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Abstract
Decomposition strategy which employs predefined subproblem framework and reference vectors has significant contri-

bution in multi-objective optimization, and it can enhance local convergence as well as global diversity. However, the fixed

exploring directions sacrifice flexibility and adaptability; therefore, extra reference adaptations should be considered under

different shapes of the Pareto front. In this paper, a population-based heuristic orientation generating approach is presented

to build a dynamic decomposition. The novel approach replaces the exhaustive reference distribution with reduced and

partial orientations clustered within potential areas and provides flexible and scalable instructions for better exploration.

Numerical experiment results demonstrate that the proposed method is compatible with both regular Pareto fronts and

irregular cases and maintains outperformance or competitive performance compared to some state-of-the-art multi-ob-

jective approaches and adaptive-based algorithms. Moreover, the novel strategy presents more independence on sub-

problem aggregations and provides an autonomous evolving branch in decomposition-based researches.

Keywords Decomposition � Multi-objective � Adaptive reference vector � Evolutionary algorithm

1 Introduction

Decomposition-based approaches have achieved great

success in the field of optimizing multi-objective problems

(MOPs) and attracted a great deal of attention [3, 23, 33].

Scalarization is one of the decomposition techniques, in

which multiple objectives are aggregated into a set of

scalar single-objective subproblems based on predefined

reference vectors [46]. The reference vectors represent

preference searching orientations. Usually, a uniformly

distributed reference vector set is employed for optimiza-

tion with no special preferences [26, 40]. With algorithm

convergence, each of the references is related to a best

fitting individual corresponding to the representative

direction. The more reference vectors initialized, the more

specific division of the objective space can be obtained,

and the more feasible solutions can be found. In other

words, the uniform reference vectors guarantee a well-

spaced and distributed solution set. However, does the

uniformity equal satisfied performance? Since the explo-

ration orientation is strictly constrained by the uniform

reference vectors, the algorithm lacks flexibility and most

likely misses undefined areas; while at the same time,

inefficient references occupying unnecessary computa-

tional cost make no contribution to the searching process.

As a consequence, uniform decomposition is not a defini-

tion well suited to all situations [18], and a stochastic local

learning behavior is encouraged for better exploration [10].

Moreover, the aggregation approach which can determine

the balance between convergence and diversity control has

great influence on the performance of scalarization

[22, 37, 41]. Therefore, the aggregation should be designed

according to the problem property and parameter definition

[39]. The following information is arranged considering the

above investigations.

First, the number and distribution of the reference vec-

tors have a critical impact on the searching direction and
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performance of the algorithms. Except for the preference

requirement, in most cases, vector sets are generated uni-

formly according to Das and Dennis’s [6] systematic

approach. However, the uniform reference vectors waste

resources on worthless directions on the irregular Pareto

front and result in few feasible solutions. To tackle this

issue, the regenerate procedures for invalid vectors are

activated in some researches. For example, an ‘‘addition

and deletion’’ strategy was introduced to adapt the distri-

bution of reference vectors [17]; an elite population-based

adaptive weight vector adjustment strategy was proposed

and carried out periodically during the iteration [27]. Wang

and Xiong [36] introduced three specifications of reference

points with different �i values, which determine the starting

points of the reference vectors; and they proved that the

dynamic reference point specification has a better balance

performance. A global replacement strategy was designed

to adapt the reference points between the ideal point and

the nadir point. On the other hand, a k-means cluster

technique was introduced to partition the solutions for local

reproduction on the irregular Pareto [43]. However, the

adaptive period has great influence on the searching pro-

cedure. High adjusted frequency leads to premature and

reduced diversity, while low frequency results in insuffi-

cient adjusted pressure. Furthermore, considering the close

relationship between the reference distribution and

searching direction, the adaptive procedure needs to be

accurate and reasonable for stable searching performance.

Another consideration is that while changing reference

distribution for pursuing irregular performance, the adap-

tation strategy should have the ability to maintain diversity

on the regular Pareto. Tian and Cheng [31] proposed an

adaptation approach, which adjusted the location of the

reference points according to the orthogonal projection of

elite solutions and has achieved satisfying results on both

regular and irregular instances. In addition, a

stable matching model which has been studied in many

researches is essential. For instance, Li and Kwong have

discussed the mutual-preferences and interrelationship

between subproblems and solutions [21].

Second, the setting of the aggregation method is another

key role in the decomposition-based algorithms which

determines the collaborative approach among sub-agents.

Zhang and Li [44] integrated the Tchebycheff (TCH)

approach and penalty-based boundary intersection (PBI)

method, respectively, with the scalar subproblem convert-

ing. The experimental result illustrated that PBI has

obtained better uniformity than the TCH approach, espe-

cially when the number of vectors is not large. Ishibuchi

and Sakane investigated the advantages and disadvantages

of the weighted TCH and the weighted sum fitness evalu-

ations and proposed an adaptive simultaneous scalarization

approach to alleviate the difficulty in selecting the

appropriate methods [16]. An inverted PBI function was

proposed [30] to improve the searching performance in

MaOPs. An angle-penalized distance (APD) [5] is another

scalarization approach introduced to replace the Euclidean

distance in PBI, which has achieved better performance in

higher objective spaces. Our previous study proposed a

velocity-penalized interaction (VPI) using an adaptive

penalty parameter based on PSO’s moving velocities and

provided a dynamic balance between convergence and

diversity [25]. To sum up, the difficulty and emphasis of

the aggregation lie in the balance evaluation between

convergence and diversity in every single subproblem.

Third, the convergence, diversity and uniformity are

three main performances in assessingMOP solutions, where

diversity is the most difficult to characterize mathematically

[12, 19], and easy to deteriorate in high-objective spaces

[1, 13]. Technically speaking, diversity represents a dis-

similarity which can provide multiple information sources.

It can be seen as a synthesis of spreading, uniformity and

randomness. Researches have demonstrated that a good

uniformity or spreading is not equal to a good diversity

[34, 42]. Assume there are two solution sets provided by

two well-performed scalar MOP processes using the same

reference vectors, the difference between the two sets is

unnoticeable. This kind of similarity provides advantages in

stable performance, while also exposing the algorithms to

local convergence and similar approximate optima.

Accordingly, the decision makers need to redefine the ref-

erence vectors for diverse solutions, which goes against the

expectation of diversity. In conclusion, although more

subproblems provide more potential directions for diversity

enhancement, they still sacrifice randomness and flexibility

in the evolution procedure.

Motivated by ideas from decomposition and reference-

guided evolutions, and aiming for more flexible exploration

ability, a heuristic orientation adjustment method is pro-

posed in this paper. This novel strategy replaces the

exhaustive references with incomplete indicated directions

expressed from an evolving population and introduces a

subproblem reduction approach named R-MOEA/D.

Compared to the existing decomposition-based approaches,

the main contributions and advantages of this work can be

summarized as follows:

(1) Given a fixed population size, reduce the number of

subproblems through generating fewer reference

vectors, and employ a many-one matching

mechanism instead of one-one matching mechanism

in a solution-to-subproblem matching procedure.

