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Abstract
When convolutional neural networks are used to tackle learning problems based on music or other time series, raw one-

dimensional data are commonly preprocessed to obtain spectrogram or mel-spectrogram coefficients, which are then used

as input to the actual neural network. In this contribution, we investigate, both theoretically and experimentally, the

influence of this pre-processing step on the network’s performance and pose the question whether replacing it by applying

adaptive or learned filters directly to the raw data can improve learning success. The theoretical results show that

approximately reproducing mel-spectrogram coefficients by applying adaptive filters and subsequent time-averaging on the

squared amplitudes is in principle possible. We also conducted extensive experimental work on the task of singing voice

detection in music. The results of these experiments show that for classification based on convolutional neural networks the

features obtained from adaptive filter banks followed by time-averaging the squared modulus of the filters’ output perform

better than the canonical Fourier transform-based mel-spectrogram coefficients. Alternative adaptive approaches with

center frequencies or time-averaging lengths learned from training data perform equally well.

Keywords Machine learning � Convolutional neural networks � Adaptive filters � Gabor multipliers � Mel-spectrogram �
End-to-end learning

1 Introduction

Convolutional neural networks (CNNs), first introduced in

learning tasks for image data [26], have revolutionized

state-of-the-art results in many machine learning (ML)

problems, also in the domain of audio and, specifically,

music. CNNs have been applied to many tasks of the music

information research (MIR) realm, like genre and artist

classification [11, 27], onset detection [33, 34], structural

segmentation [19, 36], chord recognition [22, 25], singing

voice detection [23, 28, 29, 35], emotion detection [30],

modeling polyphonic music [7, 10] and automatic tagging

[8, 9, 12]. In convolutional neural networks, when applied

to image data, all filter coefficients are usually learned. For

applications to time series, such as audio data, on the other

hand, it is common practice to first apply a fixed filter bank

to the raw, one-dimensional data in order to generate a

feature representation. In traditional audio signal process-

ing methods, used, e.g., in music information retrieval

(MIR) or speech processing, FFT-based features such as

mel-spectrograms are typically used as such inputs. These

first level features are two-dimensional arrays, derived

from some kind of windowed Fourier transform with sub-

sequent mel-scale averaging.

Recently, the natural question arose, what kind of filters

a network would learn if it was given the raw audio input.

To date, encouraging results are scarce and so far, a true

end-to-end approach for music signals, i.e., acting on raw

audio without any pre-processing, has not been able to
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outperform models based on linear-frequency spectrogram

or mel-spectrogram input [12]. It has been argued that

these two ubiquitous representations automatically capture

invariances which are of importance for all audio signals,

in particular, a kind of translation invariance in time

(guaranteed by introducing the nonlinear magnitude oper-

ation) and a certain stability, introduced by the mel-aver-

aging, to frequency shifts and time-warping (cp. [2]).

In this contribution, we give a formal description of the

action of mel-scale averaging on spectrogram coefficients.

We show that the resulting mel-spectrogram coefficients

can indeed be mimicked by applying frequency-adaptive

filters, however, followed by time-averaging of each filter’s

squared amplitude output. In order to obtain a close

approximation to mel-spectrogram coefficients, the fre-

quency-adaptive filter bank’s squared output signals must

each undergo a time-averaging operation and the time-

averaging window is different for each channel. Further-

more, only dense sampling of the short-time Fourier

transform (STFT) leads to almost perfect approximation.

Note that the similarity of mel-spectrogram coefficients to

the result of time-averaging wavelet coefficients has

already been observed in [2], without giving a precise

formulation of the connection.1

We derive the necessary conditions on the filters, a

different one for each bin in the mel-scale, by using the

theory of Gabor multipliers and their spreading function,

cf. [15]. Considering the description of an operator by

means of its spreading function gives interesting insight in

the nature of the correlations invoked by the application of

the corresponding operator on the signal coefficients. In the

case of mel-spectrogram coefficients, it turns out that

applying wide triangular windows in the high frequency

regions actually corresponds to the application of an

operator with little spreading in time. This seems to be the

intuitively correct choice for audio signals such as music

and speech. While a similar effect can be realized by

applying wavelet or constant-Q type filters, the subsequent

time-averaging alleviates the significant frequency-

spreading effect introduced by rather narrow filtering

windows. The observation gained from investigating the

classical mel-spectrogram coefficients is, thus, that time-

and frequency-averaging spectrogram coefficients provide

invariances which are useful in most audio classification

tasks, cf. [3]. On the other hand, relaxing the strict aver-

aging performed by computing mel-spectrogram coeffi-

cients may intuitively open the opportunity to keep

information on details which may be necessary in certain

learning tasks.

In our numerical experiments, we thus strive to under-

stand how time- and frequency-averaging influences CNN

prediction performance on realistic data sets. The obser-

vations drawn from the experiments on learning filters can

be summarized as follows:

– Using mel-spectrogram coefficients derived from con-

volutions with a small sub-sampling factor leads to

improved results compared to the canonical FFT-based

mel-spectrograms, due to more beneficial influence of

the time–frequency sub-sampling parameters.

– Allowing the net to learn center frequencies or time-

averaging lengths from the training data leads to

comparable improved prediction results.

– Tricks are required to make the CNNs adapt the feature

processing stage at all. Otherwise, the classification

part of the network takes over the adaptation required

to minimize the target loss.

This paper is organized as follows: In the next section, we

introduce necessary concepts from time–frequency analy-

sis. In Sect. 3, we give a formal description of the network

architecture, since we have not found any concise exposi-

tion in the literature. Section 4 then gives the formal result

linking mel-spectrogram coefficients with adaptive filter

banks. In Sect. 5, we report on the experiments with a real-

world data set for the problem of singing voice detection.

Finally, we conclude with a discussion and perspectives in

Sect. 6.

