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Abstract
In this study, we propose a novel method for automatically detecting sleep-disordered breathing (SDB) events using a

recurrent neural network (RNN) to analyze nocturnal electrocardiogram (ECG) recordings. We design a deep RNN model

comprising six stacked recurrent layers for the automatic detection of SDB events. The proposed deep RNN model utilizes

long short-term memory (LSTM) and a gated-recurrent unit (GRU). To evaluate the performance of the proposed RNN

method, 92 SDB patients were enrolled. Single-lead ECG recordings were measured for an average 7.2-h duration and

segmented into 10-s events. The dataset comprised a training dataset (68,545 events) from 74 patients and test dataset

(17,157 events) from 18 patients. The proposed method achieved high performance with an F1-score of 98.0% for LSTM

and 99.0% for GRU. The results demonstrate superior performance over conventional methods. The proposed method can

be used as a precise screening and diagnosing tool for patients with SDB disorders.
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1 Introduction

Sleep-disordered breathing (SDB) is the most common

sleep disorder, and it includes sleep apnea and sleep

hypopnea. SDB is characterized by repetitive cessations

(apnea) or decreases (hypopnea) of breathing for at least

10 s during sleep. SDB is known to degrade the quality of

sleep and that of life by causing excessive sleepiness,

fatigue, irritability, and inattention [1]. Undiagnosed SDB

can exacerbate risk factors of coronary artery disease [2],

cardiac arrhythmias [3], hypertension [4], stroke [5], dia-

betes [6], cognitive dysfunction [7], and depression [8].

The treatment of these factors has become a high-cost

burden on the healthcare system [9].

A nocturnal polysomnography (PSG) is considered the

standard method for objectively evaluating sleep disorders,

including SDB. However, PSG requires uncomfortable di-

agnostic equipment with multiple sensors, trained atten-

dees, and great expense. Additionally, manual annotation

by sleep specialists is particularly time-consuming and

labor-intensive. Different results can be produced or errors

can occur depending on the experience and subjective

judgment of the specialist.

Over the last two decades, there have been several

studies of novel methods using a single-lead electrocar-

diogram (ECG) to replace PSG for SDB detection. Ini-

tially, Penzel et al. used a single-lead ECG for automatic

detection of sleep apnea in early 2000 [10]. Since then,

many studies have used a single-lead ECG signal for

minimizing the sensors for signal measurement and easy

implementation. For those studies, it is important to extract

the discriminative features, select the optimal features, and

apply them to the various machine learning methods. Heart

rate variability [11], inter-beat (RR) interval, and ECG-

derived respiratory were used to extract the discriminative

feature sets [12]. Those signals were analyzed using

advanced signal processing techniques in different analytic

domains (e.g., time, frequency, nonlinear domain) [13, 14].

Optimal features were selected through statistical evalua-

tion [14], wrapper methods [15], and principal component

analysis [12] from extracted feature sets to reduce the

dimensions and improve performance. Finally, robust

classifiers such as artificial neural networks [16] and
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support vector machines [17] were employed for SDB

detection. However, those studies had some drawbacks

because of numerous calculations and computation, hand-

crafted feature sets, and lower detection rates. To solve

these problems, some studies [18, 19] used deep learning in

the form of convolutional neural networks (CNN), which

have shown high performances. However, CNN is

designed for image recognition and requires high compu-

tational power.

Recurrent neural networks (RNN) are extensions of

conventional feedforward neural networks, which handle

variable-length sequences and time-series data [20]. They

are known to have enhanced the performance of speech

recognition [21], natural language processing [22], and

biomedical engineering activities [23]. Furthermore, SDB

has a repetitive temporal occurrence that can be regarded

as a ‘‘time series.’’ RNN can be more useful and appro-

priate for detection of SDB than conventional machine

learning and/or CNN-based methods.

In this study, we propose a novel method for automatic

detection of SDB events based on deep RNN using a sin-

gle-lead ECG signal. We utilize two major RNN models:

long short-term memory (LSTM) and gated-recurrent unit

(GRU). The LSTM is used as the main memory cell, and

GRU is used for performance comparison. Finally, we

compare performances between the conventional and pro-

posed methods.

