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Abstract
Recently, boost and buck converters are widely applied in many applications, especially in recycled energy industry. The

efficiency of DC–DC converter, which can increase or decrease the input voltage according to the driver output voltage,

can effectively affect the total efficiency of the systems. In this paper, a sliding mode interval type-2 fuzzy wavelet

cerebellar model articulation controller (T2WFCMAC)-based control system is designed for the DC–DC converters. The

proposed control system contains a main controller and a robust compensation controller. The main controller is the

T2WFCMAC which is used to mimic an ideal controller, and the robust compensation is designed to compensate for the

approximation error between the main controller and the ideal controller. The sliding hyperplane is applied to improve the

robustness of the control system. All the adaptive laws for adjusting the parameters of T2WFCMAC are obtained using the

gradient descent method. The stability of control system is guaranteed in the sense of Lyapunov function. Finally,

numerical experimental results of boost and buck converters are presented to illustrate the effectiveness of the proposed

approach under the change in the input voltage and the load resistance variations.

Keywords Type-2 fuzzy system � Cerebellar model articulation controller � DC–DC converter � Buck–boost converter

1 Introduction

DC–DC converter is used to convert one level of electrical

voltage into another level by switching action [1], and it is

a technology in power electronic systems. The buck con-

verter is a step-down converter, and it is used when the

input voltage is greater than the desired output voltage. On

the other hand, boost converter is a step-down converter,

which is used when the input voltage is less than the

desired output voltage. The buck and boost converters are

always used for computer peripherals, electric vehicle,

battery power supplies, power factor correction (PFC)

applications and recycled energy [1–6]. In recent years, the

DC–DC converter has attracted many researchers because

it is a main process in the maximum power point tracking

systems (MPPT) [7–9]. The authors in [10] introduced a

dual-input–tri-output DC–DC buck–boost converter with

MPPT. Sreekanth et al. [11] provided a single-stage grid-

connected high-gain buck–boost inverter with MPPT.

Besides coping with the change in input voltage, the con-

verter also must handle the change in the load while pro-

viding fast transient response. In recent years, many papers

have applied the PID controller, sliding mode controller,

and fuzzy neural network to control the DC–DC converters

[12–15]. Kumbhojkar et al. [14] presented a novel sliding

mode control technique for DC to DC buck converters.

After that, Cheng et al. [15] proposed a model predictive

control for DC–DC boost converters. However, most of

these controllers did not care about the uncertainty of

system, and their control performance can be further

improved. Thus, this paper will propose a more efficient

controller, an interval type-2 fuzzy CMAC, and apply it to

control the DC–DC converters.

The cerebellar model articulation controller (CMAC)

proposed by Albus [16] is a type of neural network based

on a model of the mammalian cerebellum (associative

memory). Compared with other neural networks, the
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CMAC has some advantages such as the fast learning

property, simple computation, and good generalization

capability [17]. In recent years, many studies have com-

bined CMACs with other methods to enhance the perfor-

mance [18–23]. Lin and Chen [18] introduced a self-

organizing CMAC for a class of MIMO uncertain nonlinear

systems. Lin and Li [22] presented a function-link CMAC

for the control of antilock braking systems. Wang et al.

[23] proposed an interactively recurrent self-evolving

fuzzy CMAC model for medical diagnosis applications.

