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Abstract
Recently the mixture spectrogram of a song is usually considered as a superposition of a sparse spectrogram and a low-rank

spectrogram, which correspond to the vocal part and the accompaniment part of the song, respectively. Based on this

observation, one can separate singing voice from the background music. However, the quality of such separation might be

limited, since the vocal part may be not described very well by low rank, and moreover its more prior information, such as

annotation, should be considered when designing separation algorithm. Based on these considerations, in this paper, we

present two categories, time–frequency-based source separation algorithms. Specifically, one incorporates both the vocal

and instrumental spectrograms as sparse matrix and low-rank matrix, meanwhile combines some side information of vocal

part, i.e., the reconstructed voice spectrogram from the annotation. The others further consider both the vocal and

instrumental spectrograms as sparse matrix and group-sparse matrix, respectively. Evaluations on the iKala dataset show

that the proposed methods are effective and efficient for both the separated singing voice and music accompaniment.

Keywords Singing voice separation � Low rank � Group-sparse � Dictionary Learning

1 Introduction

Automatic singing voice separation, which intends to

extract the singing voice from the music mixture, has

received much attention in the field of audio signal pro-

cessing in recent years [1–4]. It has broad applications in

singer identification [5, 6], automatic singing transcription

[7], automatic lyrics alignment [8], music information

retrieval [9], and content-based music retrieval [10, 11].

The singing voice separation task solicits competing

entries to blindly separate the singer’s voice from music

recordings. However, musical sound sources are often

strongly correlated in time and frequency, a musical

recording is often infeasible without additional knowledge

about the sources a decomposition. It is extremely difficult

for computer systems, although the human auditory system

can easily distinguish the vocal and instrumental of music

recording. The main challenges come from the variety of

simultaneous sound sources as well as the rich pitch and

timbre variations of singing voice. As summarized below,

recently, many algorithms have been proposed to separate

singing voice from music recording, yet the progress is still

limited.

Based on Robust Principal Component Analysis

(RPCA) [12], which is a matrix factorization algorithm for

solving underlying low-rank and sparse matrices. Suppose

we are given a large data matrix X, and know that it may be

decomposed as X ¼ Aþ E, where A is a low-rank matrix

and E is a sparse matrix. Huang et al. [13] have separated

singing voice from music accompaniment with the

assumption that the repetitive music accompaniment lie in

a low-rank subspace, while the singing voices can be

regarded as relatively sparse within songs. The main

drawback to this approach is that the resulting sparse

matrix often contains instrumental solo or percussion

[14, 15]. Yang [14] further incorporated harmonicity priors

and a back-end drum removal procedure to improve the

separation. Su and Yang proposed a novel artist identifi-

cation method based on sparse features learned from both

the magnitude and phase parts of the spectrum [15].

Papadopoulos et al. [16] presented an adaptive formulation

Grants No. 11501351.

& Hongjuan Zhang

zhanghongjuan@shu.edu.cn

1 Department of Mathematics, Shanghai University,

Shanghai 200444, People’s Republic of China

123

Neural Computing and Applications (2020) 32:3311–3322
https://doi.org/10.1007/s00521-018-3757-x(012 3456789().,- volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3757-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3757-x&amp;domain=pdf
https://doi.org/10.1007/s00521-018-3757-x


of RPCA that incorporates music content information to

guide the decomposition.

Further, the data samples can be represented as linear

combinations of the bases in a given dictionary [17], i.e.,

X ¼ DZ þ E, where X is a input matrix, D is a dictionary

of sparse matrices and E is a sparse matrix. For music

spectrograms, we assume that the instrumentals are repet-

itive lies in a low-rank matrix and the vocal are sparse lies

in a sparse matrix. Because the vocal part of a song can

sometimes be low rank as well, the quality of such sepa-

ration might be limited. Yang [18] considered both the

singing voice and music accompaniment as low-rank

matrices and employed an online dictionary learning

algorithm [19] to learn the structures of singing voice and

accompaniment sounds from clean vocal and instrumental

signals as prior knowledge introduced in the decomposition

process.