Under this alteration, the individual experiences less

pressure from the reference vector’s constraint;

meanwhile, the randomness and diversity of the

exploration can be improved.
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(2) A shifting strategy is proposed to adjust the reference

vectors periodically following the population’s

evolution. The vectors are initialized uniform at the

beginning of the algorithm. While the searching

progresses, individuals tend to gather around more

activated areas which have a higher probability of

being parts of the true Pareto front. Under this

circumstance, the shifting strategy leads the

references to move toward the new centers of the

population. Different from the existing dynamic

vector techniques, our shifting strategy has certain

advantages for the following three reasons. First, the

shifting strength is evaluated by the changing

situation of the population distribution, which

ensures a better stability and fewer mistakes in the

wrong direction. Second, the shifting strategy avoids

the rapid descent in spreading sustained by reference

vectors. Third, together with the many-one matching

mechanism, the novel dynamic approach achieves

more robustness during the shifting procedure and

reserves margins for searching adjustment.

(3) R-MOEA/D is proved to have less sensitivity on

aggregation methods, because the convergence and

diversity controls are technically apart during the

evolution. The aggregate method for scalarization is

mainly responsible for the convergence part, while

the diversity is controlled by additional crowding

during the elite selection in each subproblem

procedure. This advantage guarantees a universal

adaptability toward different optimization problems.

The rest of this paper is organized as follows: The pre-

liminaries of multi-objective definition and decomposition-

based techniques are introduced in Sect. 2. The proposed

algorithm is detailed in Sect. 3. Then, the experiments and

comparison results on several benchmark instances are

presented in Sect. 4. Thereafter, the additional test and

analysis including parametric, reference efficiency and

sensitivity are arranged in Sect. 5. Finally, Sects. 6 and 7

present the discussions and conclusions, respectively.

2 Preliminaries

In this section, we first present some basic definitions of

multi-objective optimization. Then, a brief survey of the

decomposition-based MOP algorithm is given.

2.1 Basic definitions

A MOP is defined as:

Min fðxÞ ¼ f1ðxÞ; f2ðxÞ; . . .; fMðxÞð Þ

Subject to x 2 X
ð1Þ

where X ¼
Qn

i¼1½ai; bi� � Rn is the decision space, x ¼
ðx1; x2; . . .; xnÞT 2 X is the candidate solution, and F 2 RM

is the objective space, which constitutes M objective

functions. A vector u ¼ ðu1; u2; . . .; unÞT is said to domi-

nate r ¼ ðv1; v2; . . .; vnÞT (denoted as u � r) if and only if

element in u is partially less than r, i.e, 8i 2
f1; 2; . . .; kg; ui � vi and 9i 2 f1; 2; . . .; kg; ui\vi. u and r

are incomparable when they are non-dominated with each

other, denoted as ukv. Pareto set (PS) is defined as

PS ¼ fx 2 Xj:9x0 2 X; fðx0Þ � fðxÞg, and the corre-

sponding set in objective space is called the Pareto front

(PF). MOP methods try to find a manageable number of

solutions that are uniformly distributed and close to the PF,

which are termed as Pareto optimal solutions. MOPs with

at least four objectives are informally known as many-

objective optimization problems (MaOPs).

2.2 Decomposition-based approaches through
scalarization

The principle of scalar decomposition-based MOP is to

transform the multiple objectives to a number of scalar

single-objective subproblems through aggregations. These

subproblems are defined by a set of reference vectors. The

decomposition expectation is to fulfill a one-one matching

relationship between population and subproblems so that

the solutions can be exploited according to the reference

directions.

The definitions of reference vectors are essential to

determine the MOP performance. To guarantee a maxi-

mum diversity over the objective space, most researches

use uniformly distributed points from a normalized

hyperplane as the reference points and generate reference

vectors, respectively [2, 7]. If p divisions are considered

along each objective, the total number of reference vectors

is H ¼ M þ p� 1

p

� �

. Two examples of M ¼ 3; p ¼ 13

and p ¼ 4 are displayed in Fig. 1.

On the other hand, the uniformly distributed vectors

expose disadvantages to the one-one matching mechanism,

especially in solving irregular PF caused by the objective

relation and constraints. Under this circumstance, existing

modifications can be divided into two orientations: first,

introducing dynamic strategy in reference vectors’ defini-

tions, and adjusting the vectors in high-activated and low-

activated directions and second, authorizing a many-one

matching mechanism in high-activated vectors to associate

more solutions, and a zero-one mechanism in low-activated

subproblems [4]. Both aspects involve an appropriate

Neural Computing and Applications (2020) 32:4757–4771 4759

123



adjusting strength: Over adjustment may lead to the

incorrect judgment of the PF shape and result in low

diversity and premature convergence.

Another important part of decomposition is the selection

of the scalarization approach, such as TCH and PBI

[24, 29, 35], which influence the balance of convergence

and diversity. In MOEA/D and its variants, the scalariza-

tion values are calculated on individuals associated with

each subproblem and the corresponding neighbor sub-

problems. Then, subproblems are updated with the new

fittest individuals. Some reference-assisted approaches

adopt distance measure as the solution-to-subproblem

matching method. For example, NSGA-III [7] calculates

the vertical distance between the individual and vector, and

RVEA [5] uses the cosine distances to associate individuals

with the closest vector. After these kinds of associate

approaches, subproblems with more than one individual

will go through extra selection procedures to complete one-

one matching.

Some researches combine the dominance-based

approach with the decomposition. NSGA-III applied a non-

dominated sorting procedure to prioritize good individuals

in offspring selection and adopted references for diversity

control. MOEA/DD [20] introduced a unified paradigm

considering both the dominance relations and subregion

exploration.

3 The proposed algorithm

3.1 Framework of R-MOEA/D

The main framework of R-MOEA/D is illustrated in

Algorithm 1. First, the initialization procedure generates

the initial reference vectors and population. Within the

main loop, the offspring generating procedure consists of

crossover and mutation. The crossover operator can be set

as simulated binary crossover (SBX) or differential evo-

lution (DE). The parent and offspring population are then

combined and prepared for an elite selection for the next

generation. The main contributions of R-MOEA/D lie in

the elite selection procedure and reference vector adapta-

tion. In the following paragraphs, the implementation

details of selection and adaptation will be explained.

Algorithm 1: The main framework of R-
MOEA/D
1 Input: The population size N , the number of

reference vectors H;
2 Output: The optimal solution set Pt;
3 Create the initial population P0 and uniformly

distributed reference vector set Λ0 = {λ1, λ2, ..., λH};
4 t=0;
5 while computational budget is not exhausted do
6 Qt = Recombination+Mutation(Pt);
7 Pt = Pt ∪ Qt;
8 Pt+1 = Selection(Λt,Pt);
9 Pt+1 = Reference regeneration(Λt,Pt+1);

10 t = t + 1;
11 end

3.2 Many-one matching and selection
mechanism

Most decomposition-based methods associate population

with reference vectors following the one-one matching

approach, which is illustrated in Fig. 2a. First, individuals

are assigned to different subproblems. Taking the ith sub-

problem as an example, ki is the corresponding reference

vector, and the distance is the assumed matching principle.

Secondly, in each subproblem, only one fittest individual is

selected as the associated elite solution. Although both

individual B and G are the fittest solutions to subproblem

i which have advantageous aggregate values, only B is

selected as subproblem ith’s associated solution while

individual G is abandoned. Many improvements have been

proposed on the one-one matching technique to pursue an
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Fig. 1 Reference vectors for three-objective problem with p ¼ 13 and

p ¼ 4
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Fig. 2 One-one matching results according to reference sets with

different densities
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unprejudiced platform for selection between subproblems

and individuals [38].

These decompositions with one-one matching proce-

dures can achieve good performance when the objective

space is divided into a sufficient number of subregions.

