�
�
�

2

F

ð3Þ

Simultaneously, in order to reduce the amount of calcula-

tion, and exclude noise samples, the following low-

rank [27] constraint is applied to the kernel coefficient

matrix W:

min
a;W

X�
Xd

i¼1

aiK
ðiÞW

�
�
�
�
�

�
�
�
�
�

2

F

s.t. rankðWÞ� minðn; dÞ ð4Þ

From formula (4), we can easily see that low rank reduces

the amount of computation. And in real life, if the data is

noisy or outliers, it will increase the rank of the matrix of

kernel coefficients [28]. The low rank indicates a degree of

redundancy. We use low-rank constraint to remove noise to

a certain extent and filter out some outliers. Therefore, low-

rank constraints are very useful. The kernel coefficient

matrix can be expressed as the product of two matrices

whose rank is not greater than r, ie:

W ¼ AB ð5Þ

where: A 2 Rn�r, B 2 Rr�d. Substituting Eq. (5) into

Eq. (4), we can get the general form of the low rank

nonlinear feature selection model:

min
A; B;a

X�
Xd

i¼1

aiK
ðiÞAB

�
�
�
�
�

�
�
�
�
�

2

F

ð6Þ

At the same time, in order to improve the accuracy of

nonlinear feature selection, we further optimize the above

equation. That is, row sparse is performed by using l2;1-

norm to substitute the lF-norm in the above formula to

punish all the row coefficients of X�
Pd

i¼1 aiK
ðiÞAB

�
�
�

�
�
�
2

F
.

However, in practice, it is shown that the l2;p-norm can be

adjusted to p to achieve better results [29], so we use the

l2;p-norm to decompress the kernel coefficient matrix AB,

that is:
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min
A;B;a

X�
Xd

i¼1

aiK
ðiÞAB

�
�
�
�
�

�
�
�
�
�
2;p

ð7Þ

where 0\p\2, when p ¼ 1, it is the standard l2;1-norm.

When we change the value of p, different sparse structures

can be implemented for the matrix AB. Since the objective

function is a convex function, we make P ¼
Pd

i¼1 aiK
ðiÞ,

and it is easy to know that the solution is:

AB ¼ PTP
� ��1

PTX. But, in reality, PTP is not necessarily

reversible, so we introduce a l2;p-norm regularization term

to make it invertible, and reject the unimportant features in

the data. In addition, we also do a orthogonal restrictions

for B, and achieve a better fitting effect. At the same time,

we introduce a l1-norm of a to select data features in the

kernel space. In summary, the final objective function of

this paper is:

min
A;B;a

X�
Pd

i¼1

aiKðiÞAB

�
�
�
�

�
�
�
�
2;p

þk1 Ak k2;p þ k2 ak k1

s.t. BBT ¼ Ir

ð8Þ

where Ak k2;p ¼
Pn

i¼1 ð
Pr

j¼1 Aij

�
�
�
�2Þ

p=2
� �1=p

, k1 and k2 are

nonnegative adjustment parameters. Orthogonal constraint

conditions BBT ¼ Ir 2 Rr�r ensure that the low rank can

be studied by considering the relationship between the

outputs [30], thus improving the classification accuracy.

Different degrees of sparsity are applied to the coefficient

matrix A by the l2;p-norm, it optimize the entire low-rank

nonlinear feature selection model. The kernel matrix K is

calculated based on the Gaussian kernel function. By

mapping data features to high-dimensional kernel space,

the nonlinear relationship between data features is repre-

sented in high-dimensional space. This can fully consider

the nonlinear relationship between data features, so that the

mining of data features more thorough. The last l1-norm of

a is sparse for a, and nonlinear feature selection is made at

the same time. If the value of the corresponding element of

the vector a is zero, we won’t select the feature.

3.3 Optimization

Since the l2;p-norm and l1-norm are used in the objective

function, the objective function cannot be closed-form

solution. Therefore, this paper proposes an alternative

iterative optimization method to solve this problem.

Specifically divided into the following three steps.