Chen and Ellis applied the RPCA framework to speech

enhancement assuming that the background noise is low-

rank and the speech is sparse [20, 21]. Differently, they

incorporated the pre-learned idea to decompose the sparse

components into the product of a pre-learned speech dic-

tionary and a sparse activation matrix. They proposed to

use the sum of a low-rank matrix and a residual to identify

the background noise [20]. This approach, however, cannot

be directly used for singing voice separation in music. This

is because the background music is often much more non-

stationary than background noise and may not be well

represented by a low-rank matrix and a residual. To solve

this problem, Yu et al. [22] proposed Low-rank and Sparse

representation with Pre-learned Dictionaries (LSPD) under

the Alternating Direction Method of Multipliers (ADMM)

framework for singing voice separation. First, they pre-

learned universal voice and music dictionaries from iso-

lated singing voice and background music training data.

Then, in addition to using a sparse spectrogram and a low-

rank spectrogram to model the singing voice and the

background music, respectively, they added a residual term

to capture the components that are not well modeled by

either the sparse or the low-rank terms.

A partial solution for the sparse matrix contains instru-

mental solo or percussion is to incorporate reliable anno-

tations for the sparse part using informed RPCA (hereafter

RPCAi) [23]. Chan et al. [24] presents a modified RPCA

algorithm, the algorithm is then applied to separate the

singing voice from the instrumental accompaniment using

vocal activity information, this work represents one of the

first attempts to incorporate vocal activity information into

the RPCA algorithm, while vocal activity detection has

been studied extensively [25, 26]. Ikemiya et al. [27]

proposed a novel framework for improving both vocal F0

estimation and singing voice separation by making effec-

tive use of the mutual dependency of those tasks.

Therefore, we present the first model named Low-rank,

Sparse representation with Pre-learned Dictionaries and

side Information (LSPDi) under the ADMM framework.

First, we pre-learn two dictionaries about foreground

singing voice and background music and use a sparse

spectrogram and a low-rank spectrogram to model them,

respectively. Then, a residual term is added to capture the

components that are not well modeled by either the sparse

or the low-rank term. Finally, we incorporate the recon-

structed voice spectrogram from the annotation when

separating vocal and music.

However, low-rank optimizations are computationally

inefficient due to the use of singular value decompositions.

To motivate a new representation, Chan et al. [28] pro-

posed to separate singing voice by informed group-sparse

representation with the idea of informed separation incor-

porating pitch annotations. In jazz and popular music, a

few chord symbols are enough to compactly represent the

harmonic structure of a piece. One observation is that there

are many empty rows in this representation. Therefore, a

promising strategy for the inverse problem is to encourage

row sparsity given an instrumental dictionary. On that

basis, we present the second model named Group-Sparse,

Sparse with Pre-learned Dictionaries (GSPD) and the third

model named Group-Sparse, Sparse with Pre-learned Dic-

tionaries and side Information (GSPDi). Firstly, we use a

sparse spectrogram and group-sparse spectrogram to define

the singing voice and the background music, respectively.

In addition, a residual term is added to fit the components

that are not identified by the low-rank and the sparse part.

Specially, we pre-learned voice and music dictionaries

from clean singing voice. Evaluations on the iKala dataset

[29] show their better performance than existing methods.

The rest of this paper is organized as follows. The

overview of the existing model is presented in

Sect. 2. Section 3 presents the proposed methods. In

Sect. 4, dictionary and vocal activity information are

described. The simulation results are presented in Sect. 5.

Final section concludes this work.

2 Existing algorithm

Low-rank and sparse representation with pre-learned Dic-

tionaries (LSPD) method [22], shown as,

min
Z1;Z2

k1kZ1k� þ k2kZ2k1 þ k3kEk1

s:t:X ¼ D1Z1 þ D2Z2 þ E

ð1Þ

where X is the input spectrogram, D1 2 Rm�k1 is a pre-

learned dictionary of the music accompaniment, D2 2
Rm�k2 is a pre-learned dictionary of the singing voice, D1Z1
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is the separated instrumentals, D2Z2 is the separated voice,

E denotes the residual part. k1, k2, and k3 are three

weighting parameters for balancing the different regular-

ization terms in this model.

