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Abstract
This study proposes a novel strength of multi-objective gravitational search algorithm and bat algorithmMOGSABAT to solve

multi-objective optimisation problem. The proposed MOGSABAT algorithm is divided into three stages. In the first stage

(moving space), a switch in a solution from single function to multiple functions that contain more than one objective to use

the gravitational search algorithmGSA is determined.We established a new equation to calculate the masses of individuals in

the population using the theoretical work found in the strength Pareto evolutionary algorithm. In the second stage (moving in

space), how to handle the bat algorithm BAT to solve multiple functions is established. We applied the theoretical work of

multi-objective particle swarm optimisation into the BAT algorithm to solve multiple functions. In the third stage, multi-

objective GSA and multi-objective BAT are integrated to obtain the hybridMOGSABAT algorithm.MOGSABAT is tested by

adopting a three-part evaluation methodology that (1) describes the benchmarking of the optimisation problem (bi-objective

and tri-objective) to evaluate the performance of the algorithm; (2) compares the performance of the algorithm with that of

other intelligent computation techniques and parameter settings; and (3) evaluates the algorithm based on mean, standard

deviation andWilcoxon signed-rank test statistic of the function values. The optimisation results and discussion confirm that

the MOGSABAT algorithm competes well with advanced metaheuristic algorithms and conventional methods.

Keywords Multi-objective optimisation problem � Gravitational search algorithm � Bat algorithm � Swarm intelligence

1 Introduction

Optimisation problems generally have more than one

objective, which is a common nature in many industrial

and academic research sectors. Such problems with
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conflicted and incommensurable objectives are called

multi-objective optimisation problems MOPs. In contrast

to the single-objective optimisation problem SOO, MOPs

have no single optimum solution, but they have a set of

trade-off solutions known as Pareto optimal solutions [33].

As the search space grows dramatically with problem size,

the high-dimensional search space in MOPs caused the

traditional optimisation algorithms using exact techniques

(e.g. exhaustive search) to be no longer suitable.

The recent decades showed an interesting and significant

growth of algorithms as researchers fully utilised natural

phenomenon behaviours as an inspiration technique [9].

These algorithms show good performance in solving

complex computational problems with high-dimensional

objectives (i.e. MOPs). Although various heuristic algo-

rithms have been proposed and show an efficient and

effective performance, such as ant colony search algorithm

[7], artificial bee colony algorithm [15], genetic algorithm

[27], bat algorithm BAT [19], particle swarm optimisation

PSO [11], simulated annealing SA [12], gravitational

search algorithm GSA [21], their achievements cannot be

considered as the best in solving all of the MOPs. Hence,

the need for new optimisation algorithms to address MOPs

remains a challenge [21].

Basically, exploration and exploitation (also referred to

as diversification and intensification, respectively) are two

main aspects of population-based heuristic algorithms,

where the balance between them in any metaheuristic

algorithm is the performance measurement of its success in

solving each given MOP. Exploration is the capability to

search the space that allows the metaheuristic algorithm to

scan the expanding parts of the search space without falling

into local optima. Meanwhile, exploitation is the capability

to search locally in the search space to provide accurate

search and convergence [22].

Although population-based search algorithms have

achieved good performance results [29], none of the

metaheuristic algorithms have superior performance in

solving all problems. Practically, the performance of the

algorithm in solving MOPs might be controversial from

one problem to another. Thus, developing a hybrid meta-

heuristic algorithm by combining different metaheuristic

concepts can improve the quality of performance and meet

the promising balance between diversity and convergence

[14].

Many previous researchers have proposed algorithms in

an attempt to obtain multi-Pareto optimal solutions with an

efficient exploitation and global diverse exploration such as

BAT algorithm that mimic the bat behaviour of echoloca-

tion capability. Although BAT algorithm shows good

results in terms of quality performance for exploration and

exploitation, it shows bad convergence and less accuracy

performance in some multi-dimensional functions because

of trapping in local minimum in some cases [22]. The GSA,

which is derived from Newton’s law on gravity and mass

interactions, performed effectively in SOO and has shown

promising results in MOPs, as presented by [8] who pro-

posed a multi-objective GSA (MOGSA) that shows a good

reduction in diversity of population at a search space.

Similar to the particle swarm optimisation [2], the GSA

has two key points that need to be addressed in tackling

objective optimisation problems. The first is related to

leaders selection of the population. The second is related to

methods on sustaining the obtained good alternative results

[26]. Some recent works have attempted to handle these

problems by using an external archive for selecting leaders

[8], whereas others depended on non-dominated sorting to

select leaders from the external archive and population

[17]. To address these issues and improve the balance

between the diversity and convergence in MOPs, we pro-

posed a hybrid metaheuristic algorithm called multi-ob-

jective GSA and bat algorithm MOGSABAT.

The main contributions of this paper are as follows.

Firstly, we established a new equation to calculate the

masses of individuals in the population using the theoret-

ical work found in the strength Pareto evolutionary algo-

rithm two (SPEAII) [34] to switch in a solution from single

function to multiple functions that contain more than one

objective to use the GSA. Secondly, we applied the theo-

retical work of multi-objective particle swarm optimisation

MOPSO in multiple functions into the BAT algorithm to

solve multiple functions to handle the bat algorithm.

Thirdly, we examined the integration of multi-objective

GSA and multi-objective BAT to obtain the hybrid pro-

posed MOGSABAT algorithm.

The proposed MOGSABAT algorithm is compared with

five state-of-the-art techniques to optimise three common

MOP suites, which are ZDT, UF and BT. Also, two well-

known performance metrics generational distance (GD)

and reversed GD (RGD) are statistically applied in this

study to test the performance quality of MOGSABAT in

comparison with other algorithms.