2 Materials and methods

2.1 Subjects and data processing

We collected recordings of nocturnal PSGs from 92 sub-

jects (74 males and 18 females) suffering SDB. The PSG

recordings were conducted using the Embla N7000

amplifier system (Embla System Inc., USA) in the Sleep

Center of the Samsung Medical Center (Seoul, Korea). In

accordance with the American Academy of Sleep Medicine

(AASM) guidelines [24], all PSG recordings were anno-

tated by certified sleep technicians and verified by sleep

specialists. The institutional review board (No. 2012-01-

063) of Samsung Medical Center approved this study and

waived the patient consent requirement. All patients were

provided written informed consent for participating in this

study (Table 1). The exclusion criteria were patients with

central sleep apnea, mixed sleep apnea, and cardiovascular

disorders.

A single-lead ECG signal was recorded by a lead II

transducer at 200 samples/s during the nocturnal PSG. A

bandpass filter (5–11 Hz) was applied for data prepro-

cessing to remove undesired noise from the ECG signal.

Then, all preprocessed ECG signals were segmented at

10-s duration events. The segmentation was performed by

specialists with no overlap. If more than half of a segment

is annotated as normal, it is considered a normal event, and

vice versa. Of all events, 182,642 were normal, 21,426

were apneas, and 34,841 were hypopneas.

2.2 The proposed method

An RNN is ideally suited to sequential information and is

excellent for time-series data because it also has memory.

RNN is a looped-back architecture of interconnected neu-

rons and current input; the last hidden state affects the

output of the next hidden state.

The proposed method for automatic detection of SDB

events, based on RNNs from a single-lead ECG, is illus-

trated in Fig. 1. The proposed method comprises four parts:

input, RNN, classification, and output. The input of RNN is

a single-lead ECG signal, including the physiological signs

(e.g., RR interval, heart rate, and respiration). Input signals

were normalized before applying the RNN (Fig. 1a). The

architecture consists of a 6-layer RNN, and each has a

different number of memory cells. We experimentally

found an optimal architecture of the deep RNN model for

automatic detection of SDB. Additionally, LSTM and GRU

memory cells were applied to the proposed deep RNN

model to compare their performances (Fig. 1b).

LSTM is a modification of RNN that allows the influ-

ence of time steps to be passed farther along a sequence

than is possible with a simple RNN [22]. LSTM is an

extension of a simple RNN with memory cells to make

learning temporal relationships easy over time. In LSTM,

each memory cell contains three major gates: an input gate,

an output gate, and a forget gate [23]. LSTM is expressed

as follows.

The input gate controls the flow of input activations into

the memory cell.

it ¼ r Wxixt þWhiht�1 þ bi
� �

: ð1Þ

The output gate controls the output flow of cell activations

into the rest of the network.

ot ¼ r Wxoxt þWhoht�1 þ bo
� �

: ð2Þ

The forget gate scales the internal state of the cell before

adding it as input through the self-recurrent connection of

the cell. Therefore, it adaptively forgets or resets the cell’s

memory.

ft ¼ r Wxf xt þWhf ht�1 þ bf
� �

; ð3Þ

gt ¼ r Wxcxt þWhcht�1 þ bc
� �

; ð4Þ

ct ¼ ft � ct�1 þ it � gt; ð5Þ
ht ¼ ot � / ctð Þ; ð6Þ
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where i, f, o, and c are, respectively, the input gate, forget

gate, output gate, and cell activation vectors, all of which

are the same size as vector h, defining the hidden value.

Terms r and s represent nonlinear and hyperbolic tangent

functions, respectively (Fig. 2).

GRU is a relatively new type of RNN. It is a simplified

version of LSTM that combines the cell and hidden states

and uses an update gate instead of a forget gate and an

input gate. GRU use has boomed in recent years, turning

into a strong competitor of LSTM [25, 26]. However, The

GRU has gate units that modulate the flow of information

inside the unit. However, they do not have separate

memory cells [27].

zt ¼ r Wxzxt þWhzht�1 þ bz
� �

; ð7Þ

Table 1 Demographic and anthropometric characteristics of the subject groups

All subjects Mild (mean ± SD) Moderate (mean ± SD) Severe (mean ± SD) p value Total (mean ± SD)

N Gender (M:F) 22 (15:7) 38 (31:7) 32 (27:5) 92 (73:19)

