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Abstract
Posture transitions are one of the most mechanically demanding tasks and are useful to evaluate the motor status of patients

with motor impairments, frail individuals or the elderly, among others. So far, wearable inertial systems have been one of

the most employed tools in the study of these movements due to their suitable size and weight, being non-invasive systems.

These devices are mainly composed of accelerometers and, to a lesser extent, gyroscopes, magnetometers or barometers.

Although accelerometers provide the most reliable measurement, detecting activities where a change of altitude is

observed, such as some posture transitions, may require additional sensors to reliably detect these activities. In this work,

we present an algorithm that combines the information of a barometer and an accelerometer to detect posture transitions

and falls. In contrast to other works, we test different activities (where altitude is involved) in order to achieve a reliable

classifier against false positives. Furthermore, by means of feature selection methods, we obtain optimal subsets of features

for the accelerometer and barometer sensors to contextualise these activities. The selected features are tested through

several machine learning classifiers, which are assessed with an evaluation data set. Results show that the inclusion of

barometer features in addition to those obtained for an accelerometer clearly enhances the detection accuracy up to a 11%,

in terms of geometric mean between sensitivity and specificity, compared to algorithms where only the accelerometer is

used. Finally, we have also analysed the computer burden; in this sense, the usage of barometers, in addition to increase the

accuracy, also reduces the computational resources required to classify a new pattern, as shown by a reduction in the

number of support vectors.

Keywords Accelerometer � Barometer � Human activity recognition

1 Introduction

Human activity recognition with monitoring purposes has

become a tool of great importance in later years. In the

medical field, human activity recognition enables clinicians

to obtain objective and valuable information from the state

and evolution of several pathologies with the aim of

improving therapeutic strategies [1]. From a technical

perspective, activity recognition through inertial-based

wearable devices has generated a countless number of

publications during the last years. With the help of these

devices, which are increasingly smaller and portable, it is

possible to objectively monitor the activity of users during

their activities of daily life. In the case of pathologies

affecting human movement, these devices further enable

physical assessment without requiring the presence of

clinical observers. For example, in stroke patients,
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123

Neural Computing and Applications (2020) 32:335–349
https://doi.org/10.1007/s00521-018-3759-8(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-2598-6772
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3759-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3759-8&amp;domain=pdf
https://doi.org/10.1007/s00521-018-3759-8


quantifying the amount of movement performed through a

day has proved to be useful for analysing the evolution of

the rehabilitation [2]. Similarly, in patients with Parkin-

son’s disease, such devices have shown useful in the

monitoring of different activities of daily living [3], gait

analysis [4] and posture transitions [5]. Finally, another

relevant example is the usage of these inertial systems in

patients with Alzheimer’s disease for localisation and

energy expenditure quantification [6, 7].

The common approach to use the signals provided by

these inertial-based wearable devices consists in analysing

them by means of machine learning techniques and

biomechanical algorithms with the aim of determining the

activity, posture transition, gait parameters and other

mobility-related parameters [5, 8, 9]. In previous works,

the most used inertial sensor is the accelerometer, followed

by the gyroscope [10]. However, other sensors are recently

being employed in order to contextualise and enrich inertial

sensor measurements. One of these sensors is the atmo-

spheric pressure (AP) or barometer. Their measurements

are based on the current absolute AP, which is subjected to

natural atmospheric events such as stormy days, where AP

is usually low, and anticyclones, where the AP is high.

These natural atmospheric events affect the AP measure-

ment and must be considered in terms of activity recog-

nition purposes.

Current barometers are able to detect altitude changes of

few centimetres [11–13]. Thus, in the field of activity

recognition, barometers may become a useful comple-

mentary sensing modality to inertial sensors in order to

detect movements where a change in altitude is given, for

example falls, using stairs, or postural transitions (PTs) like

sit to stand (SiSt) or stand to sit (StSi). However, their

physical measurement also represents a challenge in terms

of facing false positives. A small change in temperature, or

in pressure, given, for example, by a door/window opening

within a room, can considerably alter the barometer mea-

surement and create a signal peak that resembles a change

in altitude, which would result into false positives in the

algorithm outcomes.

On the other hand, regarding SiSt and StSi PT recog-

nition, there are some algorithms that have been shown to

provide acceptable results, although using several memory

resources due to the complexity of the classifier [14]. In

these works, provided that acceleration might be similar in

these two PTs [5], some algorithms are then built with

complex structures in order to achieve acceptable results.

Classifiers with such complex structures require the usage

of many computational resources, reducing the autonomy

of the wearable devices. As a result, the energy con-

sumption of the battery is increased. However, the energy

consumption of inertial units employed for long-term

monitoring purposes must be reduced to enable a long

battery life. In this way, the resulting device is highly

usable, especially when frail individuals or patients with

motor impairment can be the users of such inertial units.

In this work, we explore the addition of barometers to

inertial sensors in the task of monitoring human activities

by a single device. More concretely, we address the

activities that have been more complex or needed more

computing resources to identify by a single inertial sensor:

postural transitions and falls, since they are those in which

AP sensors would represent an advantage. In addition to

this, we also include in our study other common activities,

such as walking or using stairs, among others. To analyse

the benefits of using barometers, we explore several feature

extraction processes and supervised learning classifiers

applied to the accelerometer and barometer signals

obtained from 14 users, and compare the results and

complexity of using only accelerometers against using both

sensors. Our results show that AP sensors allow obtaining

higher accuracies, while also achieving simpler classifiers,

in terms of computational complexity and memory

resources, which reduces the energy consumption of

wearable devices.