However, as same as a type-1 fuzzy system, the CMAC

with type-1 membership function cannot handle very well

for the uncertainty coming from the internal and external of

the system. The type-2 fuzzy sets, which have the ability to

cover the uncertainty of the plant, were developed by

Zadeh [24]. Since the complex in computation of type-2

fuzzy sets, in 2000, Liang and Mendel proposed the

interval type-2 fuzzy logic systems (IT2FLS), which is

much simple in computation than the original type-2 fuzzy

logic systems [25]. In the literature, many papers reported

that IT2FLS is better to handle the uncertainties than

interval type-1 fuzzy logic systems (IT1FLS) because of

IT2FLS have the uncertainties in the input membership

functions, the effect of firing level in calculating the output,

and the more design degrees of freedom and more general

[26, 27]. By these advantages, in recent years, IT2FLS has

attracted many researchers. Zhang [28] provided the

trapezoidal interval type-2 fuzzy aggregation operators for

group decision making. Mohagheghi et al. [29] introduced

a new interval type-2 fuzzy model for the construction

industry application. Also Eyoh et al. [30] proposed an

interval type-2 intuitionistic fuzzy logic for regression

problems. The conventional fuzzy system and CMACs

often use a Gaussian function for the membership func-

tions. However, some studies have proven that the wavelet

functions have more efficient in learning capability than the

conventional Gaussian functions [31, 32]. Therefore, this

study uses a type-2 wavelet function as the membership

function in the association memory space. The main

characteristic of wavelet neural network is the wavelet

functions is used as the nonlinear transformation function

in the membership function layer, instead of using the

usual Gaussian function. The wavelet functions have some

advantages than the conventional Gaussian functions such

as the time–frequency localization and the decomposition

properties. The decomposition properties help the wavelet

function to cover the change of input better than the

Gaussian function [33]. This study combines the advan-

tages of the CMAC and the type-2 wavelet functions, so the

proposed type-2 wavelet CMAC has shown its advantages

to achieve better learning performance.

For the past 5 decades, the sliding mode technique has

been widely studied and extensively applied in the

industrial environment due to its advantages such as con-

ceptual simplicity, easy implementation and less compu-

tation cost [34–37]. In recent years, the sliding mode

control has attracted many researchers in control problem.

Morkoc et al. [38] proposed the DSP code generation for

PMSM using the sliding mode control. After that, Yadegari

et al. [39] presented the finite time sliding mode controller

for a rigid satellite in presence of actuator failure. Ding and

Li [40] proposed the second-order sliding mode controller

design subject to mismatched term. The sliding mode

technique is especially suitable for dealing with the non-

linear systems with uncertain dynamics and disturbances

because of its robust characteristic and order reduction

property, which can reduce the concern for determining the

exact model parameter [14, 41].

This study proposes a new method, which combines

the advantage of the wavelet function, sliding mode

function and interval type-2 fuzzy CMAC to improve the

performance of the DC–DC converter system. The pro-

posed network is referred to as the type-2 wavelet CMAC

(T2WCMAC). By applying the wavelet function, the

proposed controller is more efficient in learning capability

than using the conventional Gaussian functions. By using

the sliding surface, the input dimension can be reduced

and the control system can achieve better robust perfor-

mance for handling uncertainties. The robust compensa-

tion controller is also added to dispel approximation error

between the T2WCMAC and an ideal controller. In many

electrical devices, the robust stability in terms of input

voltage and load resistance changes is very important.

Therefore, the proposed robust DC–DC converter design

can achieve the desired performance. The main contri-

butions of this paper are the following: successfully

design the T2WCMAC control system with the parame-

ters been updated by adaptive laws, which are designed

using the gradient descent method; successfully apply the

wavelet decomposition and sliding surface to improve the

system performance; the stability of the control system is

guaranteed by the robust compensation controller and was

proved by the Lyapunov function; the experimental

results are illustrated to show that the proposed control

system can effectively achieve the robust control for boost

and buck converters under the change in the input voltage

and the load resistance.

The rest of this paper is as follows. The problem for-

mulation of DC–DC converters is given in Sect. 2. The

design of the T2WCMAC control system is presented in

Sect. 3. The experimental results are provided in Sect. 4.

Finally, the conclusion is given in Sect. 5.
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2 Formulation of DC–DC converters

The circuit of DC–DC converters is shown in Fig. 1 where

the buck and boost converters are applied to drop down and

put up DC voltage, respectively. These circuits consist of a

DC input voltage source (Vin), a diode (D), a transistor (S),

a filter output capacitor (C), a filter inductor (L) and a load

resistor (R). The terms rL and rC are the internal series

resistance of L and C, respectively. The output V0 is the

voltage measured on the load resistor. The state equations

of the buck and boost DC–DC converters can be denoted as

[1].

