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Abstract
In this paper, weighted differential evolution algorithm (WDE) has been proposed for solving real-valued numerical

optimization problems. When all parameters of WDE are determined randomly, in practice, WDE has no control parameter

but the pattern size. WDE can solve unimodal, multimodal, separable, scalable, and hybrid problems. WDE has a very fast

and quite simple structure, in addition, it can be parallelized due to its non-recursive nature. WDE has a strong exploration

and exploitation capability. In this paper, WDE’s success in solving CEC’ 2013 problems was compared to 4 different EAs

(i.e., CS, ABC, JADE, and BSA) statistically. One 3D geometric optimization problem (i.e., GPS network adjustment

problem) and 4 constrained engineering design problems were used to examine the WDE’s ability to solve real-world

problems. Results obtained from the performed tests showed that, in general, problem-solving success of WDE is sta-

tistically better than the comparison algorithms that have been used in this paper.

Keywords Cuckoo search algorithm � Artificial bee colony algorithm � Differential evolution algorithm � Backtracking

search optimization � Particle swarm optimization

1 Introduction

Evolutionary algorithms (EA) are commonly used for solving

complex numerical optimization problems (i.e., multimodal,

non-differentiable, highly nonlinear, and constrained design

problems) [1–7]. EAs are population based, iterative,

stochastic search mechanisms, searching for optimum solu-

tions that belong to the related problem [8–11]. Random

solution of a numerical optimization problem is demonstrated

with a pattern containing individuals as the dimension of the

problem [8, 12–15]. EAs can find the near optimum solution

of a problem by using limited number of patterns. Patterns are

kept in a pattern matrix having different patterns as the rows

[8, 15]. Interaction models defined between the pattern matrix

elements bring in collective search capability to EAs. EAs can

be classified as swarm-inspired [1–4, 7–13], bio-inspired

[16, 17], or nature-inspired [18, 19] algorithms. Bio-inspired

EAs, the most frequently used EAs, simulate various genetic

processes such as selection, mutation, and crossover analog-

ically, with the help of the interaction models that they are

using. EAs use interaction models to generate trial patterns by

using the present patterns. If a trial pattern produces more

feasible results than the pattern that it corresponds, then it is

added to the pattern matrix instead of the related pattern at the

next iteration. Problem-solving successes of EAs are gener-

ally sensitive to several parameters; i.e., structural properties
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of the problem, dimension of problem, initial form of the

pattern matrix, random number generator that is being used,

total number of function evaluation value.

EAs have been used in the solution of various structural

engineering design problems [20, 21], such as communication

applications [7], image processing applications [22], solution

of some speech recognition problems [23], solution of sensor

deployment problems [24], various data mining applications

[25], design of IIR filters [26], video processing [27], and

solution of other several engineering problems [28–35].

The nature of a numerical optimization problem defines

whether it is a unimodal, multimodal, separable, non-sep-

arable, scalable or hybrid problem, or not [1, 10–12].

Unimodal problems have a single local solution, which is

the same with the global solution. Multimodal problems

have several global solutions. Therefore, in the solution of

multimodal problems, EAs using interaction models that do

not trap the local solutions should be used. In separable

problems, since each variable is independent from the other

variables, in the solution of this type of problems, each

variable can be optimized independently. In non-separable

problems, all variables have to be optimized together. In

scalable problems, computational complexity of problem

changes with changing dimension of problem. Problem-

solving success of EAs is sensitive to whether they have

trial pattern generation strategy appropriate to the nature of

the related problem, or not.

EAs generally produce a trial pattern with the usage of a

crossover process defined between the patterns or a muta-

tion process based on a statistical distribution model. Pat-

tern generation strategies used in EAs are frequently based

on interaction between patterns. (i.e., swarming). EAs

benefit from a trial pattern to evolve a pattern to a pattern

that iteratively provides a better fitness value. In order to

generate a trial pattern, patterns selected as the raw genetic

material among the present patterns are mixed by using

various pseudo-genetic operators. System equations defin-

ing the trial pattern generation processes used in EAs

generally show important similarities [8]. Besides, usage

style of the related system equations shows significant

differences in EAs. The strategy that an EA uses for trial

pattern generation influences its problem-solving success

and speed. Researches continue to develop new EAs that

can solve complex engineering problems.

This paper introduces WDE that can solve different

types of numerical problems (i.e., separable, non-separable,

unimodal, multimodal, and hybrid problems). WDE is a

non-recursive, iterative algorithm; the swarming process of

WDE is very efficient. Therefore, WDE is generally not

trapped easily with local solution. This increases WDE’s

success in solving numerical problems considerably. WDE

uses a random crossover-based swarming strategy to gen-

erate interaction pattern. While evolving a pattern into a

more feasible pattern, WDE produces a trial pattern by

changing some randomly selected or all individuals of the

related pattern with the related individuals of an interaction

pattern. Though trial pattern generation strategy of WDE is

very productive, there is a possibility of trapping to local

solution in hybrid problems. Every pattern matrix of WDE

evolves into a randomly selected and permuted pattern

matrix to provide swarming in every iteration. While WDE

generates a trial pattern by allowing the changing of only

one individual for the first pattern matrix, it produces a trial

pattern by allowing a randomly selected number of indi-

viduals for the second pattern matrix. WDE generates a

trial pattern by allowing the changing of all individuals for

the third pattern matrix.