It is noting that LSPD utilizes a sparse spectrogram and

a low-rank spectrogram to model the singing voice and the

background music, respectively, and adds a residual term

to capture the components that are not well modeled by

either the sparse or the low-rank terms, which improves the

performance of related existing methods to some extent

[13, 18, 30]. In the following section, we will present three

new algorithms.

3 The proposed method

3.1 Low-rank, sparse representation with pre-
learned dictionaries and side information
(LSPDi)

In order to improve the separation quality of LSPD further,

we considered more prior information and added them, i.e.,

the reconstructed voice spectrogram from the annotation, to

the following model,

min
Z1;Z2

k1kZ1k� þ k2kZ2k1 þ k3kEk1 þ
c
2
kD2Z2 � E0k2

F

s:t:X ¼ D1Z1 þ D2Z2 þ E

ð2Þ

Here, all parameters in model (2) are in accordance with

model (1), and E0 denotes the reconstructed voice spec-

trogram from the annotation. k � kF denotes the Frobenius

norm (square root of the sum of the squares of its ele-

ments), so that a subtraction can be calculated between the

separated voice and the reconstructed voice spectrogram

from the annotation. In the following, we also use the

ADMM algorithm [31] to solve the optimization problem,

by introducing two auxiliary variables J1 and J2 as well as

three equality constraints,

min
Z1;Z2;J1;J2

k1kJ1k� þ k2kJ2k1 þ k3kEk1

þ c
2
kD2Z2 � E0k2

F

s:t:X ¼ D1Z1 þ D2Z2 þ E; Z1 ¼ J1; Z2 ¼ J2

ð3Þ

The unconstrained augmented Lagrangian L is given by

L ¼ k1kJT1 k� þ k2kJ2k1 þ k3kEk1 þ
c
2
kD2Z2 � E0k2

F

þ \Y1;X � D1Z1 � D2Z2 � E[

þ \Y2; Z1 � J1 [ þ\Y3; Z2 � J2 [

þ l
2

kX � D1Z1 � D2Z2 � Ek2
F

�

þkZ1 � J1k2
F þ kZ2 � J2k2

F

�

ð4Þ

where Y1, Y2, Y3 are the Lagrange multipliers. We then

iteratively update the solutions for J1, Z1, J2 and Z2.

Specifically, update J2 firstly,

J2 ¼ arg min
J2

k2kJ2k1 þ
l
2
kJ1 � Z1 þ l�1Y3

� �
k2
F ð5Þ

that can be solved by the soft-threshold operator

J2 ¼ Sk2
l
Z2 þ l�1Y3

� �
ð6Þ

since the spectrogram is non-negative

J2 ¼ max Sk2
l
Z2 þ l�1Y3

� �
; 0

� �
ð7Þ

where 0 is an all zero matrix of the size as J2.

Then, update Z2, setting oL
oZ2

¼ 0,

Z2 ¼ c
l
þ 1

� 	
DT

2D2 þ I

� 	�1

�
DT

2

�
X � D1Z1�E þ c

l
E0 þ

1

l
Y1

	

� 1

l
Y3 þ J2

	
ð8Þ

And the other variables can be updated using the similar

way. The detailed algorithm is shown as follows.