2 Related work

Activity recognition with inertial systems, such as

accelerometers, has been widely studied, and it has been

employed in many different fields of applications, for

example in health [15], sports [16] and video games [17].

Within the activity recognition field, three kinds of

movements can be distinguished: those where a punctual

movement is performed, movements that are repeated over

time and finally the absence of movement. The first case is

mainly composed of posture transitions and falls, that is,

movements characterised by brief executions in a short

time period, some examples are SiSt or StSi PT. The sec-

ond case is the repeated movements such as walking,

running, going up/downstairs. Finally, the last case consists

of remaining still in a posture, such as standing, sitting, or

lying.

All these movements can be characterised with inertial

sensors, being the accelerometer the most used

[9, 10, 18, 19]. This sensor measures accelerations and is

able to provide the orientation in regard to the gravity axis.

Other sensors such as gyroscopes or magnetometers have

also been employed. Najafi et al. [20] used a gyroscope to

detect a SiSt and StSi transition by means of a wavelet

feature extraction. In addition to this, gyroscopes have also

been used to analyse gait [21] or falls [22]. Gyroscopes

have the disadvantage of only providing measurements

when there is some movement; note that accelerometers

provide the orientation with respect to gravity even if there
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is no movement. In contrast, magnetometers provide the

relative orientation in regard to the magnetic North. These

devices have also been used to identify activities by means

of data fusion techniques with accelerometers [23]. How-

ever, ferromagnetic materials such as any electric device,

building structures, or street lightning, among others, dis-

tort the surrounding magnetic field severely affecting the

magnetometer measurements in real environments. Thus,

they are only reliable in outdoor environments (out of the

city) and in controlled conditions. Accelerometers are,

therefore, the most employed sensors to recognise activities

so far, but they can be complemented with other sensors

that provide context information, such as GPS, barometers,

and non-wearable sensors (presence, temperature and

humidity sensors) [24–26].

The use of barometers is currently not very extended.

The main reason relies on the trade-off that exists between

its sensitivity and its specificity. A sensitive barometer is

able to detect distances up to 10 cm; however, a small

change in pressure, a window or door opening and closing,

or a small air stream might modify the measure, leading to

an increment of false positives. However, Massé et al.

[27–29] found that barometers may detect activities such as

SiSt and StSi (StSi) posture transitions. They developed an

algorithm to detect activities along with an accelerometer

and a barometer, proving that barometers could enhance

the performance of some algorithms where there was a

change in altitude.

In this work, Masse et al. employed three barometers

(BMP085, MS5611-BA01 and MPL115); although they

could perceive SiSt and StSi transitions, the signal of the

BMP085 (the best barometer) presented a noise of

0.03 mbar (10 cm approximately according to BMP085

datasheet) compared to the current BMP280, which only

presents a ± 0.0013 mbar noise (1.7 cm according to

BMP280 datasheet) [13].

Moncada-Torres [30] also proved different locations of

the body to build an algorithm and test different sensors.

They also showed that barometers could enhance detection

of activity with classical inertial sensors. However, they

also showed that gyroscopes did not provide any

enhancement to their algorithms. Surprisingly, wrists were

considered as the most optimal location to place a sensor to

detect different activities, contrasting to Gjoreski et al. [31]

who proved that wrists are not a suitable location due to the

excessive random hand movements in DLA. According to

Moncada et al., barometers could enhance by 20% the

detection of some activities compared to the algorithm

tested only with an accelerometer. In this work, although

falls were not tested, accuracy on sit, stand and lie down

was 90%, 82% and 76%, respectively, obtained with a k-

NN classifier.

Falls have also been studied with barometers due to the

altitude change. Tolkiehn et al. [32] showed an enhance-

ment of 5% in accuracy with an algorithm using barometer

and accelerometer against an algorithm that only used an

accelerometer. In other work, Bianchi et al. [33] showed a

very significant improvement on sensitivity (up to a 20%)

and specificity (up to a 5%) including a barometer to the

accelerometer-based algorithm. In this work, however, they

did not investigate the effect of barometers onto other

activities such as posture transitions.

In this work, we describe the effect of the barometer in

two algorithms. The first one classifies StSi from SiSt, and

the second is a 3-output classifier that determines SiSt, StSi

and falls. A previous classifier is also included in order to

discard other activities. In addition to this, we analyse the

computational resources used by the devised algorithms,

given that they may be embedded into wearable devices,

and reducing the resources would result in an extended

battery life and a higher usability.

Unlike previous works, which are focused in detecting

falls or postural transitions, we present a method that

demonstrates and justifies the features selected to detect

specific movements from a database where several activi-

ties are performed. In this way, we want to maximise

sensitivity in detecting SiSt, StSi and falls and also to

maximise specificity while users perform other activities

which could lead to false positives. Thus, we use several

temporal and frequency features and employ a method to

select the best features in a database of several activities

done by 14 users. Meanwhile, other papers present specific

features and focus on concrete classifiers; we present a

method to select the features as well as the optimal

classifier.

3 Methodology

In this section, we present the methodology that aims to

analyse the effects of including a barometer in a human

activity recognition system devoted to identify posture

transitions, one of the most challenging movements to be

detected by a single inertial device.