We organised the remainder of this paper as follows. In

Sect. 2, we provide overviews on the theoretical back-

ground of the proposed MOGSABAT algorithm. In Sect. 3,

we demonstrated the evaluation methodology. In Sect. 4,

we provided the statistical measurement based on mean,

standard deviation (STD) and Wilcoxon signed-rank test.

Finally, in Sect. 5, we draw our conclusions.

2 Methodology

The present study aims to solve the following types of

problem (without loss of generality, the present study will

only be assuming minimisation problems):
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Min Z ¼ ðf1ðxÞ; f2ðxÞ; . . .; fkðxÞÞ ð1Þ

where giðxÞ� 0; i ¼ 1; 2; . . .; p; hjðxÞ ¼ 0; j ¼ 1; 2; . . .; q;

xli � xi � xui ; i ¼ 1; 2; . . .; n; k ¼ no. of objective functions,

p ¼ no. of inequality constraint, q ¼ no. of the equality

constraint. and f, g, h are linear, quadratic or higher func-

tions. Multiple-objective optimisation programming of the

form Eq. (1) arises when rates including the ratios profit/

revenue, profit/time, raw materials wastage/used raw

material quantities are to be maximised. These problems

are frequently linear or at least concave/convex fractional

programming algorithmic schemes that provide successful

solutions to numerous actual optimisation problems, which

are naturally NP-Hard [23].

To describe the target concept of optimality, the

researcher introduces the following definitions [23].

1. Definition 1 (Pareto dominance) Given two solutions,

namely x and y 2 Rn, we say that x� y if xi � yi for

i ¼ 1; 2; . . .; n and that x dominates by y if x� y and

x 6¼ y.

2. Definition 2 (Non-dominance) A vector of decision

variables x 2 X � Rn is non-dominated with respect to

X, if no y 2 X exist, such that f ðyÞ� f ðxÞ.
3. Definition 3 (Pareto optimality) A vector of decision

variables x� 2 X � Rn (F is the feasible region) is

Pareto optimal if it is non-dominated with respect to F.

4. Definition 4 (Pareto optimal set) The Pareto optimal

set P� is defined as follows: P�={ x 2 F, such that, x is

Pareto optimal}.

5. Definition 5 (Pareto front) The Pareto front PF� is

defined by the following: PF�={ f ðxÞ 2 Rk; x 2 P�}

2.1 Multi-objective gravitational search
algorithm

Gravitational search algorithm is a new algorithmic method

that uses Newton’s laws of motion and gravity in different

modification techniques [24]. Nonetheless, in research, the

algorithms have been developed because little is known

about its inception. In GSA, for each mass (agent), one can

consider four specifications: inertial mass, position, active

gravitational mass and passive gravitational mass. Such as:

miðtÞ ¼ ½fitiðtÞ � worstðtÞ�=½bestðtÞ � worstðtÞ�;
i ¼ 1; 2; 3; . . .; nmass

ð2Þ

MiðtÞ ¼ miðtÞ=
XN

j¼1

mjðtÞ; 0�MiðtÞ� 1 ð3Þ

where fiti represents the objective function of the agent ith;

the worst value worst(t) represents the lowest value of the

objective function (for a minimisation problem); t

represents the time; and N represents the number of the

objective functions or the size of the swarm Eq. 2. To

calculate the acceleration of the agent, the sum of the

forces of heavy masses applied should be considered on the

basis of the law of gravity and the acceleration of the agent

using the motion law in Eq. 3. The current velocity is

added to the acceleration using Eq. 5. Afterwards, the

position is calculated by using Eq. 4.

aiðtÞ ¼ GðtÞ
Xnmass

j¼1

rj 	 ½ðMjðtÞ=Ri;j þ e� 	 xdj ðtÞ � xdi ðtÞ
� �

ð4Þ

Thus, the following equations are obtained:

vdi ðt þ 1Þ ¼ ri 	 vdi ðtÞ 	 ðatiÞ ð5Þ

xdi ðt þ 1Þ ¼ xdi ðtÞ þ vdi ðt þ 1Þ ð6Þ

In Eq. (4), G(t) represents a constant of gravity and the e
value is considerably small. Ri;j is the Euclidean distance

between two agents, namely i and j. ri and rj represent two

random numbers between 0 and 1 that ensure the random

properties of the algorithm.

MOPs are observed, and a single fitness function must

correspond to each solution. Given that the use of an

equivalent mass for a population that contains an objective

function is not possible, we used the SPEA II method to

determine the equivalent of the mass that is dependent on

the MOGSA algorithm. To avoid being controlled by

individuals, wherein some exhibit the same objective

function in the same archive, we considered the dominant

solutions and the controlled solutions with SPEA II. Each

individual i in the population Pt displays strength S(i) as in

Eq. 7, which represents the number of controlled solutions

SðiÞ ¼j fj : j 2 xt þ �xt ^ i 
 jg j ; ð7Þ

where (|.|) signifies the basic character of the set, þ denotes

the union over a set, and the symbol (
) denotes the

relationship to the dominant Pareto solution. Based on the

values of S(i), the raw objective function Ri is calculated in

each individual agency using Eq. 8 as follows:

Ri ¼
X

j2xtþ�xt^i�j

Sj ð8Þ

This simple function Ri is calculated through the strengths of

archive and population. On the contrary, in SPEAII, the archive

members are in control of the situation. Notably, the objective

functions should be in the form of miniaturisation, that is

Ri ¼ 0, corresponding to a non-dominated individual, whereas

its highest Ri value indicates that i is controlled by many indi-

viduals, which consequently dominates many individuals.