Age (years) 58.1 ± 13.8 58.6 ± 9.7 56.3 ± 10.2 NS 57.7 ± 10.8

BMI (kg/m2) 24.6 ± 2.3 26.2 ± 3.4 26.8 ± 3.0 NS 26.0 ± 3.1

AHI (per hour) 10.1 ± 2.8 21.8 ± 4.3 48.0 ± 13.8 \ 0.01 28.1 ± 17.5

TST (hour) 6.0 ± 0.9 5.9 ± 1.0 5.7 ± 1.2 NS 5.8 ± 1.0

Training set

N Gender (M:F) 18 (12:6) 30 (26:4) 26 (22:4) 74 (57:14)

Age (years) 59.5 ± 11.7 58.6 ± 10.3 55.4 ± 9.9 NS 56.9 ± 12.6

BMI (kg/m2) 24.6 ± 2.4 26.3 ± 3.5 27.1 ± 3.1 NS 25.6 ± 3.2

AHI (per hour) 10.8 ± 2.5 22.9 ± 4.2 51.5 ± 12.8 \ 0.01 30.0 ± 12.5

TST (hour) 6.1 ± 0.9 5.9 ± 0.9 5.7 ± 1.2 NS 5.5 ± 1.3

Test set

N Gender (M:F) 4 (3:1) 8 (6:2) 6 (5:1) 18 (14:4)

Age (years) 49.7 ± 24.8 55.0 ± 5.9 60.2 ± 11.4 NS 55.9 ± 12.2

BMI (kg/m2) 24.7 ± 2.1 26.0 ± 3.4 25.6 ± 1.9 NS 25.6 ± 2.6

AHI (per hour) 6.6 ± 0.7 16.3 ± 1.0 32.5 ± 2.7 \ 0.01 19.6 ± 10.3

TST (hour) 5.5 ± 0.7 6.3 ± 1.2 5.4 ± 1.2 NS 5.8 ± 1.1

N Numbers; M male; F female; BMI body mass index; AHI apnea–hypopnea index; TST total sleep time; SE sleep efficiency; NS = no significant

difference among patient groups (p value[ 0.01)

(a)

Apnea (A)

Hypopnea (H)

A + H

(d)

LSTM/GRU
layer

(b)

Fully-Connected
layer

Soft
max

(c)

Batch 
Normalization. Dropout

block x 6

Batch Normalization

0 1 2 3 4 5 6 7 8 9 10

tn

tn-1

t1

tn

tn-1

t1

LSTM/GRU
layer

Fig. 1 Schematic diagram of

the proposed deep RNN model.

a Input gets single-lead ECG

and normalized. b RNN model

consists of the LSTM and GRU.

c Classification contains a fully

connected multilayer perceptron

with softmax activation.

d Output is calculated for apnea

(A) events, hypopnea

(H) events, and A ? H events
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rt ¼ r Wxrxt þWhrht�1 þ br
� �

; ð8Þ

h0t ¼ tanhðWxt þWht�1 � rtÞ; ð9Þ

ht ¼ 1� ztð Þ � ht�1 þ zt � h0t; ð10Þ

where z, r, and h are, respectively, the input gate, the forget

gate, the output gate, and cell activation vectors, all of

which are the same size as vector h, defining the hidden

value. Terms r and s represent nonlinear and hyperbolic

tangent functions, respectively. Term xt is the input to the

memory cell layer at time t (Fig. 3).

After the LSTM/GRU layer, output feature maps endure

batch normalization and dropout layers to avoid overfitting

and divergence. Classification is performed by the fully

connected network using softmax regression (Fig. 1c). The

outputs of the proposed method are evaluated by the apnea

(A), hypopnea (H), and A ? H events (Fig. 1d).

2.3 Implementation and training

The proposed deep RNN model for automatic detection of

SDB events was implemented by Keras’ [28] platform

using a TensorFlow [29] background. Keras is a library that

can easily build and evaluate deep learning models. It was

trained and evaluated on a graphical processing unit

(GeForce GTX1080 Ti) and a central processing unit (Intel

E5-1620 v2 3.50 GHz, 8 CPUs). RNNs are trained in a

fully supervised way, back-propagating the gradients from

the softmax layer through to the recurrent units. The net-

work parameters are optimized by minimizing the cross-

entropy loss function using mini-batch gradient descent

with the Adam update rule [30].