In this way, we propose an approach in which, on the

one hand, only an accelerometer is employed and, on the

other hand, the combined information from this

accelerometer and a barometer is employed to analyse the

activity of a person. In both cases, a feature extraction

process is applied in which signals are represented by

several characteristics that represent different aspects

related to posture transitions and falls. Then, the features

are ranked based on a feature selection algorithm, and

afterwards, redundant features are removed by means of a

correlation coefficient analysis. Finally, several supervised
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learning classifiers are trained by using the resulting first

M features, where M varies from 1 to 30. The optimal

number of features N is determined based on the perfor-

mance results in function of the number of input features.

This process is done first for the accelerometer sensor and,

then, a second time by using also the barometer. In this

way, by comparing the accuracy and complexity of the

classifiers we determine the advantages of adding a

barometer to inertial sensors for monitoring purposes.

In addition to this, to enable obtaining more significant

statistical results, we divided data from users into training-

validation and test, so cross-validation is used in the former

and results are obtained from the latter, as detailed in

Sect. 3.3. This data division is performed randomly 10

times, so the described process is carried out the same

amount of times. Results are reported in Sect. 4 as the

average of test results.

The methodology used is depicted in Fig. 1. In the fol-

lowing subsections, each step of the methodologies is

detailed.

3.1 Data collection

The experiments were performed at the Neápolis building

(which has 4 floors, stairs and two elevators), in Vilanova i

la Geltrú (Barcelona, Spain). More concretely, they took

place at the CETpD facilities and at different floors of the

building. The CETpD laboratory was equipped with a

mattress (30 cm high) located on the ground for the par-

ticipants to fall and sit in it. Next to it, a bed with another

mattress was placed to initiate falls from it. (The bed was

placed 53 cm higher than the ground mattress.) A pair of

chairs, one with wheels (51 cm high) and another one

without (44 cm high), were also employed.

The test protocol was divided into three parts. The first

part of the protocol was devoted to perform different types

of falls; the second part of the protocol was focused on

executing SiSt and StSi transitions in different chairs.

Finally, the third part consisted of executing other postures

or activities different than falls and posture transitions,

which could lead algorithms to some false positives, such

as lying, standing, walking, going up/down stairs and going

up/down the elevator. A total of 14 participants took part in

this protocol (Table 1).

The test protocol consisted of several movements and

repetitions; every repetition and movement took place after

5 s from the previous one; during this time, users remained

standing, lying or sitting. The test protocol approximately

took 10 min to be completed, varying from 9 to 13 min.

Figure 2 shows the executions and repetitions that volun-

teers performed.

All the tests were video-recorded in order to establish a

gold standard. Video recordings were first synchronised

with the sensor signals as described in [34], and videos

were then labelled according to the activities performed. In

this way, the resulting labels were extrapolated to the

signals.

3.2 Signal conditioning and windowing

Data were obtained by means of the 9 9 3 sensor [35], a

inertial measurement unit that measures

99 9 53 9 19 mm3 and weighs 57 g (83 g with battery).

This device is composed of 1 microcontroller, 3

Fig. 1 Methodology of the proposed algorithm
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accelerometers, 1 gyroscope, 1 magnetometer and 3

barometers. It also has a microSD card socket for regis-

tering captured data. The system is located at the left side

of the waist as depicted in Fig. 3, which includes the ori-

entation of the device.

The system captures inertial data at 40 Hz, which is

enough to analyse human movement during daily life

activities [36]. Among them, the activity that produces

harmonics in the highest part of the frequency spectrum is

gait. According to Antonsson and Mann, the frequency

content of gait coming from an inertial sensor is below

20 Hz [37]. In addition to this, gait is rather a simple

activity to detect; hence, 40 Hz is considered sufficient as a

sampling frequency to detect movements in daily living

activities.

The signal, given by x1, …, xM, y1, …, yM, and

z1, …, zM and discretised at time t1, …, tM, is then filtered

through a second-order Butterworth filter that enables

removing high-frequency noise. Once the signal is filtered,

it is segmented into windows of 128 consecutive samples,

resulting into a 3.2 window length, which is enough to

capture posture transitions [14, 38]. These windows are

50% overlapped in order to avoid losing information

between windows [39], thus beginning a new window

every 64 samples.

Since the barometer provides measurements corrected

according to the temperature, the BMP280 was selected

among other commercial sensors. The low-level noise, the

short dynamic response, good resolution and sampling

frequency were features that we took into account. In our

problem, the barometer signal is treated in a similar process

to the accelerometer. First, our process considers that the

sampling frequency offered by the sensor is 26.3 Hz,

although measurements are offered at 40 Hz, which

implies that some samples are repeated. The provided

signal b1, …, bM with a discretised time t1, t1 ? s, t1-
? 2s, …, t1 ? s, where s = 1/40, is also filtered with a

second-order Butterworth filter similarly to the

accelerometer. However, while the accelerometer cut-off

frequency is set to 15 Hz to detect walking patterns and

other activities, the cut-off frequency of the barometer is

set to 0.68 Hz. The rationale of setting this cut-off fre-

quency relies on the consideration that harmonics above

0 Hz until 0.68 Hz is related to postural transitions [14]. In

this way, we remove high-pass frequency signals that are

Table 1 Users’ baseline data

Sex Height (m) Age Weight (kg)

Patient 1 Male 1.75 28 84

Patient 2 Male 1.72 32 65

Patient 3 Male 1.87 30 80

Patient 4 Male 1.9 38 87

Patient 5 Male 1.7 29 81

Patient 6 Male 1.77 21 77

Patient 7 Male 1.87 26 108

Patient 8 Male 1.71 60 73

Patient 9 Female 1.65 35 64

Patient 10 Female 1.63 30 62

Patient 11 Female 1.7 30 54

Patient 12 Female 1.62 42 58

Patient 13 Female 1.57 41 69

Patient 14 Female 1.68 39 67

Average – 1.72 ± 0.09 34.35 ± 9.5 72.69 ± 14.3

Fig. 2 Test protocol scheme
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not related to postural transitions such as the effect of

opening and closing a door or window, which provokes

sudden peaks on the signal. After the filtering process,

barometer signal is treated in the same way than the

accelerometer.