Although the designation of the explicit function pro-

vides a type of mechanism (niching mechanism) that is
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based on the concept of Pareto dominance, it may fail when

most individuals do not dominate one another. Additional

density information is added between individuals who

exhibit objective functions with identical values. The

density estimation technique is an intensified method

(nearest neighbourhood method) [25], in which the density

at any point is a decreasing feature of the distance to the kth

nearest neighbour.

The present study considers the inverse distance (the

nearest k-th) as an estimate of intensification. Particularly,

for any individual i, the spaces between the individual j in

the archive and the community are calculated and stored as

a list. After the sorting in ascending order, the kth element

provides the required distance, which is represented by Qk
i .

The present study uses k, which is equal to the square

root of sample size [25]; thus, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ �NÞ

p
. Subse-

quently, density Di, which corresponds to i, can be defined

as follows:

Di ¼ 1=Qk
i þ 2 ð9Þ

Number 2 is added to the denominator to ensure that its

value is higher than 0, and Di � 1. Finally, the number is

added to the explicit Di function of the initial individual i to

obtain the new fitness Fi as shown in Eq. 10:

Fi ¼ Ri þ Di ð10Þ

In Eq. 11, the researcher used the function Fi in a new

equation as an exponential function by using the technique

applied in the solution for SPEAII algorithm.

miðtÞ ¼ exp ð�FðiÞÞ ð11Þ

input : Set k = 0, velocity=0
Randomly initialize point Xi for n population
Calculate the fitness values of initial population: f(X);
Find the non-dominated solutions and initialized the archive with them
output: Non-dominated solutions set

while (the termination conditions are not met) do
MOGSA Steps;
Calculate the mass function m
Calculation of Gravitational constant G
Calculation of acceleration in gravitational field a
vt+1 = randvi + a
xt+1 = xt + vt+1
Find the non-dominated solutions x̄t+1
Copy all non-dominated individuals in xt and x̄t to x̄t+1
if size of x̄t+1 exceeds N̄ then reduce x̄t+1 then

k = 1
while min (Qk

i )=max (Qk1
i ) and k < size Qi do

k = k + 1;
end
j = min(Qk

i )
¯xk

t+1 = null

Qk
i = null

end
otherwise if size of x̄t+1 is less than N̄ then fill x̄t+1 with dominated
individuals in Xt and x̄t+1.
Set k = k + 1;

end
Algorithm 1: MOGSA Procedure

2.2 Multi-objective bat algorithm

Bats are mammals with wings and echolocation ability.

Approximately 996 different bat species have been iden-

tified worldwide, and they account for approximately 20%

of all mammal species [30]. In Ref. [4], a new optimisation

algorithm known as BAT is proposed on the basis of swarm

intelligence and bat observation. One can simulate the parts

of the echolocation characteristics of microbat by using the

BAT. The advantages of this algorithm include simplicity,

flexibility and easy implementation. Furthermore, the

algorithm efficiently solves a wide range of problems, such

as highly nonlinear ones [10]. BAT also provides promis-

ing optimal solutions quickly and works well with com-

plicated problems. The disadvantages of this algorithm are

convergence occurring quickly at early stages and the

decrease in convergence. In addition, no mathematical

analysis links the parameters with convergence rates. The

most suitable values for most applications are also unclear

[20].

Equations 12–14 simulate the movement of bat virtual

agencies:

Qi ¼ Qmin þ ðQmax � QminÞb� ð12Þ

vti ¼ vt�1
i þ ðPt�1

i � PbestÞfi ð13Þ

Pt
i ¼ Pt�1

i þ vti ð14Þ

where Q is the frequency used by bats to obtain prey; Qmax

and Qmin represent the minimum and the maximum limits,

respectively; Pi represents the location of the ith bat in the

search space; viðtÞ represents the velocity of the bat; and t

indicates the number of iterations. In addition, b has a

range of [0, 1], and it is plotted through a uniform distri-

bution. Pbest represents the most suitable solution found for

all the populations.

To obtain better optimal procedure for multi-objective

functions using BAT, we develop an algorithm called

MOBAT [28] by introducing two new components (i.e.

archive and leader), as found in the MOPSO algorithm in

Ref. [3]. The archive is responsible for saving and restoring

the most remarkable non-dominated and non-controllable

Pareto optimal solutions that have been obtained to date.

The archive also displays a main unit, which is the control

unit of the archive. This unit controls the number of non-

controlling solutions when new non-controlling solutions

exist. Concurrently, the archive size is complete. During

the process of replication, the non-dominated solutions

obtained against the archive population are compared.

Consequently, four different situations will be observed.

1. The new member is logged into the archive if a

member of the archive is in control, in which the user

is allowed access to the archive.
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2. The new solution dominates the solution of one or

more of the solutions in the archive. In this case, the

solution or the dominant solutions in the archive must

be deleted. The new solution will be able to access the

archive.

3. If neither the new solution nor the archive member

dominates each other, then a new archive solution must

be added.

4. If the archive is full, then the network mechanism is

run first to repartition the target space, determine the

busiest sector and delete one of the existing solutions.

The new solution should subsequently be incorporated

into a less crowded slot in the system to improve the

final diversification of Pareto approximate solution.

Increasing the probability of deleting a solution is pro-

portional to solutions in a hypercube (segment). A special

case exists in which a solution is inserted by hypercube. In

this case, all sectors are extended to cover new solutions.