LSPDi

Input: X, D1, D2

output: Z1, Z2

initialization: Z1 ¼ 0, Z2 ¼ 0, J1 ¼ 0, J2 ¼ 0, Y1 ¼ 0, Y2 ¼ 0,Y3 ¼ 0

while not converged do

update Z1, Z2:

Z1 ¼ ðDT
1D1 þ IÞ�1ðDT

1 ðX � D2Z2 � E þ l�1Y1Þ � l�1Y2 þ J1Þ

Z2 ¼ c
l þ 1
� �

DT
2D2 þ I

� ��1

DT
2 X � D1Z1 � E þ c

lE0

��

þ 1
l Y1Þ � 1

l Y3 þ J2Þ
update J1, J2, E:

URV ¼ svdðZ1 þ 1
l Y2Þ, J1 ¼ USk1

l
½R�VT

J2 ¼ Sk2
l
ðZ2 þ 1

l Y3Þ

E ¼ Sk3
l
ðX � D1Z1 � D2Z2 þ l�1Y1Þ
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LSPDi

update Y1, Y2, Y3:

Y1 ¼ Y1 þ lðX � D1Z1 � D2Z2 � EÞ
Y2 ¼ Y1 þ lðZ1 � J1Þ
Y3 ¼ Y2 þ lðZ2 � J2Þ
end while

3.2 Group-sparse, sparse representation
with pre-learned dictionaries (GSPD)

Due to the use of singular value decompositions, low-rank

optimization is computationally inefficient, which prevents

its applications for the processing of big data. Here, group

sparse as an replacement is used when designing the

optimal model,

min
Z1;Z2

k1kZT
1 k2;1 þ k2kZ2k1 þ k3kEk1

s:t:X ¼ D1Z1 þ D2Z2 þ E

ð9Þ

where kZTk2;1 ¼
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiP
j Z

2
ij

q
is the row sparsity, which

means Z has many empty rows in its representation [32]

and corresponds to the sum of the l2-norms of the rows of

Z.

As we all know, the above formulation is not trivial to

solve since the k � k2;1 and k � k1 norms are not smooth.

Moreover, an additional equality constraint should be

considered. Therefore, the alternating direction method of

multipliers (ADMM) [33] is applied for this model.

ADMM works by first rewriting the constraint(s) into an

augmented Lagrange function, then updating each variable

in an alternating fashion until convergence. Thus, to solve

(9), we first introduce two auxiliary variables J1 and J2 for

the alternating updates and rewrite the optimization prob-

lem as follows:

min
Z1;Z2;J1;J2

k1kJT1 k2;1 þ k2kJ2k1 þ k3kEk1

s:t:X ¼ D1Z1 þ D2Z2 þ E; Z1 ¼ J1; Z2 ¼ J2

ð10Þ

The unconstrained augmented Lagrangian L is given by

L ¼ k1kJT1 k2;1 þ k2kJ2k1 þ k3kEk1

þ \Y1;X � D1Z1 � D2Z2 � E[

þ \Y2; Z1 � J1 [ þ\Y3; Z2 � J2 [

þ l
2

kX � D1Z1 � D2Z2 � Ek2
F þ kZ1

�

� J1k2
F þ kZ2 � J2k2

F

�

ð11Þ

where Y1, Y2 and Y3 are the Lagrange multipliers. Model

(11) can be minimized with respect to J1, J2, Z1, Z2 and E,

respectively, by fixing the other variables and updating the

lagrangian multipliers Y1, Y2 and Y3. For example, the

minimization of J1 reduces to

J1 ¼ arg min
J1

k1kJT1 k2;1 þ
l
2
kJ1 � Z1 þ l�1Y2

� �
k2
F

¼ 1 � k1

k Z1 þ l�1Y2ð Þik

� 	

þ
Z1 þ l�1Y2

� �
i

 !k

i¼1

ð12Þ

where k is the number of row of J1, Ai denotes the ith row

of A, ðBiÞki¼1 ¼ ðBT
1 ; . . .;B

T
k Þ and Cþ ¼ maxð0;CÞ.

Update Z1, setting oL
oZ1

¼ 0,

Z1 ¼ DT
1D1 þ I

� ��1
DT

1 X � D2Z2 � E þ l�1Y1

� ��

� l�1Y2 þ J1

� ð13Þ

The other variables can be updated using the similar way.

In the following, the proposed algorithm will be given.