In this paper, numerical optimization problem-solving

capability of WDE is examined in detail by using CEC’ 2013

[36] numerical functional optimization problems. Cuckoo

search algorithm (CS) [3, 8], artificial bee colony (ABC) [1],

adaptive differential evolution algorithm (JADE) [37], and

backtracking search optimization algorithm (BSA) [7] have

been successful in the solution of many different engineering

problems. Therefore, the success of WDE in the solution of

functional optimization problems has been examined with

statistical comparison with CS, ABC, JADE, and BSA. GPS-

Based Geodesic network adjustment problem has been solved

by using classical least square adjustment method and WDE.

Engineering design problems have been solved by using

PSO2011 [9], CPI-JADE [38], A? [39], CS, ABC, JADE,

BSA, and WDE.

Differential evolutionary algorithm (DE) is a statistical,

powerful, and widely used evolutionary computation

algorithm developed to solve real-valued numerical opti-

mization problems. DE is robust, its implementation is

relatively easy, and its structure is simple. DE is used in the

solution of unimodal, multimodal, and hybrid problem

types. DE also has some disadvantages. The success of DE

shows the sensitivity to the problem type. DE suffers from

premature convergence, especially when solving multi-

modal and hybrid problems. The global search capability of

DE is sufficient for many problem types. However, the

local search ability of DE is weak. Also, DE suffers from

low convergence speed. The standard DE tends to rapidly

reduce the diversity of the population. This restricts DE’s

search ability. The performance of DE generally decreases

rapidly as the search space size increases. DE is sensitive to

the selection of control parameters, and it is time-con-

suming and difficult to tune them for different problems.

The success of DE depends on the crossover and mutation

strategy it uses at the moment. DE is not strong enough to

determine efficient evolutionary direction and evolutionary

step size [7, 8, 15].

The need to develop a method that does not have the

inherent limitations of DE has motivated the development of
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WDE. The problem-solving success of the WDE is, to a large

extent, not dependent on the problem type, as opposed to the

DE. Also, WDE does not need to use a different mutation

process like DE for each problem type. The crossover and

mutation process of WDE is different from the crossover and

mutation processes of DE; they are simpler and much more

efficient. Compared to DE, WDE has the ability to determine

very efficient evolutionary search direction and evolutionary

step. In addition, WDE does not allow the diversity of the

population to decline rapidly. For this reason, it may continue

to do efficient searches in progressive iterations, contrary to

DE. Because WDE does not have a control parameter in

practice, the time-consuming and difficult parameter tuning

process of DE is not available in WDE.

This paper is organized as follows: In Sect. 2, nomen-

clature is given. In Sects. 3 and 4, weighted differential

evolution algorithm (WDE) and experiments are presented,

respectively. In Sect. 5, conclusions and possible research

directions are given.

2 Nomenclature

Symbol Meaning/definition

F Objective function

low, up Search Limits

N Size of population

D Dimension of problem

MaxCycle Maximum number of iterations

gmin Global minimum

gbest Global minimizer

jð�Þ �Uð0; 1Þ;jð�Þ 6¼ 0 Uniform random number

kð�Þ �Nð0; 1Þ Normal random numbers

a; b�Uð0; 1Þ Uniform random numbers

Pði0;j0Þ j Pði0;j0Þ �Uðlowðj0Þ; upðj0ÞÞ Patterns of pattern matrix

fitPði0Þ Fitness values of Pi0¼1:N

permute() Permuting function
� Hadamart operator

3 Weighted differential evolution algorithm
(WDE)

WDE is a bi-population based, iterative, evolutionary

search algorithm developed to solve real-valued numerical

optimization problems. WDE has been designed as a global

minimizer algorithm. WDE can perform bounded or

unbounded search. The elitist EAs are generally successful

in solving the unimodal problems. However, the elitist

behavior that an EA exhibits may cause it to be trapped

with local solutions. Therefore, partially elitist functioning

of an EA accelerates its convergence to solution and pre-

vents it from being trapped with local solutions.