When the reference vectors are sparse (Fig. 2b), the spaces

between neighboring vectors are ignored, such as the

directions of individual F and H. The population’s

plumpness is strictly fixed according to the definition of

references. Moreover, because of the curse of dimension,

the increasing number of references will hardly express a

high-dimensional objective space completely, so the

diversity and flexibility are constrained. Some existing

researches have also introduced a many-one matching

approach to reserve more elite candidates under popular

sub-directions, which use distance to assist aggregate

selection [4]. However, as the searching converses,

aggregate information becomes the dominating factor

toward elite selection. In other words, all solutions gather

around best-aggregated areas, where crowding selection

shows less efficient in diversity maintenance.

In this paper, a novel many-one matching elite selection

approach is proposed. This selection technique integrates

domination and crowding condition, which are considered

as separate convergence and diversity controls. First, the

individuals are assigned into sub-populations according to

the minimum angle distance toward reference vectors.

Then, the selection procedure contains four steps, which

are operated in each subproblem.

(1) Screen out poor individuals In elite selection

considering crowding and dominance rank, some of

the sparsest solutions far behind the whole population

can be frequently selected as reserved offsprings,

which retrograde the convergence process. As a

preparation of crowding selection, the individuals

with relatively larger aggregation values are filtered

to guarantee convergence strength. The convergence

strength should be primary at the beginning and

gradually release authority to diversity control while

searching. So, the reserve size Ng is defined as an

adapting form,

Ng ¼ 2 	 ð1þ thetaÞ 	 Nsb c ð2Þ

where Ns is maximum subpopulation size, theta is

the balance factor calculated while evolving,

theta ¼ min alpha 	 ðGene=GenerationÞM; 1
� �

ð3Þ

alpha is set to be 0.9 in the experiments.

(2) Corner elite selection The corner elite in subproblem

is defined as the solution which has the best

aggregation value, which supports the subproblem

searching direction. Only one corner elite is selected

and reserved for the next generation.

(3) Non-dominated selection While decomposition is

incomplete, domination is an essential complement

for selection. Similar to NSGA-III, individuals inside

the last front level l are directly included in

population for the next generation. The individuals

on the last level will go through the selection process

via the following method. Different from NSGA-III

which operates in whole objective space, R-MOEA/D

operates a non-dominated selection in the

subpopulation which is determined by the central

orientation.

(4) Adjusting selection As indicated before, R-MOEA/

D integrates domination and crowding condition as

separate convergence and diversity controls. The

above procedures considering aggregation and

domination are regarded as convergence control

parts, while diversity control is detailed as follows:

We adopt a popular diversity evaluation, crowding

distance r2, as a part of selecting criterion. Without

convergence constraint, diversity will lose control

and result in poor convergence distribution; thus, a

convergence evaluation r1 is also added in diversity

control. The weighted combination of the two

evaluations is regarded as the selection criterion,

and the proportion of the two parts is determined by

the balance factor theta. It should be noted that

although diversity control takes convergence

performance into consideration, the two procedures

are independent in control space since the operated

individuals are different under these two

procedures.
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3.3 Reference vector adjustment

In most reference vector adapting methods, the adapting

operation only works on vectors which have weak explo-

ration ability, or generates new references in activated

directions. In this paper, we present a novel reference

vector adaptive approach, denoted as heuristic center-gui-

ded distribution.

In population-based optimization methods, individuals

tend to gather around and distribute in local optimums and

potential areas. Under a multi-objective environment, the

potential areas imply the distribution of the Pareto front,

which can lead to the searching direction. Different from

existing addition–deletion and adaptation approaches, we

regenerate all reference vectors according to current elite

distribution. Since the relation between individuals and

reference vector is many-one matching, the regeneration

procedure can inherit the exploiting directions and expand

exploration in newly defined searching areas.

Algorithm 3 presents the operation of the proposed

reference vector regeneration method, which consists of the

following four procedures. (1) Grouping the population

into K groups through k-means clustering method based on

cosine distances. The center location of each group is

defined as a target reference point. The target reference

vectors are the normalized vectors from coordinate origin

to the target reference points. (2) Because the center of the

subpopulation may reduce the preference scope, the target

reference set Ktarget is extended by 0.1% to maintain the

preference region as illustrated in Fig. 3a. (3) Matching the

target vectors with current vectors according to closest

distance principle, and current vectors with no associated

subpopulation have priority in choosing available target

vectors. (4) The evolution of population has uncertainty in

moving and converging. In order to avoid overfitting, the

new reference k0i is updated adaptively by tracking the

target references as follows: Accordingly, the new refer-

ence set K0 ¼ fk01; k
0
2; . . .; k

0
Hg is generated. The tracking

procedure is illustrated in Fig. 3b.

k0i ¼ ki þ ciðki;target � kiÞ

ci ¼
Ns � ni

N2
s

	 stdðnÞ
ð4Þ

The proportion ci between target and current references

depends on the number of subpopulation ni and the dis-

tribution uniformity std(n). This design can be interpreted

that the reference set tends toward stabilization when the

uniformity among subproblems become better, and the

subproblems with less components deserve a larger move

for exploration.

Algorithm 3: Reference regeneration
1 Input: Population set Pt, reference vector set Λt,

subproblem population size n = (n1, . . . , nH)T ;
2 Output: Reference vector set Λt+1;
3 [Λtarget, S] =k-means(Pt, ”cosine”);
4 Λtarget =extending(Λtarget);
5 /* Match references */
6 In = sort(n);
7 Λ0 = Λt(In);
8 Λ1 = ∅;
9 for h = 1:H do

10 Id = sort(< Λ0, Λtarget(h) >);
11 Λ1 ← Λ0(Id(1));
12 Λ0 = Λ0\Λ0(Id(1));
13 end
14 /* Update references */
15 Λt+1 = Λ1 + c(Λtarget − Λ1);

3.4 Computational complexity of R-MOEA/D

The computational complexity of R-MOEA/D is mainly

generated in the elite selection procedure and reference

regeneration procedure. The complexity of assigning

individuals to subproblems in line 3 of Algorithm 2 is

O(MN). The calculation of aggregation function in line 8

Algorithm 2: Selection
1 Input: Population set Pt, reference vector set Λt, the

number of subproblems H; balance factor theta;
maximum subpopulation size Ns;

2 Output: Population set Pt+1;
3 Assign individuals p ∈ Pt to the closest subproblems S

presented by reference vectors;
4 for h = 1:H do
5 Ŝh = ∅;
6 /* Screen out poor individuals */
7 Ng = 2 ∗ (1 + theta) ∗ Ns ;
8 Id1 = sort(aggregate({Λt , pi|pi ∈ Sh}));
9 Sh = Sh\{pi|i = Id1(Ng : end)};

10 /* Corner solution selection */
11 Ŝh ← {pi|i = Id1(1)};
12 Sh = Sh\pi;
13 /* Non-dominated selection */
14 (F1, F2, . . .) = Non-dominated-sort (Sh);
15 repeat
16 Ŝh = Ŝh ∪ Fj ; j = j + 1;
17 until |Ŝh| ≥ Ns;
18 L = j;
19 Ŝh = Ŝh\FL;
20 Sh = Sh\ ∪L−1

j=1 Fj ;
21 /* Adjusting selection */
22 [r1, r2] = Assessment ({Λt, p|p ∈ Sh});
23 Id2 = sort((1 − theta)r1 + r2);
24 repeat
25 Ŝh ← pId2(k); k = k + 1;
26 until |Ŝh| == Ns;
27 end
28 Pt+1 = ∪H

h=1Ŝh;
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requires a total of O(MN) computations. The non-domi-

nated sort requires OðMN2Þ operations. The worst case in

adjust selection in line 22 requires O(MN) computations. In

Algorithm 3, the k-means cluster costs O(MNH) calcula-

tions, where H is the number of clusters, H\N. The ref-

erence matching in line 10 has OðMH2Þ complexity.