GSPD

Input: X, D1, D2

output: Z1, Z2

initialization: Z1 ¼ 0, Z2 ¼ 0, J1 ¼ 0, J2 ¼ 0, Y1 ¼ 0, Y2 ¼ 0,Y3 ¼ 0

while not converged do

update Z1, Z2:

Z1 ¼ ðDT
1D1 þ IÞ�1ðDT

1 ðX � D2Z2 � E þ l�1Y1Þ � l�1Y2 þ J1Þ
Z2 ¼ ðDT

2D2 þ IÞ�1ðDT
2 ðX � D1Z1 � E þ l�1Y1Þ � l�1Y3 þ J2Þ

update J1, J2 E:

J1 ¼ ðð1 � k1

kðZ1þl�1Y2Þik
ÞþðZ1 þ l�1Y2ÞiÞ

k
i¼1

J2 ¼ Sk2
l
ðZ2 þ 1

l Y3Þ

E ¼ Sk3
l
ðX � D1Z1 � D2Z2 þ l�1Y1Þ

update Y1, Y2, Y3:

Y1 ¼ Y1 þ lðX � D1Z1 � D2Z2 � EÞ
Y2 ¼ Y1 þ lðZ1 � J1Þ
Y3 ¼ Y2 þ lðZ2 � J2Þ
end while

3.3 Sparse representation with pre-learned
dictionaries and side information (GSPDi)

Furthermore, more prior information, i.e., the reconstructed

voice spectrogram from the annotation is considered in the

following model.

3314 Neural Computing and Applications (2020) 32:3311–3322

123



min
Z1;Z2

k1kZT
1 k2;1 þ k2kZ2k1 þ k3kEk1 þ

c
2
kD2Z2 � E0k2

F

s:t:X ¼ D1Z1 þ D2Z2 þ E;

ð14Þ

To solve (14), we first introduce two auxiliary variables J1

and J2 for the alternating updates and rewrite the opti-

mization problem as follows:

min
Z1;Z2;J1;J2

k1kJT1 k2;1 þ k2kJ2k1 þ k3kEk1 þ
c
2
kD2Z2 � E0k2

F

s:t:X ¼ D1Z1 þ D2Z2 þ E; Z1 ¼ J1; Z2 ¼ J2;

ð15Þ

The unconstrained augmented Lagrangian L is given by

L ¼ k1kJT1 k2;1 þ k2kJ2k1 þ k3kEk1 þ
c
2
kD2Z2 � E0k2

F

þ \Y1;X � D1Z1 � D2Z2 � E[
þ \Y2; Z1 � J1 [ þ\Y3; Z2 � J2 [

þ l
2

kX � D1Z1 � D2Z2 � Ek2
F

�

þkZ1 � J1k2
F þ kZ2 � J2k2

F

�

ð16Þ

where Y1, Y2, and Y3 are the Lagrange multipliers. \�; �[
denotes the trace inner product, and l is a positive penalty

parameter. We the iteratively update the solutions for J1, Z1, J2

and Z2. The method of updated variables is similar to the pre-

vious two algorithms in above-mentioned Sects. 3.1 and 3.2.

The proposed algorithm is described below.

GSPDi

Input: X, D1, D2

output: Z1, Z2

initialization: Z1 ¼ 0, Z2 ¼ 0, J1 ¼ 0, J2 ¼ 0, Y1 ¼ 0, Y2 ¼ 0,Y3 ¼ 0

while not converged do

update Z1, Z2:

Z1 ¼ ðDT
1D1 þ IÞ�1ðDT

1 ðX � D2Z2 � E þ l�1Y1Þ � l�1Y2 þ J1Þ
Z2 ¼ ððcl þ 1ÞDT

2D2 þ IÞ�1ðDT
2 ðX � D1Z1 � E þ c

lE0 þ 1
lY1Þ

� 1
l Y3 þ J2Þ

update J1, J2 E:

J1 ¼ ðð1 � k1

kðZ1þl�1Y2Þik
ÞþðZ1 þ l�1Y2ÞiÞ

k
i¼1

J2 ¼ Sk2
l
ðZ2 þ 1

l Y3Þ

E ¼ Sk3
l
ðX � D1Z1 � D2Z2 þ l�1Y1Þ

update Y1, Y2, Y3:

Y1 ¼ Y1 þ lðX � D1Z1 � D2Z2 � EÞ
Y2 ¼ Y1 þ lðZ1 � J1Þ
Y3 ¼ Y2 þ lðZ2 � J2Þ
end while

4 Dictionary and E0

4.1 Dictionary

We adopt the idea of Online Dictionary Learning for

Sparse Coding (ODL) [19] to learn the singing voice dic-

tionary from isolated training singing voices.

Given N signals (xi 2 Rm), ODL learns a dictionary D

by solving the following joint optimization problem,

min
D� 0;a

1

N

XN
i¼1

1

2
kxi � Daik2

2 þ kkaik1

� 	

s:t: dTj dj � 1; ai � 0

ð17Þ

where k � k2 denotes the Euclidean and k is a regularization

parameter. The input frames are extracted from the training

set after short-time Fourier transform (STFT). Our imple-

mentation of ODL is based on the SPAMS toolbox [19].

Following literature [28], we define the dictionary size to

be 100 atoms.

4.2 The reconstructed voice spectrogram
from the annotation (E0)

To get the reconstructed voice spectrogram from the

annotation, we first transform the human-labeled vocal

pitch contours into a time-frequency binary mask. The

authors in literature [27] have proposed a harmonic mask

similar to that of the work [34], which only passes integral

multiples of the vocal fundamental frequencies [35, 36],

Mðf ; tÞ ¼

1; if jf � nF0ðtÞj\w=2; 9n 2 Nþ

0; otherwise:

8>><
>>:

ð18Þ

Here, F0ðtÞ is the vocal fundamental frequency at time t, n

is the order of the harmonic, and w is the width of the

mask. Then, we simply define the vocal annotations as

E0 ¼ X 	M, where 	 denotes the Hadamard product.

5 Evaluation

5.1 Dataset

Our evaluation is based on the iKala dataset [29]. The

iKala dataset contains 352 30-s clips of Chinese popular

songs in CD quality. The singers and musicians are

professionals.

Following literature [28], in our experiments, we ran-

domly select 44 songs for training (i.e., learning the dic-

tionaries D1 and D2), leaving 208 songs for testing the
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performance of separation. The vocals and instrumentals

are mixed at signal-to-noise ratio of 0 dB. To reduce the

computational cost and the memory footprint of the pro-

posed algorithm, we downsample all the audio recordings

from 44,100 to 22,050 Hz. Then, computed its STFT by

sliding a Hamming window of 1411 samples with a 75%

overlap to obtain the spectrogram [29].

5.2 Evaluation

To measure the quality of the singing voice bv with respect

to the original clean singing voice v, we use source-to-

interference ratio (SIR), source-to-artifacts ratio (SAR) and

source-to-distortion ratio (SDR) provided in the commonly

used BSS EVAL toolbox version 3.0.1

The source-to-distortion ratio (SDR) [37] is computed as

follows,

SDRðbv; vÞ ¼ 10log10

\bv; v[ 2

kbv2kkv2k �\bv; v[ 2

� �
: ð19Þ

Normalized SDR (NSDR) is the improvement of SDR from

the original mixture x to the separated singing voice bv
[38, 39], and is commonly used to measure the separation

performance for each mixture:

NSDRðbv; v; xÞ ¼ SDRðbv; vÞ � SDRðx; vÞ: ð20Þ

For overall performance evaluation, the global NSDR

(GNSDR) is calculated as,

GNSDR ¼
PN

i¼1 wiNSDR bvi; vi; xið ÞPN
i¼1 wi

; ð21Þ

where N is the total number of the songs and wi is the

length of the i-th song. We calculate the weighted average

of SIR and SAR , which are the Global SIR (GSIR) and

Global SAR (GSAR), respectively, over different clips in a

similar way. Higher values of SDR, SAR, SIR, GSIR,

GSAR GSDR and GNSDR represent better quality of the

separation.