3.3.1 Update A by fixing a and B

When a and B are fixed, the optimization (8) problem

becomes:

min
A

X�
Xd

i¼1

aiK
ðiÞAB

�
�
�
�
�

�
�
�
�
�
2;p

þ k1 Ak k2;p ð9Þ

We make P ¼
Pd

i¼1 aiK
ðiÞ, then the (9) formula can be

transformed into: minA X� PABk k2;p þ k1 Ak k2;p, since

matrix B has orthogonal constraint BBT ¼ I , we have the

following formula:

X� PABk k2;p ¼ ðX� PABÞðBT;B
00 Þ

�
�

�
�
2;p

¼ XBT � PA
�
�

�
�
2;p

þ XB
00�

�
�
�
2;p

ð10Þ

The matrix A is not included in (10) XB
00 k2;p

�
�
� , so when a

and B are fixed, the optimization of the objective function

(8) can be converted to:

min
A

XBT � PA
�
�

�
�
2;p

þ k1 Ak k2;p ð11Þ

Further inference of the objective function (11) is

available:

min
A

tr XBT � PA
� �T

Q XBT � PA
� �h i

þ k1tr ATNA
� �

ð12Þ

where k1 is the tuning parameter, Q 2 Rn�n and N 2 Rn�n

are both diagonal matrices and their main diagonal ele-

ments are: Qii ¼ 1
2
p ðXBT�PAÞik k2�p

2

i ¼ ð1; 2; . . .; nÞ,

Njj ¼ 1
2
p

Ajk k2�p

2

j ¼ ð1; 2; . . .; nÞ.

By setting the derivative of A in (12) to zero, we obtain:

A ¼ PTQPþ k1N
��1

PTQXBT

	

ð13Þ

3.3.2 Update B by fixing a and A

By fixing a and A, the objective function (8) can be sim-

plified as follows:

min
B

X� P̂B
�
�

�
�
2;p
; s.t.;BBT ¼ Ir ð14Þ

where P̂ ¼ PA 2 Rn�r. It is easy to know that the objective

function (14) is actually an orthogonal procrustes prob-

lem [31]. XTP̂ ¼ USVT is performed directly singular

value decomposition. It can be seen that the optimal

solution of subspace matrix B is VUT,

U 2 Rd�r;V 2 Rr�r.

3.3.3 Update a by fixing A and B

After fixing A, B, the objective function (8) becomes:
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min
a

X�
Xd

i¼1

aiK
ðiÞAB

�
�
�
�
�

�
�
�
�
�
2;p

þ k2 ak k1 ð15Þ

Here’s a simple simplification:

min
a

X�
Xd

i¼1

aiK
ðiÞAB

�
�
�
�
�

�
�
�
�
�
2;p

¼ min
a

X�
Xd

i¼1

aiZ
ðiÞ

�
�
�
�
�

�
�
�
�
�
2;p

, min
a

X�
Xd

i¼1

aiZ
ðiÞ

 !T

Q X�
Xd

i¼1

aiZ
ðiÞ

 !" #

, min
a

Xn

i¼1

tr Xi �
Xd

i¼1

aiZ
ðiÞ
i

 !T

Qii Xi �
Xd

i¼1

aiZ
ðiÞ
i

 !" #

, min
a

Xn

i¼1

Qiitr Xi �
Xd

i¼1

aiZ
ðiÞ
i

 !T

Xi �
Xd

i¼1

aiZ
ðiÞ
i

 !

, min
a

Xn

i¼1

Qii Xi � a1 Z
ð1Þ

i;: þ � � � þ adZ
ðdÞ

i;:


 ��
�
�

�
�
�
2

2

ð16Þ

We make SðiÞ ¼ Z
ð1Þ
i;1 . . . Z

ð1Þ
i;d

Z
ðdÞ
i;1 . . . Z

ðdÞ
i;d

 !

2 Rd�d , (16) formula

is written the following form:

min
a

Xn

i¼1

Qii Xi � aT SðiÞ

 ��

�
�

�
�
�
2

2
ð17Þ

After a series of simplifications, we can get (17) that is

equivalent to the following formula:

min
a

Xn

i¼1

QiiXiXi
T � 2aT

Xn

i¼1

QiiS
ðiÞXT

i

þ aT
Xn

i¼1

Qii SðiÞ SðiÞ

 �T

	 �

a

ð18Þ

Since the objective function (15) is convex but not smooth,

we design a new accelerated approximate gradient method

to solve the function. We make:

f ðaÞ ¼ X�
Xd

i¼1

aiK
ðiÞAB

�
�
�
�
�

�
�
�
�
�
2;p

FðaÞ ¼ f ðaÞ þ k2 ak k1

ð19Þ

Notice ak k1 is convex but not smooth. So using the

approximate gradient method, we can use the following

rules to update iterations a.

atþ1 ¼ argmin
a

Ggtða; atÞ

Ggt a; atð Þ ¼ f atð Þ þ hrf atð Þ; a� ati

þ gt
2

a� atk k2 þ k2 ak k1

ð20Þ

Here, rf ðatÞ ¼ 2aTt
Pn

i¼1 QiiðSðiÞðSðiÞÞTÞ � 2
Pn

i¼1 QiiXi

ðSðiÞÞT is calculated from (18), gt is a tuning parameter, at
is a value in the t-th iteration.