The initialization process of WDE includes defining the

initial population (i.e., pattern matrix; P). P is computed by

using Eq. 1;

Pði0;j0Þ �U lowðj0Þ; upðj0Þ
� �

j 2N|{z}
rows

; D|{z}
colums

0

@

1

A size Pð Þ

ð1Þ

Here, i0 ¼ ½1 : 2N�; j0 ¼ ½1 : D�;where i0; j0 2 Zþ: In

Eq. 1, N is the pattern vector number, and D is the problem

dimension. lowj0; upj0 are the lower and upper search limits

of the j0th parameter. Uð�Þ denotes the continuous uniform

distribution. The objective function value of Pi0 is com-

puted by using Eq. 2;

fitPði0Þ ¼ F Pði0Þ
� �

ð2Þ

In Eq. 2, F denotes the objective function. The first

selection process of WDE generates a sub-pattern matrix,

SubP, from P. WDE generates SubP by randomly selecting

N pattern vectors from P in each iteration

where N|{z}
rows

; D|{z}
colums

0

@

1

A size SubPð Þ. SubP is defined by

using Eq. 3;

SubP ¼ PðkÞ j f k ¼ jð1:NÞ j j ¼ permute ð1 : 2NÞ ð3Þ

In Eq. 3, permute �ð Þ denotes the permuting function. The

objective function values, fitSubP, of the pattern vectors of

SubP are defined in Eq. 4;

fitSubP ¼ fitPðkÞ ð4Þ

The mutation process aims to generate new pattern vectors,

i.e., TempP. WDE regenerates TempPindex¼1:N ¼

TempP1

. . .
TempPN

2

4

3

5 in each iteration by using Eq. 5;

TempPðindexÞ ¼
X
ðw � PðlÞÞ j l ¼ jnk ðsee Eq:3 for j; kÞ

ð5Þ

where index ¼ 1 : N and index 2 Zþ. In Eq.5, w� ¼
j3
ðNÞ j ½N; 1� ¼ sizeðw�Þ where w� :¼ w�P

w�
and w ¼ w� �

D where D ¼ 1½ � 1;Dð Þ.
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WDE updates the initial M 1:N;1:Dð Þ ¼ 0 in each iteration

by using Eq. 6, and uses the updated M to control the

mutation process;

M ðindex;JÞ :=1 ð6Þ

In Eq. 6, J ¼ V 1 : K � Dd eð Þ j V ¼ permute j0ð Þ: K is

defined with the rule in Eq. 7;

If a\b then K ¼ j3
ð1Þ else K ¼ ð1� j3

ð1ÞÞ ð7Þ

In Eq. 7, a; b; j�Uð0; 1Þ; �ð Þ ¼ sizeðjð:Þ.
In WDE, jð�Þ generates �ð Þ-sized real-valued uniform

random number, each time it is used. In WDE, the evolu-

tionary step size (i.e., scale factor), F, is computed by using

the rule given in Eq. 8;

if a\b thenF ¼ ½k3
ðDÞ�
0 j ½ 1|{z}

rows

; D|{z}
columns

� ¼ sizeðFÞ

elseF ¼ ðk3
ðNÞ � DÞ j ½ N|{z}

rows

; D|{z}
columns

� ¼ sizeðFÞ

ð8Þ

In WDE, trial vector, T, is generated by using Eq. 9;

T ¼ SubPþ F �M � TempP� SubPðmÞ
� �

jm ¼ permuteðiÞjm 6¼ ½1 : N�
ð9Þ

here, i ¼ 1 : N j i 2 Zþ. T 62 low up½ � values are updated

by using Eqs. 10 and 11;

if Tði;j0Þ\lowðj0Þ
� �

then

Tði;j0Þ ¼ lowðj0Þ þ j3
ð1Þ upðj0Þ � lowðj0Þ
� � ð10Þ

if Tði;j0Þ[ upðj0Þ
� �

then Tði;j0Þ ¼ upðj0Þ þ j3
ð1Þ lowðj0Þ � upðj0Þ
� � ð11Þ

The objective function values of Ti¼1:N vectors are com-

puted by using Eq. 12;

fitT ¼ FðTÞ ð12Þ

T and fitT are used in order to update SubP and fitSubP as

per the greedy-selection rule. The relevant updating pro-

cess of WDE is defined by using the rule given in Eq. 13;

if fitTði�Þ\fitSubPði�Þ
� �

then ½SubPði�Þ; fitSubPði�Þ� :
¼ ½Tði�Þ; fitTði�Þ� j i� 2 i

ð13Þ

The updated SubP and fitSubP are used in order to update

PðlÞ and fitPðlÞ values. The relevant updating process of

WDE is shown in Eq. 14;

½PðlÞ; fitPðlÞ� :¼ ½SubP; fitSubP� ð14Þ

Here, see Eq. 5 for l. WDE achieves the searched global

solution by using Eq. 15;

½gmin; gbest� ¼ ½fitPðcÞ;PðcÞ� j fitPðcÞ ¼ minðfitPÞ ; c 2 i

ð15Þ

The pseudo-code of the WDE is given in Fig. 1. The values

of the parameters used in WDE can be determined ran-

domly. In that case, WDE theoretically has no control

parameter. Since the values of the parameters used in WDE

are determined randomly, WDE has no parameter tuning

process. Therefore, it is easy to use.

The novelties of WDE introduced herein are as follows:

• The swarming process of WDE uses new stochastic

mutation control mechanism.

• WDE’ s system equation is partially similar to the

system equation of differential evolution algorithm

[15], but WDE’ s direction vector generation strategy is

different.

• The direction vectors generated in WDE are composed

of the mixed vectors of different pattern vectors.