2 Time–frequency concepts

The Fourier transformation of a function f 2 H; for some

Hilbert space H; will be denoted by Fðf Þ: We use the

normalization Fðf ÞðxÞ ¼
R
R
f ðtÞe�2pixtdt and denote its

inverse by F�1ðf ÞðtÞ ¼
R
R
f ðxÞe2pixtdx: For x;x 2 R; the

translation or time shift operator of a function f is defined

as

Txf ðtÞ ¼ f ðt � xÞ:

and the modulation or frequency shift operator of a func-

tion f is defined as

Mxf ðtÞ ¼ e2pitxf ðtÞ:

The operators of the form TxMx or MxTx are called time–

frequency shifts. To obtain local information about the

frequency spectrum, we define the STFT of a function

f with respect to a window g 6¼ 0; where f ; g 2 H; as

1 This observation seems to have served as one motivation to

introduce the so-called scattering transform, which consists of

repeated composition of convolution, a nonlinearity in the form of

taking the absolute value and time-averaging. In that framework, mel-

spectrogram coefficients are interpreted as first-order scattering

coefficients.
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Vgf ðb; kÞ ¼
Z

t

f ðtÞgðt � bÞe�2piktdt ¼ Fðf � TbgÞðkÞ:

ð1Þ

The STFT can be written as an inner product combining the

above operators

Vgf ðb; kÞ ¼ hf ;MkTbgi:

Taking the absolute value squared, we obtain the spectro-

gram as S0ðb; kÞ ¼ jVgf ðb; kÞj2 and Vgg is called ambiguity

function of g, reflecting the time–frequency concentration

of g. In practice, sub-sampled and finite versions of the

STFT (1) are used, cf. [13]. Sub-sampling obviously cor-

responds to choosing certain parts of the available infor-

mation, and this choice can have influence in particular for

subsequent processing steps, as we will see in Sect. 4.

3 The structure of CNNs

The basic, modular structure of CNNs has often been

described, see, e.g., [18]. Here, we will give a formal

statement of the specific architecture used in the experi-

ments in this paper. This architecture has been successfully

applied to several MIR tasks and seems to have a proto-

typical character for audio applications, cf. [19].

The most basic building block in a general neural net-

work may be written as

xnþ1 ¼ rðAnxn þ bnÞ

where xn is the data vector, or array, in the n-th layer, An

represents a linear operator, bn is a vector of biases in the

n-th layer and the nonlinearity r is applied component-

wise. Note that in each layer the array xn may have a

different dimension. Now, in the case of convolutional

layers of CNNs, the matrix A has a particular structure for

the convolutional layers, namely, it is a block-Toeplitz

matrix, or, depending on the implementation of the filters, a

concatenation of circular matrices, each representing one

convolution kernel. There may be an arbitrarily high

number of convolutional layers, followed by a certain

number of so-called dense layers, for which An is again an

arbitrary linear operator. In this paper, the chosen archi-

tecture comprises up to four convolutional and two or three

dense layers.

Remark 1 It has been observed in [31, 37–39] that in the

context of scattering networks, most of the input signal’s

energy is contained in the output of the first two convo-

lutional layers. While the context and the filters here are

different, this observation might be interesting also as a

background for the usual choice of architecture of CNNs

for audio processing.

3.1 The CNN with spectrogram input

The standard input in learning methods for audio signal is

based on a sub-sampled spectrogram, either in its raw form,

or after some pre-processing such as the computation of

mel-spectrogram, defined in (4), which we will consider in

detail in Sect. 4. In any case, the input to the CNN is an

array of size M � N.

Remark 2 In most MIR tasks, the inputs are derived from

rather short snippets, that is, about 2–4 s of sound. Con-

sidering a sampling rate of 22050 Hz, a window size of

2048 samples and a time shift parameter of 512 samples,

i.e., 23 ms, the resulting spectrogram (containing positive

frequencies only) is of size M � N ¼ 1024� 130, where

the latter is the time dimension. Hence, the frequency

dimension is, in some sense, over-sampled. In particular,

individual bins in the higher frequency regions contain less

energy and thus information than in lower regions. Com-

puting the mel-spectrogram is a convenient and straight-

forward method of reducing the information to typically 80

frequency channels by averaging over increasingly many

frequency bins. The number of 80 channels has been

determined with preliminary experiments as a breakpoint

for optimal CNN performance, obviously because of a

sufficient resolution along the frequency dimension. The

same setting has already been used in the reference

implementation [35] for the experiments of Sect. 5.

We now define the following building blocks of a typ-

ical CNN:

– Convolution:

S � wðm; nÞ :¼
P

m0
P

n0 Sðm0; n0Þwðm� m0; n� n0Þ
– Pooling: For 1� p�1, we define A� B pooling as the

operator mapping an M � N array S0 to a M=A� N=B

array S1 by

S1ðm; nÞ ¼ PA;B
p ðm; nÞ ¼ kvm;nS0

kp

where v
m;n
S0

, for m ¼ 1; . . .;M=A and n ¼ 1; . . .;N=B, is

the vector consisting of the array entries S0ððm� 1Þ �
Aþ 1; . . .; m � A; ðn� 1Þ � Bþ 1; . . .; n � BÞ. In this

work, we use max-pooling, which has been the most

successful choice, corresponding to p ¼ 1 in the

above formula.

– A nonlinearity r : R 7!R, whose action is always to be

understood component-wise. In all but the last layer we

use leaky rectified linear units, which allow for a small

but nonzero gradient when the unit is not active:

rðxÞ ¼
x if x[ 0

cx otherwise

�

for some c � 1. The output layer’s nonlinearity ro is a
sigmoid function.

Neural Computing and Applications (2020) 32:941–954 943

123



We now denote the input array to a convolutional layer by

Sn 2 RMn�Nn�Kn , where Kn is the number of feature maps of

size Mn � Nn in layer n, i.e., SnðknÞ 2 RMn�Nn for

kn ¼ 1; . . .;Kn. Using the above definitions, we can now

write the output of (convolutional) layer nþ 1 with con-

volutional kernels wnþ1 2 RKnþ1�Kn�Mn�Nn as follows:

Snþ1ðknþ1Þ¼PAn;Bn
1 r

XKn

kn¼1

SnðknÞ � wnþ1ðknþ1; knÞ
 !