_x ¼ Ajxþ BjVin ð1Þ

V0 ¼ Cjx ð2Þ

where x ¼ iL vc½ �T, and the system matrices of the linear

circuit are denoted as Aj, Bj and Cj. The subscript

expresses the different operating modes of the converter

circuit, where j ¼ 1; 2, respectively, stands for the state ON

and OFF of the transistor S. The system matrices can be

obtained for different operating modes as

buck converter case :

A1 ¼ A2 ¼
� 1

L

RrC

Rþ rC
þ rL

� �
� 1

L

RrC

Rþ rC

� �

1

C

RrC

Rþ rC

� �
1

C

1

Rþ rC

� �
2
664

3
775 ð3Þ

B1 ¼
1

L
0

2
4
3
5 B2 ¼

0

0

� �
ð4Þ

C1 ¼ C2 ¼
RrC

Rþ rC

R

Rþ rC

� �
ð5Þ

boost converter case :

A1 ¼
� rL

L
0

rL

C

1

C

1

Rþ rC

� �
2
64

3
75 ð6Þ

A2 ¼
� 1

L

RrC

Rþ rC
þ rL

� �
� 1

L

RrC

Rþ rC

� �

1

C

RrC

Rþ rC

� �
1

C

1

Rþ rC

� �
2
664

3
775 ð7Þ

B1 ¼ B2 ¼
1

L
0

2
4
3
5 ð8Þ

C1 ¼ C2 ¼
RrC

Rþ rC

R

Rþ rC

� �
ð9Þ

By applying the state-space averaging method in

[42, 43] for analyzing the system, the state equation can be

obtained as

_x ¼ Axþ BVin ð10Þ
V0 ¼ Cx ð11Þ

where A ¼ dA1 þ 1� dð ÞA2;B ¼ dB1 þ 1�ð dÞB2;C ¼
dC1 þ 1� dð ÞC2 and d is the switching duty cycle for

pulse width modulation (PWM). The goal of the controller

is to generate the switching duty cycle d tð Þ, such that the

output voltage of the converter can follow the desired

reference output voltage. The current duty cycle d tð Þ is

determined by adding the adjust value dd tð Þ to the previous

duty cycle d t � 1ð Þ as
d tð Þ ¼ dd t � 1ð Þ þ dd tð Þ ð12Þ

The output error voltage is defined as

e tð Þ ¼ Vref tð Þ � V0 tð Þ ð13Þ

where Vref is the predefined reference output voltage.

3 Design of T2WFCMAC control system

Figure 2 shows the structure of T2WFCMAC control sys-

tem for DC–DC converters in which the T2WFCMAC is

the main controller and a robust controller is designed to

achieve robust stability of the system. The design of sliding

hyperplane is to guarantee the stability and to improve the

robustness of the control system. All the parameters of the

control system can be adjusted based on the derived

adaptive laws, which are designed in Sect. 3.2.

3.1 Interval type-2 wavelet fuzzy CMAC

A novel T2WFCMAC is proposed with the following fuzzy

inference rules:

Fig. 1 The circuit of DC–DC converter. a The buck converter. b The

boost converter
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Rk : If I1 is ~F1jk and I2 is ~F2jk; . . .; Ini is ~Fnijk

Then ojk ¼ ~wjk ¼ wjk �wjk

h i
for j ¼ 1; 2; . . .; nj;

k ¼ 1; 2; . . .; nk

and k ¼ 1; 2; . . .; nl

ð14Þ

where ni is the input dimension, nj is the number of the

layers for each input, nk is the number of blocks for each

layer, nl ¼ njnk is the number of the fuzzy rules, ~Fijk ¼
�fijkf ijk

h i
is the fuzzy set for the ith input, jth layer and kth

block, and ojk is the output weight in the consequent part.

The structure of T2WFCMAC is shown in Fig. 3 which

consists of an input space, an association memory space, a

receptive-field space, a weight memory space and an output

space. The signal propagation and the basic functions in

each space are described as follows.

1. Input space I: For a given I ¼ I1; I2; . . .Ii; . . .Ini½ �T�<ni ,

where Ii represents the ith input and ni is number of

input signals. Each input state variable Ii can be

quantized into discrete regions according to a given

control space.

2. Association memory space A: In this space, several

elements can be accumulated as a block. Each block

performs a receptive-field basis function. The type-2

Gaussian membership function (T2GMF) is used as a

mother wavelet. Therefore, the interval values of

association memory can be given as

�fijk �Fijk

� �
¼ � �F2

ijkexp � �F2
ijk=2

� 	
and

f
ijk

Fijk

� �
¼ �F2

ijkexp �F2
ijk=2

� 	

for i ¼ 1; 2; . . .; ni j ¼ 1; 2; . . .; nj

and k ¼ 1; 2; . . .; nk

ð15Þ

�Fijk ¼
Ii � mijk

�rijk
and Fijk ¼

Ii � mijk

rijk

where mijk is the mean, �rijk and rijk are the upper and

lower variance of the kth block in the jth layer corre-

sponding to the ith input variable.