• WDE uses a new method for boundary control.

• The values of all parameters used in WDE are

determined randomly. Therefore, WDE does not waste

time to initial parameter tuning.

• Since it has a non-recursive structure, WDE can be

parallelized easily. Therefore, it is rather fast.

Similarities and differences between WDE and comparison

algorithms are listed below:

• WDE does not partially or totally act elitist like ABC,

CS, and JADE.

• WDE uses sub-populations for interacting pattern

matrices.

• Mutation and crossover strategies of WDE are different

than those of comparison algorithms.

• WDE is a bijective search algorithm like BSA.

• WDE does not have any control parameters.

• Boundary control mechanism of WDE is unique to

itself.

• Though basic system equations of WDE are somehow

similar to DE/rand/1/bin [15], BSA, ABC, and CS,

usage style of these equations are quite different than

other algorithms.

• WDE is structurally non-recursive as different from

DE/rand/1/bin [15], ABC, and JADE [37]. Therefore, it

can be parallelized without being modified.

• Functioning of WDE is analogically based on the

cooperation of bio-interacting sub-populations.

• Functioning of WDE may be explained with the usage

of bio-inspired evolutionary optimization processes

(i.e., initialization, selection, mutation, and recombina-

tion/crossover) just like other EAs.
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4 Experiments

Numerical optimization problem-solving capability of

WDE that is introduced in this paper is examined by using

CEC’ 2013s benchmark problems (i.e., F1–F28) [36] that

consist of very complex problems.

In this paper, in order to examine the success of WDE in

the solution of real-world engineering problems, one geo-

metric optimization problem (i.e., GPS network adjustment

problem ), F29 [41–43], and 4 engineering design problems

have been used [2, 31].

Benchmark problems (i.e., F1–F28) have been solved

for 50 trials by using a different initial population each

time. The same initial population has been used for each

algorithm in the experiments. Dimension of pattern matrix

is 30, and stopping conditions used in the experiments are

given below:

1. Stop if the absolute value of the solution obtained for

the algorithm is smaller than 10�16.

2. Stop if a better solution at the end of the last 200,000

function evaluations has not been obtained.

3. Stop when the function evaluation number reaches to

2,000,000.

In the tests performed in this paper, solutions obtained with

WDE and comparison algorithms were pairwisely

Fig. 1 Pseudo-code of the

WDE. The unoptimized

MATLAB code of the WDE is

publicly available at [40]
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compared by using two-tailed Wilcoxon signed-rank test

[44]. For Wilcoxon signed-rank tests that have been carried

out in this paper, H0 hypothesis is defined as ‘data come

from distributions with equal medians.’ ‘Significance level’

is used as a ¼ 0:05. If a corrected p value lower than or

equal to a value is produced in a test, then H0 hypothesis is

rejected for that test. Alternative hypothesis is determined

as FA\FB. The validity of the alternative hypothesis is

decided on by looking at whether Algorithm A provides a

statistically better solution than Algorithm B or not, and the

sizes of ranks provided by Wilcoxon signed-rank test (i.e.,

Rþ;R� as in [43]).

Initial values of control parameters of the proposed

algorithm and the comparison algorithms used in this paper

are given in Table 1.

4.1 Numerical function optimization problems:
F1–F28

In this section, success of WDE in numerical function

optimization problems has been examined with detailed

applications. Basic statistical evaluations of the results (i.e.,

mean value of global minimum values (Ave), standard

deviation value of global minimum values (Std), and run-

time value in seconds (t (s)) obtained in the test performed

by using F1–F28 are given in Table 2. The best ‘Ave’

values are marked with bold font in Table 2.

Mersenne Twister has been used in the tests as pseudo-

random number generator [45].

Results that belong to the comparison of CEC’ 2013

[36] benchmark problem (i.e., F1–F28)-solving successes

of WDE and comparison algorithms by using Wilcoxon

signed-rank test [39] (p ¼ 0:05Þ are given in Table 3.

On the last row of Table 3, results obtained from WDE

and comparison algorithms have been compared as

(þ;¼;�) where (?) is the benchmark function number

that WDE obtains a statistically better result than the

related comparison algorithm, (=) is the benchmark func-

tion number that the performances of WDE and the related

comparison algorithm are statistically equal and (-) is the

benchmark function number that the related comparison

algorithm obtains a statistically better result than WDE.

In the solution of CEC’ 2013 benchmark problems,

when results of WDE and comparison algorithms were

examined in (þ;¼;�) format, the following results are

obtained as given in Table 3: CS (22,1,5), ABC (18,6,4),

JADE (22,4,2), BSA (13,8,7). Accordingly, WDE had

statistically better results (66.96%) than comparison algo-

rithms in 75 out of a total of 112 piecewise comparisons.

Successes of WDE and comparison algorithms are statis-

tically similar in 19 (16.96%) comparisons. Comparison

algorithms achieved statistically better results than WDE

only in 18 comparisons (16.07%).

4.2 GPS baseline network adjustment problem
(F29)

GPS network adjustment problem is a geometric opti-

mization problem widely encountered in Geodesy [41–43].