þ bknþ1 � 1

" #

ð2Þ

where 1 is an all-ones array of size Mn � Nn, b
knþ1 2 RKnþ1

and Snþ1ðknþ1Þ 2 RMn=An�Nn=Bn for knþ1 ¼ 1; . . .;Knþ1.

To formally describe the final, dense layers, we let Dc

denote the number of convolutional layers and SDc
2

RMDc�NDc�KDc the output of the last convolutional layer.

Then, the overall action of a CNN with two dense layers

and a single output unit emitting xout, can be written as

xout ¼ roðA2 � ½rðA1 � SDc
þ bDcþ1Þ	 þ bDcþ2Þ: ð3Þ

Here, A1 and A2 are weight-matrices of size Nd �
MDc

NDc
KDc

and 1� Nd, respectively, where Nd is the

number of hidden units in the first dense layer, bDcþ1 2 RNd

and bDcþ2 2 R.

3.2 Modifying the input array

As mentioned in the previous section, the spectrogram of

audio is often preprocessed in order to reduce the dimen-

sionality, on the one hand, and in order to obtain a spectral

representation that better fits both human perception and

properties of speech and music on the other hand. Addi-

tionally, the authors in [2] pointed out that using mel-

spectrogram instead of the spectrogram guarantees

improved stability with respect to frequency shifts or, more

generally, deformations of the original audio signals, than

the usage of spectrograms. However, given appropriate

choice of network architecture, comparable results can

usually be achieved using either the spectrogram or the

mel-spectrogram, i.e., the invariance introduced by the

mel-averaging can also be learned. In other respects,

omitting the frequency-averaging provided by the mel-

spectrogram leads to an increase in the number of weights

to be learned. On the other hand, these observations raise

the question, whether using filters learned directly in the

time-domain, would improve the net’s ability to achieve

the amount of invariance most appropriate for a particular

ML task and thus increase stability. The corresponding

approach then implies learning time-domain filters already

in a layer prior to the first 2D-convolution. To put this

remark into perspective, we note that the spectrogram may

easily be interpreted as the combined (and possibly sub-

sampled) output of several convolutions, since, setting

h�ðnÞ ¼ hð�nÞ, we can write

S0ðm; nÞ ¼ j
X

n0
f ðn0Þhðn0 � nÞe�2pimn0 j2 ¼ jf � h�mðnÞj

2

3.3 Questions

In the two following sections, we thus raise and answer two

questions:

1. Is it possible to obtain coefficients which are approx-

imately equivalent to the well-established mel-spec-

trogram coefficients simply by using the ‘correct’

filters directly on the audio signal?

2. Can adaptivity in frequency- and time-averaging

improve prediction accuracy? In particular, for a given

set of frequency-adaptive filters precisely mimicking

the mel-scale, can a time-averaging layer with learned

averaging width improve learning performance?

4 The mel-spectrogram and basic filters

In this section, we take a detailed look at the mel-spec-

trogram. This representation is derived from the classical

spectrogram by weighted averaging of the absolute values

squared of the STFT and can undoubtedly be referred to as

the most important feature set used in speech and audio

processing, together with MFCCs which are directly

derived from it. The number of mel-filters used varies

between 80 filters between 80 and 16 kHz [19] and 128

[12] or more. In order to better understand the relation

between the result of mel-averaging and FFT-based anal-

ysis with flexible windows, we observe the following:

denote the input signal by f 2 CN ; the window function for

generating the spectrogram by g 2 CN and the mel-filters,

typically given by simple triangular functions, by Km 2 CN

for m 2 I ¼ f1; . . .;Kg, where K is the chosen number of

filters. We can then write the mel-spectrogram as

MSgðf Þðb; mÞ ¼
X

k

jF ðf � TbgÞðkÞj2 � KmðkÞ: ð4Þ

Andén and Mallat postulated in [2] that the mel-spectro-

gram can be approximated by time-averaging the absolute

values squared of a wavelet transform. Here, we make their

considerations precise by showing that we can get a close

approximation of the mel-spectrogram coefficients if we

use adaptive filters.

Remark 3 Note that the resulting transform may be

interpreted as a nonstationary Gabor transform, compare

[4, 5, 14, 21].

In practice one always uses a sub-sampled version of the

STFT, i.e., we consider time-sampling points in aZ and the
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Fourier transform in (4) is sampled on bZ. We then com-

pare two different settings which lead to a time–frequency

feature map which is then used as input to the deeper layers

of the CNN:

1. STFT-based: Compute spectrogram and take weighted

averages over certain regions in frequency; for the

classical mel scale, this leads to the mel-spectrogram

coefficients, but other choices of Km are possible.

Taking time- and frequency-sampling parameters a; b
into account, the resulting time–frequency feature map

is computed for b ¼ al0 as follows:

MSgðf Þðb; mÞ ¼
X

k

jFðf � TbgÞðbkÞj2 � KmðbkÞ: ð5Þ

2. Filter bank-based: compute filtered version of f with

respect to some, possibly adaptive, filter bank hm, m 2 I
and apply subsequent time-averaging using a time-

averaging function -m:

FBhmðf Þðb; mÞ ¼
X

l

jðf � hmÞðalÞj2 � -mðal� bÞ: ð6Þ

The following central theorem gives an estimate for the

difference between the two above approaches for each

entry in the feature maps.