Taking all the above considerations and computations into

account, the worst-case complexity of one generation of R-

MOEA/D is OðMN2Þ, which is efficient and comparable

with most recently proposed MOP algorithms.

4 Comparative studies

In this section, comparative studies are carried out among

the proposed algorithm and six popular MOP methods. The

test instances include regular and irregular Pareto fronts,

which are selected from three widely used test suites,

DTLZ [9], WFG [15] and UF [45]. The experiments and

numerical studies are conducted in two groups: three-di-

mension objective space and five-dimension objective

space, respectively.

4.1 Experiment settings

Among the DTLZ benchmark instances, the optimal solu-

tions lie on the linear hyperplane and concave surfaces in

DTLZ1-4, which all belong to regular instances. DTLZ5-6

present degenerates fronts, while DTLZ7 has disconnected

Pareto consisting of (2m � 1) segments; DTLZ35, a more

convergence challenging irregular problem combined by

DTLZ3 and DTLZ5, shares the same Pareto shape with

DTLZ5. These four instances above are classified as

irregular instances. WFGs involve nonseparable variables.

For WFG1, a mixed Pareto front is considered; WFG2 has

a disconnected convex Pareto front and WFG3 has a

degenerate linear optimal front. All of the above three

WFGs are classified as irregular problems. WFG4 has a

concave Pareto which belongs to regular problems. UF8

and UF9 are three-objective benchmark functions where

UF8 is a regular instance and UF9 is an irregular instance.

All test instances are optimized on three- and five-objective

problems, respectively, except UF8 and UF9, which can

only be operated in three-dimension.

The statistical results are organized according to the

objective dimensions. For three-objective experiments,

MOEA/D [44], NSGA-II [8], A-NSGA-III [17] MaOPSO

[11] and MaOEA-R&D [14] are selected as the comparison

algorithms, where A-NSGA-III implements non-dominated

sorting and introduces an adaptive reference points updat-

ing process. For five-objective, AR-MOEA [31], NSGA-III

[7], A-NSGA-III and MaOPSO are chosen as comparisons.

AR-MOEA is an efficient indicator-based method for

many-objective problems considering the irregular situa-

tions, and the indicator calculated by references can be

seen as a special aggregation function in decomposition;

NSGA-III is a popular algorithm based on both decom-

position and Pareto dominance; MaOPSO is a PSO-engine

decomposition-based algorithm, which shows better per-

formance in high-dimensional objective space than the

traditional MOPSO [28]; MaOEA-R&D is designed for

many-objective using a novel space reduction approach.

MaOPSO and the proposed R-MOEA/D are programmed

in Matlab R2016a, and codes of all the other comparison

algorithms are found in PlatEMO [32].

4.2 Parameter settings

4.2.1 Settings of crossover and mutation

For DTLZs and WFGs test instances, simulated binary

crossover (SBX) is selected as the crossover operators,

while differential evolution (DE) is defined for UF prob-

lem. All algorithms use the same distribution index and

crossover probability, where gc ¼ 20, pc ¼ 1. Polynomial

(a) (b)

Fig. 3 Generate new reference

vectors. a Extending the target

reference vectors: the sectors

represent the searching areas in

two reference sets, which can be

indicated that the extended set

has a larger scope for searching.

b Matching and tracking target

vectors: numbers on the

individuals represent the

belonging vectors; the dotted

circles represent cluster result;

the width of the arrow

represents the tracking strength
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mutation is used as the mutation operator in all experi-

ments, where gm ¼ 20, pm ¼ 1=n.

4.2.2 Setting of experiment

The maximal number of evaluations is set to be 50,000 for

each run as the termination condition. Each result is cal-

culated by 15 independent runs, and statistical experi-

mental results, hypervolume (HV) and inverse general

distance (IGD), are outputted by PlatEMO at a significance

level of 0.05. The two indicators reflect different compar-

ison results. IGD value is the sum distance among prede-

fined points on true Pareto front and the found solutions, so

it mainly reflects the convergence performance of the

selected areas; HV value, which is the volume bounded by

the approximate Pareto surface and a reference point,

focuses more on the diversity score.

4.2.3 Setting of specific parameters

For MOEA/D, the neighborhood size T is 20. Both MOEA/

D and R-MOEA/D adopt penalty boundary interaction

(PBI) as the aggregation method, and the penalty parameter

h is set to be 5. Uniformly distributed reference vector sets

for MOEA/D, NSGA-III, A-NSGA-III, AR-MOEA and

R-MOEA/D are defined according to Das and Dennis’s

approach. The number of references are listed in Table 1,

where R-MOEA/D adopts the reduced references while the

other comparison decomposition algorithms adopt the full

references. In order for a fair competition, subproblem

population size in R-MOEA/D is designed to make the

whole population size approximately equalize the size

under a full reference situation.

One parameter, alpha, in R-MOEA/D must be prede-

fined. alpha ¼ 0:9 for all three and five objectives experi-

ments. An additional parameter sensitivity test for alpha is

in the following section.

4.3 Performance on three-objective problems

Tables 2 and 3 present the HV and IGD values obtained by

the algorithms, respectively. The best result of each test

instance is highlighted in a dark gray background; the

second best result is shown in a gray background. In reg-

ular DTLZ optimizations, R-MOEA/D obtains best HV

performance on DTLZ1-3 and is competitive on DTLZ4

compared to MaOEA-&D, which indicates a good diversity

led by the heuristic orientations in full objective spaces;

MaOEA-R&D, MOEA/D and A-NSGA-III obtain the best

convergence performances observed from IGD assessment

on DTLZ1-4, respectively, while R-MOEA/D ranks second

on DTLZ2 and DTLZ3. On WFG4, MOEA/D obtains best

HV and IGD performances, while R-MOEA/D presents

competitive convergence performance. On UF8, MaOEA-

R&D and R-MOEA/D run the best HV and IGD values,

respectively. Overall in regular three-objective environ-

ments, R-MOEA/D, MOEA/D and MaOEA-R&D perform

best considering both diversity and convergence. The good

performances of MOEA/D are promised by the predefined

references which uniformly partition the searching spaces.