In this paper, in order to review WDE’s capability of

solving the geometric optimization problems, the GPS

Network defined in [41] has been adjusted by using WDE .

The relevant GPS network includes 6 geodesic points

defined as pointi ¼ x; y; zh i j i ¼ 1 : 6. point 1;2 are the

fixed values in solution of the GPS network adjustment

problem. points 1;2 are given in Table 4. The baseline

values of the relevant GPS Network are given in Table 5.

The covariance values of the relevant observations are

necessary for least squares adjustment (LSA) [41]. The

related covariance values are given in page 323 of [41] for

F29. WDE does not need covariance values in order to

adjust the GPS network. On the relevant GPS Network, 13

baselines have been observed. Therefore, totally 13� 3 ¼
39 observation equations have been acquired. points 3:6

have totally 4� 3 ¼ 12 unknowns. Consequently, the rel-

evant GPS network includes 39� 12 ¼ 27 redundant

observations. Therefore, in this problem

degree-of-freedom ¼ 27 [41]. In the adjustment process,

the optimal values of totally 12 coordinate values of

point 3 : 6 have been searched. Therefore, the problem

dimension of the GPS baseline network adjustment prob-

lem is 12. According to definition, C1:6 ¼
point 1 point 2 . . . point 6½ �T: In the objective

function used for WDE, the baseline values have been

computed by using

f ¼ Cfrom � Cto j ffrom; tog 2 1 : 6f g. The relevant

residual values, m, have been acquired by using Eq. 16;

v ¼ f � DxDyDz½ � 1 : 13 ð16Þ

In order to protect the centeroid of the GPS network during

the search process, v :¼ v� meanðvÞ update has been

made. mean(v) denotes the mean values of the residuals.

Table 1 Initial values of control parameters of the proposed algorithm

and the comparison algorithms

# Algorithm Initial values of control parameters

1 ABC [1] Limit ¼ N � D Sizeofempoyedbee ¼ Sizeofcolony=2

2 CS [3, 8] b ¼ 1:50; p0 ¼ 0:25

3 JADE

[37]

p1 ¼ p2 ¼ 0:30 � jj j� U(0,1)

4 BSA [7] mixrate ¼ 1:00
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The objective function used by WDE in order to adjust the

GPS Network is given in Eq. 17;

argmin
point3 : 6

vTv ð17Þ

While solving the GPS network adjustment problem by

using WDE, the pattern matrix dimension has been selected

as N ¼ 20. The problem dimension is D ¼ 12. WDE does

not use the search space limits while solving the GPS

network adjustment problem.

The initial pattern matrix has been generated by using

Pði0;j0Þ �U 0; 1ð Þ. The global minimum value WDE has

acquired in the final iteration is 0.0026484.

The coordinates of the adjusted network points obtained

with solution of the GPS network adjustment problem and

the relevant coordinate differences are given in Table 6.

When the adjusted-coordinates given in Table 6 have

been compared by using Anova test, p value ¼ 0:00000

has been obtained for X, Y, and Z. Therefore, the means

values of the relevant adjusted-coordinates obtained by

using LSA and WDE for p value \0:05 are statistically

equal. The loop closure values, Derrloop, computed after the

adjustment are given in Table 7.

When the Derrloop values have been compared statisti-

cally by using Anova test, p value ¼ 4:2603e�08 has been

obtained. In that case, it can be said that the differences

between errLSA and errWDE are not statistically significant

for p value\0:05. In that case, the mean of errLSA and

errWDE belongs to an equal population. Therefore, LSA and

WDE have reached statistically the same success for the

Derrloop values in solution of the GPS network adjustment

problem.

The mean and standard deviation values of the residuals

obtained after completion of the adjustment process are

given in Table 8.

After a review of Table 8, it is possible to say that the

GPS network adjustment results achieved by using WDE

protect the centeroid of the relevant network better than

LSA.

The standard deviation values, m0, of the residuals

computed for the baselines are given in Table 9.

After a review of Table 9, it can be said that WDE has

obtained a better m0 value compared to LSA. Therefore,

WDE is successful in adjustment of the relevant GPS

network.

In solution of the GPS network adjustment problem,

WDE provides the following advantages in comparison to

LSA:

– There is no statistical difference between the results

obtained in solution of the GPS network adjustment

problem by using WDE or LSA. However, in order to

achieve the solution, LSA uses a mathematical model

that is much more complex than the mathematical

model used by WDE.

– In order to solve the relevant problem, LSA needs

covariance values. However, WDE uses only the

observed baseline parameters and fixed point parame-

ters to solve the relevant problem.

– WDE protects the centeroid of the relevant network

more accurately.