3. Receptive-field space /: The multi-dimensional recep-

tive-field function is given as

�/ ¼ �/11; . . .;
�/1nk

; . . .; �/nj1
; . . .; �/njnk

h iT
2 <njnk

/ ¼ /
11
; . . .;/

1nk
; . . .;/

nj1
; . . .;/

njnk

h iT
2 <njnk

ð16Þ

where

�/jk ¼
Yni
i¼1

�fijk �Fijk

� �

¼ �
Yni
i¼1

Ii � mijk

�rijk

� �2

exp
� Ii�mijk

�rijk

� 	2
2

0
B@

1
CA

Fig. 2 Block diagram of

ST2WCMAC control system
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/
jk
¼
Yni
i¼1

f
ijk

Fijk

� �

¼ �
Yni
i¼1

Ii � mijk

rijk

 !2

exp
� Ii�mijk

rijk

� 	2
2

0
B@

1
CA

4. Weight memory spaceW: Each location of the receptive-

field is corresponding to a particular adjustable connect-

ing weight memory, and it can be described as

�w ¼ �w11; . . .; �w1nk ; . . .; �wnj1; . . .; �wnjnk


 �T2 <njnk

w ¼ w11; . . .;w1nk
; . . .;wnj1

; . . .;wnjnk

h iT
2 <njnk ð17Þ

where wjk is the connecting weight value of the output

associated with the jth layer and kth block.

5. Output space y: The output of a T2WFCMAC is the

algebraic sum of the left output yl and right output yr,

which can be calculated by theweightmemory space and

the receptive-field space. To reduce the computation cost

and to speedup the response for real-time control system,

the output of T2WFCMAC can be obtained directly

without using the Karnik–Mendel algorithm as follows:

uST2WCMAC ¼ 1

2
yl þ yrð Þ

¼ 1

2

Xnj
j¼1

Xnk
k¼1

w�
jk
/
jk
þ
Xnj
j¼1

Xnk
k¼1

�wjk/jk

 !

ð18Þ

3.2 Adaptive control of interval type-2 wavelet
fuzzy CMAC

Assume there exists an optimal controller u�T2WFCMAC to

approximate the ideal controller dd� tð Þ so that

dd� tð Þ ¼ u�T2WFCMAC w�; �w�;m�; r�; �r�; tð Þ þ eðtÞ ð19Þ

where eðtÞ denotes the approximation error between dd� tð Þ
and u�T2WFCMAC, and w�; �w�;m�; r�; �r� are the optimal

parameters of w; �w;m; r; �r; respectively. Since the fact that
u�T2WFCMAC cannot be obtained, the u�T2WFCMAC can be

online estimated by using the estimation controller

ûT2WFCMAC. The robust controller ûR is designed to deal

with the approximation error eðtÞ. Thus, the overall control
system can be designed as

dd̂ tð Þ ¼ ûT2WFCMAC ŵ; �̂w; m̂; r̂; �̂r; t
� �

þ ûR tð Þ ð20Þ

where ŵ; �̂w; m̂; r̂; �̂r are the estimation of w�; �w�;m�; r�; �r�,
respectively.

To fast achieve the robust tracking, a sliding surface s(t)

is defined as

s tð Þ ¼ e n�1ð Þ þ k1e
n�2ð Þ þ . . .þ kn

Z t

0

e sð Þds ð21Þ

Taking the derivative of (21)

_s tð Þ ¼ e nð Þ þ KTe ð22Þ

where K ¼ kn; . . .; k2; k1½ �T2 <n is a positive gain vector,

and e tð Þ, e tð Þ; _e tð Þ; . . .; e n�1ð Þ tð Þ

 �T2 <n is the system

tracking error vector.