By ignoring the independent a in formula (20), we can

get:

atþ1 ¼ pgtðatÞ ¼ argmin
a

1

2
a� Utk k2Fþ

k2
gt

ak k1 ð21Þ

where Ut ¼ at � 1
gt
rf ðatÞ, pgt ðatÞ is a Euclidean projection

on a convex set gt, because ak k1 has a separable form, (21)

can be written as follows:

aitþ1 ¼ argmin
ai

1

2
ai � Ui

t

�
�

�
�2
2
þ k2

gt
ai
�
�
�
� ð22Þ

where ai and aitþ1 are respectively the i-th elements of a

and atþ1, then according to formula (22), aitþ1 can be

obtained the following closed-form solution:

ai� ¼ uit �
k2
gt

� sign uit
� �

; if uit
�
�
�
�[

k2
gt

0; otherwise:

8
<

:
ð23Þ

To speed up the approximate gradient algorithm in

Eq. (20), we added an auxiliary variable:

Vtþ1 ¼ at þ
bt � 1

btþ1

ðatþ1 � atÞ ð24Þ

where btþ1 ¼
1þ

ffiffiffiffiffiffiffiffiffiffi
1þ4b2t

p
2

.

3.4 Convergence analysis

We can prove that the value of the objective function (11)

is monotonically decreasing in every iteration. The objec-

tive function is equivalent to:

min
A

tr XBT � PA
� �T

Q XBT � PA
� �h i

þ k1tr ATNA
� �

ð25Þ

So we have:

tr XBT
ðtþ1Þ � PAðtþ1Þ


 �T
Qt XBT

ðtþ1Þ � PAðtþ1Þ


 �� �

þ k1tr Aðtþ1Þ
TNtAðtþ1Þ

� �

� tr XBT
t � PAt

� �T
Qt XB

T
t � PAt

� �h i

þ k1tr AT
t NtAt

� �
ð26Þ

According to the simple formula reasoning, we can get the

following formula:
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)
Xn

i¼1

�
�
�XiBðtþ1Þ

T � PiAðtþ1Þ

�
�
�
2ð2�pÞ

2

ð2=pÞ
�
�
�XiBt

T � PiAt

�
�
�
2�p

2

þ k1
Xn

i¼1

�
�
�aiðtþ1Þ

�
�
�
2ð2�pÞ

2

ð2=pÞ
�
�
�ait

�
�
�
2�p

2

�
Xn

i¼1

�
�
�XiBt

T � PiAt

�
�
�
2ð2�pÞ

2

ð2=pÞ
�
�
�XiBt

T � PiAt

�
�
�
2�p

2

þ k1
Xn

i¼1

�
�
�ait

�
�
�
2ð2�pÞ

2

ð2=pÞ
�
�
�ait

�
�
�
2�p

2

ð27Þ

The above can indicate that any nonzero vector in (10) has:

X

i

aiðtþ1Þ
�
�

�
�2ð2�pÞ
2

�
X

i

aitþ1k k2ð2�pÞ
2

ð2=pÞ aitþ1k k2�p
2

�
X

i

ait
�
�

�
�2�p

2
�
X

i

aitk k2ð2�pÞ
2

ð2=pÞ aitk k2�p
2

Xn

i¼1

XiBðtþ1Þ
T � PiAðtþ1Þ

�
�

�
�2�p

2

�
Xn

i¼1

XiBðtþ1Þ
T � PiAðtþ1Þ

�
�

�
�2ð2�pÞ
2

ð2=pÞ XiBt
T � PiAt

�
�

�
�2�p

2

�
Xn

i¼1

XiBt
T � PiAt

�
�

�
�2�p

2

�
Xn

i¼1

XiBt
T � PiAt

�
�

�
�2ð2�pÞ
2

ð2=pÞ XiBt
T � PiAt

�
�

�
�2�p

2

ð28Þ

To sum up, we can easily get:

Xn

i¼1

XiBðtþ1Þ
T � PiAðtþ1Þ

�
�

�
�2�p

2
þk1

Xn

i¼1

aitþ1

�
�

�
�2�p

2

�
Xn

i¼1

XiBt
T � PiAt

�
�

�
�2�p

2
þk1

Xn

i¼1

ait
�
�

�
�2�p

2

ð29Þ

Theorem 1 Let at be the sequence generated by Algorithm

1, then for 8t� 1, (29) holds:

FðatÞ � Fða�Þ� 2cL a1 � a�k k2F
ðt þ 1Þ2

ð30Þ
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According to reference [32], c is a constant defined in

advance, L is the Lipschitz constant of the f ðaÞ gradient in
Eq. (19) , and a� ¼ argmin

a
FðaÞ.