Table 1 Settings of references

numbers
No. of objectives (M) Parameter (p) No. of references (H) No. of population size (N)

Normal 3 13 105 105

5 5 126 126

Reduced 3 4 15 105

5 2 15 135

Table 2 The statistical results (mean and standard deviation) in terms of HV values on three-objective test instances

D/AEOM-RD&R-AEOaMOSPOaMIIIAGSN-AIIAGSND/AEOMmelborP

M=3 Regular
DTLZ1 1.3978e-1 (1.56e-4) = 1.3319e-1 (6.03e-4) - 1.3836e-1 (5.60e-4) - 0.0000e+0 (0.00e+0) - 1.3900e-1 (4.19e-4) - 1.3941e-1 (4.46e-4)
DTLZ2 7.4483e-1 (5.42e-6) = 7.0638e-1 (3.61e-3) - 7.3844e-1 (4.54e-3) - 7.0857e-1 (6.28e-3) - 7.0956e-1 (3.64e-3) - 7.4752e-1 (1.70e-3)
DTLZ3 6.7238e-1 (1.62e-1) - 6.9063e-1 (1.44e-2) - 6.9312e-1 (3.12e-2) - 0.0000e+0 (0.00e+0) - 6.5064e-1 (7.37e-2) - 6.9592e-1 (9.13e-3)
DTLZ4 6.2868e-1 (1.59e-1) - 6.7132e-1 (4.91e-1) = 6.6569e-1 (1.30e-1) = 1.5036e-1 (5.09e-2) - 7.1689e-1 (3.22e-3) + 6.7116e-1 (1.21e-2)
WFG4 3.4461e+1 (1.47e-1) + 3.3404e+1 (3.04e-1)= 3.3851e+1 (1.83e-1) + 2.5180e+1 (1.83e+0) - 3.2378e+1 (2.75e-1) - 3.3481e+1 (2.54e-1)
UF8 2.6680e-1 (1.38e-1) - 3.4335e-1 (4.28e-2) - 4.3909e-1 (4.44e-3) + 4.1200e-1 (1.90e-2) + 4.3967e-1 (2.43e-2) + 3.9828e-1 (7.64e-3)

0/4/20/5/11/3/22/4/02/3/1=/-/+

M=3 Irregular
DTLZ5 1.2104e-1 (8.78e-6) - 1.3251e-1 (1.11e-4) + 1.2549e-1 (7.67e-4) - 1.2704e-1 (1.59e-3) - 6.0500e-2 (2.32e-8) - 1.2774e-1 (3.08e-3)
DTLZ6 1.2103e-1 (3.13e-6) - 1.2571e-1 (1.42e-4) - 1.2391e-1 (1.16e-3) - 0.0000e+0 (0.00e+0) - 6.0500e-2 (0.00e+0) - 1.2699e-1 (1.13e-3)
DTLZ7 1.5072e+0 (8.55e-3) - 1.5501e+0 (1.05e-2 - 1.5950e+0 (1.38e-2) + 1.2265e+0 (6.36e-2) - 1.1787e+0 (1.61e-1) - 1.5779e+0 (2.33e-2)
DTLZ35 1.1918e-1 (3.57e-3) - 1.2232e-1 (2.62e-3) - 1.1018e-1 (3.48e-2) - 0.0000e+0 (0.00e+0) - 1.4226e-2 (1.57e-2) - 1.2416e-1 (2.08e-3)
WFG1 5.2334e+1 (2.19e+0) - 5.8006e+1 (9.68e-1) + 5.6731e+1 (1.07e+0) + 1.5270e+1 (2.52e+0) - 5.0460e+1 (3.21e+0) - 5.3260e+1 (1.68e+0)
WFG2 5.7803e+1 (5.44e-1) = 5.8769e+1 (1.32e-1) + 5.9318e+1 (1.08e-1) + 4.5229e+1 (1.03e-1) - 5.8718e+1 (1.18e-1) + 5.7264e+1 (2.44e-1)
WFG3 5.7576e+0 (9.31e-2) - 6.3640e+0 (5.21e-2) + 6.2140e+0 (8.13e-2) + 3.8394e+0 (5.14e-1) - 1.4731e+0 (1.21e-2) - 5.9804e+0 (6.27e-1)
UF9 5.4238e-1 (5.48e-2) - 5.7169e-1 (6.95e-2) - 6.1061e-1 (7.35e-2) - 2.9116e-1 (2.45e-2) - 3.8215e-1 (1.40e-1) - 7.1053e-1 (3.99e-2)

0/7/10/8/00/4/40/4/41/7/0=/-/+
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Moreover, it can be seen that R-MOEA/D has achieved

satisfied diversity results and competitive convergence

performances, which proves the subproblem reduction

approach not only has no negative influence to the

searching process that covers the whole objective spaces,

but presents a better diversity potential in diversity

maintain.

Among irregular DTLZs, R-MOEA/D has achieved

simultaneous best HV and IGD scores on DTLZ6 and

DTLZ35, and second-best performances on DTLZ5 and

DTLZ7. On WFGs, R-MOEA/D and A-NSGA-III have

comparable best IGD performances on WFG1-2, while

NSGA-II and A-NSGA-III have advantages toward HV

metric. R-MOEA/D has obtained significant best perfor-

mances on UR9 in both convergence and diversity. NSGA-

II and A-NSGA-III also show good performance on

irregular instances. The reason is that adaptive reference

vectors are adopted in A-NSGA-III; and the elite selection

in NSGA-II is only based on domination. Oppositely,

MOEA/D and MaOEA-R&D present relatively poor per-

formance on irregular DTLZs compared to that on the

regular Pareto. As a result, the uniform references will

deteriorate the exploration. Toward irregular three-dimen-

sion spaces, R-MOEA/D shows relatively better scores in

most IGD measurements and presents top-ranked HV

performances in some instances. MOEA/D displays much

worse rankings under irregular environments. Therefore, it

can be proved that the directions expressed by evolving

population present good leading performance than the

predefined subproblems in irregular Pareto environments.

Meanwhile, A-NSGA-III has obtained better HV rankings

on irregular fronts than regular instances, which illustrates

the effectiveness of using adaptive reference assigning

strategy. Although A-NSGA-III has obtained competitive

diversity performance, R-MOEA/D presents even better in

overall IGD score. Therefore, the subproblem update

strategy in R-MOEA/D outperforms the ‘‘addition and

deletion’’ strategy in A-NSGA-III on convergence control.

It can be concluded that the uniform references have

disadvantages on irregular instances, while the adaptive

reference vectors and decomposition orientations can

contribute to determining appropriate learning orientations.

R-MOEA/D shows significant improvement than MOEA/D

and has stable performances among regular and irregular

environments than other comparison algorithms, which

indicates the ability to persist a reasonable searching scope

through heuristic reference regeneration, and a satisfied

diversity maintenance ability through reference reduction.

4.4 Performance on five-objective problems

Tables 4 and 5 present the HV and IGD performance on

five-objective experiments. On regular DTLZs, R-MOEA/

D has ranked first or second place with respect to HV

performance, which is comparable on DTLZ1 with AR-

MOEA and NSGA-III, and has slight improvements than

AR-MOEA/D on DTLZ3 and DTLZ4. AR-MOEA has the

best performance on WFG4, and NSGA-III ranks second. It

can be observed from the overall performances on regular

instances under five-objective R-MOEA/D shows slight

better or competitive performances than NSGA-III and

AR-MOEA, which are well-perform algorithms among

currently researches, in most cases. Therefore, the pro-

posed method has satisfied performance in regular MaOP

environment. In contrary, compared to NSGA-III,

A-NSGA-III shows a significant disadvantage on regular

MaOPs, which may be caused by the premature reference

adjusting procedure which results in the decrease in the

diversity. The results in the regular environment demon-

strate the better spreading performance of the shifting

strategy in the proposed method.

