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Abstract
Magnetic resonance imaging (MRI) has exhibited an outstanding performance in the track of medical imaging compared to

several imaging modalities, such as X-ray, positron emission tomography and computed tomography. MRI modality

suffers from protracted scanning time, which affects the psychological status of patients. This scanning time also increases

the blurring levels in MR image due to local motion actions, such as breathing as in the case of cardiac imaging. An

acquisition technique called compressed sensing has contributed to solve the drawbacks of MRI and decreased the

acquisition time by reducing the quantity of the measured data that is needed to reconstruct an image without significant

degradation in image quality. All recent works have used different types of conventional wavelets for sparsifying the

image, which employ constant filter banks that are independent of the characteristics of the input image. This paper

proposes to use the empirical wavelet transform (EWT) which tunes its filter banks to the characteristics of the analyzed

images. In other words, we use EWT to produce a sparse representation of the MRI images which yields a more accurate

sparsification transform. In addition, the grey wolf optimizer is used to optimize the parameters of the proposed method. To

validate the proposed method, we use three MRI datasets of different organs: brain, cardiac and shoulder. The experimental

results show that the proposed method outperforms the state-of-the-art methods in terms of signal-to-noise ratio and

structure similarity metrics.

Keywords Compressive sensing (CS) � Empirical wavelet transform (EWT) � Grey wolf optimizer (GWO) �
Magnetic resonance imaging (MRI)

1 Introduction

Medical imaging has one of the greatest impacts on the

track of medical diagnosis [1, 2]. Magnetic resonance

imaging (MRI) has been considered as the superlative

imaging modality because it is noninvasive imaging tech-

nique and provides exquisite images with an excellent

contrast of soft tissues and anatomical construction. MRI

can be used for diagnosing a diversity of disorders, such as

tumors, spinal cord damages and inner ear problems. In

addition, it can be used to evaluate the function and con-

struction of the brain. However, MRI suffers from the

imaging speed that caused by the physical and physiolog-

ical limitations. This long acquisition time affects the

patient’s psychological state due to being constrained

under magnetics for a long time. The limitations of MRI

system also yield image degradation, such as blurring, loss

of sharpness and cloudy vision that stems from small

movements or perturbations (e.g., in cardiac imaging)

which cannot be fixed for a long time.

Related Work In the literature, several works have been

proposed to mitigate the shortcoming of MRI by reducing

the scanning time without significant degradation in the

quality of images. There are two main categories of

methods: acceleration using fully sampled k-space, and
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acceleration using under-sampled k-space. Below, we

provide examples of each category.

• Acceleration methods using fully sampled k-space: this

category includes fast spin-echo and echo-planar

imaging (EPI) methods. Fast spin-echo is based on

modifying the scanning trajectory to acquire multiple

lines for each repetition time instead of acquiring one

line per repetition [3]. This method suffers from

excessive radio frequency power during the scanning

process [4]. EPI method is based on improving the MRI

hardware and digital acquisition technology [5]. EPI

has limitations in image resolution due to its sensitivity

to asymmetric magnetic fields.

• Acceleration methods using under-sampled k-space:

this category comprises partial Fourier imaging (PFI),

parallel imaging (PI) and compressed sensing (CS)

methods. The PFI exploits the characteristics of fast

Fourier transform (FFT) to reduce the number of

samples to be measured. However, the data acquisition

process may introduce some phase errors which affect

the conjugate symmetry and make such estimation

inexact [6]. The PI method tries to tackle the artifacts of

under-sampling by employing the data redundancy of

acquiring data and by multiple receivers simultane-

ously. Several studies used the PI method in capturing

data, such as sensitivity encoding technique (SENSE)

[7] and generalized auto calibration approach

(GRAPPA) [8]. Although PI-based methods can recon-

struct an image from under-sampled low-resolution

data, it is vulnerable to any change in the sensitivity

map (i.e., any small error in the estimated sensitivity

yields large errors in the reconstructed images). CS has

been used in several studies to reconstruct the MRI

images [9, 10]. In this paper, we focus on the use of CS

for accelerating MRI acquisition.

CS makes it possible to reconstruct high-quality images

from a small quantity of measured data which in turn

participates in shrinking the time needed for scanning

without a substantial degradation in the reconstructed data.

In [11], a conjugate gradient (CG) method was proposed as

a solver for the reconstruction problem. Although CG

method was the first successful application of CS to MRI, it

still too slow for practical applications. A method called

TVCMRI (total variation-based compressed MRI) was

proposed in [12] in which the minimization of finite dif-

ferences has been exploited as a regularization term.

Although this approach achieved significant enhancement

with respect to related approaches, it fails to model the

problem correctly as the authors were working on mini-

mizing the finite differences of the wavelet domain and

minimizing the l1-norm of the spatial domain which is not

the case of MR images. The authors of [13] proposed a

method called reconstruction partial Fourier (RecPF)

which used the alternating direction method for signal

reconstruction from partial Fourier measurements.

Although it reduces the number of measurements, its speed

is still not suitable for practical application with insignifi-

cant enhancement in the resolution compared to related

works. A fast-composite splitting algorithm (FCSA) was

proposed in [14] to correctly model the reconstruction

problem. FCSA minimizes the l1-norm of the wavelet

domain of the images and uses the total variation mini-

mization of the spatial domain as regularization terms in

the reconstruction problem. Furthermore, a new solver

called fast iterative shrinkage algorithm (FISTA) was

proposed to solve the reconstruction problem. FCSA suf-

fers from lack of directionality due to the use of a con-

ventional wavelet transform for sparse representation

[14, 15]. The authors of [16] have added the wavelet tree

structure as a regularization term besides l1-norm and total

variation minimization. This method also has the draw-

backs of conventional wavelet transforms, such as shifting

susceptibility [17], deficiency of directionality [18] and

lack of information about phase. Recently, the authors of

[19] have used the wavelet tree structure beside exploiting

of dual-tree complex wavelet transform for sparse repre-

sentation. However, this method tackles the shortcoming of

the conventional wavelet transform, and it suffers from

high computational complexity. The authors of [20]

replaced the wavelet transform with shearlet transforms. In

addition, the pseudo-polar Fourier transform was used in

[21] for sparse representation instead of the wavelet

transform.