We performed heuristic experiments to find the optimal

architecture of the proposed deep RNN model. All ECG

segments had same 10-s duration and were shaped as

2000 9 1. Finally, we found optimal architecture of the

deep RNN model for our dataset. The model architecture

was optimized by batch normalization, dropout, and mul-

tilayer perceptron (MLP) as presented Table 2.

2.4 Performance measures

We evaluate the proposed deep RNN model using the F-

measure (F1-score), one that considers the correct classi-

fication of each class equally. The F1-score combines two

measures as precision and recall. Additionally, accuracy

Fig. 2 Structure of the LSTM

memory cell

Fig. 3 GRU memory cell
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was calculated for performance comparison with other

studies. These are defined as follows.

Accuracy ¼ ðTPþ TNÞ=ðTPþ TN + FP + FN), ð11Þ
Precision ¼ TP/(TP + FP), ð12Þ
Recall ¼ TP/(TP + FN), ð13Þ

where TP and FP are the number of true and false positives,

respectively. TN and FN correspond to the number of true

and false negatives.

F1 ¼
X

i

2 � wi

Precisioni � Recalli
Precisioni þ Recalli

; ð14Þ

where i is the class index and wi = ni/N is the proportion of

samples of class i, with ni being the number of samples of

the ith class; N is the total number of samples.

3 Results

3.1 SDB datasets

We used the SDB datasets collected from the 92 subjects to

train and evaluate the proposed deep RNN model. The

dataset consisted of the balanced and randomly selected

events from the total segmented events, including normal,

apnea, and hypopnea. The LSTM and GRU models were

trained on the dataset of 74 subjects and tested on the

dataset of 18 subjects (Table 3).

3.2 Results of LSTM model

The results of performance evaluation of the LSTM model

are shown in Table 4. For the test set, the LSTM model

showed a precision of 98.0%, a recall of 98.0%, and an F1-

score of 98.0% for apnea events; 97.0%, 97.0%, and

97.0%, for hypopnea events; and 97.0%, 96.0%, and

96.0%, for A ? H events, respectively. The LSTM model

achieved a very stable and robust performance for the SDB

events.

Accuracy and loss rates of the LSTM model were

determined, as shown in Fig. 4. The accuracy graphs show

that there were two inspiration points after 5 and 25 iter-

ations. Learning accuracy stabilized after 40 iterations. The

LSTM model took many iterations to achieve stability and

inspiration because of its complex structure. Additionally,

there were some spikes and variations in the hypopnea

event for test set. That result demonstrates that it is chal-

lenging to learn for hypopnea events using single-lead

ECG signal. Loss gradually decreases in the training set,

but it stabilized after 40 iterations in the test set for all SDB

events. There are some fluctuations in the curves of accu-

racy and loss in the test phase of the LSTM model. Those

fluctuations were caused not only by the similar patterns of

apnea and hypopnea events, but also by the motion artifacts

and other noises of the single-lead ECG signal since ECG

signal was not preprocessed.

Table 2 The parameters and

characteristics of the proposed

deep RNN model

Layer type Layer name Activation # Memory cells Parameters

GRU LSTM

Input batchnorm_0 = 4 4

RNN model rnn_1 sigmoid 120 43,920 58,560

batchnorm_1 480 480

rnn_2 sigmoid 100 66,300 88,400

batchnorm_2 400 400

rnn_3 sigmoid 80 43,440 57,920

batchnorm_3 320 320

dense_1 6480 6480

rnn_4 sigmoid 60 25,380 33,840

batchnorm_4 240 240

rnn_5 sigmoid 40 12,120 16,160

batchnorm_5 160 160

rnn_6 sigmoid 20 3660 4880

batchnorm_6 80 80

dense_2 420 420

Classification dense_3 softmax 2 42 42

Total 6 rnn layers 422 203,446 268,386

rnn Recurrent neural layer, batchnorm batch normalization layer, dense MLP
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3.3 GRU model results

GRU performance is presented in Table 5. For the test set,

the GRU model had a precision of 99.0%, a recall of

99.0%, and an F1-score of 99.0% for apnea events; 97.0%,

97.0%, and 97.0% for hypopnea events; and 96.0%, 95.0%,

and 95.0% for A ? H events, respectively. The GRU

model had a precise and high performance for the SDB

events.