From (22), if the suitable value for K is selected to

correspond to a Hurwitz polynomial, then

limk!1 e kð Þ ¼ 0. The Lyapunov function is chosen as

E tð Þ ¼ 1
2
e2 tð Þ. The goal of tuning the parameters is to find

the values ŵ; �̂w; m̂; r̂; �̂r such that E tð Þ is minimized and

achieves fast convergence. Using the gradient descent

method, the parameters of T2WFCMAC can be updated by

the following equations:

Fig. 3 The architecture of the

ST2WCMAC controller

Neural Computing and Applications (2020) 32:2217–2229 2221

123



ŵjk t þ 1ð Þ ¼ ŵjk tð Þ � ĝw
oE tð Þ
oŵjk

ð23Þ

�̂wjk t þ 1ð Þ ¼ �̂wjk tð Þ � ĝw
oE tð Þ
o �̂wjk

ð24Þ

m̂ijk k þ 1ð Þ ¼ m̂ijk kð Þ � ĝm
oE tð Þ
om̂ijk

ð25Þ

r̂ijk k þ 1ð Þ ¼ r̂ijk kð Þ � ĝr
oE tð Þ
or̂ijk

ð26Þ

�̂rijk k þ 1ð Þ ¼ �̂rijk kð Þ � ĝr
oE tð Þ
o �̂rijk

ð27Þ

where ĝw;ĝm; ĝr are the learning rates with positive

numbers.

Using the chain rule, the derivation terms in (23)–(27)

can be given as:

oE tð Þ
oŵjk

¼ oE tð Þ
oûT2WFCMAC

oûT2WFCMAC

oyl

oyl

oŵjk

¼ � 1

2
e tð Þ

Xnj
j¼1

Xnk
k¼1

/
jk

ð28Þ

oE tð Þ
o �̂wjk

¼ oE tð Þ
oûT2WFCMAC

oûT2WFCMAC

oyr

oyr

o �̂wjk

¼ � 1

2
e tð Þ

Xnj
j¼1

Xnk
k¼1

/jk ð29Þ

oE tð Þ
om̂ijk

¼ oE tð Þ
obuT2WFCMAC

oŷl
o/

jk

o/
jk

of
ijk

of
ijk

om̂ijk

þ oŷr

o/jk

o/jk

of ijk

of ijk

om̂ijk

 !

¼ � 1

2
e tð Þ

Xnj
j¼1

Xnk
k¼1

/
jk
wjk

1� F2
ijk

� 	
Ii � m̂ijk

þ
Xnj
j¼1

Xnk
k¼1

/jkwjk

1� F
2

ijk

� 	
Ii � m̂ijk

0
@

1
A

ð30Þ

oE tð Þ
or̂ijk

¼ oE tð Þ
oûT2WFCMAC

oŷl
o/

jk

o/
jk

of
ijk

of
ijk

or̂ijk

¼ � 1

2
e tð Þ

Xnj
j¼1

Xnk
k¼1

/
jk
wjk

 !
1� F2

ijk

� 	
r̂ijk

ð31Þ

oE tð Þ
o �̂rijk

¼ oE tð Þ
oûT2WFCMAC

oŷr

o/jk

o/jk

of ijk

of ijk

o �̂rijk

¼ � 1

2
e tð Þ

Xnj
j¼1

Xnk
k¼1

/jkwjk

 !
1� F

2

ijk

� 	
�̂rijk

ð32Þ

3.3 Robust controller design

The approximation error eðt) is assumed to be bounded by

an uncertainty bound E and 0� e tð Þ�E, where E is a

positive constant. However, E cannot be known precisely.

Hence, an estimated value Ê tð Þ is used to estimate the

unknown bound E. The estimation error of the uncertainty

bound can be obtained as

~E tð Þ ¼ E � Ê tð Þ ð33Þ

The robust controller uR tð Þ, which is used to handle the

approximation errors, is chosen as

uR tð Þ ¼ Ê tð Þsgn s tð Þð Þ ð34Þ

where Ê tð Þ can be updated using the adaptive law as

_̂E tð Þ ¼ gD s tð Þj j ð35Þ

where gD is the learning rate for updating the estimated

value Ê tð Þ.
After using some straightforward manipulation, the

system error can be obtained

_s ¼ e nð Þ þ KTe ¼ e tð Þ � uR tð Þ ð36Þ

The Lyapunov function is defined as

V2 s tð Þ; ~E tð Þ
� �

¼ 1

2
s2 tð Þ þ

~E2 tð Þ
2gD

ð37Þ

Taking the derivative of (37) and using (35) and (36)

yield

_V2 s tð Þ; ~E tð Þ
� �

¼ s tð Þ _s tð Þ þ
~E tð Þ _~E tð Þ

gD

¼ s tð Þ e tð Þ � uR tð Þð Þ þ
~E tð Þ _~E tð Þ

gD

¼ s tð Þe tð Þ � Ê tð Þ s tð Þj j þ
~E tð Þ _~E tð Þ

gD

ð38Þ

Since E is a positive constant, so from (33)