Motivation and Contributions Although wavelets have

shown an outstanding MRI reconstruction performance,

their bases depend on dyadic scale decomposition which

does not guarantee that their filters are the optimum ones to

characterize an image. Indeed, all transforms that have

been used for sparse representation suffer from the use of

constant (fixed) filter banks and a constant number of

decimation. In this paper, we propose to use the empirical

wavelet transform (EWT) as a sparsification transform.

EWT adapts its filter banks to the characteristics of input

images, yielding a more accurate sparsification transform.

We use the finite differences minimization and l1-mini-

mization for regularization.

Wavelet transform developed by Gilles [22] presents a

new approach for building adaptive wavelets. EWT

describes the input image with optimum representation.

Unlike the traditional methods that utilize constant filter

banks at which the number of decomposition levels is

chosen without considering the characteristics of the pro-

cessed image, the performance of compressed sensing MRI

reconstruction can be improved when using EWT as sparse
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representor. Is worth noting that EWT has a lot of success

stories with many applications, such as segmentation of

heart sound [23], diagnosis of Glaucoma [24], exploring

brain tumors of images [25] and onset detection in arterial

blood pressure [26], which reflects the feasibility and the

outstanding performance of EWT.

Furthermore, we propose to use the grey wolf opti-

mization (GWO) algorithm to find the optimal parameters

of the proposed MRI reconstruction method. GWO is a

metaheuristic algorithm exploiting the hunting mechanism

of grey wolves. GWO is a simple algorithm which would

be convenient for any tuning [27, 28]. It is a flexible

algorithm and proved its superiority over a wide range of

applications, such as automatic control [29–31], solving

engineering problems [32, 33], robotics and path planning

[34–36], medical and bioinformatics applications [37–39],

automatic control for thermal power system [40], features

selection in computer-aided diagnosis systems [37] and

image registration [41]. It is important to note that GWO is

a scalable method because it has a very good convergence

performance in both simple and complex problems. In

addition, GWO is advantageous over other metaheuristics

because of the reduced number of random and user-se-

lected parameters. This illustrates its potential for solving

different optimization problems with a reduced user

experience and fair comparison with similar

metaheuristics.

To the best of our knowledge, this is the first paper that

uses the empirical wavelet and GWO with CS MRI. The

main contributions of this paper are:

• Unlike all related methods that use conventional

wavelets, we use an adaptive wavelet representation

(i.e., EWT) with adaptive filter banks of MR images. In

other words, we use EWT as sparse representor which

improves the performance of CS MRI reconstruction

algorithms.

• To avoid hand-crafting the parameters of the proposed

method and maximize its performance, we propose to

use GWO to find the optimal parameters of the

proposed method.

• We compare the proposed method with six recently

published MRI reconstruction methods: Sparse MRI

[11], TVCMRI [12], RecPf [13], FCSA [14], WATMRI

[16] and DT-WATMRI [19].

Paper Structure The rest of this paper is organized as

follows. Section 2 presents the proposed method and

explains the basic idea of EWT and GWO. Section 3

provides the experimental results of the proposed method.

Section 4 summarizes the paper and suggests points for the

future work.

2 The proposed CS-based MRI method

In this paper, we apply EWT to MRI images in order to

produce an optimized sparse representation of the images,

and then we minimize the l1-norm of for each sub-band of

the transformed image separately and the total variation

penalty of the original domain of the image. We use GWO

to find the optimal parameters of the proposed method. In

this section, we explain each part of the proposed method

in detail.

2.1 The proposed reconstruction algorithm

In the proposed method, the 2D empirical Littlewood-Paley

(LP) wavelet transform is employed for sparsification of

the input image. We believe that EWT is a highly opti-

mized data representor for the input images and will yield a

better reconstruction process. To exploit the empirical

wavelet, we apply sparsity minimization l1-norm of the

transformed images. It worth noting to mention that we

apply the l1-minimization process to each sub-band sepa-

rately to keep the minimization process restricted within

sub-band and prevent the minimization between different

sub-bands. Furthermore, the sparsity of finite difference of

MRI images has been employed by minimizing the total

variation between pixels in the spatial domain. Indeed,

mixing the above-mentioned terms with the least square

error in one cost function yields a good characterization for

MRI images, and thus improves the resolution the recon-

structed images and shortens the reconstruction time. The

proposed work can be explained using the following

formula:

min
x

F xð Þ ¼ 1

2
Ax� bk k22þar xk kTVþbr

XL

l¼1

Exlk k1

( )
ð1Þ

where E represents the empirical LP wavelet transforma-

tion matrix, A represents the partial Fourier transform. The

term 1
2

Ax� bk k22 preserves the consistency of the under-

sampled Fourier measurements to the observation b, and it

is convex and smooth. ar and br are regularization

parameters, :k kTV is the finite difference, :k k1 is the l1-

norm operator, xl is the sub-band l of the image x, and L is

the total number of sub-bands of EWT transform of image

x.

Although the existing algorithms (e.g., FISTA) use the

TV norm or the l1-norm, they cannot solve these two

regularization terms together but can solve each of them,

separately. To solve this equation, FCSA method splits the

original problem into two sub-problems, and then com-

putes proximal gradient with TV norm and l1-norm inde-

pendently and finally averages the two independent

solutions. Furthermore, some modifications have been
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applied to FCSA algorithm, such as the l1-minimization

has been applied to each sub-band independently instead

applying it to the whole image. This modification increases

the reconstruction accuracy, improves the quality of

reconstructed images and fulfills the hypothesis that

exploiting sparsity for each sub-band independently is

more effective than exploiting the sparsity of the whole

transformed image. Algorithm 1 explains the steps of

proposed CS MRI reconstruction method. In step 1, we use

the steepest descent method to minimize the least square

error of Eq. 1. In step 2, we minimize the finite difference

in the pixel domain by using proximal gradient algorithm

[14]. In step 3, we minimize the l1-norm of each sub-band

of the transformed image, separately. Step 4 averages the

costs of the total variation (step 2) and l1-minimization

(step 3). Finally, steps 5 and 6 are used to update step 1.