Table 4 Coordinates of fixed points; 1, 2 [41]

Points X (m) Y (m) Z (m)

1 402.35087 - 4,652,995.30109 4,349,760.77753

2 8086.03178 - 4,642,712.84739 4,360,439.08326

Table 5 The baseline values

used in GPS baseline network

adjustment problem (i.e., F29)

[41]

Observation Points Baseline components (m)

From To Dx Dy Dz

1 1 3 11,644.22320 3601.21650 3399.25500

2 1 5 - 5321.71640 3634.07540 3173.66520

3 2 3 3960.54420 - 6681.24670 - 7279.01480

4 2 4 - 11,167.60760 - 394.52040 - 907.95930

5 4 3 15,128.16470 - 6286.70540 - 6371.05830

6 4 5 - 1837.74590 - 6253.85340 - 6596.66970

7 6 1 - 1116.45230 - 4596.16100 - 4355.89620

8 6 3 10,527.78520 - 994.93770 - 956.62460

9 6 5 - 6438.13640 - 962.06940 - 1182.23050

10 6 4 - 4600.37870 5291.77850 5414.43110

11 6 2 6567.23110 5686.29260 6322.39170

12 2 6 - 6567.23100 - 5686.30330 - 6322.38070

13 1 6 1116.45770 4596.15530 4355.91410
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– WDE is capable of obtaining better m0 values than

LSA.

4.3 Engineering design problems: F29–F32

F29–F32 are nonlinear constrained engineering optimiza-

tion problems, and they were widely analyzed in opti-

mization literature [2, 31]. Therefore, F29–F32 also were

solved in this study:

– Pressure-vessel design problem, F29 [2, 31],

– Speed-reducer design problem, F30 [2],

– Tension/compression string design problem, F31

[2, 31],

– Welded-beam design problem, F32 [2, 31],

In this paper, the constrained handling method [2, 45, 46]

used in [2] is employed to solve F29–F32 problems.

In the solution of F29–F32, problem-solving successes

of particle swarm optimization algorithm (PSO2011)

[2, 13], cumulative-information-based differential evolu-

tion algorithm (CPI-JDE) [38], Advanced Artificial

Cooperative Search Algorithm (A?) [39], CS, ABC,

JADE, BSA, and WDE (proposed) were compared. CPI-

JDE and JADE are relatively new, and they are very suc-

cessful DE algorithms.

Statistical results that WDE and comparison algorithms

have obtained for F29–F32 are given in Table 10. When

Table 10 is examined, WDE is seen to have obtained better

results than PSO2011, CPI-JADE, ABC, and A?. Related

problem-solving successes of WDE, JADE, BSA, and CS

are statistically similar to a large extent.

The detailed definitions of the mechanical-engineering-

based nonlinear constrained optimization problems (i.e.,

F29–F32) are given in Sects. 4.4, 4.5, 4.6, and 4.7.

4.4 Pressure-vessel design problem: F29

This problem aims the design of a compressed air storage

tank under a working pressure of 3000 psi and a minimum

volume of 750 ft3, the schematic structure of which is

shown in Fig. 2.

The mathematical model of this problem is defined in

Eq. 18 [2, 31].

argmin
x

f ðxÞ ¼ 0:6224 � x1 � x3 � x4 þ 19:84 � x2
1 � x3

þ 1:7781 � x2 � x3
3 þ 3:1661 � x2

1 � x4

ð18Þ

Subject to:
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c1ðxÞ ¼ �x1 þ 0:0193 � x3	 0

c2ðxÞ ¼ �x2 þ 0:0954 � x3	 0

c3ðxÞ ¼ �p � x2
3 � x4 �

4

3
� p � x3

3 þ 1; 296; 000	 0

c4ðxÞ ¼ x4 � 240	 0

ð19Þ

where the bounds are,

0:0625	 x1; x2	 6:1875 ð20Þ

and

10	 x3; x4	 200 ð21Þ

4.5 Speed-reducer design problem: F30

This problem aims the design of the speed reducer shown

in Fig. 3.

The mathematical model of this problem is defined in

Eq. 22 [2, 31].

argmin
x

f ðxÞ ¼ 0:7854 � x1 � x2
2 � ð3:3333 � x2

3 þ 14:9334

� x3 � 43:0934Þ
� 1:508 � x1 � ðx2

6 þ x2
7Þ þ 7:4777 � ðx2

6 þ x2
7Þ

þ 0:78054 � ðx4 � x2
6 þ x5 � x2

7Þ
ð22Þ

Subject to

Table 7 Post-adjustment loop

closure values (in m);

Derrloop ¼ errLSA � errWDE

Loop# Loop edges errLSA (1) errWDE Derrloop

1 1; 3
�!

; 6; 3
�!

; 6; 1
�! 0.03770 0.04663 -0.00893

2 1; 3
�!

; 2; 3
�!

; 6; 2
�!

; 6; 1
�! 0.03210 0.03210 0.00000

3 1; 3
�!

; 2; 3
�!

; 2; 6
�!

; 1; 6
�! 0.03930 0.03930 0.00000

4 1; 5
�!

; 6; 5
�!

; 6; 1
�! 0.04900 0.05793 - 0.00893

5 1; 5
�!

; 4; 5
�!

; 6; 4
�!

; 6; 1
�! 0.06240 0.06240 0.00000

6 1; 3
�!