Therefore, other solutions can also be changed. The second

mechanism is selecting a leader (where the leader directs

the selected members within the research area). In MOBAT

algorithm, the most suitable obtained solution is used. This

leader directs members within the research area to obtain a

solution near the most suitable solution.

However, solutions cannot be in a multi-objective

search space compared with the ideal Pareto concepts. The

leader selection mechanism is designed to handle the issue.

An archive contains the most suitable non-dominant solu-

tions obtained. The leader selects the component from the

crowded segments of the space solution and offers one of

the non-dominant solutions. Selection is performed through

a roulette wheel with the following possibility for each

hypercube:

Pi ¼ c=Ni ð15Þ

where c is a constant number higher than 1, and Ni is the

number of obtained Pareto optimal solutions in the ith

segment. The equation indicates that the lack of congestion

in the hypercube shows a high probability in the proposal

of a new leader.

In this case, the possibility of selecting a hypercube to

choose a driver is increased when the number of solutions

obtained in hypercube decreases. The following procedure

shows the action of the BAT for multi-objective function

and in solving MOPs by using the mechanical Pareto

optimal solution from the optimal solution.

2.3 Multi-objective gravitational search
algorithm with bat algorithm

This section discusses the optimal hybridisation algorithm

by means of a communication strategy between the two

algorithms [1]. The idea is based on three stages. The first

stage is based on creating a MOGSA from SPEA II theory

as follows. We benefit from the theoretical work found in

the SPEA II algorithm concerning the selection of the most

suitable solution but not for multiple objective functions,

because the work of this algorithm depends on more than

one objective function. This approach benefits from the

equation that describes the sum of non-dominated solutions

and the distance between two individuals in the population.

The function Fi is the criterion of differentiation

between them and the mass of each individual in popula-

tion because the proportionality between them and the

mass of the opposite suits any possibility when the low Fi

input : Set k = 0, velocity=0,μ = 0.1, r0 = 0.5, A = 0.6
Randomly initialize point Pi for n population
Calculate the fitness values of initial population: f(P );
Find the non-dominated solutions and initialized the archive with them
output: Non-dominated solutions set

while (the termination conditions are not met) do
MOBAT Steps;
Q = Qmin + (Qmax − Qmin) ∗ rand
Pleader1 = Select Leader (archive)
vt+1 = vi + (PLeader1 − Pt) ∗ Q
Pnew = Pt + vt+1
if rand > r then

Pleader1 = Select Leader (archive)
Pnew = Pi + rand ∗ (PLeader2 − Pt)

end
if Pnew dominated on Pt and (rand < A) then

Pt = Pnew
end
if rand < ([1 − (k − 1)/maxiteration − 1])1/µ then

S = Mutation (Pt)
if Pnew dominated on Pt and (rand < A) then

Pt = S
end

end
Find the non-dominated solutions
Update the archive with respect to the obtained non-dominated
solutions
if the archive is full then

Run the grid mechanism to omit one of the current archive
members
Add the new solution to the archive

end
if any of the new added solutions to the archive is located outside the
hyper cubes then

Update the grids to cover the new solution(s)
end
Increase r and reduce A
Set k = k + 1;

end
Algorithm 2: MOBAT Procedure
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increases the mass of any solution well, and vice versa.

Remarkably, MOGSA can work if ðb\0:5Þ, where the

parameter ðbÞ is optional. Consequently, we can distin-

guish or decide which algorithm works first in the multi-

objective space.

The second stage is based on creating a multi-objective

BAT from MOPSO theory as follows. We benefit from the

theoretical work found in MOPSO with regard to the

selection of the most suitable solution but not for multiple

objective functions, because the work of this algorithm

depends on more than one objective function. This algo-

rithm contains two important properties in selecting the

individual with the most suitable solution. These two fea-

tures are leader and archive, where the leader of the swarm

is selected from the internal archive located in the solution

space. The leader is the most remarkable solution for the

MOBAT algorithm. Furthermore, the algorithm is based on

the same parameter used by the MOGSA algorithm. If the

parameter (b) is higher than 0.5, then the algorithm is

suitable. Moreover, the random input population generated

from the MOGSA algorithm is considered the output of the

MOBAT algorithm for the previous iteration and vice

versa; this update works in each iteration.

The final stage is the creation of the two algorithms to

obtain a hybrid algorithm, which is our objective. The

following two algorithms are run, and the hybrid algorithm

will perform an update on the new solutions. The update

also depends on the most remarkable solution. We then

work on these solutions in the same manner as the MOBAT

algorithm [31]. We obtain a population from both algo-

rithms. The present study needs to archive all non-domi-

nated solutions and restart this work until an improved

solution that is near the most suitable solution is obtained.

These stages can be observed clearly from the procedure.

3 Evaluation methodology, results
and discussion

This section evaluates the performance of the proposed

MOGSABAT algorithm. Firstly, we describe the evalua-

tion methodology and present the results of the experi-

ments, which are conducted in one scenario with different

optimisation problems. Secondly, we compare the perfor-

mance of the MOGSABAT algorithm with that of other

intelligent computational techniques. Thirdly, we discuss

our findings in detail.

3.1 Evaluation methodology

The evaluation methodology employed in this work is

divided into three parts. The first part describes the

benchmarking of the optimisation problem (tri and bi) for

evaluating the performance of the proposed MOGSABAT

algorithm. The second part compares the performance of

the MOGSABAT algorithm with that of other intelligent

computation algorithms. The third part explains the pro-

cedure of the proposed MOGSABAT algorithm.