Theorem 1 For all m 2 I , let g; hm;Km;-m be given. Let

MSgðf Þ and FBhmðf Þ be computed on a lattice aZ� bZ and

set

MmðxÞ ¼
X

l

Tl
b
F�1ðKmÞðxÞ and Mm

FðnÞ ¼
X

k

Tk
a
Fð-mÞðnÞ: ð7Þ

Then, the following estimate holds for all ðb; mÞ 2 aZ� I :

jMSgðf Þðb; mÞ � FBhmðf Þðb; mÞj � kVgg � Mm�
Vhmhm � Mm

Fk2 � kfk
2
2

ð8Þ

A technical proof of Theorem 1 is included in Appendix

A. The basic idea of the proof lies in expressing both

MSgðf Þ and FBhmðf Þ by means of a bilinear form generated

by different specific time–frequency multipliers. The

underlying operators can then be compared using their

respective spreading functions, [15, 16], an alternative

operator description. An operator’s spreading function

gives an intuition about the operator’s action in the space of
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Fig. 1 Ambiguity functions

Vgg, Vhmhm, and weighted

ambiguity functions

VVggg � F�1ðKmÞ, Vhmhm �
Fð-mÞðnÞ used for the

computation of adaptive

filtering, for m ¼ 50. It is clearly

visible that the surplus in

frequency spread introduced by

the narrower window hm is

removed by time-averaging. On

the other hand, frequency-

averaging reduces the time-

spread of the wider window g
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time-lag and frequency-lag. Time–frequency multipliers’

spreading functions enjoy a simple form, which is simply

the product of the analysis windows’ ambiguity function

with a two-dimensional Fourier transform of the multiplier

sequence. Figure 1 shows the ambiguity functions

Vggðx; nÞ, Vhmhmðx; nÞ which would correspond to the

operators without frequency- or time-averaging, respec-

tively, and the weighted ambiguity functions

Vggðx; nÞ � F�1ðKmÞðxÞ, corresponding to the ambiguity

function after mel-averaging in frequency by Km and

Vhmhmðx; nÞ � Fð-mÞðnÞ corresponding to the filter bank

approach after time-averaging by -m. It is obvious that

frequency-averaging reduces the time-lag of the operator

while time-averaging reduces the higher frequency-lag

introduced by the narrower windows in the adaptive filter

bank; overall very close behavior can be achieved with

Fig. 3 Time–frequency

representations for the problem

of singing voice detection. The

spectrograms shown are STFT

(upper left), STFT-based mel-

spectrogram (bottom left), filter

bank computed (top right), and

filter bank with time-averaging

(bottom right)
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Fig. 2 Upper plot: (original)

Hann window and adapted

windows; lower plot: error in

approximation of mel-

spectrogram coefficients by

adaptive filtering and

subsequent time-averaging on

the squared amplitudes
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both approaches, in particular with small a; b. For the fully
sampled case, i.e., a ¼ b ¼ 1, we obtain the following

expression:

kMSgðf Þ � FBhmðf Þk1 �kVhmhm � Fð-mÞ � Vgg�F�1ðKmÞ
k2 �kfk

2
2

ð9Þ

This leads to a statement about precise recovery of mel-

spectrogram coefficients by filter bank approximation.

Remark 4 A preliminary version of the following state-

ment has been announced without proof in [14].

Corollary 1 Let an analysis window g and mel-filters Km

be given, for m 2 I . If, for each m, the windows hm and time-

averaging functions -m are chosen such that

Vhmhmðx; nÞ � Fð-mÞðnÞ ¼ Vggðx; nÞ � F�1ðKmÞðxÞ; ð10Þ

then the mel-spectrogram coefficients can be obtained by

time-averaging the filtered signal’s absolute value squared,

i.e., for all ðb; mÞ 2 Z� I :

MSgðf Þðb; mÞ ¼ FBhmðf Þðb; mÞ: ð11Þ

Example 1 While it is in general tedious to explicitly

derive conditions for the optimal filters hm and the time-

averaging windows -m, we obtain a more accessible situ-

ation if we restrict the choice of windows to dilated

Gaussians gðtÞ ¼ urðtÞ ¼ ð2rÞ
1
4e�pt

2

r , for which

Vur
urðx; nÞ ¼ e�

p
2
x2

r e�
p
2
rn2e�pixn. Thus, fixing g ¼ ur for

some scaling factor r, letting the filters Km be given as

shifted and dilated versions of a basic shape (e.g., in the

case of mel-filters, asymmetric triangular functions), i.e.,

KmðnÞ ¼ TmDaðmÞKðnÞ, for m 2 I and assuming that each

filter hm is a dilated and modulated Gaussian window, i.e.,

hmðtÞ ¼ e2pimtuqðmÞðtÞ, condition (10) leads to the following

conditions in separate variables:

e
�p

2
x2ð 1

qðmÞ�
1
rÞ ¼ F�1ðDaðmÞKÞðxÞ and e�

p
2
n2ðr�qðmÞÞ ¼ Fð-mÞðnÞ:

From the example, it can be seen that even in the case of

Gaussian analysis windows a precise recovery of standard

mel-spectrogram coefficients is possible, if the involved

analysis windows and averaging windows are appropriately

scaled Gaussians. In the more realistic case of compactly

supported analysis windows such as Hann windows, tri-

angular frequency-averaging functions Km typically used

for computing the mel-spectrogram coefficients and coar-

ser sampling schemes, we have to resort to alternative

methods for obtaining the filter bank-based approximation.

Fig. 4 AOC measures for the problem of singing voice detection.

Models compared are results for multiple runs of fivefold cross-

validation on batch-normalized features, for the CNN architectures

‘small-two’ and ‘small-one.’ On the one hand, the features are mel-

spectrograms (STFT), or spectrograms with trained center frequencies

(STFT adaptive). On the other hand, we evaluated the approximative

filters derived in Sect. 4 (Filter bank approximation), filter banks and

fixed-width temporal averaging (Filter bank naive with a rectangular

window, and Filter bank fixed-width with a Hann window), and

adaptive variable-width Hann-window averaging (Filter bank vari-

able-width). The default convolution stride is 21, unless otherwise

noted. Shown are individual results (gray crosses) and their mean

values (black dots)
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4.1 Computation and examples of adaptive
filters