2.2 Empirical wavelet transform

Wavelets are becoming crucial in data representation and

analysis for most of the medical imaging modalities, such

as positron emission tomography (PET), computed

tomography (CT), MRI and magnetic particle imaging

(MPI). EWT can be also considered as an indispensable

tool for many processes, such as feature extraction, texture

analysis and signal/image classification. The sparsity of

wavelets has been widely exploited in the application of CS

theory in different medical image processes, such as

denoising, deblurring and image reconstruction. The use of

wavelets yields a noticeable enhancement in medical

diagnosis and screening protocols. Although the huge

improvements in wavelet applications, there is no signifi-

cant evolution in wavelet theory and implementation and

all wavelet basis are assembled on prearranged structure

corresponding to the definition of multi-resolution analysis.

The core result of utilizing that definition is that those bases

rely on a composition with dyad scale which does not

guarantee that the resulting filters are the optimal choice to

characterize an image. A better way to tackle this issue is to

represent the data adaptively. In other words, the bases

formed should consider the characteristics of the image.

Unfortunately, few trials have been implemented to rep-

resent data adaptively. The first trial is Brushlet transform

[42, 43] which uses the Fourier domain to build such

adaptive wavelet filters. In addition, the Bandlet transform

was proposed in [44, 45]. Further trials were proposed in

the literature such as the geometrical grouped transform

[46] which creates adaptive wavelets based on exploiting

some information of the image itself. In turn, Huang et al.

proposed a completely different methodology to represent

data adaptively, called empirical mode decomposition

(EMD) [47]. EMD represents the signals by capturing the

basics ‘‘modes’’ of it. Another approach tried to model the

mode of EMD as an amplitude and frequency modulated

signals (AM-FM). Although EMD is a highly adapted and

has the ability for detecting both stationary and nonsta-

tionary parts of the original signal, it has drawbacks of pure

nonlinearity and the implementation process is a factor of

the resulting representation. In addition, there is no math-

ematical model of the EMD as it is based on an ad-hoc

process. Recently, in [22] a 1D adaptive approach has been

implemented and equipped with its theoretical background

called empirical wavelet transform (EWT). This approach

is able to capture the AM-FM components of the signal.

EWT depends on the formulation of conventional LP

wavelet transform [48], in which its Fourier support is

reliant on the analyzed signal. The principle operation of

EWT can be summarized with these main steps:

• Detect the signal support in the Fourier domain.

• Build the filter banks according to the resulted Fourier

support.

• Apply the obtained filter banks to the input signals to

get its components.

A generalization of 2D empirical wavelet transform has

been reported in [17], which implements the empirical

counterpart of conventional 2D LP wavelet transform.

Below, we explain EWT in detail.

2.2.1 2D LP empirical wavelet transform

Notations

a. Yp represents pseudo-polar FFT.

b. w w1;w2ð Þ represent the 2D coordinates of Fourier

domain.

c. Lh is the number of positions in discrete domain.

d. F is the 2D Fourier transform operator.

e. w is the wavelet transform operator.
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f. W is the empirical wavelet transform operator.

g. V represents the filter bank of LP wavelet transforms.

Application of pseudo-polar FFT(PPFFT) The conven-

tional LP wavelet transforms the images using 2D wavelets

with its Fourier spectrum that is centered around the origin

[49]. Its empirical counterpart is implemented by using

Fourier transform in polar planes as a first step to detect

boundaries, which is equivalent to utilizing the frequency

modulus wj j. In [50], pseudo-polar FFT has been imple-

mented with the operator of Yp jð Þ h; wj jð Þ, it is a 1D Fourier

transform for each angle h which would produce some

discontinuities that can be mitigated by calculating the

average of the spectrum on h: F wj jð Þ ¼
1
Lh

PLh
i¼0 jYp jð Þ hi; wj jð Þj, where Lh is the number of angles.

Fourier Boundaries Detection The second step after

applying the PPFFT is to capture its boundaries, which has

been implemented with the aid of several approaches. A

conditional one has been used to implement the 1D EWT

[22], relying on capturing the local maxima in the magni-

tude of the Fourier spectrum. The use of that approach has

many drawbacks which have been mitigated by variant

techniques. Enhancement techniques have been developed

in [51] to distinguish Fourier edges.

Enhanced local maxima approach The conventional

approach of using local maxima detection is not reliable for

all spectrums compositions and can only manage well

distinct modes. Enhanced technique for Fourier boundaries

detection has been proposed in [51] to tackle this issue.

This technique can be summarized with the following three

steps:

(a) A global trend removal: in this step, we suppress the

general trend of the Fourier spectrum after estimat-

ing it using one of the following methods:

• ‘‘plaw’’: It uses the power low estimation of

X xð Þ ¼ Y1;y xð Þ
�� �� in the form of Z xð Þ ¼ xd, and

its discretized form can be expressed as follows:

d ¼ argmin X xð Þ � xsk k2¼
P

n lnxnX xnð Þ
P

nðlnxnÞ2

ð2Þ

• ‘‘poly’’: In this approach, X is a polynomial of a

specific degree g. Note that the parameter g is

empirically chosen.

• ‘‘morpho’’: This approach is based on morpho-

logical image analysis. Equation 3 illustrates that

while loð Þ and upð Þ operators represent both the

lower and upper envelope of X, respectively. The

variable b is the size of the constructing function.

Equation 3 is used to calculate the general

tendency as follows:

T xð Þ ¼ lo X; bð Þ þ up X; bð Þ xð Þ
2

ð3Þ

• ‘‘tophat’’: This approach is similar to the mor-

phological image analysis and returns to the Top-

Hat mathematical morphology signal.

(b) A regularization: This step filters noisy spectrums

with one of the following filters:

• ‘‘Gaussian’’: a Gaussian filter is used to filter the

spectrum.

• ‘‘Average’’: the average filter is applied to

remove noise from the spectrum

• ‘‘upenv’’: this method uses the operator of

closing morphology to calculate the upper

envelope of the spectrum.

(c) The detection process can be performed using one of

the following methods:

• ‘‘locmax’’: it calculates the local maximum and

then detects the boundaries in the middle

between two successive maxima.