3.1.1 Benchmark of the Tri and Bi optimisation problem

According to no free lunch (NFL) theorem, for any algo-

rithm, any elevated performance over one class of prob-

lems is exactly paid for in performance over another class

[13, 32]. A particular metaheuristic may yield promising

results for a set of problems but may perform poorly on

another set of problems. With NFL, this field of study is

highly active. As a consequence, the extant approaches are

enhanced, and new metaheuristics are being proposed

every year.

The details formulations of nine multi-objective test

problem with bias feature as are follows: BT1 this problem

has two objective functions and 30 variables. In the func-

tion BT2, there are same variables as that in the function

BT1 and x 2 ½0; 1�30.

input : Set k = 0, velocity=0,β = 0.7, r0 = 0.5, A = 0.6
Randomly initialize point Pi for n population
Calculate the fitness values of initial Population: f(P );
Find the non-dominated solutions and initialized the archive with them
output: Non-dominated solutions set

while (the termination conditions are not met) do
if rand < β then

MOGSA Steps;
Calculate the mass function m
Calculation of Gravitational constant G
Calculation of acceleration in gravitational field a
vt+1 = randvi + a
xt+1 = xt + vt+1

end
MOBAT Steps;
Q = Qmin + (Qmax − Qmin) ∗ rand
Pleader1 = Select Leader (archive)
vt+1 = vi + (PLeader1 − Pt)Q
Pnew = Pt + vt+1
if rand > r then

Pleader2 = Select Leader (archive)
Pnew = Pi + rand ∗ (PLeader2 − Pt)

end
if Pnew dominated on Pt and (rand < A) then

Pt = Pnew
end
if rand < ([1 − (k − 1)/maxiteration − 1])1/µ then

S = Mutation (Pt)
if Pnew dominated on Pt and (rand < A) then

Pt = S
end

end
Update all solutions in population Step 3
for each point i in the population do

c = rand ∗ int(1, 2)
Pleader3 = Select Leader (archive)
Pnew = Pi + rand ∗ (PLeader3 − c ∗ P̄ )
if Pnew dominated on Pt and (rand < A) then

Pt = S
end

end
Find the non-dominated solutions
Update the archive with respect to the obtained non-dominated solutions
if the archive is full then

Run the grid mechanism to omit one of the current archive members
Add the new solution to the archive

end
if any of the new added solutions to the archive is located outside the hyper cubes then

Update the grids to cover the new solution(s)
end
Increase r and reduce A
Set k = k + 1;

end
Algorithm 3: MOGSABAT Procedure
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All the functions from BT3� BT9 are the same in the

details; only the function BT7 is different in the space area,

that is, x 2 ½0; 1� � ½�1; 1�29.
In this subsection, we use two groups of benchmark

optimisation problem (i.e. UF and ZDT); these two groups

of function are illustrated in detail in [32]. In addition, we

test these functions with iteration i ¼ 20 and populations

n ¼ 100.

3.2 Performance-based metrics for multiple-
objective

1. Generational Distance GD In determining whether

solutions of Q can be included with the set of P� or not,
the use of the (GD) metric is appropriate for it [18]

because it estimates the average distances of the

solution sets of Q from P� as follows:

GD ¼
XQ

i¼1

d
p
ið Þ1=p=Q ð16Þ

for two objective functions (p ¼ 2) where p represents

objective function. The parametric value di denotes

Euclidean distances (in the objective spaces) across the

solution i 2 Q to the most proximate members P�,
which can be obtained as follows:

di ¼ mink2P�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

m¼1

f im � f �mðiÞ
� �2

vuut ð17Þ

where f �mðiÞdenotes the ith objective function of the kth
member of P�. Algorithm methods with lower values

of GD are intuitively more reliable.

2. Reserve Generational Distance RGD

RGD ¼
XQ

i¼1

d
p
ið Þ1=p=Q ð18Þ

where Q represents criminality assigned to the P� set,

which is also known as the RGD metric.

3.2.1 Evaluation procedure

The experimental results are described based on the mean,

SD and Wilcoxon signed-rank test statistic of the function

values.

4 Statistical measurement

1. Mean: Mean ð�xÞ is computed as the sum of all the

observed outcomes from the sample divided by the

total number of these outcomes as shown as follows:

�x ¼ 1=n
Xn

i¼1

xi ð19Þ

2. Standard Deviation (SD): SD quantifies the variation

or dispersion of a set of data for the function values as

shown as follows:

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1

ðxi � �xÞ2
s

ð20Þ

3. Wilcoxon Signed-Rank Test: The Wilcoxon signed-

rank test determines the difference between two

samples [6] and provides an alternative test of location

that is affected by the magnitudes and signs of these

differences. This test also checks whether one algo-

rithm outperforms the other. Let di denote the differ-

ence between the performance scores of two

algorithms in solving ith out of n problems. Let Rþ

denote the sum of ranks for the problems in which the

first algorithm outperforms the second (Eq. 21), and let

R� represent the sum of ranks for the problems in

which the second algorithm outperforms the first

(Eq. 22). The ranks of di ¼ 0 are split evenly among

the sums. If these sums have an odd number, then one

of them is ignored.

Rþ ¼
X

di
0

rankðdiÞ þ 1=2
X

di¼0

rankðdiÞ ð21Þ

R� ¼
X

di�0

rankðdiÞ þ 1=2
X

di¼0

rankðdiÞ ð22Þ

We use MATLAB to find the p value for comparing the

algorithms at a significant level of a ¼ 0:05. The null

hypothesis is rejected when the p value is less than the

significant level. Rþ represents a high mean algorithm that

shows superiority over other algorithms across different

sets of experiments. When Rþ ¼ n	 ðn� 1Þ=2, this

algorithm outperforms all algorithms across all

experiments.