; 2; 3
�!

; 2; 4
�!

; 4; 5
�!

; 1; 5
�! 0.08030 0.08512 - 0.00482

7 4; 5
�!

; 6; 4
�!

; 6; 5
�! 0.02540 0.02595 - 0.00055

8 4; 5
�!

; 2; 4
�!

; 6; 2
�!

; 6; 5
�! 0.03260 0.03370 - 0.00110

9 2; 4
�!

; 6; 2
�!

; 6; 4
�! 0.00980 0.01173 - 0.00193

10 2; 4
�!

; 2; 6
�!

; 6; 4
�! 0.01620 0.01138 0.00482

11 2; 4
�!

; 2; 3
�!

; 4; 3
�! 0.03660 0.04142 - 0.00482

12 1; 5
�!

; 6; 5
�!

; 6; 3
�!

; 1; 3
�! 0.04350 0.04350 0.00000

13 2; 6
�!

; 6; 2
�! 0.03260 0.03370 - 0.00110

14 2; 4
�!

; 2; 3
�!

; 6; 3
�!

; 6; 4
�!

; 0.02240 0.02240 0.00000

15 6; 5
�!

; 4; 5
�!

; 2; 4
�!

; 2; 3
�!

; 6; 3
�! 0.03680 0.04162 - 0.00482

16 6; 5
�!

; 4; 5
�!

; 4; 3
�!

; 6; 3
�! 0.03280 0.03280 0.00000

17 1; 6
�!

; 6; 1
�! 0.02900 0.00856 0.02044

18 1; 6
�!

; 2; 6
�!

; 6; 2
�!

; 6; 1
�! 0.01720 0.01720 0.00000

Table 8 Mean and standard deviation values of residuals

Residuals LSA WDE

l (m) r l (m) r

vx - 0.0000669 0.0093955 0.0000000 0.0085625

vy 0.0017000 0.0051921 0.0000000 0.0051045

vz 0.0000746 0.0113934 0.0000000 0.0096674

Table 9 m0 values of the residual values obtained by using LSA and

WDE

Statistics Method

LSA (m) WDE (m)

m0 ¼
ffiffiffiffiffi
vTv
27

q
0.00833 0.00735
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c1ðxÞ ¼
27

x1 � x2
2 � x3

� 1	 0

c2ðxÞ ¼
397:5

x1 � x2
2 � x2

3

� 1	 0

c3ðxÞ ¼
1:93 � x3

4

x2 � x3 � x4
6

� 1	 0

c4ðxÞ ¼
1:93 � x3

5

x2 � x3 � x4
7

� 1	 0

c5ðxÞ ¼
1

110 � x3
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
750:0 � x4

x2 � x3

� �2

þ16:9 � 106

s

� 1	 0

c6ðxÞ ¼
1

85 � x3
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
750:0 � x5

x2 � x3

� �2

þ157:5 � 106

s

� 1	 0

c7ðxÞ ¼
x2 � x3

40
� 1	 0

c8ðxÞ ¼
5 � x2

x1

� 1	 0

c9ðxÞ ¼
x1

12 � x2

� 1	 0

c10ðxÞ ¼
1:5 � x6 þ 1:9

x4

� 1	 0

c11ðxÞ ¼
1:5 � x7 þ 1:9

x5

� 1	 0

ð23Þ

where the bounds are,

2:6	 x1	 3:6

0:7	 x2	 0:8

17	 x3	 28

7:3	 x4	 8:3

7:8	 x5	 8:3

2:9	 x6	 3:9

5:0	 x7	 5:5

ð24Þ

Table 10 The mean-solution (Ave) and standard deviation of mean-

solution (Std) values obtained by the relevant algorithms for the F29–

F32

Algorithm F Ave Std

PSO2011 F29 6235.36961742 2.51e?02

F30 3108.37805916 1.53e?02

F31 0.01275660 1.12e-04

F32 1.86762054 1.16e-01

CPI-JDE F29 6310.75991379 2.23e?02

F30 3004.18039468 4.25e?01

F31 0.01368178 1.00e-03

F32 2.55281872 4.32e-01

A? F29 5885.33277360 1.70e-13

F30 2994.92524435 6.00e-13

F31 0.01267052 1.27e-05

F32 1.72485231 0.00e?00

CS F29 5910.20912757 1.45e?01

F30 2994.92524435 4.90e-13

F31 0.01272432 2.68e-05

F32 1.77712735 2.10e-02

ABC F29 6920.90919830 4.30e?02

F30 3089.68804116 5.21e?01

F31 0.01342275 4.39e-04

F32 1.89243016 1.05e-01

JADE F29 5885.33277360 0.00e?00

F30 2994.92524435 4.60e-13

F31 0.01266523 0.00e?00

F32 1.72485231 0.00e?00

BSA F29 5885.33277360 0.00e?00

F30 2994.92524435 4.60e-13

F31 0.01266523 0.00e?00

F32 1.72485231 0.00e?00

WDE (proposed) F29 5885.33277360 0.00e?00

F30 2994.92524435 4.60e-13

F31 0.01266523 0.00e?00

F32 1.72485231 0.00e?00

Fig. 2 The schematic structure of pressure-vessel design problem

Fig. 3 Speed-reducer problem
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4.6 Tension/compression spring design problem:
F31

The aim of this problem is to determine the values of the

relevant parameters minimizing the weight of a ten-

sion/compression spring under various constraints

[2, 31, 46, 47]. The schematic structure of a tension/com-

pression spring is shown in Fig. 4.