In irregular MaOP experiments, R-MOEA/D has

achieved the first places in both HV and IGD statistic

scores on DTLZ6 and DTLZ35, and achieved second pla-

ces on DTLZ5 and DTLZ7, respectively. MaOPSO and

AR-MOEA obtain the best results on DTLZ5 and DTLZ7,

Table 3 The statistical results (mean and standard deviation) in terms of IGD values on three-objective test instances

D/AEOM-RD&R-AEOaMOSPOaMIIIAGSN-AIIAGSND/AEOMmelborP

M=3 Regular
DTLZ1 2.0705e-2 (9.83e-5) + 2.7054e-2 (4.59e-4) - 3.2354e-2 (2.07e-3) - 3.5387e+0 (7.26e-1) - 2.0673e-2 (4.20e-4) + 2.6937e-2 (9.94e-4)
DTLZ2 5.4464e-2 (3.26e-5) + 6.8521e-2 (3.03e-3) - 6.6885e-2 (1.51e-3) - 6.2604e-2 (3.79e-3) - 5.9897e-2 (2.51e-3) = 5.9943e-2 (2.37e-3)
DTLZ3 9.9882e-2 (1.54e-1) - 7.7301e-2 (4.18e-3) - 7.0036e-2 (9.86e-3) + 1.1628e+2 (1.38e+1) - 8.5991e-2 (3.73e-2) - 7.5004e-2 (2.97e-3)
DTLZ4 2.4929e-1 (2.67e-1) - 6.6958e-2 (1.69e-3) + 1.5224e-1 (2.18e-1) - 8.3976e-1 (1.68e-1) - 5.9463e-2 (1.81e-3) + 1.0181e-1 (2.12e-1)
WFG4 2.4199e-1 (4.85e-3) = 2.6468e-1 (1.14e-2) + 2.3657e-1 (7.54e-3) = 5.5636e-1 (1.77e-1) - 2.4925e-1 (3.42e-3) - 2.3792e-1 (1.30e-2)
UF8 5.1478e-1 (3.24e-1) - 2.8298e-1 (4.10e-2) - 4.7204e-1 (1.49e-1) - 5.0742e-1 (1.28e-2) - 2.9902e-1 (1.52e-1) - 2.6230e-1 (1.92e-2)

1/3/20/6/01/4/10/4/21/3/2=/-/+

M=3 Irregular
DTLZ5 3.3860e-2 (3.18e-5) - 5.7350e-3 (2.50e-4) + 3.1081e-2 (9.17e-4) - 1.2885e-2 (2.77e-3) - 7.4209e-1 (1.42e-8) - 1.2685e-2 (2.34e-3)
DTLZ6 3.3910e-2 (9.25e-6) - 1.8724e-2 (4.26e-4) - 1.6663e-2 (1.85e-3) = 2.6148e+0 (8.46e-1) - 7.4209e-1 (0.00e+0) - 1.6589e-2 (1.74e-3)
DTLZ7 1.5521e-1 (2.29e-3) - 8.7209e-2 (5.25e-3) - 7.5944e-2 (2.97e-3) + 5.7826e-1 (1.43e-1) - 6.3613e-1 (2.55e-1) - 8.7143e-2 (5.22e-3)
DTLZ35 3.6545e-2 (1.40e-2) - 1.7265e-2 (3.59e-3) - 9.9566e-2 (2.69e-1) - 4.3212e+0 (2.76e+0) - 8.9753e-1 (1.79e-1) - 1.6878e-2 (3.29e-3)
WFG1 3.7449e-1 (3.29e-2) - 2.4438e-1 (2.45e-2) - 2.1359e-1 (1.56e-2) = 1.7382e+0 (1.51e-1) - 4.3232e-1 (4.51e-2) - 2.1290e-1 (7.68e-2)
WFG2 1.0034e+0 (2.88e-2) - 6.8763e-1 (1.22e-2) - 6.6752e-1 (9.10e-2) = 6.2451e-1 (2.37e-2) - 1.8280e-1 (2.53e-2) + 6.6735e-1 (2.12e-1)
WFG3 2.6267e-1 (1.21e-2) + 1.0121e-1 (1.51e-2) + 1.0447e-1 (1.31e-2) + 3.1407e-1 (5.29e-2) - 3.1888e+0 (6.53e-3) - 2.2720e-1 (1.13e-1)
UF9 3.6531e-1 (5.77e-2) - 3.2066e-1 (6.29e-2) - 3.2692e-1 (7.90e-2) - 6.0344e-1 (3.09e-2) - 5.9307e-1 (1.70e-1) - 2.6089e-1 (3.68e-2)

0/7/10/8/03/3/20/6/20/7/1=/-/+
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respectively. The stable performance among DTLZ

instances illustrates the superiority in population-guided

decomposition strategy in R-MOEA/D. Meanwhile, the

overall satisfied diversity performances reflect the robust-

ness of the many-one matching mechanism relative to one-

one matching in AR-MOEA and NSGA-III. AR-MOEA,

A-NSGA-III and MaOEA-R&D present best performances

on WFG1-3. Compared with three-dimensional environ-

ments, the ability of R-MOEA/D remains competitive in

irregular DTLZs, but deteriorates in irregular WFGs. The

problem will be studied and improved in the future study.

Moreover, the performances of MaOEA-R&D and

A-NSGA-III decline in five-objective, which indicates the

difficulty in exploring in high dimension.

As a conclusion, according to the statistical comparison

results, R-MOEA/D has significantly better performances

than A-NSGA-III and MaOPSO on regular five-dimen-

sional instances, insignificantly better ability than AR-

MOEA, and competitive results with NSGA-III. On irreg-

ular MaOPs, the proposed method is comparable with AR-

MOEA/D and shows, respectively, better HV and IGD

performances than NSGA-III and A-NSGA-III. Further-

more, it can be illustrated from A-NSGA-III’s perfor-

mances the high-dimensional objective space raises the

challenge of reference-adaptive strategies on satisfying

both regular and irregular environments. R-MOEA/D and

AR-MOEA both present leading stability toward different

Pareto shapes. The shifting strategy and many-one

matching technique in R-MOEA/D guarantee a stable and

flexible orientation adjustment during the searching pro-

cess. The performance of R-MOEA/D also demonstrates a

simple but efficient approach for multi-objective study.

5 Parametric, efficiency and sensitivity
analysis in R-MOEA/D

5.1 Parametric analysis

In R-MOEA/D, one parameter, alpha, must be predefined.

This parameter controls the diversity and convergence

proportions during the evolution. To analyze the parame-

ter’s influence on different problems, empirical experi-

ments are conducted on three-objective benchmarks with

alpha equal to 0.7, 0.9, 1.1, 1.5 and 2, respectively. The

average values of HV and IGD scores from 15 independent

runs are displayed in bar Fig. 4. For better visualization for

the differences, the HVs, which are transformed to

[0.1, 0.9], and the inverse values of IGDs are displayed in

the bar graph.

According to the printed results, R-MOEA/D shows the

best HV performances when alpha ¼ 0:7 in all regular

Table 4 The statistical results (mean and standard deviation) in terms of HV values on five-objective test instances

D/AEOM-RD&R-AEOaMOSPOaMIIIAGSN-AIIIAGSNAEOM-RAmelborP

M=5 Regular
DTLZ1 4.8888e-2 (8.77e-4 = 4.8847e-2 (6.49e-4) = 4.8353e-2 (3.77e-4) - 0.0000e+0 (0.00e+0) - 4.7050e-2 (6.09e-4) - 4.8884e-2 (1.09e-4)
DTLZ2 1.2057e+0 (5.15e-4) - 1.2563e+0 (1.16e-3) + 1.1632e+0 (1.14e-1) - 7.8847e-1 (2.48e-2) - 1.0912e+0 (2.87e-2) - 1.2247e+0 (4.98e-3)
DTLZ3 9.2623e-1 (4.65e-1) - 6.3415e-1 (5.55e-1) - 5.6446e-1 (5.57e-1) - 0.0000e+0 (0.00e+0) - 4.0418e-1 (5.51e-1) - 1.1613e+0 (2.21e-2)
DTLZ4 1.2270e+0 (6.50e-2) - 1.2192e+0 (7.89e-2) - 1.1802e+0 (9.85e-2) - 1.6091e-1 (2.16e-2) - 1.1376e+0 (1.95e-2) - 1.2364e+0 (5.53e-3)
WFG4 4.7154e+3 (1.41e+1) + 4.7131e+3 (2.20e+1) + 4.2044e+3 (3.85e+1) - 2.6660e+3 (1.55e+2) - 3.6226e+3 (9.72e+1) - 4.2388e+3 (5.61e+1)