4.1 Results

The results of the experiments are described based on one

scenario. The proposed MOGSABAT algorithm and the

benchmarking functions that are developed based on three

groups of unconstrained optimisation problems in

Sect. 3.1.1 are compared with the intelligent computation

techniques described in Sect. 3.2. The mean, SD and

Wilcoxon signed-rank test statistic of algorithms are dis-

cussed in Sect. 4.

Each benchmark function has 30 runs, and each algo-

rithm has 100 iterations and 30 variables, as shown below

form Tables 1, 2, 3, 4, 5, 6. Each compared algorithm
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independently performs 30 runs, and the symbols þ, ¼ and

- denote whether the GD and RGD results of the proposed

MOGSABAT are statistically better than, equal to or worse

than those of the corresponding peer competitors with a

significant level 0.05, respectively.

4.2 Discussion

Table 1 compares the algorithms and instances depending

on GD, mean and SD criteria. Results show that the

excellent performance of the hybrid MOGSABAT algo-

rithm is observed in three instances of multiple functions:

ZDT1, ZDT2 and ZDT3, whereas SPEAII and MOGSA are

the most suitable algorithms in ZDT4 and ZDT6 functions,

respectively.

In Fig. 1, the calculation and comparison among the

algorithms are shown to determine which one is the best.

Using the Wilcoxon rank sum test for the performance GD,

for functions ZDT1 and ZDT4, the proposed MOGSABAT

algorithm is better than the MOGSA algorithm. For functions

ZDT1 and ZDT2, the control algorithm clearly exceeds the

MOBAT, MOPSO and multi-objective non-sorting genetic

algorithm (MONSGAII) algorithms [16]; however, in ZDT4,

the MOGSABAT is outperformed by the SPEAII algorithm.

Table 2 compares the algorithms and instances that

depend on the RGD, mean and SD criteria. Results indicate

the excellent performance of MOGSABAT in three instan-

ces of multiple functions ZDT1, ZDT2 and ZDT3 and

ZDT6. For ZDT4, SPEAII displays the most remarkable

mean and SD values.

Table 1 GD results of MOGSABAT against MOGSA, MOBAT, MPSO, NSGA II and SPEA II over ZDT1–ZDT6 test problems

Problem MOGSABAT MOGSA MOBAT MPSO NSGAII SPEAII

ZDT1 0.01(0) 3.40(5.81)? 63.94(9.39)? 15.80(12.51)? 44.58(4.36)? 4.42(1.38)?

ZDT2 0(0) 0.90(2.76)- 69.42(9.91)? 28.42(15.31)? 47.44(4.79)? 5.36(1.08)?

ZDT3 0.02(0.01) 4.43(8.95)- 65.09(13.59)? 22.55(15.28)= 42.92(4.267)= 5.22(1.56)?

ZDT4 12.44(6.34) 125.87(20.99)? 36.72(17.37)? 36.40(15.57)? 16.52(5.41)? 4.29(2.30)-

ZDT6 0.95(0.87) 0.05(0.20)- 9.18(1.23)? 1.40(2.08)? 604.45(1113.49)? 2.08(1.02)?

?/=/- 2/=/3 5/=/- 4/1/- 4/1/- 4/=/1

Fig. 1 Visualisation of GD performance metric by MOGSABAT against the five competitive algorithms in ZDT
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In Fig. 2, the calculation and comparison among the

algorithms are demonstrated to determine which one is the

best. Using RGD performance, for functions ZDT1 and

ZDT4, the proposed MOGSABAT algorithm is better than

the MOGSA algorithm. For the functions ZDT1 and ZDT6,

the control algorithm clearly exceeds the MOBAT and

NSGAII algorithms; however, in the function ZDT4, the

MOGSABAT is outperformed by the SPEAII algorithm.

Table 3 compares the algorithms and instances

depending on the GD, mean and SD. Results demonstrate

the superiority of NSGAII [5] in three instances of multiple

functions UF1, UF2 and UF3. This algorithm also shows a

good SD result for instance UF5. In instance UF4, the

MOPSO algorithm obtains the most remarkable mean and

SD values. SPEAII also shows the most desirable SD value

in instance UF5, and NSGAII displays the most remarkable

SD value in instance UF6. In addition, MOGSABAT shows

superiority in terms of mean and SD values in instance

UF7.

As shown in Fig. 3, the proposed MOGSABAT algo-

rithm has better GD performance in comparison with

MOGSA and MOBAT algorithms for functions UF1 to UF7

if we take a ¼ 0:001 (where a represents the statistical

level). Although the proposed algorithm performs equally

with the NSGAII algorithm in function UF1, it is better in

functions UF2, UF4, UF5 and UF6. Finally, the hybrid

algorithm is better compared with the SPEAII algorithm in

functions UF1, UF4, UF5 and UF6.

Table 4 compares the algorithms and instances that

depend on the RGD, mean and SD criteria. Results show

that NSGAII displays the most remarkable SD value in the

instances of multiple functions UF2, UF3, UF5 and UF6

Table 2 RGD results of MOGSABAT against MOGSA, MOBAT, MPSO, NSGA II and SPEA II over ZDT1–ZDT6

Problem MOGSABAT MOGSAy MOBAT MPSO NSGAII SPEAII

ZDT1 0.18(0.34) 3.68(5.04)? 64.04(9.14)? 16.13(12.64)? 40.92(4.27)? 4.61(1.31)?