3.3 Feature extraction and selection

The whole data set is then divided into a training-validation

set and a testing set. The training-validation set is formed

with the data from 11 users randomly selected, and this

data set will be used to (I) extract features, (II) rank them,

(III) remove redundant features and (IV) train the different

classifiers and tune the hyper-parameters by means of a

tenfold cross-validation. The models obtained with each

classifier are finally tested over the three remaining users in

order to assess the performance for each model. This pro-

cess is executed randomly ten times to prevent specific

training/test divisions from biasing the results.

Two monitoring tasks are addressed by this approach.

The first one consists in determining whether a SiSt tran-

sition, a StSi transition or another activity has been per-

formed. The rationale, as previously described, is that these

transitions are one of the most difficult events to identify by

a single accelerometer. In addition to this, the second

classification task also includes falls in the detection

problem, which is shown in the literature to be a chal-

lenging one. In consequence, the following described

methods have been employed with the training set twice,

once to distinguish between StSi and SiSt and another time

to also detect falls.

Feature extraction characterises the signal contained in a

window (see the end of Sect. 3.2 for details) according to

two specific set of features. The first one is composed only

of accelerometer features, and in the second set, the

barometer features are added. A total of 80 and 89 (80 for

the accelerometer and 9 for the barometer) features are

evaluated. Tables 2 and 3 report the complete list of these

features.

The first accelerometer features described in Table 2,

related to the (0–0.68] Hz band, were identified by the

authors in a previous paper [14] to increase its power

spectra during PT. During PT, the power spectra of the

accelerometer signals were concentrated in this band.

However, other activities such as walking also increase this

band, although the harmonics spread until higher fre-

quencies. To identify them, a complementary spectra band

(0.68–3] Hz is also included, and the relation between them

is also added. On the other hand, as previously described

and shown in Fig. 3, the position and orientation of the

wearable sensor were fixed, and consequently, SiSt and

StSi PTs are expected to be observed in frontal and vertical

axes. In addition, falls are also expected to change mea-

surements in one or two axis. Hence, the maximum har-

monic from each axis and the different statistics computed,

such as skewness, kurtosis, entropy, mean, will characterise

whether a PT or a different activity has been produced.

Axis integral and signal magnitude area enable to know the

energy of the movement, which also helps to distinguish

whether a posture transition or more energetic activities

were produced. Finally, similarities among axis are com-

puted, based on differences among means and correlation

coefficients, since differences may be expected in posture

transitions given the different movements observed in each

axis.

One of the most important barometer features described

in Table 3 is the average value of the signal, which is

related to the altitude. The remaining features aim to rep-

resent the changes in altitude during the time window,

which is useful to identify PT and falls. Another relevant

feature is the linear regression slope, which identifies the

tendency of the altitude change. The frequency where the

maximum harmonic is found identifies whether noise

(medium–high frequencies) drives changes in the barom-

eter signal, or a human movement (low frequency) does.

The range and maximum and minimum values also enable

to identify the altitude changes. Also, combining them with

the signal slope can lead to identify noise.

Given that barometer signal is susceptible to suffer

sudden changes in the signal due to small pressure changes

such as closing a door or window, going from one room to

other, etc., we cannot consider that barometer could be

used without an accelerometer. In this paper, we consider

that barometer is used to contextualise the information of

Fig. 3 Location and orientation

of the inertial device
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the accelerometer, helping to classify some posture tran-

sitions and, given the nature of its functioning, reduce the

computational burden.

Once the feature extractions is executed; a feature

selection algorithm is used to rank features. The rationale is

that several features will not provide important informa-

tion; some will provide noise and some will be redundant.

Thus, we propose to use ReliefF [41] to estimate the

quality of each feature. ReliefF iteratively selects a random

instance from the training set and compares its k-nearest

neighbours from the same and from the other classes. The

quality estimation of an attribute is increased if the same-

class neighbours are near to the selected instance, and it is

decreased as the neighbours of the remaining classes are

Table 2 Accelerometer feature set

Feature description (accelerometer data set) Number of

features

Maximum amplitude on the PT band 1

Sum of the harmonics obtained in the band from above 0–0.68 Hz from the 3 accelerometer axes and their sum 4

Sum of the harmonics obtained in the band from above 0.68–3 Hz from the 3 accelerometer axes and their sum 4

Relation between the harmonics belonging to the walking band and those belonging to the PT band from each axis and their

sum

4

Maximum harmonic from each axis 3

Frequency where the maximum harmonic is found 3

Skewness from the frequency response distribution 3

Kurtosis from the frequency response distribution 3

Entropy from the frequency response distribution 3

Difference between the current window and the previous from each axis 3

Difference between the current window and the previous from relation between Y and X axes 1

Difference between the current window and the previous from relation between X and Z axes 1