0/5/00/5/00/5/01/2/21/3/1=/-/+

M=5 Irregular
DTLZ5 7.6119e-3 (2.59e-4) - 5.2642e-3 (2.42e-3) - 6.5276e-3 (1.23e-3) - 8.8023e-3 (8.27e-5) + 6.4705e-3 (8.87e-3) - 7.9667e-3 (4.20e-4)
DTLZ6 7.4970e-3 (2.30e-4) - 2.7041e-3 (3.45e-3) - 5.5400e-3 (1.73e-3) - 0.0000e+0 (0.00e+0) - 3.1178e-3 (3.25e-3) - 8.1543e-3 (1.38e-4)
DTLZ7 2.0676e+0 (2.09e-2) + 1.7915e+0 (8.19e-2) - 1.7681e+0 (5.35e-2) - 1.5214e+0 (1.91e-1) - 1.3135e+0 (1.79e-1) - 1.8784e+0 (2.17e-1)
DTLZ35 1.5602e-3 (1.58e-3) - 2.2064e-4 (8.55e-4) - 1.0884e-4 (4.22e-4) - 0.0000e+0 (0.00e+0) - 0.0000e+0 (0.00e+0) - 6.8417e-3 (8.72e-4)
WFG1 4.6610e+3 (1.67e+2) + 4.1946e+3 (1.41e+2) = 4.4374e+3 (1.65e+2) + 1.7242e+3 (7.42e+1) - 2.7365e+3 (4.12e+2) - 4.1905e+3 (3.44e+2)
WFG2 6.1247e+3 (1.11e+1) + 5.1136e+3 (2.76e+1) - 6.0504e+3 (4.98e+1) + 4.5263e+3 (2.38e+1) - 5.9330e+3 (2.44e+1) + 5.8469e+3 (7.99e+1)
WFG3 1.1038e+0 (1.98e-1) - 1.1164e+0 (3.44e-1) - 2.1483e+0 (3.26e-1) + 2.0108e-3 (2.23e-3) - 9.5431e-2 (2.13e-1) - 1.6732e+0 (1.85e-1)

0/6/10/6/10/4/31/6/00/4/3=/-/+

Table 5 The statistical results (mean and standard deviation) in terms of IGD values on five-objective test instances

D/AEOM-RD&R-AEOaMOSPOaMIIIAGSN-AIIIAGSNAEOM-RAmelborP

M=5 Regular
DTLZ1 6.3076e-2 (5.00e-5) = 6.3232e-2 (3.91e-4) - 6.9408e-2 (7.78e-3) - 3.4885e+0 (1.20e+0) - 9.3037e-2 (2.31e-2) - 6.1725e-2 (8.53e-4)
DTLZ2 2.1567e-1 (5.50e-5) - 1.9564e-1 (5.19e-5) + 2.6140e-1 (1.11e-1) - 3.2873e-1 (1.99e-2) - 2.1804e-1 (7.27e-3) - 2.0822e-1 (2.00e-3)
DTLZ3 4.1168e-1 (4.29e-1) - 7.4574e-1 (6.99e-1) - 8.7952e-1 (7.88e-1) - 1.0374e+2 (3.19e+1) - 6.9728e-1 (4.54e-1) - 2.1775e-1 (5.34e-3)
DTLZ4 2.3933e-1 (9.76e-2) - 2.4152e-1 (1.03e-1) - 2.9048e-1 (1.26e-1) - 1.0011e+0 (9.80e-2) - 2.1394e-1 (4.20e-3) - 2.0236e-1 (1.55e-3)
WFG4 1.1312e+0 (1.44e-3) + 1.1319e+0 (1.16e-3) + 1.2033e+0 (2.11e-2) + 1.5432e+0 (5.05e-2) - 1.1995e+0 (3.80e-2) + 1.4103e+0 (6.21e-2)

0/4/10/5/00/4/10/3/21/3/1=/-/+

M=5 Irregular
DTLZ5 7.0035e-2 (1.07e-2) - 1.6516e-1 (6.23e-2) - 1.5374e-1 (7.11e-2) - 2.0436e-2 (5.82e-3) + 7.4209e-1 (5.09e-8) - 5.4488e-2 (1.52e-2)
DTLZ6 8.5580e-2 (1.09e-2) - 3.5063e-1 (5.97e-2) - 2.8385e-1 (3.18e-2) - 1.8875e+0 (9.47e-2) - 1.8565e+0 (1.84e+0) - 6.3856e-2 (1.32e-2)
DTLZ7 3.2631e-1 (6.28e-3) + 3.9171e-1 (2.49e-2) - 3.9176e-1 (7.98e-2) - 1.3972e+0 (3.32e-1) - 2.2726e+0 (2.63e-1) - 3.8344e-1 (6.98e-2)
DTLZ35 2.9710e-1 (2.94e-1) - 2.3354e+0 (1.57e+0) - 2.5566e+0 (1.57e+0) - 3.8472e+2 (4.10e+1) - 7.5967e+1 (8.54e+1) - 7.3249e-2 (1.74e-2)
WFG1 7.3352e-1 (7.36e-2) + 7.8904e-1 (5.40e-2) + 9.1306e-1 (9.09e-2) - 2.2236e+0 (1.60e-1) - 1.4700e+0 (1.69e-1) - 8.2259e-1 (7.27e-2)
WFG2 8.0804e-1 (3.67e-2) + 8.0170e-1 (4.04e-2) + 1.7430e+0 (7.30e-1) - 1.4682e+0 (7.57e-2) - 6.5932e-1 (2.46e-2) + 9.7767e-1 (1.16e+0)
WFG3 6.7644e-1 (2.81e-2) + 6.2926e-1 (9.79e-2) + 4.6908e-1 (7.13e-2) + 8.4657e-1 (1.16e-2) - 1.4419e+0 (2.47e-1) - 7.1254e-1 (2.61e-2)

0/6/10/6/10/6/10/4/30/3/4=/-/+
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Pareto instances, and best IGD performances obtained at

0.9 in most instances. On irregular instances, the best

performed alpha is 0.9 and 1.1 for HV measure and ranges

from 0.9 to 1.5 for IGD measure. As a result, 0.9 is com-

patible with both regular and irregular instances. Further-

more, it can be observed from the result distribution the

irregular environments require higher alpha value than

regular cases, which means the population heading to the

irregular Pareto destination needs more flexibility in

exploration procedure. Therefore, it proves that the orien-

tation adjusts strategy is necessary for solving irregular

optimization problems, and the definition of aggregation

function shows less importance during the elite selection.