Through the above inequality and Theorem 1, we can

easily see that our algorithm is convergent.

4 Experiments

In this section, we compare the KF_NFS algorithm with the

comparison algorithms. The dimensionality is reduced by

the feature selection algorithms, and then, the data after

dimension reduction is conducted SVM classified. Finally,

the performance of the algorithms is measured according to

the classification accuracy.

4.1 Experiment settings

We tested our proposed nonlinear feature selection algo-

rithm with five binary-class data sets and seven multi-class

data sets. They are Glass, SPECTF, Sonar, Clean,

Arrhythmia, Movements, Ecoli, Urban_land, Ionosphere,

Yale, Colon, Lung_discrete, where the first nine are all

from UCI Machine Learning Repository1 and the last three

are from feature selection data.2 The details of the data set

are shown in Table 1.

At the same time, we found eight comparison algorithms

to compare with the KF_NFS algorithm. The information

of the comparison algorithm is as follows:

RSR: It constrains the self-representation coefficient

matrix by a l2;1-norm, so that the representative features are

selected and the robustness of outliers are ensured [33].

SOGFS: It is an embedded unsupervised feature selec-

tion algorithm. It introduces local constraints on manifold

structure learning by the reasonable constraints. It also

performs feature selection and local structure learning

simultaneously to select more valuable features [34].

EUFS: It is an unsupervised feature selection algorithm.

It uses sparse learning to embed the feature selection

algorithm into the clustering algorithm so as to achieve a

better feature selection effect [35].

FSASL: It is also an unsupervised feature selection

algorithm that combines feature learning with structural

learning. Two learning methods are mutually promoted to

achieve good results [36].

RFS: It is a supervised feature selection algorithm. It

combines the l2;1-norm to limit the loss function and the

regularization term, and achieves a very good robust

effect [37].

LS: According to the distance of two data points, then

they are likely to have many similar relationships. Calcu-

lating its Laplacian score to reflect the holding ability of

the local structure. Finally achieve good feature selection

effect [38].

NetFS: It is a robust unsupervised feature selection

algorithm, which embeds potential representation learning

into feature selection to mitigate the effects of noise and

achieve good results [39].

RUFS: It is also a robust and unsupervised feature

selection algorithm. It performs clustering and feature

selection simultaneously, and reduces the time and space

complexity of the algorithm [40].

In our proposed model, we set

fk1; k2g 2 f10�4; . . .; 108g, the rank of the kernel coeffi-

cient matrix r 2 f1; . . .;minðn; dÞg, and the parameter of

l2;p-norm p 2 f0:1; . . .; 1:9g. The parameters c 2
f2�5; . . .; 25g and g 2 f2�5; . . .; 25g are used to select the

best SVM for classification, and distinguish different types

of samples. The experiment divides the data set randomly

into a training set and a test set through a tenfold cross-

validation. In order to maintain fairness, we carry out

tenfold cross-validation of 10 times, and finally we take the

average of the classification accuracy.

We use the classification accuracy and standard devia-

tion as the evaluation criteria for our experiments. We

define the classification accuracy as follows:

acc ¼ Xcorrect=X ð31Þ

where X represents the total number of samples and Xcorrect

represents the correct number of samples for classification.

At the same time we define the standard deviation to

measure the stability of our algorithm, as follows:

Table 1 The information of the data sets

Datasets Samples Dimensions Classes

Glass 214 9 6

Movements 360 90 15

SPECTF 267 44 2

Ecoli 336 343 8

Sonar 208 60 2

Urban_land 168 147 9

Clean 476 167 2

Ionosphere 351 34 2

Arrhythmia 452 279 13

Colon 62 2000 2

Yale 165 1024 15

Lung_discrete 73 325 7

1 http://archive.ics.uci.edu/ml.
2 http://featureselection.asu.edu/datasets.php.
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Fig. 1 Average classification accuracy of all methods for all datasets
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std ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

ðacci � lÞ2
v
u
u
t ð32Þ

where N represents the number of experiments, acci rep-

resents the classification accuracy of the i-th experiment, l
represents the average classification accuracy, and the

smaller the std, the more stable the representative

algorithm.