_~E tð Þ ¼ � _̂E tð Þisobtained. Then, (38) can be rewritten as

_V2 s tð Þ; ~E tð Þ
� �

¼ s tð Þe tð Þ � Ê tð Þ s tð Þj j � E � Ê tð Þ
� �

s tð Þj j
¼ s tð Þe tð Þ � E s tð Þj j � s tð Þj j e tð Þj j � E s tð Þj j
¼ � s tð Þj j E � e tð Þj jð Þ� 0

ð39Þ

Since _V2 s tð Þ; ~E tð Þ
� �

is negative semidefinite, that is,

V2 s tð Þ; ~E tð Þ
� �

�V s 0ð Þ; ~E 0ð Þ
� �

, it implies s(t) and ~E tð Þ are

bounded. Let the function X � E � e tð Þð Þs�
E � e tð Þj jð Þ sj j � � _V2 s tð Þ; ~E tð Þ

� �
, and integrate X tð Þ with

respect to time, then it is obtained that

Z t

0

X sð Þds�V2 s 0ð Þ; ~E 0ð Þ
� �

� V2 s tð Þ; ~E tð Þ
� �

ð40Þ

Since V2 s 0ð Þ; ~E 0ð Þ
� �

is bounded, and V2 s tð Þ; ~E tð Þ
� �

is

non-increasing and bounded, so it is easy to obtain
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lim
t!1

R t
0
X sð Þds\1: Also, _X sð Þ is bounded, so by Bar-

balat’s lemma [44], limt!1 X ¼ 0. That is, s tð Þ ! 0 as

t ! 1. As a result, the stability of the T2WFCMAC

control system can be guaranteed.

4 Experimental results

The experiment equipment of DC–DC converter system is

shown in Fig. 4, which includes a DC–DC converter cir-

cuit, a DC source, a PCI control and DAQ card, a load with

variable resistance and an oscilloscope. In our experiments,

the controller of the DC–DC converter is used to generate

the duty cycle of PWM to control the output voltage to

follow the desired voltage. (The reference output voltages

are set as 20 V for DC–DC buck and 40 V for DC–DC

boost converter.) In this design, the input value of the

T2WCMAC comes from the sliding hyperplane and its

derivative, s tð Þ and _s tð Þ.
The experiments are conducted in both modes of DC–

DC buck and DC–DC boost converter, and each mode

considers two cases as follows: The first case is the nom-

inal case (load resistance is set as R = 100 X), and the

second case is the variation in the load (changed from

100 X to 50 X at 300 ms and from 50 X to 100 X at

600 ms). The switching frequency of the converter is

20 kHz, and the sampling frequency of the controller is

2 kHz. The circuit parameters are chosen as R ¼ 100X,
L ¼ 500 lH, C ¼ 2200 F. The PWM uses IC SG1825 to

generate the duty cycle, and the generated duty cycle is

directly proportional to the analog output of the controller.

For comparison, a PID controller, a fuzzy controller and

an interval type-2 fuzzy neural network (IT2FNN) [45] and

the proposed T2WCMAC controller are performed for

these converters. All the experimental results for the two

studies (buck and boost converter) with two cases (nominal

and load resistance variation) are shown in Figs. 5, 6, 7, 8,

9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 in which the

output voltage is shown in part (a) and the control effort is

Fig. 5 Experimental results of PID controller for buck converter in

nominal case. a The output voltage. b The control effort

Fig. 4 Experiment equipment

Fig. 6 Experimental results of PID controller for boost converter in

nominal case. a The output voltage. b The control effort
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shown in part (b). The experimental results for the PID

controller are shown in Figs. 5 and 13 (for buck), Figs. 6

and 14 (for boost). The results show that, for PID

controller, the converters achieve fast response, but still

have overshoot. The experimental results for the fuzzy

controller are shown in Figs. 7 and 15 (for buck), Figs. 8

Fig. 7 Experimental results of fuzzy controller for buck converter in

nominal case. a The output voltage. b The control effort

Fig. 8 Experimental results of fuzzy controller for boost converter in

nominal case. a The output voltage. b The control effort

Fig. 9 Experimental results of IT2FNN controller for buck converter

in nominal case. a The output voltage. b The control effort

Fig. 10 Experimental results of IT2FNN for boost converter in

nominal case. a The output voltage. b The control effort
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and 16 (for boost). These results show that the fuzzy