5.2 Reference efficiency analysis

In order to testify the relationship between reference effi-

ciency and optimization performance, a comparison is

arranged considering three assessments during the evolu-

tion. Among these assessments, a reference efficiency (RE)

metric is defined as the proportion of the contributing

orientations, each of which is presented as the closest

reference to one individual solution. It can be mathemati-

cally defined as

RE ¼ sizeðKcÞ=H ð5Þ

where

Kc ¼ kjk 2 KAnd 9p 2 Pt;Dp;k ¼ min
ki2K

Dp;ki

� �

The other two assessments are HV and IGD metrics. The

optimal solutions are evaluated in every generation on a

regular DTLZ3 instance and irregular DTLZ5 instance, and

the records of 400-generation runs are displayed in Fig. 5.

It can be observed that R-MOEA/D has obvious higher

reference efficiency on both regular and irregular cases,

while MOEA/D only activates half references during the

evolution toward irregular Pareto surface. At the same

time, R-MOEA/D has achieved better HV and IGD per-

formances than MOEA/D on both regular and irregular

UF80.7

H
V

WFG40.9

alpha

DTLZ4

Problems

1.1 DTLZ31.5 DTLZ22 DTLZ1

UF9
WFG3

WFG20.7

H
V

WFG1

Problems

0.9

alpha

DTLZ351.1 DTLZ71.5 DTLZ62 DTLZ5

UF80.7

IG
D

-1

WFG40.9

alpha

DTLZ4

Problems

1.1 DTLZ31.5 DTLZ22 DTLZ1

UF9
WFG3

WFG20.7

IG
D

-1

WFG1

Problems

0.9

alpha

DTLZ351.1 DTLZ71.5 DTLZ62 DTLZ5

Fig. 4 HV and IGD performances of R-MOEA/D with different alpha

on various benchmarks
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Fig. 5 The reference efficiency corresponding to solution performance. a DTLZ3: regular three-objective instance; b DTLZ5: irregular three-

objective instance
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problems. Therefore, it can be concluded that the MOP

performance is related to the reference efficiency, and

inefficient reference arrangement may result in inefficient

exploring scope and deterioration of optimization perfor-

mance. Meanwhile, the heuristic orientation adjustment

proposed in this paper is proved to have better explore

ability which can enhance the population diversity and

discover a more comprehensive Pareto front.

5.3 Sensitivity analysis among aggregation
approaches

In order to study the influence of MOP performance toward

different aggregation approaches, the regular instance,

DTLZ3, and an irregular instance, IDTLZ1, are optimized

using MOEA/D and R-MOEA/D methods, respectively.

The comparison aggregations are with Tchebycheff

approach and penalty-based boundary intersection

approach. The appropriate Pareto solutions obtained in

50000 evaluations are displayed in Fig. 6.

Because of the uniform reference vectors, MOEA/D has

achieved pretty good performance on regular DTLZ3,

where PBI approach shows better distribution than TCH.

The difference between the two aggregations using

R-MOEA/D is small, and both present good randomness as

well as diversity. On irregular IDTLZ1, although MOEA/D

shows good convergence and spacing, the solutions dis-

tribute in biased directions close to the borderline, while

R-MOEA/D presents a better uniformity. The PBI shows

slightly better performance than TCH with R-MOEA/D.

These observations illustrate that compared to MOEA/D,

R-MOEA/D presents less sensitivity toward different

aggregation functions, especially in the regular Pareto

fronts.

5.4 Sensitivity analysis on different numbers
of decomposition

Considering that the number of reference vectors has

impacts on the performance of traditional decomposition-

based algorithms, the similar sensitivity issue is tested in

this section. The division number p controls the number of

uniformly distributed references. Experimental results have

been collected when p equals to 3, 4, 5, 6, 7 and 9, while

the corresponding number of references is 10, 15, 21, 28,

36 and 55, respectively. The population sizes are designed

to approximate 105, so the subpopulation sizes are defined

as 11, 7, 5, 4, 3 and 2 accordingly. Regular benchmark

DTLZ3 and irregular DTLZ5 are selected as the operated

problems.

The HV and IGD comparisons which include the aver-

age values among ten independent runs are illustrated in

Fig. 7. In bar figures, the assessment values are trans-

formed into region [0.1, 0.9] for intuitive comparison. It

can be observed that both HV and IGD have approximate

unimodal distribution with the increasing number of divi-

sion. The assessment values reach best when p equal to 4, 5

and 6. For the regular DTLZ3 instance, the performances

rarely change when p
 4, while for the irregular DTLZ5,

too much division deteriorate convergence and diversity. It

is worth mentioning that the traditional decomposition is a

situation when p equals to 13, where each reference cor-

responds to one individual. According to the performance

trend, the obvious advantage of reduced decomposition can
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Fig. 6 The approximate Pareto solutions of (a) DTLZ3 and (b) IDTLZ1 obtained by MOEA/D and R-MOEA/D using Tchebycheff (TCH)

approach and penalty-based boundary intersection (PBI) approach
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be proved. The qualities of the normalized performance

statistics toward different p are displayed by box figures. It

seems that irregular problems present higher variance and

higher sensitivity to the decomposition number.

As a conclusion, the reduced decomposition approach

provides chances for better exploration especially on

irregular instances and maintains competitive results under

regular environments.

6 Discussion

The comparative studies present a comprehensive perfor-

mance on both benchmarks solving ability and some

property analyses of the proposed algorithm. First, during

the benchmark experiments, three- and five-objective

environments are provided including problems with regular

and irregular Pareto fronts. It can be observed from the

statistical results the heuristic-based adaptive references

have achieved significant improvement relative to the

uniform references on irregular Pareto problems. Mean-

while, compared to other dynamic reference adjusting

strategies, the proposed R-MOEA/D shows improved or

comparable performance in high-dimensional objective

spaces. Furthermore, the randomness of the elite distribu-

tion and the corresponding diversity improvement are

worth to be studied in the further study. Second, during

property analyses, the parametric sensitivity is carried out

to determine the most compatible alpha value, and the

reference efficiency during evolving is studied and proved

its relevance with the diversity performance. The

R-MOEA/D has achieved a better reference efficiency

which guarantees a better MOP performance. The proposed

method also presents less sensitivity on different aggregate

equations and different numbers of decomposition, which

proves a convenience parameter definition and a prospec-

tive robustness to new optimization problems.

7 Conclusion

In this article, an orientation adjustment approach is pro-

posed for better exploration in multi-objective optimiza-

tion. This approach benefits from the population-based

heuristic evolving tendency and invokes the decomposition

mechanism via a reduced number of reference vectors.

Compared to traditional scalarization approaches, individ-

uals in this novel R-MOEA/D algorithm can explore with a

sparse direction constraint and are authorized more free-

dom in order to adapt a manifold Pareto environment.

Comparison studies demonstrate that the proposed

R-MOEA/D outperforms the compared state-of-the-art

algorithms in several instances including regular and

irregular Pareto fronts under multi- and many-objective

environments. The heuristic orientation adjustment

approach with more flexibility and autonomous evolving is

proved to have a satisfied diversity maintaining the ability

and better intuition on defining the exploration scope.

Moreover, a more efficient reference definition has been

proved in R-MOEA/D compared to MOEA/D, and a rele-

vance relationship between reference efficiency and opti-

mize performance has also been established in the

reference efficiency study. In addition, R-MOEA/D proves

more independent on aggregation approaches in decom-

position-based frameworks, which can simplify several

tune procedures in decomposition studies. In the end, the

trends of MOP performance toward a different number of

decomposition are tested and the efficacy of reduced ref-

erence is proved. As a conclusion, the novel heuristic ori-

entation adjustment technique indicates a new branch in

decomposition-based approaches, which deserved to be

studied for better exploration and exploitation in future

works.
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