Figure 5 shows how accuracy and losses of the GRU

model changed according to the number of iterations

Table 3 Detailed SDB dataset

information
Dataset Normal events Hypopnea events Apnea events Total

Training set 34,281 17,140 17,124 68,545

Test set 8570 4285 4302 17,157

Total 42,852 21,426 21,426 85,702

Table 4 The LSTM model performance for SDB events

Dataset Events Precision Recall F1-score

Training set Apnea 98.0 98.0 98.0

Hypopnea 98.0 98.0 97.0

A ? H 97.0 97.0 97.0

Test set Apnea 98.0 98.0 98.0

Hypopnea 97.0 97.0 97.0

A ? H 97.0 96.0 96.0
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Fig. 4 LSTM model accuracy and losses for SDB event detection. a Training set accuracy, b training set losses, c test set accuracy, d test set

losses
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performed. The GRU model showed faster inspiration and

better performance than the LSTM model. The GRU

model’s learning accuracy stabilized after 20 iterations

(Fig. 5a), which was almost twice as fast as the LSTM

model. Additionally, GRU showed robust performance

over the LSTM model. However, some spikes occurred

when processing the apnea and hypopnea event datasets.

4 Discussion

This study proposed a novel method for automatic detec-

tion of SDB events based on deep RNN from a single-lead

ECG signal. The proposed deep RNN model was designed

on an LSTM model, and a GRU model was applied for

performance comparison. Each model was trained and

evaluated using SDB datasets from 92 patients with SDB.

The LSTM model achieved a high performance with an F1-

score of 98.0% for apnea events, 97.0% for hypopnea

events, and 96.0% for A ? H events, for the test set. The

GRU model showed a precise performance with an F1-

Table 5 GRU model performance for SDB events

Dataset Events Precision Recall F1-score

Training Apnea 99.0 99.0 99.0

Hypopnea 97.0 97.0 97.0

A ? H 96.0 96.0 96.0

Test Apnea 99.0 99.0 99.0

Hypopnea 97.0 97.0 97.0

A ? H 96.0 95.0 95.0
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Fig. 5 GRU model accuracy and losses for SDB event detection. a Training set accuracy, b training set losses, c test set accuracy, d test set

losses
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score of 99.0% for apnea events, 97.0% for hypopnea

events, and 95.0% for A ? H events.

Several studies that proposed methods for automatic

detection of sleep apnea using a single-lead ECG signal, as

listed Table 6. Mendez et al. [12] used RR interval and

ECG-derived respiratory signal from a single-lead ECG

signal. These were analyzed by empirical mode decom-

position and wavelet analysis to extract two feature sets

containing 10 and 20 features. Linear and quadratic dis-

criminant classifier (QDA) were used for sleep apnea

classification. Al-Angari and Sahakian [17] used a non-

linear measure of synchronous signals that presented a

phase-locking value between respiratory, ECG, and SpO2

signals. The phase-locking values were applied to a support

vector machine (SVM) for sleep apnea classification. Xie

and Minn [15] used SpO2 and ECG signals as input and

extracted 150 features from those two inputs. Finally, 39

features were selected through feature selection and used

classifier combinations. However, all of those studies

proposed methods that conducted complicate signal pro-

cessing, feature extraction, and feature selection. Addi-

tionally, the results showed performances under 90%. In

contrast, Jafari [13] and Chen et al. [14] showed higher

performances for sleep apnea detection, but complex

nonlinear feature sets and multivariable statistical analyses

were used. The proposed deep RNN method can eliminate

those complex calculations for signal processing, feature

extraction, and feature selection. This is shown to be

superior than all conventional methods listed in Table 6.

Dey et al. [18] and Urtnasan et al. [19] used a CNN

model to classify sleep apnea using the single-lead ECG, as

listed in Table 6. In those studies, they designed and found

the optimal architecture of the CNN model, and their

results demonstrated high performances for only classifi-

cation of apnea events but not for classification of SDB,

events including the hypopnea and A ? H events. Addi-

tionally, their results were higher than previous studies,

which used the conventional machine learning algorithms.