We now describe the strategy for computing adaptive fil-

ters leading to a filter bank-based approximation of mel-

like coefficients based on general windows. Very often,

these windows will be compactly supported and their STFT

will not factorize in two components in separate variables

x; n. Since g and Km are fixed, and Fð-mÞðnÞ only allows

for a multiplicative constant in each frequency bin, we can

only perfectly adapt hm in one frequency bin. We thus use

the following trick for computing hm for a given mel-filter

Km: we consider the right-hand side of (10) in n ¼ 0. This is

justified if FðgÞ, and thus jVggðx; nÞj � ðjĝj � jĝjÞðnÞ,
decays fast in the frequency variable n; this is typically the

case for the windows used in practice, such as Hann win-

dows, since we strive to obtain separation between the

frequency bins. Therefore, the component at x ¼ 0 will

have by far the strongest influence on the error made when

minimizing (9), and we will use it to obtain hm. We then

have, with �gðxÞ ¼ gð�xÞ, the following version of (10):

Vhmhmðx; 0Þ � Fð-mÞð0Þ ¼ Vggðx; 0Þ � F�1ðKmÞðxÞ
) ðhm � �hmÞðxÞ � Fð-mÞð0Þ ¼ ðg � �gÞðxÞ � F�1ðKmÞðxÞ:

Taking Fourier transform on both sides, we obtain

Fðhm � �hmÞ ¼ jFðhmÞðnÞj2 ¼Fððg � �gÞ � F�1ðKmÞÞðnÞ;

and compute hm as

hmðtÞ ¼F�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fððg � �gÞ � F�1ðKmÞÞ

q� �

ðtÞ

Similarly, by setting x ¼ 0 in the left-hand side of (10), we

compute

Fð-mÞðnÞ ¼ Vggð0; nÞ � F�1ðKmÞð0Þ=Vhmhmð0; nÞ

where we only consider values of Vhmhmð0; nÞ above a

threshold e.
We now give some examples of filters hm computed to

obtain mel-coefficients MSgðf Þ by time-averaging jðf �
hmÞðlÞj2 as in (11) following the procedure described above.

We consider Hann windows, which is the standard choice

in audio processing, also applied in the computation of

mel-spectrogram coefficients and their approximation in

Sect. 5. Starting from a Hann window g, we compute

adaptive filters hm for 80 bins of the mel-scale. Figure 1

shows the ambiguity functions Vgg, Vhmhm, and the

weighted ambiguity functions Vgg � F�1ðKmÞ,
Vhmhm � Fð-mÞðnÞ, for m ¼ 49, which corresponds to

2587.6 Hz.

In Fig. 2, the upper plot shows the original Hann win-

dow g, which had been used to compute the spectrogram

from which the mel-spectrogram coefficients are derived,

and three adapted windows. Note that the adapted windows

get shorter in time with increasing mel-number; this effect

serves to realize the mel-averaging by adaptivity in the

frequency domain. The lower plot shows the average error

per bin obtained from computing the mel-spectrogram

coefficients and their approximations for 200 (normally

distributed) random signals.

For an illustration of the time–frequency representations

applied to a real audio signal, cf. Fig. 3.

5 Experiments on singing voice detection

In Theorem 1, it is shown that coefficients with mel-

characteristics (and other related nonlinear scales) can be

closely approximated by applying appropriately chosen

filters directly to raw audio data and allowing for a sub-

sequent time-averaging step on the squared absolute out-

put. Now, we are interested in investigating if the

theoretical findings translate to typical real-world problems

that have already been successfully treated with CNNs.

Thereby, we are motivated by the fact that state-of-the-art

results for several MIR problems are based on mel-spec-

trogram coefficients which show certain desirable invari-

ance and stability properties. In particular, due to the

modulus, they are invariant to translation and, due to the

frequency-averaging, they exhibit stability to certain

deformations such as time-warping, cf. [2]. However, in

general, the required invariance and stability with respect

to deformations will depend on data characteristics and the

learning task, cf. [32]. In our experiments, we hence start

from the filter bank-based computation of approximative

mel-coefficients, cf. (6). In the sequel, the results obtained

from the filter bank-based coefficients can serve as a ref-

erence point and they should not be significantly worse

than the results achieved when using the standard mel-

coefficients as input. This reference is necessary, since

certain implementation details are different for the original

mel-coefficients and their filter bank approximation. This

concerns, in particular, pre-processing steps such as batch

normalization or padding. The adaptation of the time-av-

eraging starts from this implementation, so that we needed

to rule out adversarial effects stemming from sources other

than the adaptation process. For the adaptive scenarios, we

allow parts of the feature processing stage (time-averaging

lengths, center frequencies) to be learned by the network,

posing the question whether adaptivity in this step can

improve the network’s performance.

We need to note that, when trained on a specific prob-

lem, both the feature layers (including the adaptive time-

averaging step) and the classification part of a CNN will

concurrently adapt their parameters toward optimally
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predicting the given targets. We will discuss the implica-

tions of this behavior for our experiments in Sect. 5.4.

Our hypothesis is that a CNN with an architecture that is

adapted to a given learning task will learn filters—in this

case their adaptive components—which alleviate the

extraction of stabilities and invariance properties and are

thus beneficial in the given context.

5.1 Data

We investigate the effects of learning filters directly on raw

audio by revisiting the problem of singing voice detection

[35] we have studied before. In the referenced publication,

a CNN was tuned for maximum prediction accuracy both

in the absence or presence of various forms of data

augmentation.

The experiments were performed on a non-public

dataset of 188 30-s audio snippets from an online music

store (dataset ‘In-House A’), covering a very wide range of

genres and origins. For the evaluation, we used a fivefold

cross-validation with slightly unequal folds, for each iter-

ation 150 or 151 files for training, the remaining 37 or 38

for evaluation. The testing folds are non-overlapping and

add up to the total of 188 items. The audio was sub-sam-

pled to a sampling rate of 22.05 kHz and down-mixed to

mono. The mel-spectrograms were calculated using an

STFT with Hann windows, a frame length of 1024 and a

frame rate of 70 per second (equivalent to a hop size of 315

samples).

For this paper, instead of magnitude spectra, as in the

reference model, we use power spectra as in (4), also fol-

lowing the convention used in [2]. We apply a filter bank

with 80 triangular mel-scaled filters from 27.5 Hz to 8 kHz

and then logarithmize the squared magnitudes (after clip-

ping values below 10�7).