Slope from the linear regression of each axis 3

Sum of differences for each sample at each axis 3

Integral of each axis 3

Signal magnitude area 1

Mean of each axis 3

Mean of the relation between the X axis and the Z axis 1

Mean of the relation between the Y axis and the X axis 1

Maximum amplitude of each axis 3

Maximum difference at each axis 3

Standard deviation of each axis and the module 4

Range of each axis and the accelerometer module 4

Pearson coefficients between the three axes of the accelerometer 3

Auto regression coefficients for each axis [40] 15

Table 3 Barometer feature set,

which is added to the

accelerometer feature set (see

Table 2)

Feature description (barometer data set) Number of features

Frequency where the maximum harmonic is found 1

Difference between the current window mean value and the previous window one 1

Slope from the linear regression 1

Sum of differences for each sample 1

Mean value of the signal 1

Maximum amplitude of the frequency response 1

Maximum difference between each sample 1

Standard deviation of the signal 1

Range of the signal 1
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also close. In this work, the quality estimation provided by

ReliefF is used to rank the set of features from higher

quality to lower quality.

After using the ReliefF algorithm, a table of sorted

features is obtained, ranked from the most meaningful

feature characterising the desired output, to the less

important. However, ReliefF does not analyse feature

redundancy. In consequence, the list of features is com-

posed of several features that could provide the same or

very similar information; therefore, redundant features

must be removed to prevent classifiers from using repeated

features. In this context, we use the absolute value of the

Pearson correlation method in order to obtain a score that

reflects the redundancy between two features. We propose

that all those features that are correlated more than 0.8 are

removed from the analysis. Then, the higher ranked feature

remains on the data set. Finally, a set of non-redundant

features is obtained with their score indicating the impor-

tance of the feature regarding the main goal of the

algorithm.

3.4 Classifiers

Once features are extracted, ranked and those redundant are

removed, they are used as the input of a supervised

learning classifier with the aim of obtaining a robust

detector. Note that 4 experiments are performed:

• Classifier for sit to stand/stand to sit with accelerometer

features (C2outA)

• Classifier for sit to stand/stand to sit with accelerometer

and barometer features (C2outAB)

• Classifier for sit to stand/stand to sit/falls with

accelerometer features (C3outA)

• Classifier for sit to stand/stand to sit/falls with

accelerometer and barometer features (C3outAB)

Furthermore, each classifier is trained 30 times obtain-

ing 30 models, which are built by employing 1–30 features,

respectively, with the aim of analysing the performance

and also the burden load of each classifier. For example,

the first model is built with the best ranked feature; then,

the second one is trained with the first and the second best

features. Performance is expected to increase as the clas-

sifier employs more features. However, the performance of

the algorithm might reach a plateau or barely grow after a

certain number of features are used; this means that at this

point the classifier is receiving non-significant information.

With the aim of testing different classifiers and analys-

ing which one is more appropriate to the classification task,

several classifiers have been employed. Table 4 reports the

list of used algorithms and the hyper-parameters optimised

by tenfold cross-validation.

Given that the algorithm needs several features to pro-

vide a significant performance, it has been considered

different standard classifiers that are supported by WEKA

[42]. We have not tested k-NN, decision trees, Naı̈ve Bayes

since, according to many previous works, they do not

provide the highest performance results. Thus, support

vector machines (SVM), logistic regression, multilayer

perceptron and random forest have been considered as the

most suitable candidates to achieve the highest perfor-

mance in detecting falls and posture transitions. In addition

to this, hyper-parameter optimisation consists in testing

different values and identifying the most suitable combi-

nation by means of cross-validation. In this way, the values

tested for the SVM hyper-parameters cover different

powers of 10 in a grid search, which is the common

practice to optimise SVM hyper-parameters. In the case of

random forests, they are evaluated with different numbers

of trees up to 100, which suits the amount of patterns from

the database obtained, as results show. Finally, neural

networks are tested with up to two layers and 10 neurons,

which empirically shows enough capacity to learn the

patterns, i.e. providing a small training error. In the case of

support vector machines, prior to finally train each one of

the 10 models used to evaluate the testing data, optimal

values for cost and gamma parameters are found. Optimal

values are those that maximise the accuracy of a tenfold

cross-validation train among the tested ones and, in the

case of the RBF model, also among gamma values. The

trained model is built with the corresponding number of

best ranked features. At the end of this process, we obtain a

group of optimal values (cost and gamma) for each of the

four classifiers (C2outA, C2outAB, C3outA, and

C3outAB).

In order to evaluate the complexity of the resulting

models, we also analyse the amount of support vectors

required to classify a new pattern. This value is directly

proportional to the computational resources that a wearable

device would require to classify in real time a new signal

window. Thus, reducing this number leads to a more

extended battery life.

Finally, to test a model as a function of the number of

trained features and the accuracy, we use the parameter

geometric mean between sensitivity and specificity in order

to select an optimal model. We select two models, the first

one is the model that surpasses the 95% of the maximum

geometric obtained.

Given the maximum geometric mean achieved for each

of the four classifiers, we select two models. The first one is

that model that surpasses the 95% of the maximum geo-

metric mean obtained in any of the 30 models and that has

less features. The second one is obtained with the same

method but selecting the model that surpasses the 98% of

the model with the maximum geometric mean value. The
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four selected models are then evaluated through the

remaining 3 participants of the data collection.

The experiments have been performed with MATLAB�

and through including WEKA libraries in order to compute

under the same conditions all the different classifiers [42].

4 Results

This section reports the results obtained in the algorithms

as well as some intermediate results that are achieved while

extracting and selecting features.