Finally, they also used fewer numbers of subjects than

ours. In Dey et al. [18], the population did not contain the

mild and moderate SDB patients; they only consisted of 12

normal and 23 severe SDB patients. However, the proposed

deep RNN model showed superior performance because

we used a bigger dataset of several types of SDB patients.

Urtnasan et al. [19] used a dataset from all groups of SDB

patients and found an optimal CNN architecture for sleep

apnea detection using a single-lead ECG signal. However,

their performances were lower than that of the proposed

LSTM and GRU model for apnea events.

The proposed RNN model for automatic detection of

SDB events obtained more robust performance than con-

ventional methods. In addition, it can discriminate hypop-

nea events using a single-lead ECG signal that was very

challenging task for conventional methods [11, 12]. The

main reasons to reach at the result are deep architecture of

RNN model and recurrent memory cells such as LSTM/

GRU. The proposed deep RNN model used basic memory

cell of LSTM and GRU. Particularly, forget gate of LSTM

and update gate of GRU played a main role for automatic

detection of SDB events. Not only memory cells can rec-

ognize the characteristics of SDB dataset, but it can

strongly represent the long-term dependencies of apnea and

hypopnea events. Also, deep architecture as a good sup-

porter of LSTM and GRU memory cells function as the

performance enhancer of the proposed RNN model.

From the result of our deep RNN models designed for

automatic detection of SDB events, we received some

insights for suitability of the RNN model in diagnosing and

screening SDB. In terms of engineering, first is the

enhancement of the feature extraction process performed

by high-dimensional data abstraction. Second is the

increase in discrimination power for precise classification

of the events, which is rarely seen in conventional classi-

fication methods. From a clinical perspective, deep RNN

models can provide more robust performances for SDB

event detection and can distinguish the hidden events

including hypopnea and A ? H using fewer input signals.

Thus, the proposed deep RNN model can possibly serve as

a helpful and alternative tool for the PSG method.

Table 6 Performance

comparison with other studies
Study Years Subject Method Accuracy Sensitivity Specificity

Mendez [12] 2010 50 QDA 89.7 90.4 86.7

Al-Angari [17] 2012 100 SVM 82.4 69.9 91.4

Xie [15] 2012 25 Bagging REPTree 79.0 84.6 83.3

Jafari [13] 2013 35 SVM 94.8 95.4 94.1

Chen [14] 2015 90 SVM 97.4 98.9 92.9

Dey [18] 2016 35 CNN 98.9 97.8 99.2

Urtnasan [19] 2017 82 CNN 96.0 96.0 96.0

Our method 2018 92 LSTM 98.5 98.0 98.0

GRU 99.0 99.0 99.0
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5 Limitations and conclusion

There are some limitations in our study. We did not con-

sider the central and mixed sleep apnea events because of

their rarity. The proposed deep RNN model is unaware of

the starting and ending point of apnea events because of

performing event-based detection that only can detect the

presence or absence of apnea events. The reference anno-

tation of the PSG recordings was labeled by one certified

clinician and not by cross-checking. We did not remove the

noise events (e.g., snoring, movements). We used only

basic memory cell of LSTM and GRU, and did not use any

variation of LSTM/GRU and bi-directional RNNs. Finally,

a small number of subjects were used for the proposed

method. Further studies resolving these limitations and

thereby facilitating the development of more robust deep

learning models should be conducted. In addition, use of

another class of methods such as Gaussian process should

be considered [31].

In this study, the deep RNN models demonstrated

automatic detection of SDB events using a single-lead

ECG. Their performance was evaluated for LSTM and

GRU models. Each model showed excellent performance.

The LSTM model demonstrated an F1-score of 98.0% for

apnea events, and the GRU model showed an F1-score of

99.0% for apnea events. The results of these models are

applicable to ECG signals obtained from sleep measure-

ment systems. Finally, a new approach was proposed for

accurately diagnosing and detecting SDB events. A GRU

model can be a helpful tool for sleep technicians to anno-

tate SDB because they manually annotate SDB events

according to their preferred criteria within the AASM

guidelines. Additionally, the model can be more valuable

for SDB screening, particularly with standard PSG and

CPAP systems.
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