• ‘‘locmaxmin’’: it calculates the local maxima

firstly, and then the boundaries are detected as

the lowest minima between successive maxima.

• ‘‘scalespace’’: it represents the spectrum in

scalespace and then detects the modes in a

meaningful way.

2.2.2 Constructing 2D empirical LP wavelet transform

Capturing Fourier boundaries of the averaged pseudo-polar

FFT is performed in the third step of EWT to construct a

group of spectral radiuses. This constructed group is used

to create the 2D empirical LP wavelet transform

Flqs ¼ c1 xð Þ; el xð Þf gL1l¼1

n o
. The following equations

explain the implementation of 2D LP EWT:

F 1 u1ð Þ xð Þ

¼

1 if xj j � 1� cð Þx1

cos
p
2
b

1

2cx1
xj j � 1� cð Þx1

� �� �� �
if 1� cð Þx1 � xj j � 1þ cð Þx1

0 otherwise,

8
>>><

>>>:

ð4Þ

And if n 6¼ N � 1:
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F 1 wnð Þ xð Þ

¼

1 if 1þ cð Þxn� xj j � 1� cð Þxn¼1

cos
p
2
b

1

2cxnþ1
xj j � 1� cð Þxnþ1

� �� �� �
if 1� cð Þxnþ1� xj j � 1þ cð Þxnþ1

sin
p
2
b

1

2cxn
xj j � 1� cð Þxnð Þ

� �� �
if 1� cð Þxn� xj j � 1þ cð Þxn

0 otherwise,

8
>>>>>>><

>>>>>>>:

ð5Þ

and, if n ¼ N � 1:

F 1 wN�1ð Þ xð Þ

¼

1 if 1þ cð ÞxN�1 � xj j

sin
p
2
b

1

2cxN�1
xj j � 1� cð ÞxN�1

� �� �� �
if 1� cð ÞxN�1 � xj j � 1þ cð ÞxN�1

0 otherwise,

8
>>><

>>>:

ð6Þ

where b is an arbitrary function which formulated as

follows:

b xð Þ ¼
0 if x� 0

1 if x� 1

x4 35� 84xþ 70x2 � 20x3ð Þ if 8x 2 0; 1½ �:

8
<

:

ð7Þ

where c is a parameter that used to prevent overlapping

between two transition areas, and N is the total number of

boundaries.

The 2D forward empirical LP wavelet transform for an

input f can be expressed as follows:

Wlqs n; xð Þ ¼ F�
1ðF 1 fð Þ xð ÞF wnð Þ xð Þ ð8Þ

In turn, the inverse empirical LP wavelet transform can

be computed as follows:

f xð Þ ¼ F�
1 FW

lqs
f

	 

0;xð ÞF 1 u1ð Þ xð Þ

þ
XN1

n¼1

ðF 1W
eaq
f Þ n;xð ÞðF 1 wNð Þ xð ÞÞ: ð9Þ

In Algorithm 2, we summarize the steps of empirical LP

wavelet transform.

2.3 Optimizing the parameters of the proposed
method using GWO

In this paper, we use GWO to find the optimal choice of

regularization parameters of the proposed method ar; br to
maximize its performance and avoid hand-crafting the

parameters. GWO is a metaheuristic algorithm, which

imitates the criteria of leadership and hunting of real-world

grey wolves [27]. The hierarchical leadership has been

emulated by engaging four types of grey wolves: a; b; c;x.
The a level is considered as the leader level which is

responsible for handling and administering the whole

group. The b level is a minor level that assists the a level in
establishing decisions or other pack actions. The wolves in

x level have the minimum rank where wolves have the

minimum allowance of eating. Wolves of that level have to

aid the other overriding wolves. If a wolf does not belong

to any of the above levels, it is considered as a d level wolf.
The hunting technique of grey wolves is composed of three

main stages: (a) tracing the prey, (b) encircling the prey to

prevent its movements, (c) assailing the prey. Below, we

explain each stage in detail.

• Encircling Prey

The enclosing criteria of grey wolves can be formulated

as follows:

D ¼ C
*

: Xp
�!

tð Þ � X
*

���
��� ð10Þ

X
*

t þ 1ð Þ ¼ Xp
�!

tð Þ � A
*

:D
*

ð11Þ

where t refers to the present iteration, A
*

and C
*

are the

vectors of coefficients, and D is the distance of the wolf

from the prey. The vector that illustrates the position of the

prey is Xp
�!

tð Þ, while X
*

includes the place of the grey wolf.

To calculate A
*

and C
*

, we use the following formula:
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A
*

¼ 2a
*
:r1
!� a

* ð12Þ

C
*

¼ 2r2
! ð13Þ

where a
*
components have a linear decrease from 2 to 0

during the whole iterations, while r1 and r2 are two vectors

that contain random values in [0,1].

• Hunting

This process is mainly driven by a and b, while d
contributes infrequently. Better estimation of the prey’s

location can be stemmed from the best solutions (a; b and

d). While x is updated continually according to the best

search agents. The hunting operation can be modeled as

follows:

Da ¼ C
*

1: Xa
�!� X

*
���

��� ð14Þ

Db ¼ C
*

2: Xb
�!� X

*
���

��� ð15Þ

Dd ¼ C
*

3: Xd
�!� X

*
���

��� ð16Þ

X1

*

¼ Xa
�!� A1

*

:ðDa
*

Þ ð17Þ

X2

*

¼ Xb
�!� A2

*

:ðDb
*

Þ ð18Þ

X3

*

¼ Xd
�!� A3

*

:ðDd
*

Þ ð19Þ

X
*

t þ 1ð Þ ¼ X1

*

tð Þ þ X2

*

tð Þ þ X3

*

tð Þ
3

ð20Þ

where X1

*

;X2

*

and X3

*

are the first best three solutions

obtained.

• Assailing the prey

To model the striking and hunting process mathemati-

cally, the value of a
*
should be reduced from 2 to 0 during

the iterations. A
*

is a random value chosen in �a; a½ �. After
striking the prey, another search of the prey is conducted in

the next iteration, and they get the subsequent best solution

with all wolves. The process is repeated until the algorithm

reaches the termination criteria. Note that, in Algorithm 1,

we use the steepest descent method (not GWO) to mini-

mize the cost function of Eq. 1. GWO is used only to find

the optimal regularization parameters of the proposed

method ðar; brÞ to maximize the performance and avoid

hand-crafting the parameters.