4.1 Classifier C2outA and C2outAB results

Among the 80 features obtained from the accelerometer

signals and the 9 from the barometer signal, i.e. 89-feature

set mixing barometer and accelerometer features, we

remove those that are considered as a highly correlated

(Pearson coefficients[ 0.8) to avoid those that are redun-

dant. In this way, we remove 41 features that correspond to

the accelerometer and 51 that correspond to those obtained

from the accelerometer and the barometer. The most rele-

vant non-redundant features among the original set of 89

features are reported in Table 5.

In Table 5, feature ranking shows that 4 out of 10 fea-

tures come from the barometer signal, and moreover,

among the 4 most valuable features to classify sit-to-stand

and stand-to-sit transitions, we find 3 features that belong

to the barometer signal.

The tenfold cross-validation applied to the classifiers in

Table 4 results into sensitivity and specificity values. In the

case of SVM, we take the measure of number of support

vectors and the memory of the model. Figure 4 depicts

these values as a function of the number of features. It is

observed that using the barometer increases both sensitivity

and specificity for the same number of features; at the

same, time, it also reduces the number of support vectors.

More concretely, Fig. 4 shows that the C2outA needs

more than 15 features to reach a 0.85 on geometric mean

between specificity and sensitivity (GM). However,

employing barometric features, only three features are

needed to achieve a GM over 0.9. It is also important to

note that the number of support vectors is reduced. While

the C2outA classifier needs 125 support vectors, the

C2outAB classifier only needs 100 support vectors with 5

features.

Similar trends were observed with the other models.

There are some algorithms that only with accelerometer

features the performance is similar to the C2outAB clas-

sifier, but using many features.

Table 6 reports the average GM obtained from the

tenfold cross-validation of the 30 models performed 10

times over the training data set. An enhancement between

the classifiers trained with accelerometer features and

combining accelerometer and barometer features is

observed.

These results do not show the best model, since they are

the average of several results comprising different number

of features. However, this table illustrates the enhancement

achieved by using barometric features. There is an incre-

ment between 7 and 11% on the GM between sensitivity

and specificity, proving that barometer signal provides

useful information and that combining it to accelerometer

features, it enhances the posture transitions detection.

Once we have the different models, we evaluate the

model over the three remaining participants, i.e. testing

performances are obtained. As reported in Sect. 3.3, we

propose two different models. One using the model that

achieves the 95% of the maximum validation value

obtained with the 30 models. The second model we pro-

pose to use is the one reaching 98% of the maximum

validation value. Another constraint is the use of the same

features on C2outA and C2outAB models. Thus, both

models should overpass the 95% of the maximum perfor-

mance achieved in validation.

Table 4 List of classifiers and hyper-parameters tested

Classifier Type Hyper-parameters

Support vector machines Polynomial second order Cost [10-3, 10-2, …, 103]

Polynomial third order Cost [10-3, 10-2, …, 103]

Radial basis function (RBF) Cost and gamma: [10-3, 10-2, …, 103]

Logistic regression

Multilayer perceptron 1 layer 5 neurons

2 layers: 5 neurons each

2 layers: 5 neurons and 10 neurons, respectively

Random forest Number of trees: 1, 20, 50, 100
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In this way, with 15 features, both the models C2outA

and C2outAB reach the 95% of the maximum performance

achieved. On the other hand, with 21 features both models

reach the 98% of the maximum achieved performance with

the 30 models.

In the evaluation phase, two previous classifiers have

been computed as presented in [43]. The first one (C1)

detects a posture transition or fall and rejects any other

movement (walking, going upstairs, sitting, etc.). This

classifier achieved an accuracy of 0.975 being reliable to be

executed in this problem. The second classifier (C2)

determines whether we have a fall or a SiSt/StSi transition.

This classifier obtained an accuracy of 0.951.

The following table reports the average value of the

performance obtained with all the classifiers and over the

testing set 10 times (Table 7).

The results show a slight improvement on the results of

the C2outAB classifier; however, it does not show a sig-

nificant improvement in regard to the number of features

employed. Similar results are obtained with 15 than with

21 features. Regarding the type of classifiers, results vary

depending on the evaluated set, moving from 80 to 97% of

performance achieved with some SVM with any kernel,

MPL, and random forest. However, random forest with 1

tree and logistic regression use to present poor results is not

surpassing 80% in any occasion. There is no evidence that

some classifiers work better than the other, and no con-

clusion can be established in regard to this concern. Nev-

ertheless, results obtained with the same number of features

with barometer features have been always better both in the

training phase and in the evaluation phase.

4.2 Classifier C3outA and C3outAB results

This subsection reports the results obtained using the

C3outA and C3outAB classifiers. In this case, we have

three classes: sit to stand, stand to sit and falls. Unlike the

previous case, which was a bi-classification problem, we

proposed to use the same classifiers but training them by

means of a ‘‘one vs all’’ approach. Thus, three results are

obtained and we report the average in order to simplify

their description.

In the feature selection process, we remove up to 42

redundant features for the C3outA classifier and 49 features

for the C3outAB classifier. As in the previous section, the

performance of several algorithms is analysed by varying

the number of features from 1 to 30. It is also interesting to

see the most valuable ranked features within the group of

accelerometer and barometer. Table 8 reports the 10 most

significant non-redundant features according to the ReliefF

algorithm.