ZDT2 0.177(0.27) 1.44(2.67)? 69.75(9.90)? 28.78(15.28)? 43.75(4.34)? 5.63(1.12)?

ZDT3 0.25(0.33) 4.46(7.75)? 64.13(12.99)? 22.91(15.51)? 38.90(3.91)? 5.42(1.42)?

ZDT4 12.72(5.64) 124.30(21.87)? 34.71(16.49)? 33.24(13.19)? 6.16(1.73)- 4.31(1.78)-

ZDT6 0.04(0.08) 0.10(0.22)- 9.36(1.24)? 0.46(1.85)? 500.15(1061.78)? 0.68(0.98)?

?/=/- 2/=/3 5/=/- 5/=/- 4/=/1 4/=/1

Fig. 2 Visualisation of RGD performance metric by MOGSABAT against the five competitive algorithms in ZDT
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Table 3 GD results of MOGSABAT against MOGSA, MOBAT, MPSO, NSGA II and SPEA II over UF1–UF7

Problem MOGSABAT MOGSA MOBAT MPSO NSGAII SPEAII

UF1 0.294(0.116) 0.357(0.227)? 0.782(0.153)? 0.823(0.253)- 0.225(0.054)= 0.246(0.124)?

UF2 0.177(0.075) 0.714(0.162)? 0.155(0.034)? 0.500(0.104)? 0.141(0.050)? 0.076(0.018)-

UF3 0.401(0.080) 1.105(0.911)? 0.609(0.074)? 1.024(0.357)? 0.200(0.065)- 0.380(0.030)-

UF4 0.135(0.011) 0.132(0.014)? 0.170(0.009)? 0.129(0.010)= 0.429(0.187)? 0.134(0.009)?

UF5 1.882(0.573) 2.686(0.760)? 4.013(0.716)? 3.766(1.212)? 2.087(0.406)? 2.254(0.411)?

UF6 1.882(0.573) 2.686(0.760)? 4.013(0.716)? 3.766(1.212)? 2.087(0.406)? 2.254(0.411)?

UF7 0.359(0.204) 0.343(0.193)? 0.867(0.273)? 0.814(0.385)? 0.222(0.0767)- 0.138(0.053)-

?/=/- 7/=/- 7/=/- 5/1/2 4/1/2 4/=/3

Fig. 3 Visualisation of GD performance metric by MOGSABAT against the five competitive algorithms in UF
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Table 4 RGD results of MOGSABAT against MOGSA, MOBAT, MPSO, NSGA II and SPEA II over UF1–UF7

Problem MOGSABAT MOGSA MOBAT MPSO NSGAII SPEAII

UF1 0.219(0.061) 0.408(0.203)? 0.727(0.149)? 0.643(0.196)? 0.239(0.034)? 0.227(0.053)?

UF2 0.120(0.015) 0.787(0.118)? 0.193(0.025)? 0.414(0.055)? 0.095(0.024)- 0.104(0.007)-

UF3 0.446(0.052) 1.298(0.558)? 0.662(0.067)? 0.803(0.096)? 0.341(0.021)- 0.445(0.030)?

UF4 0.123(0.012) 0.119(0.009)? 0.159(0.010)? 0.117(0.010)= 0.141(0.017)? 0.119(0.008)?

UF5 1.646(0.382) 2.636(0.710)? 3.780(0.603)? 3.291(0.931)? 1.856(0.307)? 2.108(0.358)?

UF6 0.875(0.316) 2.590(1.578)? 3.305(0.543)? 1.964(0.895)? 1.005(0.227)? 1.191(0.272)?

UF7 0.295(0.094) 0.406(0.182)? 0.862(0.175)? 0.642(0.220)? 0.413(0.074)? 0.166(0.053)-

?/=/- 7/=/- 7/=/- 6/=/1 5/=/2 5/=/2

Fig. 4 Visualisation of RGD performance metric by MOGSABAT against the five competitive algorithms in UF
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Table 5 GD results of MOGSABAT against MOGSA, MOBAT, MPSO, NSGA II and SPEA II over BT1–BT9

Problem MOGSABAT MOGSA MOBAT MPSO NSGAII SPEAII

BT1 4.071(0.134) 4.507(0.193)? 4.770(0.235)? 4.518(0.235)? 4.099(0.040)? 3.906(0.097)-

BT2 0.879(0.040) 1.054(0.068)? 0.934(0.038)? 0.874(0.037)? 0.882(0.034)? 0.886(0.025)?

BT3 0.981(0.030) 1.072(0.027)? 1.002(0.016)? 0.971(0.040)? 0.994(0.013)? 1.046(0.040)-

BT4 4.018(0.130) 4.397(0.288)? 4.906(0.285)? 4.419(0.225)? 4.088(0.10)? 3.790(0.092)-

BT5 3.993(0.229) 4.402(0.261)? 4.721(0.221)? 4.296(0.166)? 4.031(0.044)? 3.865(0.077)?

BT6 0.007(0.008) 1.080(0.977)? 3.742(0.349)? 4.629(0.473)? 1.514(0.328)? 1.957(0.258)?

BT7 2.098(0.999) 8.555(3.720)? 5.839(1.018)? 6.658(1.517)? 0.701(0.230)- 1.695(0.354)?

BT8 0.222(0.261) 4.669(7.114)? 9.392(1.623)? 14.405(3.389)? fail(fail)? 5.014(0.411)?