3 Results and discussion

3.1 Simulation setup

We have used the setting of the MRI acquisition model that

is used in the state-of-the-art methods: random under-

sampling pattern of 20% with adding Gaussian noise to the

acquisition system [6]. We also used the same sub-sam-

pling criteria used in the state-of-the-art methods [6, 8, 11].

To validate the proposed method, we used three MRI

datasets of different organs: shoulder, brain and cardiac. To

demonstrate the superiority of the proposed algorithm, we

compared it with six recently published MRI reconstruc-

tion methods: SparseMRI [11], TVCMRI [12], RecPf [13],

FCSA [14], WATMRI [16] and DT-WATMRI [19].

3.2 Evaluation

To evaluate the performance of the proposed method, we

use the signal-to-noise ratio (SNR) and the structure sim-

ilarity (SSIM) metric [52]. The SNR can be defined as

follows:

SNR ¼
PM�1

x¼0

PN�1
y¼0 f̂ x; yð Þ

PM�1
x¼0

PN�1
y¼0 f x; yð Þ � f̂ x; yð Þ

�  ð21Þ

where f̂ x; yð Þ is the reconstructed image and f x; yð Þ is the

original image.

The SSIM index can be expressed as follows:

SSIM x; yð Þ ¼
2lxly þ C1

� �
2rxy þ C2

� �

l2x þ l2y þ C1

	 

r2x þ r2y þ C2

	 
 ð22Þ

where lx is the average of image x, ly is the average of

image y, r2x is the variance of x, r
2
y is the variance of y, rxy

is the covariance of x, y and c1 ¼ :01ð Þ2; c2 ¼ :03ð Þ2 are

the two variables to stabilize the solution. Note that an

SSIM value of ‘‘1’’ indicates perfect similarity.

3.3 Experimental results

Datasets The experimental results have been conducted on

three typical MRI datasets used in related works (for fair

evaluation): shoulder dataset, brain dataset and cardiac

dataset. The datasets can be downloaded from http://ranger.

uta.edu/*huang/UTA%20webpage/codes/FCSA_MRI1.0.

rar.

The adaptivity of EWT has been studied for different

image data sets. The EWT produces 3 sub-bands with brain

image, 6 sub-bands with the cardiac image and 12 sub-

bands with shoulder data sets. The different number of sub-

bands for each image reflects the adaptivity of EWT. In

contrast, the conventional wavelet transform produces 16
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sub-bands for 4 levels without any dependency on the

characteristics of analyzed images. Figures 1, 2 and 3

present three selected sub-bands of EWT with the three

datasets: shoulder, cardiac and brain. Figure 1 shows three

sub-bands of shoulder image at which each sub-band pre-

serves different details of the image. Figure 2 shows the

EWT of the cardiac image and it can be noticed that the

boundaries are accurately detected due to the utilization of

efficient boundaries detection methods. Figure 3 shows

three sub-bands of the brain image, where we can see the

efficient directionality of EWT due to the usage of PPFFT

for boundaries detection.

The cost function of the proposed method has two reg-

ularization parameters ar and br: Tables 1, 2 and 3 show

the effect of these parameters the SNR of the proposed

method on the three datasets. The study has been con-

ducted without preprocessing and regularization methods

of EWT. The range of values has been chosen according to

the characteristics of MRI system with considering the

different properties of MRI images of different anatomical

parts. The chosen values have to bargain between residual

norm minimization and the minimization of the solution

norm. Figure 4a shows the change of SNR with different

values of ar and br with brain image dataset. We can notice

that the total difference across the range of parameters is

less than 1 dB. With the cardiac image, Fig. 4b shows

more variance in the values of SNR but the effect on the

SNR is still less than 1 dB, Fig. 4c demonstrates the effect

of changing the values of the regularization parameters on

the SNR with the shoulder image dataset.

The implementation of the EWT is available at www.1

We also study the effect of the parameters of EWT on the

SNR with five preprocessing (no preprocessing, plaw, poly,

morpho and tophat). The study has been conducted on

brain image dataset as study sample. We used the optimal

values of ar and br from the previous study. Table 1 shows

the SNR values of three detection methods (local

maximum, local minimum and scalespace) with four EWT

regularization methods (none, Gaussian, average and

morphological closing) without preprocessing. The best

SNR value (17.967 dB) is achieved with scalespace

boundaries detection method and Gaussian regularization.

With the plaw preprocessing, Table 2 shows that scale-

space and average regularization leads to the highest SNR

(15.593 dB) whereas local minimum and morphological

closing gives the lowest SNR (4.6 dB). Table 3 shows that

poly processing gives the highest SNR value (14.84 dB)

with scalespace and morphological closing regularization.

Table 4 and 5 show that morpho and tophat preprocessing

give the highest SNR values with scalespace and mor-

phological closing regularization, while they give the

lowest SNR values with local minimum and morphological

closing regularization.

From the above study, we could choose the best regu-

larization method and boundaries detection method of

EWT that yield an outstanding performance. To achieve

the best performance of the proposed method and avoid

hand-crafting too parameters, GWO is used to find the

optimal values of ar and br with each image dataset

without the suffering from parameters tuning.

With the GWO method, we set the search range of a to

[0.001 0.01] and the search range of b to [0.025 0.4]. Note

that these ranges have been chosen referencing to a deep

understanding of MRI image characteristics. Indeed, this

knowledge has contributed to predict the limits of the

weights of regularization terms. The number of iterations

of GWO is 10 and the number of search agents is 10.