We have also left out any form of data augmentation.

For the context of this paper, where we are interested in

fundamental qualities of feature representation rather than

maximum prediction performance, data augmentation

would not be beneficial, but would rather negatively impact

training times.

5.2 CNN training procedure and architecture

The training procedure used in our experiments is slightly

different than in the reference publication [35]. The net-

works are trained on mel-spectrogram excerpts of 115

spectrogram frames (
 1.6 s) paired with a binary label

denoting the presence or absence of human voice in the

central frame. Training is performed using stochastic gra-

dient descent on cross-entropy error based on mini-batches

of 64 randomly chosen examples. Updates to the network

weights are computed using the ADAM update rule [24]

with an initial learning rate of 0.001 and an adaptive

scheme reducing the learning rate twice by a factor of 10

whenever the training error does not improve over three

consecutive episodes of 1000 updates. Evaluation is per-

formed running a complete fivefold cross-validation run to

obtain predictions for the whole set of training data, with

this procedure repeated multiple times with different net-

work initialization and data ordering.

As described in Sect. 3.1, the applied CNN architecture

employs three types of feed-forward neural network layers:

convolutional feature processing layers convolving a stack

of 2D inputs with a set of learned 2D kernels, pooling

layers sub-sampling a stack of 2D inputs by taking the

maximum over small groups of neighboring pixels, and

dense classification layers flattening the input to a vector

and applying a dot product with a learned weight matrix

Aj.

The architecture used in [35] has a total number of 1.41

million weights, with the dense connections of the classi-

fication layers taking up the major share (1.28 million, or

91%). It can be expected that the actual output of the

convolutional feature stage is of subordinate importance

when the classification stage with its high explanatory

power dominates the network.

If data augmentation is not considered, the network

size—especially the classification part—can be drastically

reduced while largely preserving its performance. This size

reduction is possible, since, as a general rule, the necessary

number of parameters determining the network is corre-

spondent to the complexity of the training data set. As we

are interested in the impact of the convolutional feature

stage’s properties, we reduce the architecture for our

experiments as follows: We use four convolutional layers,

two 3� 3 convolutions of 32 and 16 kernels, respectively,

followed by 3� 3 non-overlapping max-pooling and two

more 3� 3 convolutions of 32 and 16 kernels, respectively,

and another 3� 3 pooling stage.

With the conventions of (2), with a slight abuse of

notation by noting the number of nonzero elements in the

convolutional kernels instead of the underlying dimension

of convolution, the applied setting corresponds to

– K0 ¼ 1, K1 ¼ K3 ¼ 32, K2 ¼ K4 ¼ 16;

– w1 2 R32�1�3�3, w2 2 R16�32�3�3;

– A1 ¼ B1 ¼ 1, A2 ¼ B2 ¼ 3

– w3 2 R32�16�3�3�16, w4 2 R16�32�3�3;

– A3 ¼ B3 ¼ 1, A4 ¼ B4 ¼ 3

For the classification part, we experimented with two

variants: one with two dense layers of 64 and 16 units

(‘small-two’), and the other one with just one dense layer

of 32 units (‘small-one’). In both cases, the final dense
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layer is a single sigmoidal output unit. For the first variant,

the total number of weights is 94,337, with the classifica-

tion stage taking up 79,969 units, or 85%. The second

variant features a considerably smaller classification net-

work: the total number of weights is 53,857, with the

classification stage taking up 39,489 units, or 73%. The

different network sizes, especially the ratio of feature to

classification stage, allow us to analyze the influence of the

different parts. Specifically, we expect the performance of

the ‘small-one’ architecture to be more directly connected

to the quality of the time–frequency representation.

5.3 Experimental setup

In the following, we will compare the behavior of the

CNNs applied to the STFT-based mel-spectrogram features

to features computed using filter banks as described in

Sect. 4. Both are computed in end-to-end fashion ad hoc

from the audio signal. The maximum kernel sizes of the

filter banks are set to 1024, identical to the frame length of

the previously used STFT. The training examples are

snippets of the audio signal with a length of 115� 315þ
1024� 1 ¼ 37;248 samples each with a hop size of 315

samples.

To judge the influence of adaptivity, four different

approaches have been compared:

1. ‘Filter bank, approximation’: Filter bank and time

averaging as derived in Sect. 4.

2. ‘Filter bank, naive’: Filter bank with Hann envelopes.

The kernel size equals the time support for the lowest

frequency band (50 Hz) and reduces, according to the

band-width requirements of the mel frequency scale,

down to 94 samples for the highest band at 7740 Hz.

After the filter bank, fixed-size time-averaging by

pooling for improved computational efficiency.

3. ‘Filter bank, fixed-width’: Filter bank as in 2, but with

fixed-size time-averaging using a convolution with a

Hann window.

4. ‘Filter bank, variable-width’: Adaptive time-averaging

after the filter bank, with individual adaptation per

frequency bin, learned from the training data.

For reasons of computational cost, it is not feasible to

perform a full sample-by-sample convolution for the filter

bank. For the bulk of our filter bank experiments, we have

chosen a convolution stride for the filters of 21 samples,

that is, the resulting spectrum is down-sampled along the

time axis by a factor of 21. The subsequent non-overlap-

ping averaging is computed on 15 frames each, in order to

stay comparable with the STFT hop size of 315 ¼ 21� 15

samples. Note that the stride is a factor of about 4.5 lower

than the shortest kernel support (21 vs. 94). For

comparison, we have also experimented with smaller

convolution strides (3 and 1) to assess their impact on the

results.

For the ‘naive’ fixed-size time-averaging variant stan-

dard average-pooling is used, implemented as a 15� 1 2D-

pooling layer acting on the power spectrum. In this case,

the temporal averaging length is uniform over the fre-

quency axis which is a crude approximation of the math-

ematical findings. The ‘fixed-width’ and ‘variable-width’

cases are implemented using Hann windows, the latter with

adaptive width, individual for each frequency bin. The

maximum time support of this Hann window is 8 times the

STFT hop size, equivalent to 2520 samples. The choice of

Hann in contrast to a Boxcar window (as in the ‘naive’

case) is motivated by its smoothness which aids adaptivity

for the CNN training process.