The mathematical model of this problem is defined in

Eq. 25 [2, 32].

argmin
x

f ðxÞ ¼ ðx3 þ 2Þ � x2
1 � x2 ð25Þ

Subject to

c1ðxÞ ¼ 1� x3
2 � x3

71785 � x4
1

	 0

c2ðxÞ ¼
4x2

2 � x1 � x2

12566 � x3
1 � x2 � x4

1

þ 1

5108 � x1

� 1	 0

c3ðxÞ ¼ 1� 140:45 � x1

x2
2 � x3

	 0

c4ðxÞ ¼
x1 þ x2

1:50
� 1	 0

ð26Þ

where the bounds are

0:05	 x1	 2:0

0:25	 x2	 1:3

2:0	 x3	 15:0

ð27Þ

4.7 Welded-beam design problem: F32

This problem aims dimensioning of the welded steel beam

[2, 31], the structure of which is shown in Fig. 5, and

determining the welding length value.

The mathematical model of this problem is given in

Eq. 28;

argmin
x

f ðxÞ ¼ 1:10471 � x2
1 � x2 þ 0:04811 � x3 � x4 � ð14þ x2Þ

ð28Þ

Subject to

c1ðxÞ ¼ tðxÞ � tmax	 0

c2ðxÞ ¼ rðxÞ � rmax	 0

c3ðxÞ ¼ x1 � x4	 0

c4ðxÞ ¼ 0:10471 � x2
1 þ 0:04811 � x3 � x4 � ð14þ x2Þ

� 5	 0

c5ðxÞ ¼ 0:125� x1	 0

c6ðxÞ ¼ dðxÞ � dmax	 0

c7ðxÞ ¼ P� PcðxÞ	 0

ð29Þ

where

tðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t21 þ
2 � t1 � t2 � x2

2 � R þ t22

r

t1 ¼
P

ffiffiffi
2
p
� x1 � x2

t2 ¼
M � R
J

M ¼ P � Lþ x2

2

� 	

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2

4
þ x1 þ x3

2

� 	2
r

J ¼ 2 �
ffiffiffi
2
p
� x1 � x2 �

x2
2

12
þ x1 þ x3

2

� 	2

 �� 

rðxÞ ¼ 6 � P � L
x4 � x2

3

dðxÞ ¼ 4 � P � L3

E � x4 � x3
3

PcðxÞ ¼
4:013 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � G � x2

3 � x6
4=36

q

L2
1� x3

2 � L �
ffiffiffiffiffiffiffiffiffiffi
E

4 � G

r !

ð30Þ

The material properties and constraint values used above

are given as follows:

Fig. 4 Tension/compression spring problem

Fig. 5 The schematic structure of welded-beam design problem
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P ¼ 6000

L ¼ 14

dmax ¼ 0:25

E ¼ 30 � 106

G ¼ 12 � 106

tmax ¼ 13; 600

rmax ¼ 30; 000

ð31Þ

where the bounds are,

0:1	 x1	 2

0:1	 x2	 10

0:1	 x3	 10

0:1	 x4	 2

ð32Þ

5 Conclusions and possible research
directions

The determination of most feasible evolution direction and

evolutionary step size is the most important problem that is

encountered in evolutionary computation. Determination of

the most feasible evolutionary direction depends on the

type of the problem to a high extent. WDE, introduced in

this paper, uses fully randomized control parameters, hence

it does not have any control parameters in practice. WDE

uses swarmmized sub-pattern matrices in order to generate

unique direction patterns. This property of WDE facilitates

its solving problems of different types to a high extent. The

simple strategy that WDE uses for evolutionary step size

generation brings in a quite feasible local and global search

capability. Functioning of WDE consists of classic genetic

processes (i.e., selection, mutation, crossover). WDE is a

bijective, non-recursive, swarm-based global search algo-

rithm. Performed tests show that WDE is statistically very

successful in the solution of numerical function optimiza-

tion problems. WDE is also quite successful in the solution

of real-world design problems. As demonstrated by the

statistical results obtained by the extensive tests that have

been carried out, WDE is shown to be quite successful in

the solution of complex numerical problems.

In this paper, the general structure of WDE and the

problem-solving success are examined. In order to further

develop WDE in the future, the possibilities for using

different chaotic maps can be explored. In future studies,

the performance of WDE in solution of large-scale opti-

mization problems can be examined.

As a consequence, WDE has a potential to be used in the

solution of various engineering design problems, signal

processing applications, and various industrial design

problems.
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