Tables 6, 7 and 8 present the results of GWO with the

three image datasets. Each table provides the optimal val-

ues of ar and br, and the best SNR of GWO with the five

preprocessing. Table 6 shows that the cardiac image

dataset obtains the best SNR value (20.922 dB) with plaw

preprocessing, ar of 0.24884 and br of 0.14498, whereas

the lowest SNR (15.7109 dB) is obtained with poly pre-

processing (ar ¼ 0:25 and br ¼ 0:4). With brain image

dataset, Table 7 shows that the proposed method gives the

best SNR values (17.40 dB) with no preprocessing

Fig. 1 The sub-bands of EWT with shoulder image dataset: a sub-band #1, b sub-band #4 and c sub-band #7

1 https://www.mathworks.com/matlabcentral/fileexchange/42141-

empirical-wavelet-transform.
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processing (ar ¼ 0:01539 and br ¼ 0:34231) while it gives

the lowest SNR value (13.9072 dB) with poly prepro-

cessing. With the shoulder image dataset, Table 8 shows

that the proposed method obtains the best SNR value

(23.7171 dB) with no preprocessing (ar ¼ 0:11994 and

br ¼ 0:10646) whereas it gives the lowest SNR value

(19.6245 dB) with morpho preprocessing. The optimal

values of ar and br are used with the proposed CS MRI

method. Figure 5 shows the change of SNR across the

iterations of the proposed algorithm with (a) brain,

(b) cardiac and (c) shoulder image datasets. It can be

noticed that the SNR curves show fast convergence across

Fig. 2 The sub-bands of EWT with cardiac image dataset: a sub-band #1, b sub-band #2 and c sub-band #3

Fig. 3 The sub-bands of EWT with brain image dataset: a sub-band #1, b sub-band #3 and c sub-band #6

Table 1 SNR values for

different empirical wavelet

parameters with no

preprocessing

None Gaussian Average Morphological closing

Local maximum 13.818 6.560 6.59 6.546

Local minimum 14.133 10.254 7.2 6.4

Scalespace 17.4 17.967 14.25 6.625

Bold refers to the best value

Table 2 SNR values for

different empirical wavelet

parameters with plaw

preprocessing

None Gaussian Average Morphological closing

Local maximum 14.567 6.443 6.458 6.4

Local minimum 6.493 6.1 6.35 4.6

Scalespace 14.74 15.442 15.593 7.6

Bold refers to the best value

Table 3 SNR values for

different empirical wavelet

parameters with poly

preprocessing

None Gaussian Average Morphological closing

Local maximum 6.56 14.634 6.55 6.35

Local minimum 8.52 7.25 7.34 6.25

Scalespace 15.64 14.68 14.84 15.95

Bold refers to the best value
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iterations. Figure 6 shows the reconstruction results of the

proposed method with the three datasets. As we can see,

the small details are very clear in the three reconstructed

images (see the zoomed regions at the right of each image).

In Table 9, we compare the performance of GWO with

other two metaheuristic methods: whale optimizer algo-

rithm (WOA) [53] and salp swarm algorithm (SSA) [54].

As shown, the SNR and SSIM values of GWO are better

than the ones of WOA and SSA with the Brain and

Shoulder datasets. In the case of cardiac dataset, The SSIM

values of GWO are slightly less than the ones of WOA and

SSA.

3.4 Comparison with related works

In this section, we compare the proposed method with six

CS methods: SparseMRI, TVCMRI, RecpF, FCSA [6],

WATMRI [8] and DT-WATMRI [11]. Below, we briefly

explain the basic idea of each method.

Fig. 4 The effect of changing ar and br on SNR of a brain, b cardiac and c shoulder image datasets

Table 4 SNR values for

different empirical wavelet

parameters with morpho

preprocessing

None Gaussian Average Morphological closing

Local maximum 13.969 12.059 15.165 6.593

Local minimum 14.041 13.941 10.743 6.14

Scalespace 13.686 15.165 15.201 16.570

Bold refers to the best value

Table 5 SNR values for

different empirical wavelet

parameters with tophat

preprocessing

None Gaussian Average Morphological closing

Local maximum 14.003 13.827 10.781 6.593

Local minimum 12.277 14.137 7.6 6.23

Scalespace 14.337 14.073 14.741 16.569

Bold refers to the best value
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SparseMRI method [11] is considered as the first suc-

cessful application of CS in MRI reconstruction. It had

achieved a great improvement with respect to conventional

methods. Both l1-norm minimization and finite difference

minimization have been used as regularization terms. This

reconstruction problem has been solved using conjugate

gradient solver with backtracking line search. Indeed,

SparseMRI gives bad reconstruction results due to the

ineffectiveness of the utilized sparsification transform and

the conjugate gradient solver. To reconstruct the images,

the following constrained optimization problem is solved:

minimize Wmk k1þa1TV mð Þ
s:t: F um� yk k\�

ð23Þ

where W is a sparsification transform, F u is the under-sam-

pled Fourier transform, and � controls the reconstruction

fidelity to the measurements a1 is a regularization parameter

to control the weight of total variation minimization in the

reconstruction problem. The MATLAB code of the Spar-

seMRI method is available at: www.2

TVCMRI minimizes the nonsmooth reconstruction

problem using big data sets [4]. It uses the wavelet trans-

form for sparsifying the original data and then minimizes

the l1 norm, total variation and least squares. An operator

splitting algorithm has been used for solving this recon-

struction problem. Although this method achieved an

improved result compared to previous works, its hypothesis

of the MRI reconstruction is incorrect because the recon-

struction algorithm assumes sparsity of images in the pixel

domain which is not the case of MRI images. The recon-

struction problem is formulated as follows:

min
x

F xð Þ ¼ a2TV /�1x
� �

þ b2 xk k1þ
1

2
Arx� brk k ð24Þ

where a2 and b2 are regularization parameters, / represents

the conventional wavelet transform operator, Ar is the

partial Fourier transform operator, br is the measurements

vector. The MATLAB code of TVCMRI method is avail-

able at: www.3

RecPf method [13] uses the discrete cosine transform

(DCT) for sparsifying the data. A variable splitting algo-

rithm (alternating direction method) has been used to

reconstruct the image from partial Fourier data. Although

RecPf has contributed to increase the reconstruction speed

with higher SNR, its visual results are not realistic. The

reconstruction model of RecPf can be expressed as follows:

min
X

i

Diuj jj j þ s KTu
�� ���� ��

1
þlh u; fp

� �
ð25Þ

h u; fp
� �

¼ 1

2
: Fp � fp
�� ���� ��2

2
:

where the summation operator includes the entire pixels,

Diuj jj j is the discrete version of the finite difference of u, K

represents the DCT transform operator and KTuj jj j1 is the

l1-norm of the DCT of u. The MATLAB code of RecPf

method is available at: www.4

FCSA [6] depends on splitting the complete problem

into two sub-problems and solving each of them with a fast

iterative shrinkage–thresholding algorithm (FISTA). The

reconstruction problem is formulated as follows:

min
x

F xð Þ ¼ 1

2
A1x� b1k k22þa3 xk kTVþb3 /xk k1

� �
ð26Þ

where A1 is the partial Fourier transform, :TV is the finite

difference minimization and / is the wavelet transform

operator, a3 and b3 are regularization parameters. For the

Table 6 The results of GWO with cardiac image dataset and five

preprocessing

Preprocessing method ar br Best SNR

None 0.23993 0.28054 20.4

Plaw 0.24884 0.14498 20.922

Poly 0.250 0.400 15.7109

Morpho 0.250 0.27366 17.2187

Tophat 0.21936 0.12056 19.9047

Bold refers to the best value

Table 7 The results of GWO with brain image dataset and five

preprocessing

Preprocessing method ar br Best SNR

None 0.01539 0.34231 17.98

Plaw 0.025 0.26092 15.1623

Poly 0.025 0.38484 13.9072

Morpho 0.014659 0.20239 15.9415

Tophat 0.002368 0.10045 15.1407

Bold refers to the best value

Table 8 The results of GWO with shoulder image dataset and five

preprocessing

Preprocessing method ar br Best SNR

None 0.11994 0.10646 23.7171

Plaw 0.012044 0.24791 20.6782

Poly 0.020092 0.1381 21.6146

Morpho 0.1925 0.126 19.6425

Tophat 0.011503 0.14355 21.5830

Bold refers to the best value

2 https://people.eecs.berkeley.edu/*mlustig/software/sparseMRI_

v0.2.tar.gz.
3 http://www1.se.cuhk.edu.hk/*sqma/TVCMRI.html.
4 http://www.caam.rice.edu/*optimization/L1/RecPF/.
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sake of comparison, we used the parameters setting sug-

gested in [6] (a3 = 0.1, b3 = 0.35). The MATLAB code of

FCSA is available at www.5

WATMRI reduces the needed number of measurements

to reconstruct the signal [16]. It uses the sparsity of wavelet

tree structure as a regularization term in addition to

exploiting both l1-minimization and finite difference min-

imization. With WATMRI, the reduction of the needed

number of samples is O (K ? log n) compared to O (K ?

klog n) with FCSA. The cost function of WATMRI can be

formulated as follows:

min
x

F xð Þ ¼ 1

2
A 2x� b2k k22þa4 xk kTVþb4ð /xk k1þ

X

g2G
/xg

�� ��
2
Þ

( )

ð27Þ

where A2 is the operator of partial Fourier transform, b2

is the under-sampled measured data, x is the image to be

reconstructed, / indicates the wavelet transform, a4 and

b4 are weighting parameters, xTV is the total variation

operator, :k k1 is the l1-norm, G represents the collections

of all parent–child group and xg represents the data that

fitting to that group. In this study, we used the param-

eters setting of WATMRI suggested in [8] (a = 0.1,

b = 0.35). The MATLAB code of WATMRI is available

at www.6

Indeed, the conventional wavelet transform has suffered

from some drawbacks, such as shifting variance and lack of

directionality. DT-WATMRI was proposed in [19]. It uses

dual-tree complex wavelet transform to overcome the

aforementioned shortcomings. Furthermore, wavelet tree

sparsity has been also employed to reduce the needed

number of measured data. DT-WATMRI combines the

advantage of dual-tree complex wavelet transform and

exploiting the prior information in MR image as sparsity of

wavelet tree structure. The reconstruction problem can be

formulated as follows:

min
x

F xð Þ ¼ 1

2
A3x� b3j jj j22þa5 xj jj jTVþb5ð wxj jj j1þ

X

g2G
wxg

�� ��
2
Þ

( )

ð28Þ

where w is the dual-tree complex wavelet transform coef-

ficient, G is the set of all parent and their child groups, g is

Fig. 5 The change of SNR across iterations with a brain, b cardiac and c shoulder image datasets

5 http://ranger.uta.edu/*huang/codes/FCSA_MRI1.0.rar. 6 http://ranger.uta.edu/*huang/codes/WaTMRI.zip.
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an index for each group and xg shows the data to be tailored

according to the group. We used the parameters setting of

DT-WATMRI suggested in [11] (a = 0.001, b = 0.034,

k = 0.00003 9 b). The MATLAB code of DT-WATMRI

is available at www.7

Table 10 shows the SNR values of the proposed method

SparseMRI, TVCMRI, RecpF, FCSA, WATMRI and DT-

WATMRI with the brain, cardiac and shoulder datasets.

The proposed method gives the highest SNR with the three

images and outperforms the compared methods. As shown

in Table 11, the proposed method achieves the best SSIM

values with brain image (0.6359), cardiac image (0.7101)

and shoulder image (0.5962). The SparseMRI gives the

lowest SNR and SSIM values with all images.

Figure 7 shows the change of SNR of the proposed

method, SparseMRI, TVCMRI, RecpF, FCSA, WATMRI

and DT-WATMRI across iterations with the three images.

As we can see, the proposed method outperforms the other

methods throughout the iterations.