Similarly to the results from the previous subsection,

among the 10 most significant features we observe that

there are 3 features from the barometer, and moreover,

from the three most valuable features, we have 2 belonging

to the barometer signal. Although it seems that barometer

is not as important as the previous problem, it is still crucial

to include it in a problem of change of altitude.

We then find the optimal value for cost and gamma for

the SVM algorithms. In this case, we obtain the following

values: cost = 10,000 and gamma = 0.001.

The classifiers are trained 30 times over 10 different

random training sets. The behaviour is pretty similar to

Fig. 4. In this case, performance with barometric features

also improves those obtained by only using accelerometer

signals. The quantity of features to obtain high-

Table 5 List of the most valuable features from the accelerometer and barometer

Rank Feature Signal source

1 Slope of the lineal regression of the barometer signal Barometer

2 Difference between the mean value of the barometer signal of the current window and the previous one Barometer

3 Difference between the mean value of the X axis signal of the current window and the previous one Accelerometer

4 Maximum increment of the barometer signal on the current window Barometer

5 Slope of the lineal regression of the X axis signal Accelerometer

6 Difference between the mean value of current window and the previous of the difference between the X axis and the

Z axis

Accelerometer

7 Difference between the mean value of current window and the previous of the difference between the Y axis and the

X axis

Accelerometer

8 Slope of the lineal regression of the Z axis signal Accelerometer

9 Maximum increment on Z axis on the current window Accelerometer

10 Maximum amplitude of the frequency response of the barometer Barometer
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performance results is also inferior when barometer fea-

tures are included.

The following table shows the results obtained by

averaging the 30 models (regarding the number of features)

and the 10 repetitions performed with different training

data sets.

Results achieved are, as expected, worse than those

obtained with the 2-output classifier from the previous

subsection. However, although performances of 0.8828 are

the highest average GM, a GM over 0.95 has been obtained

with models trained with more than 20 features. The

reduction in performance is explained by the need of

including more features in order to characterise the 3-out-

put problem, being more complex than C2outA and

C2outAB classifiers.

Regarding the increment of performance between

C3outA and C3outAB, a significant improvement between

the 2 models is found, providing lower error the combi-

nation of barometer and accelerometer features. However,

given the complexity of the problem, as seen in Table 9,

barometer is not as crucial as it is in Sect. 4.1.

After obtaining the models, we evaluate the classifier

with the testing data, i.e. with unseen data from the

remaining three users. We select two different models for

each of both classifiers following the methods described in

Sect. 3.3. In this case, with 17 features we reach the 95% of

the maximum performance value. The second model is

performed with 25 features, in order to achieve the 98% of

the maximum performance.

To evaluate the model, we compute the results based on

the outcomes achieved on the trained classifier but, first, we

always execute classifier C1 [43] with the aim of removing

those movements that are not fall, SiSt or StSi transitions.

The following table shows the results of the average of all

the classifiers evaluated over 10 different evaluation sets

(Table 10).

Results show that there is no improvement when

selecting the 95% or the 98% model, meaning that with 17

features we obtain similar results to using 25 features.

Results improve significantly in the case of using barom-

eter features instead of using only accelerometer features.

Improvements are not meaningful but denote that
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bFig. 4 Results obtained for the 30 models on the C2outA and

C2outAB classifiers. Top left image plots the performance, where in

dashed line sensitivity specificity and geometric mean of the

outcomes of the C2outA are plotted. In continuous line, results of

the C2outAB are plotted. In the top right image, the number of

support vectors is shown (dashed line for C2outA classifier,

continuous line for C2outAB classifier). At the bottom, the memory

employed is depicted, which is the number of support vectors

multiplied by the number of features (dashed line for C2outA

classifier, continuous line for C2outAB classifier)
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barometer features always enhance the results of the

algorithm. Moreover, we find some classifiers (SVM and

random forest) that surpass 90% of geometric mean in the

validation results, while there is only one case that sur-

passes this threshold by only using accelerometer features.

These results suggest that the enhancement with barome-

ters is evident and significant.

4.3 Comparison to previous works

The results presented in the previous subsection shows an

improvement of the performance by using barometer up to

a 11%. In the previous works described in Sect. 2, an

improvement of up to a 20% was reported as a result of

using barometers. However, these previous studies have

only used threshold-based classifiers and they only com-

prised falls and postural transitions; i.e. other activities

were not included in the training database. In contrast, our

current work employs further activities in the analysis that

may provoke false positives and reduce the resulting

specificities and accuracies. To this end, machine learning

classifiers were employed in this work. In summary, it is

observed that barometers indeed improve the detection of

posture transitions and falls, although in a lesser extension

to some previous works given the harsher conditions we

have employed.

Regarding the complexity of the detection algorithms,

we could not find any previous work analysing the com-

putational resources used. This is a contribution of the

Table 6 Validation average of

the geometric mean along the 10

training repetitions with

different random training sets

and over the different number of

features (C2out classifiers)