5.3 Parameter selection

There are two versions of the proposed method for singing

voice separation.

(1) The first one is low-rank representation,

– LSPD Supervised method proposed by Yu et al.

[22].

– LSPDi Proposed LSPDi method with Low-Rank

representation and the reconstructed voice spec-

trogram from the annotation.

(2) The other is group-sparse representation,

– GSPD Proposed GSPD method with Group-Sparse

representation.
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Fig. 1 Separation performance

measured by GNSDR for the

singing voice (left) and

background music (right), using

our proposed method LSPDi

1 http://bass-db.gforge.inria.fr/.
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– GSPDi Proposed GSPDi method with Group-Sparse

representation and the reconstructed voice spectrogram

from the annotation.

Note that LSPD and GSPD all have three parameters,

respectively. Both LSPDi and GSPDi have four

parameters.

During parameter selection, we use the indicator of

global normalized source-to-distortion ratio (GNSDR) as

the evaluation index. The higher the value is, the better the

separation quality is. As for all algorithms, i.e., LSPD and

LSPDi, GSPD and GSPDi, we set k2 ¼ k3 ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm; nÞ

p
for each X 2 Rm�n similar to the work in

[29], Here, we only adjust k1 and c in LSPDi and GSPDi.

Figure 1 shows the different GNSDR values of LSPDi

for the separated singing voice and background music.

First, fixing k1 ¼ 1 (or any other), in the vocal section, the

GNSDR monotonically rises at first before the maximum

value is achieved and then decreases, when c ¼ 5, it

reaches the optimal value. Then, we will focus on c ¼ 5, in

the accompaniment part, fixing c ¼ 5, its value first

increases and then reaches the maximum after a significant

downward trend, reaches it optimal value when k1 ¼ 1.

Therefore, in the algorithm LSPDi, we use the parameter

c ¼ 5 and k1 ¼ 1. Just like LSPDi, we select the parameter

k1 ¼ 1 in LSPD.

Based on GSPDi, Fig. 2 presents the GNSDR for the

separated singing voice and background music. In the vocal

part, we can see that, for any value of k1, the GNSDR will

always get the maximum value at c ¼ 5. So, in the

accompaniment part, we fix c ¼ 5 and the value of the

GNSDR reaches its maximum at k1 ¼ 24, then the values

have a significant downward trend. Therefore, in the

GSPDi, we set the parameter k1 ¼ 24 and c ¼ 5. And we

select the parameter k1 ¼ 24 in GSPD, in the same way

with GSPDi.

5.4 Comparison of the proposed method

Experimental results show that incorporating the recon-

structed voice spectrogram from the annotation (E0) can

greatly improve the separation performance. As shown in

Table 1, Figs. 3 and 4, LSPDi and GSPDi are comparative

and both of them achieve a higher performance. Therefore,

LPDSi and GSPDi will be used for the following com-

parisons with the existing methods.

Table 1 Separation quality for the vocal and music for the iKala

dataset of LSPD, LSPDi, GSPD and GSPDi

Vocal Music

GSDR GSIR GSAR GSDR GSIR GSAR

LSPD 5.26 11.47 7.19 1.22 2.47 11.73

LSPDi 11.29 19.91 12.16 8.00 16.70 8.88

GSPD 5.29 11.50 7.41 0.98 1.93 11.52

GSPDi 11.29 19.61 12.21 7.88 16.01 8.85
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Fig. 2 Separation performance

measured by GNSDR for the

singing voice (left) and

background music (right), using

our proposed method GSPDi
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via the GNSDR, using LSPD, LSPDi, GSPD and GSPDi from left to

right
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via the SDR (top row), SIR (middle row) and SAR (bottom row),

using LSPD, LSPDi, GSPD, and GSPDi from left to right. The central

mark (red horizontal line) in each box is the median of the

distribution. Higher values are better
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from left to right
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5.5 Algorithms for comparison