Figure 3 illustrates the time–frequency representations

used in this paper. The STFT case is shown on the left-hand

side with the full Fourier spectrum (512 bins) on top and its

mel-spectrogram (80 bins) at the bottom. On the right-hand

side, the top shows a filter bank-computed mel-scaled

spectrogram using the filters derived in Sect. 4, and the

time-averaged counterpart at the bottom. Note that the two

bottom spectrograms are equivalent.

5.4 Experimental results

Figure 4 shows the results of our CNN experiments for the

problem of singing voice detection. For our evaluations, we

have switched from the simple error measure with the

‘optimal’ (in the sense of maximum accuracy) threshold

per experiment to the more informative ‘area over the ROC

curve’ measure (AOC), fusing classification errors for all

possible thresholds into one measure. A lower measure

indicates a better result.

The reference implementation in [35] uses pre-com-

puted spectrograms, with a normalization globally on the

training set and eventual padding performed also on the

spectrogram. End-to-end learning as performed in our

experiments demands on-line normalization (using a batch

normalization layer) and padding directly on the audio time

signal. We could verify that this yields a performance

equivalent with the reference experiments.

We can also confirm that the performance of our ‘small-

two’ network with two classification layers is comparable

to the large baseline architecture. For AOC in the STFT

case, the smaller networks score 6.66% (‘small-two’) and

7.05% (‘small-one’), respectively, compared to 6.74% of

the original architecture (the latter not shown in Fig. 4).

The difference between the reference and the ‘small-two’

architecture is not significant (t test, p ¼ 5%), while the

difference between ‘small-two’ and ‘small-one’ is.
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In the course of experimentation, it has become apparent

that the time-averaging widths of the adaptive models

hardly train at all, especially for larger classification stages.

They rather stay close to the initial values, while the CNN

weights adapt instead. As a trick, we have boosted the

widths’ gradients for the back-propagation by a factor 3 to

force the width parameters to adapt at a higher rate. Higher

factors have proven unfeasible, causing the adaptation to

run out of bounds. Since the adaptation process is intricate,

the choice of a starting value for the variable averaging

length (time support of the Hann window) is important. We

have tried values of 0.1, 0.2, 0.3, 0.5 of the maximum filter

bank time support, with 0.2 (equivalent to 504 samples)

leading to the best results.

5.4.1 Interpretation of results

As a first observation, we see in Fig. 4 that for both

architectures the filter bank approximation scores better

than the canonical STFT case (significant for the ‘small-

one’ architecture at p\5%). This can be explained by

considering the different kinds of aliasing terms which

affect the computation of the feature maps: Eq. (8) shows

that the STFT-based approach leads to aliasing in time

while the filter bank-based approach leads to aliasing in

frequency. From the results, we can deduce that the impact

of the time aliases imposed by mel-averaging is stronger

than that of the frequency aliases stemming from the time-

averaging. Furthermore, reducing time-aliases in the first

approach would require using a longer FFT in the com-

putation of the underlying STFT, while reducing the

influence of the frequency aliases is accomplished by

decreasing the convolution stride: Using a default convo-

lution stride of 21 corresponds to a sub-sampling factor

a ¼ 21=1024 ¼ 0:02 in time as opposed to a ¼
315=1024 ¼ 0:3 in the STFT case. Heuristically, we obtain

a more stable estimate for the local frequency components,

cp. the recent work in [1]. We were able to confirm this

trend by using even smaller convolution strides (sub-sam-

pling factor 3 instead of the standard 21) which led to a

slightly, albeit insignificantly, better score. These obser-

vations indicate that the actual time–frequency resolution

of the signal representation used in the first processing step

can lead to advantages in the overall performance of the

CNN, which cannot necessarily be provided by subsequent

convolutional or dense layers. To our knowledge, this is the

first formal description of such an effect.

The second observation concerns the influence of

leveraging adaptivity in the learning process: In compar-

ison with the filter banks with filter coefficient approxi-

mations according to the theory, the ‘naive’ (significant at

p ¼ 5%) and the ‘fixed-width’ (not significant) variations

exhibit slightly worse performance for both architectures.

The ‘variable-width’ variation with adaptive time-averag-

ing scores significantly better than its ‘fixed-width’ coun-

terpart, and is statistically equivalent (p[ 60%) to the filter

bank ‘approximation’ case.

At the same level of performance lies the ‘STFT adap-

tive’ case which is a variation of the STFT case; here, we

applied frequency-averaging of the spectrogram coeffi-

cients, just as in the STFT-based computation of the mel-

coefficients, but allowed the CNN to learn—and thus

adapt—the center frequencies during training. The low and

high frequency bounds remained fixed, but the intermediate

frequencies were free to adapt with the condition of

monotonicity. It is noticeable that the adapted center fre-

quencies remain relatively close to the mel scale, with only

a few percent of relative deviation (Q1 [ � 8:6%, Q3\þ
3:7% over all bands for 10 runs with 5 folds each).

In general, the different adaptive models exhibit very

similar performance measures AOC\6:75% which is

significantly better than the canonical STFT-based case at

AOC ¼ 7:05% for the ‘small-one’ architecture. As expec-

ted, the effects of adaptivity on the evaluation results are

more pronounced for the smaller architecture, with less

explanatory power in the classification stages. We remark

that in previously performed experiments on a fully adap-

tive approach (adaptive filter lengthsþ adaptive time-av-

eraging) the learning process did not converge and the

achieved results were consistently worse than those based

on standard approaches. Therefore, we restricted the

relaxation of fixed parameters to either time-averaging

length or frequency centers in the computation of the now

variable, adaptive frequency filters and the experiments

showed that both approaches perform almost identically. In

these scenarios, only 80 trainable parameters are added to

the number of networks weights described in Sect. 5.2 and

the increase in computational cost as well as required

amount of training data is negligible.