BT9 3.339(0.112) 3.247(0.159)= 3.571(0.139)? 3.840(0.179)? 3.475(0.078)? 3.141(0.038)-

?/=/- 8/1/- 9/=/- 9/=/- 8/=/1 5/=/4

Fig. 5 Visualisation of GD performance metric by MOGSABAT against the five competitive algorithms in BT
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Table 6 RGD results of MOGSABAT against MOGSA, MOBAT, MPSO, NSGA II and SPEA II over BT1–BT9

Problem MOGSABAT MOGSA MOBAT MPSO NSGAII SPEAII

BT1 4.038(0.099) 4.501(0.156)? 4.793(0.242)? 4.388(0.202)? 4.122(0.054)? 3.912(0.091)-

BT2 1.759(0.177) 2.689(0.388)? 3.280(0.327)? 2.732(0.283)? 2.047(0.092)? 1.997(0.105)?

BT3 4.082(0.101) 4.219(0.300)? 4.899(0.284)? 4.536(0.226)? 4.152(0.085)? 3.808(0.115)-

BT4 3.970(0.110) 4.426(0.258)? 4.870(0.283)? 4.333(0.168)? 4.050(0.083)? 3.769(0.103)-

BT5 3.952(0.118) 4.488(0.251)? 4.780(0.217)? 4.274(0.144)? 4.095(0.044)? 3.896(0.078)?

BT6 0.827(0.012) 1.603(0.749)? 3.830(0.340)? 4.449(0.369)? 1.443(0.275)? 2.017(0.231)?

BT7 1.992(0.779) 8.359(3.335)? 5.797(0.891)? 6.201(1.063)? 0.669(0.189)- 1.773(0.326)?

BT8 0.695(0.070) 5.087(6.313)? 9.242(1.447)? 12.822(2.786)? fail(fail)? 4.862(0.365)?

BT9 3.188(0.086) 3.232(0.164)? 3.514(0.127)? 3.453(0.106)? 3.267(0.133)? 3.098(0.051)-

?/=/- 9/=/- 9/=/- 9/=/- 8/=/1 5/=/4

Fig. 6 Visualisation of RGD performance metric by MOGSABAT against the five competitive algorithms in BT
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and SD values in UF2 and UF3 instances. SPEAII obtains

the most remarkable mean in instance UF7 and SD values

in instances UF2, UF4 and UF7. The hybrid MOGSABAT

algorithm shows the most remarkable mean value in

instances UF1, UF5 and UF6. The MOPSO algorithm also

presents preferable value in the instance UF4 for the mean

criterion.

As shown in Fig. 4, the proposed MOGSABAT algo-

rithm has better RGD performance than MOGSA and

MOBAT algorithms for functions UF1 to UF7 if we take

a ¼ 0:001 (where a represents the statistical level).

Although the proposed algorithm performs equally with the

MOPSO algorithm in function UF4, it is better in functions

UF2, UF3, UF5, UF6 and UF7. Finally, the hybrid algo-

rithm is better compared with the SPEAII algorithm in

functions UF1, UF3, UF4, UF5 and UF6.

Table 5 compares the algorithms and instances

depending on the GD, mean and SD criteria. Results show

NSGAII in two instances of multiple functions BT1 and

BT7, and it presents good SD results for instances BT1,

BT2, BT4, BT5 and BT7. The instances of multiple func-

tions BT3 and BT9 indicate that SPEAII yields good mean

results in instances BT4 and BT5. The hybrid MOGSABAT

algorithm displays the most remarkable value in instance

BT8 and improved mean values in instance BT2.

As shown in Fig. 5, our proposed MOGSABAT algo-

rithm has better GD performance in comparison with the

MOGSA algorithm for functions BT1 and BT7 if we take

a ¼ 0:01 (where a represents the statistical level). It only

fails in functions BT1 and BT9 compared with the MOPSO

algorithm. However, the proposed MOGSABAT algorithm

performs better as compared with MOBAT algorithm in

functions BT1, BT3, BT4, BT5 and BT7. It performs equally

with the NSGAII algorithm in instances BT1, BT5 and BT6.

Finally, the hybrid algorithm is better compared with the

SPEAII algorithm in functions BT1, BT3, BT5 and BT6.

Table 6 compares the algorithms and instances

depending on the RGD, mean and SD criteria. Results show

the NSGAII in instances of multiple functions BT1, BT5

and BT7 for the SD criterion, and it presents good mean

results for instance BT7. The instances of multiple func-

tions BT6 and BT9 indicate that SPEAII yields good SD

criterion results, and better results are shown in instances

BT1, BT3, BT4, BT5 and BT9 in terms of mean. The hybrid

MOGSABAT algorithm displays the most remarkable value

in instances BT2, BT6 and BT8 in the mean criterion and

improved SD values in instance BT8.

In Fig. 6, the proposed MOGSABAT algorithm has bet-

ter RGD performance compared with the MOGSA,MOBAT

and MOPSO algorithms for functions BT1 to BT9 if we

take a ¼ 0:001 (where a represents the statistical level). In

functions BT1, BT5 and BT9, it performs better compared

with the NSGAII algorithm. Finally, the proposed

MOGSABAT algorithm is better than the SPEAII algorithm

in functions BT2, BT5, BT6, BT7 and BT8.

5 Conclusion

A new hybrid GSA and BAT algorithm calledMOGSABAT

is proposed to solve MOPs. The proposed algorithm is

compared with multi-objective GSA, multi-objective BAT

algorithm, NSGAII, MOPSO and SPEAII to verify the

efficiency of the proposed algorithm for solving MOPs.

The numerical experiment results showed that the proposed

algorithm is a promising and efficient algorithm. In com-

parison with the aforementioned algorithms, MOGSABAT

can obtain the global minimum or near global minimum of

the MOPs faster.
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