4.2 Experiment results and analysis

In Fig. 1, the classification accuracy of 10 experiments for

all algorithms is shown. To avoid the randomness of the

training set and the test set, we use tenfold cross-validation

to divide the data into training and test sets. At the same

time, the average of 10 results is used to evaluate the

accuracy of the algorithm. In this way, ten experiments

were finally carried out. From Fig. 1, we can clearly see

that our proposed algorithm has the highest classification

accuracy in most cases. In Table 2, we show the results of

all algorithms on 12 datasets. It can be seen that the

KF_NFS algorithm has the highest classification accuracy

compared with the other eight algorithms. Specifically, it is

6.58% higher than the EUFS algorithm on average, 14.49%

higher than the LS algorithm on average, and 9.07% higher

than the RFS algorithm on average. It shows that our

algorithm is better than the general linear feature selection

algorithm. Compared with the FSASL, NetFS, RUFS,

RSR, and SOGFS algorithms, It increased by an average of

6.16%, 11.54%, 8.96%, 8.81%, and 5.42%, respectively.

In Fig. 2, the value of each iteration of our objective

function over 12 data sets is shown. We set the condition

for our algorithm to converge on
objðtþ1Þ�objðtÞj j

objðtÞ � 10�5.

From Fig. 2, we can easily see that the value of the

objective function gradually decreases as the number of

iterations increases and finally converges to a certain value.

Moreover, our objective function converges very quickly,

and most converge before the fifth iteration.

In Table 3, we can see that the average standard devi-

ation of accuracy rate of our algorithm is the smallest. On

the one hand, it shows that our algorithm is more stable,

and on the other hand, it shows that its overall performance

is better.

The KF_NFS algorithm can achieve good results. It is

mainly related to the following two points: (a) considering

the nonlinear relationship between data; (b) Iteratively

performing low-rank feature selection steps. At the same

time, according to the standard deviation, we can easily

find that our proposed algorithm is the most stable.

Table 2 Average classification

accuracy [acc (%)]
Datasets EUFS FSASL LS NetFS RUFS RFS RSR SOGFS KF_NFS

Glass 65.14 64.62 51.90 69.12 66.40 64.97 66.02 66.11 71.97

Movements 85.83 85.75 82.50 60.61 73.75 80.56 81.36 85.44 89.00

SPECTF 80.26 79.29 79.43 79.63 80.31 80.14 79.40 81.69 92.93

Ecoli 83.15 86.01 42.56 84.47 83.29 85.83 85.81 83.79 86.36

Sonar 77.52 68.27 75.68 84.23 72.72 76.70 74.44 83.96 87.96

Urban_land 47.81 62.05 55.61 56.96 53.75 52.06 60.01 61.72 63.36

Clean 84.61 84.83 68.88 84.69 93.76 84.77 84.64 85.18 96.41

Ionosphere 93.61 93.67 86.69 87.70 82.52 91.11 91.22 88.10 95.72

Arrhythmia 66.91 66.71 62.65 54.20 62.61 67.13 66.8 67.19 71.65

Colon 82.88 77.07 79.24 64.38 69.79 82.48 72.29 83.62 84.90

Yale 74.30 73.69 57.36 65.04 73.32 69.76 69.46 68.81 75.60

Lung_discrete 81.059 86.07 85.59 72.45 82.20 57.61 64.79 81.36 86.18

Average value 76.92 77.34 69.01 71.96 74.54 74.43 74.69 78.08 83.50

Bold values indicate highest classification accuracy
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Fig. 2 Convergence rate of Algorithm 1 on all tested datasets
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5 Conclusion

This paper proposes a new unsupervised nonlinear feature

selection algorithm through the nonlinear relationship

between data features. That is, using the kernel function,

applying the l2;p-norm to both the loss function and the

regularization, and combining the low rank and the l1-norm

sparse methods are used to further refine the proposed

model; therefore, it achieves very good results. The algo-

rithm has discovered the nonlinear relationship between the

data features and has a more significant mining effect than

the general feature selection algorithm. The experimental

results show that the algorithm of this paper has greatly

improved the classification accuracy and stability. In the

future work, we will attempt to combine more advanced

theoretical for improvement algorithms.
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