The proposed above methods are compared with the

existing three state-of-the-art singing voice separation

algorithms, as RPCA, unsupervised method proposed by

Huang et al. [13], LRR, supervised method proposed by

Liu et al. [17] and GSRi, supervised method proposed by

Chan et al. [28]. In the three experimental algorithms, the

original parameters are set as following, k is set to
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxðm;nÞ
p and c is set to 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxðm;nÞ
p .

As shown in Fig. 5, the proposed method has a higher

value of global normalized source-to-distortion ratio

(GNSDR), which means that the introduction of prior

knowledge improve the separation performance.

Several results are shown in Table 2. In the vocal part,

proposed algorithm achieves higher GSDR and GSIR than

RPCA, LRR and GSRi, which shows that LSPDi, GSPDi

have better global separation performance and a better

ability to remove the instrumental sounds than RPCA, LRR

and GSRi. In the background music part, proposed algo-

rithm achieves higher GSIR and GSAR than RPCA, LRR

and GSRi, which suggests that LSPDi, GSPDi has better

global separation performance than RPCA, LRR, GSRi and

a better ability to remove the singing, a better performs in

limiting artifacts during the separation process. The dif-

ference on GSDR and GSIR might be significant. So

Table 2 Separation quality for the vocal and music for the iKala

dataset of RPCA, LRR, GSRi, LSPDi and GSPDi

Vocal Music

GSDR GSIR GSAR GSDR GSIR GSAR

RPCA 6.21 8.14 12.53 0.75 3.23 7.00

LRR 7.66 10.75 11.72 1.96 4.13 8.70

GSRi 11.26 14.93 14.24 7.66 15.23 8.83

LSPDi 11.29 19.91 12.16 8.00 16.70 8.88

GSPDi 11.29 19.61 12.21 7.88 16.01 8.85
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Fig. 6 Separation performance for the vocal (left) and music (right),

via the SDR (top row), SIR (middle row) and SAR (bottom row),

using RPCA, LRR, GSRi, LSPDi and GSPDi from left to right. The

central mark (red horizontal line) in each box is the median of the

distribution. Higher value is better
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basically it suggests that the proposed method works better

on the background music. The above observations show

that LSPDi and GSPDi have a better ability to deal with the

separation of singing voice and accompaniment.

Figure 6 shows the separation performance for the vocal

and background music, respectively, on the iKala dataset,

via the SDR (top row), SIR (middle row) and SAR (bottom

row). In each column, the boxes from left to right represent

Huang’s method RPCA, Liu’s method LRR, Chan’s

method GSRi and the proposed LSPDi and GSPDi,

respectively.

From Fig. 6, we can see that for the separation of

singing voice and music accompaniment, proposed algo-

rithm achieves the highest SDR, SIR and SAR. These

results indicate that our proposed LSPDi and GSPDi

algorithm have a better overall separation performance for

the singing voice and the music components (highest

SDR), which exhibits their better capability of limiting

artifacts and removing interferences during separation.

6 Conclusions

In this paper, we have presented two categories, time–

frequency-based source separation algorithm for music

signals. LSPD [22] and LSPDi consider both the vocal and

instrumental spectrograms as sparse matrix and low-rank

matrix, respectively. GSPD and GSPDi combine both the

vocal and instrumental spectrograms as sparse matrix and

group-sparse matrix, respectively. Moveover, the dic-

tionaries for the singing voice and background music pre-

learned from isolated singing voice and background music

training data, respectively, have successfully utilized to

capture more features of vocal or background music

spectrogram, and more prior information are introduced,

for example, vocal annotations information. Future devel-

opments of the presented method could take advantage of

more properties of background music and singing voice

with such extensions, for example, some of the recent

works [40–64] that employ signal classification maybe

further motivate the need of this work.
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