Classifier Geometric mean C2outA Geometric mean C2outAB

SVM (RBF) 0.8250 ± 0.0324 0.9179 ± 0.0186

SVM (POL second order) 0.8649 ± 0.0552 0.9401 ± 0.0301

SVM (POL third order) 0.8764 ± 0.0573 0.9439 ± 0.0381

MLP (1 layer 5 neurons) 0.8503 ± 0.0479 0.9243 ± 0.0282

MLP (2 layers: 5 neurons each) 0.8494 ± 0.0458 0.9266 ± 0.0309

MLP (2 layers: 5 and 10 neurons, respectively) 0.8533 ± 0.0455 0.9275 ± 0.0291

Random forest (1 tree) 0.7179 ± 0.0431 0.8239 ± 0.0394

Random forest (20 trees) 0.8174 ± 0.0564 0.9156 ± 0.0206

Random forest (50 trees) 0.8326 ± 0.0591 0.9198 ± 0.0218

Random forest (100 trees) 0.8342 ± 0.0565 0.9201 ± 0.0191

Logistic regression 0.8354 ± 0.0381 0.9072 ± 0.0203

Table 7 Average results of the performance obtained with all clas-

sifiers over the testing set

Classifier Geometric mean

C2outA (95%) 0.849 ± 0.071

C2outA (98%) 0.823 ± 0.069

C2outAB (95%) 0.855 ± 0.074

C2outAB (98%) 0.895 ± 0.057

Table 8 List of the most valuable non-redundant features from the accelerometer and barometer

Rank Feature Signal source

1 Slope of the lineal regression of the barometer signal Barometer

2 Difference between the mean of the current window and the previous one on X axis Accelerometer

3 Maximum increment of the barometer signal on the current window Barometer

4 Difference between the mean value of current window and the previous of the difference

between the Y axis and the X axis

Accelerometer

5 Slope of the lineal regression of the Z axis signal Accelerometer

6 Maximum increment on Z axis on the current window Accelerometer

7 Maximum amplitude of the frequency response of the barometer Barometer

8 Maximum amplitude of the frequency response of the Y axis Accelerometer

9 Walking index on the X axis Accelerometer

10 Correlation value between X and Z axis of the accelerometer Accelerometer
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present work, showing that the usage of barometers also

reduces the computational burden and thus allowing to

extend the battery of the wearable devices.

5 Conclusions

The use of small portable devices in medical devices pro-

vides valuable information to clinicians in order to monitor

the evolution of movement disorders, the symptoms of

disease or a progression of a rehabilitation in real-life

environments, without the need of performing visits to

doctor’s office. The economic impact of this monitoring

into health systems could be noteworthy, and the

enhancement of algorithms to detect daily living activities

or symptoms of a disease is crucial to result into a reliable

clinical monitoring. These small and portable devices

based on inertial systems provide movement information of

the patient, being useful for diseases such as Parkinson’s

disease, Alzheimer’s disease or epilepsy, among others.

Barometers are starting to be employed as a tool to

detect minimal changes in altitude. The inclusion of this

sensor into human movement recognition has been done

gradually, since it can provide several false positives due to

temperature and pressure changes, for example, due to door

or window openings. This fact makes an detection algo-

rithm to not uniquely depend on barometer features, since

they are also sensitive to small pressure changes that do not

involve altitude change. Due to this reason, barometric

features must be understood as a complement to improve

other sensor-based algorithms. In this way, its use with

classical devices, as accelerometers, can enhance consid-

erably the detection of postures or activities, as demon-

strated in this research study.

In this paper, we have presented an algorithm that uses

the accelerometer but also combines different barometer

features. We compare an algorithm to classify posture

transitions and falls based on two algorithms, one with

accelerometer features and one with accelerometer and

barometer features. Along all the phases of the method, we

have tested and proved that the contextualisation of the

barometer significantly improves the outcomes of the

human activity recognition classifier. Even in the evalua-

tion phase, we have obtained better results with several

classifiers using barometer features as inputs of the pro-

posed classifier.

The evidence is very clear but larger databases and

specific problems have to be tested, for example for reha-

bilitation, chronic disease monitoring or frailty. The use of

barometers opens up the possibility to greatly enhance the

performance of several current algorithms that are based on

complex structures. As reported in Fig. 4, barometer fea-

tures also reduces computational burden, allowing faster

and better algorithms. Finally, new approaches may be

investigated, such as the use of deep learning or the use of

new kernels in order to enhance the performance of the

classifier [44].
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Table 9 Validation average

over the geometric mean

obtained with different 10

random training sets and with

the 30 models regarding the

number of features (C3out

classifiers)

Classifier Geometric mean C3outA Geometric mean C3outAB

SVM (RBF) 0.7906 ± 0.1304 0.8680 ± 0.0761

SVM (POL second order) 0.8307 ± 0.1051 0.8778 ± 0.0669

SVM (POL third order) 0.8278 ± 0.1090 0.8757 ± 0.0660

MLP (1 layer 5 neurons) 0.8342 ± 0.0968 0.8690 ± 0.0629

MLP (2 layers: 5 neurons each) 0.8172 ± 0.1079 0.8678 ± 0.0691

MLP (2 layers: 5 and 10 neurons, respectively) 0.8048 ± 0.1135 0.8709 ± 0.0703

Random forest (1 tree) 0.7558 ± 0.0709 0.8011 ± 0.0593

Random forest (20 trees) 0.8292 ± 0.0943 0.8733 ± 0.0726

Random forest (50 trees) 0.8384 ± 0.0982 0.8828 ± 0.0738

Random forest (100 trees) 0.8391 ± 0.0993 0.8854 ± 0.0751

Logistic regression 0.7908 ± 0.1231 0.8586 ± 0.0694

Table 10 Average results of the performance obtained with all clas-

sifiers over the testing set

Classifier Geometric mean

C3outA (95%) 0.8422 ± 0.0320

C3outA (98%) 0.8350 ± 0.0319

C3outAB (95%) 0.8757 ± 0.0318

C3outAB (98%) 0.8807 ± 0.0149
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