controller can achieve satisfactory regulation performance,

and the setting time is smaller than PID controller. The

experimental results for the IT2FNN control system are

shown in Figs. 9 and 17 (for buck), Figs. 10 and 18 (for

boost). These results indicate that the IT2FNN has better

Fig. 11 Experimental results of T2WCMAC controller for buck

converter in nominal case. a The output voltage. b The control effort

Fig. 12 Experimental results of T2WCMAC for boost converter in

nominal case. a The output voltage. b The control effort

Fig. 13 Experimental results of PID controller for buck converter

with the variation in the load. a The output voltage. b The control

effort

Fig. 14 Experimental results of PID controller for boost converter

with the variation in the load. a The output voltage. b The control

effort
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regulation performance than PID and fuzzy controllers;

however, it still can be further improved. The experimental

results for the proposed T2WFCMAC control system are

shown in Figs. 11 and 19 (for buck), Figs. 12 and 20 (for

boost). From these results, it can be observed that the

performance of T2WFCMAC is better than the PID con-

troller, the fuzzy controller, and the IT2FNN controller,

because this control does not have any overshoot, and both

Fig. 15 Experimental results of fuzzy controller for buck converter

with the variation in the load. a The output voltage. b The control

effort

Fig. 16 Experimental results of fuzzy controller for boost converter

with the variation in the load. a The output voltage. b The control

effort

Fig. 17 Experimental results of IT2FNN for buck converter with the

variation in the load. a The output voltage. b The control effort

Fig. 18 Experimental results of IT2FNN for boost converter with the

variation in the load. a The output voltage. b The control effort
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the rise time and settling time are short. Especially, its

response is quick and smooth, so it can quickly respond to

the change in load resistance. In the T2WFCMAC control

system, the adaptive laws can adjust parameters online, so

it can quickly reduce the overshoot and tracking error well.

Moreover, the robust controller and sliding mode technique

have shown its advantage in covering the uncertainties

which come from the load change. Thus, the T2WFCMAC

control is highly suitable for the application of DC–DC

converters. The comparison results in RMSE for the pro-

posed controller, and the other controllers are shown in

Table 1, which also shows the control effectiveness of the

proposed T2WCMAC control system.

5 Conclusion

This paper has proposed a ST2WCMAC control system

for the DC–DC converters, and this control system

combines the advantages of the sliding mode, the wavelet

function, the type-2 fuzzy system and the CMAC. The

proposed control system can be also applied to other

nonlinear control systems. The main contributions of this

study are: the development of the ST2WCMAC with the

adaptive laws for online adjusting parameters; success-

fully apply the wavelet decomposition and sliding surface

to improve the system performance; the stability of the

control system is guaranteed and is proved by the Lya-

punov function; the experimental results are illustrated to

show that the proposed control system can effectively

achieve the robust control for DC–DC converters and its

performance is better than the other controllers. The

applications of this DC–DC converter control system can

be used in the personal electronics, the automotive devi-

ces, the industrial devices and the communication devices,

etc. The limitations of this study are given as follows. The

choice of the learning rates of adaptive laws and the

feedback gains for sliding surface will significantly affect

the control performance, and we use the trial-and-error

method to choose these parameters. In the future study,

we need to derive the algorithm for automatically adjust

these parameters. However, this study only considers the

single-input single-output systems, and we should extend

it to multi-input multi-output systems.

Fig. 19 Experimental results of T2WCMAC for buck converter with

the variation in the load. a The output voltage. b The control effort

Fig. 20 Experimental results of T2WCMAC for boost converter with

the variation in the load. a The output voltage. b The control effort

Table 1 Comparison results in RMSE for different control methods

RMSE Buck Boost

Nominal

case

Variation in

the load

Nominal

case

Variation in

the load

PID control 0.176 0.308 0.187 0.245

Fuzzy

control

0.153 0.265 0.154 0.219

IT2FNN 0.122 0.235 0.136 0.194

T2WCMAC 0.094 0.217 0.122 0.168
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