Figure 8a shows the original Phantom of shoulder

image. Figure 8b shows the reconstructed image with the

SparseMRI method. The reconstructed image has noise

artifacts (see the zoomed region) because SparseMRI uses

Fig. 6 The reconstruction results of the proposed method with a brain, b cardiac, and c shoulder image datasets

Table 9 Comparison between the performance of GWO, WOA and

SSA when optimizing the parameters of the proposed method

Method Brain image Cardiac Shoulder

SNR SSIM SNR SSIM SNR SSIM

GWO 17.40 0.636 20.92 0.710 23.72 0.596

WOA 16.58 0.614 20.20 0.721 23.26 0.596

SSA 16.72 0.622 20.07 0.722 22.87 0.575

Bold refers to the best value

Table 10 SNR values of the proposed method, SparseMRI,

TVCMRI, RecpF, FCSA, WATMRI and DT-WATMRI with the

brain, cardiac and shoulder datasets

Brain Cardiac Shoulder

SparseMRI 8.68 8.438 10.752

TVCMRI 12.058 13.958 13.47

RecPF 12.695 14.82 14.462

FCSA 15.00 17.20 20.23

WATMRI 15.01 17.00 20.20

DT-WATMRI 16.30 17.80 21.00

Proposed method 17.40 20.922 23.7171

Bold refers to the best value

7 https://drive.google.com/file/d/0B1qUOc5IJjDcNEJycTBpMW

FacVU/view?usp=sharing.
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the CG solver which cannot reach an optimum solution.

Figure 8c, d shows some improvements in the visual

results and fewer artifacts due to changes in the solver and

the sparsification transform. Although significant

improvements are shown in Fig. 8e due to the correct

modeling of MRI system and an outstanding solving

algorithm, there is an unperfect representation of directions

in the image with some shifting variance artifacts. Fig-

ure 8f, g shows improvements in directionality and shift

invariance due to the use of dual-tree complex wavelet

transform (DT-CWT) for sparse representation. The

reconstructed images of WATMRI and DT-WATMRI still

have noise appearing in the low-frequency parts due to the

sub-optimal decimation levels of DT-CWT. Figure 8h

Table 11 SSIM values of the proposed method, SparseMRI,

TVCMRI, RecpF, FCSA, WATMRI and DT-WATMRI with the

brain, cardiac and shoulder datasets

Brain Cardiac Shoulder

SparseMRI 0.4586 0.3825 0.3114

TVCMRI 0.5450 0.4923 0.3924

RecPF 0.5592 0.5037 0.4217

FCSA 0.5843 0.6618 0.5208

WATMRI 0.5817 0.6612 0.5342

DT-WATMRI 0.6138 0.6833 0.5150

Proposed method 0.6359 0.7101 0.5962

Bold refers to the best value

Fig. 7 The change of SNR of the proposed method, SparseMRI, TVCMRI, RecpF, FCSA, WATMRI and DT-WATMRI over 50 iterations with

a brain, b cardiac and c shoulder image datasets
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Fig. 8 The reconstruction results with the shoulder image: a original image, b SparseMRI, c TVCMRI, d RecPF, e FCSA, f WATMRI, g DT-

WATMRI and h proposed method
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Fig. 9 The reconstruction results with the cardiac image: a original image, b SparseMRI, c TVCMRI, d RecPF, e FCSA, f WATMRI, g DT-

WATMRI and h proposed method
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Fig. 10 The reconstruction results with the brain image: a original image, b SparseMRI, c TVCMRI, d RecPF, e FCSA, f WATMRI, g DT-

WATMRI and h proposed method
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shows that the reconstructed images of the proposed

method have more sharpness and higher resolution than the

other methods. This improvement stems up from the

optimal representation of EWT and the optimum choice of

parameters with GWO. Figure 9 provides the reconstructed

cardiac images with all methods. Is clear that the quality of

the image reconstructed by the proposed method (Fig. 9h)

outperforms the other methods. Indeed, the proposed

method achieves significant removal of under-sampled

artifacts. In Fig. 10, the simulation is conducted on the

brain image. The reconstructed image of the proposed

method (Fig. 10h) emphasizes more edges reserving with

highest artifacts removal. This can result from both the

optimized representation and the minimization of l1-norm

that has been applied to each sub-band separately unlike

state-of-the-art methods that apply it to the whole image.

3.5 Complexity analysis

The derivation of the complexity of each step in the pro-

posed method (see Algorithm 1) is similar to FCSA, which

can be found in [14]. Assume that we have an input image I

with m pixels. In step 1 of the proposed method:

xs ¼ jn � nrf ðjnÞ, where rf ðjnÞ = 1
2

Ax� bk k22, thus it

costs Oðm logmÞ). In step 2: xa ¼ proxpða xk kTVÞðxnÞ, the
complexity reaches OðmÞ. In step 3, we repeat xbðlÞ ¼
proxpðb Exk k1ÞÞðxnÞ L-times, where L is the number sub-

bands. Thus, this step costs OðLm logmÞ with considering

that EWT can be optimized to cost just like conventional

wavelet transform. Steps 4, 5 and 6 only cost OðmÞ. Thus,
the total cost of each iteration in the proposed algorithm is

OðLm logmÞ. Table 12 presents a summary of computa-

tional complexity of the proposed method and the related

work.

From this analysis, it can be shown that complexity of

the proposed method could reach the same complexity of

the related methods with an outperforming result.

In addition, the proposed method outperforms all the

state-of-the-art methods in terms of SNR and SSIM met-

rics. However, this improvement has achieved at the

expense of CPU time which is larger than the related

methods because we used an unoptimized version of the

code. In the future, we will optimize our code to reduce the

execution time.

4 Conclusion

In this paper, we have proposed a novel CS method using

EWT and GWO. Our method can be considered as the first

successful application of 2D EWT in compressed sensing

MRI. Although all the state-of-the-art methods used dif-

ferent types of wavelet transforms for sparse representation

of the images as a crucial step in the process of CS MRI

reconstruction, none of them can get an adaptive wavelet

representation without struggling with the trial of the

number of decimation levels that needed for optimized

representation. The main advantage of the proposed

method is that it utilizes an adaptive wavelet representation

(adaptive filter banks) of MR images, yielding optimal

sparse representations. Moreover, GWO has been used for

finding the optimal parameter of the proposed method. In

this way, we avoid hand-crafting the parameters of the

proposed method. To validate the proposed method, we

used three MRI data sets of different organs. The experi-

mental results show that the proposed method outperforms

the state-of-the-art methods in terms of SNR and SSIM

metrics.

In the future work, we will use several boundaries

detection methods of EWT to improve the performance of

the proposed method. Furthermore, the empirical counter-

part of other transforms, such as Ridgelets, Shearlets and

Curvelets will be integrated into the proposed method.
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