Finally, note that the filter bank approximation with

stride 3 in the convolution performs identically to the setup

with the adaptive time-averaging (variable-width), which,

in turn, is slightly better than the stride 21 approximation

setting. The fact that the improvement is only small, can be

seen as an indication that the ideal mel-coefficients indeed

yield a representation that is sufficiently good for the

subsequent convolutional layers to get close to an optimal

result. Furthermore, as stated before, it seems that the

expressivity of the network architecture is so high that it

can actually obtain good results from different represen-

tations which are sufficiently reasonable. In this sense, the

observation that some adaptivity in the primary represen-

tation, on the one hand, and the geometry of the sampling

grid and consequential nature of occurring aliases do have

some influence on the final performance, is quite

remarkable.
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6 Discussion and perspectives

In Sect. 3.3, we posed two questions concerning the

application of alternative time–frequency representations

for learning problems in music information retrieval.

First, it has been analytically shown under which con-

ditions mel-spectrogram coefficients can be reproduced by

applying frequency-adaptive filters followed by time-av-

eraging the squared amplitudes. In practice, this procedure

will always lead to approximate values due to their com-

putation from sub-sampled values.

Answering the second question, we have found that these

designed spectrogram representations yield significantly

increased performance on the task of CNN-based singing

voice detection. The improvement in performance can be

ascribed to a sub-sampling scheme implicit in the usage of the

designed adaptive filters, which yields a more advantageous

suppression of adversarial time–frequency aliases than the

canonical computation of mel-spectrogram coefficients. Fur-

thermore, adaptivity by training in the time-averaging layer,

or alternatively, using frequency-adaptive triangular filters on

the Fourier spectrograms, on the other hand, also lead to

improved results relative to the canonical STFT-based mel-

spectrograms.These results are performance-wise statistically

equivalent to the filters derived by the mathematical theory

developed in Sect. 4. Hence, similar results were obtained

both with properly designed representations and representa-

tions whose crucial parameters were trained on the data.

Summing up, we conclude that the subtle differences in

time–frequency resolution of the basic filters used to obtain

the signal representation do influence the overall perfor-

mance of a CNN applied to a typical MIR task, at least for

architectures of rather modest size. The choice of the well-

established mel frequency scale in the first place for our

experiments seems justified not only by prior work on

time-domain filters calculated ex nihilo (cf. [12, Sec-

tion 4.2]), but also by our own findings that adaptive center

frequencies deviate from the mel scale only to a small

extent. We conclude that the chosen scale provides a useful

compromise between time- and frequency-averaging for

the task under consideration.

Future work on the problem of learned basic filters in MIR

tasks will involve the study of the precise connection between

the characteristics of a given data set and the most advanta-

geous analysis windows and sampling schemes used to

compute the spectrogram. These investigations will concern

both the network’s expressivity and the performance of the

learning process, cf. preliminary work in [14] and will be

based on data sets with different time–frequency character-

istics as well as various learning tasks. Finally, future work

will also address themore general question of the propagation

and alleviation of small approximation errors through the

network and their dependence on various network parameters

as well as the network’s architecture, relying on existing

results on stability of CNNs, compare [6, 20, 40].
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Appendix A: Proof of Theorem 1

In order to include the situation described in Theorem 1,

we assume the situation in which the original spectrogram

is sub-sampled, in other words, we start the computations

concerning a signal f from

S0ðal; bkÞ ¼ jVgf ðal;bkÞj2 ¼ jFðf � TalgÞðbkÞj2:

The proof is based on the observation that the mel-spectro-

gram can be written via the operation of so-called STFT- or

Gabormultipliers, cf. [17], on any given function in the sense

of a bilinear form. Before deriving the involved correspon-

dence, we thus introduce this important class of operators.

Given a window function g, time- and frequency-sub-

sampling parameters a; b, respectively, and a function

m : Z� Z 7!C, the corresponding Gabor multiplier Ga;b
g;m is

defined as

Ga;b
g;mf ¼

X

k

X

l

mðk; lÞhf ;MbkTalgiMbkTalg:

We next derive the expression of a mel-spectrogram by an

appropriately chosen Gabor multiplier. Using sub-sampling

factors a in time and b in frequency as before, we start

from (4) and reformulate as follows:

MSgðf Þðb; mÞ ¼
X

k

jFðf � TbgÞðbkÞj2 � KmðbkÞ

¼
X

k

hf ;MbkTbgihf ;MbkTbgiKmðbkÞ

¼
X

k

KmðbkÞhf ;MbkTbgiMbkTbg; f

* +

¼
X

k

X

l

mðk; lÞhf ;MbkTalgiMbkTalg; f

* +

with mðk; lÞ ¼ dðal� bÞKmðbkÞ. We see that the mel-co-

efficients can thus be interpreted via a Gabor multiplier:

MSgðf Þðb; mÞ ¼ hGa;b
g;mf ; f i.
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The next step is to switch to an alternative operator rep-

resentation. Indeed, as shown in [16], every operator H can

equally be written by means of its spreading function gH as

Hf ðtÞ ¼
Z

x

Z

n
gHðx; nÞf ðt � xÞe2pitndndx: ð12Þ

We note that two operators H1, H2 are equal if and only if

their spreading functions coincide, see [15, 16] for details.

As shown in [15], a Gabor multiplier’s spreading func-

tion ga;bg;m is given by

ga;bg;mðx; nÞ ¼ Mðx; nÞVggðx; nÞ; ð13Þ

where Mðx; nÞ denotes the ðb�1; a�1Þ-periodic symplectic

Fourier transform of m, i.e.,

Mðx; nÞ ¼ F sðmÞðx; nÞ ¼
X

k

X

l

mðk; lÞe�2piðaln�bkxÞ:

ð14Þ

We now equally rewrite the time-averaging operation

applied to a filtered signal, as defined in (6), as a Gabor

multiplier. As before, we set �hmðtÞ ¼ hmð�tÞ and have

FBhmðf Þðb; mÞ ¼
X

l

jðf � hmÞðalÞj2 � -mðal� bÞ ¼
X

l

j
X

n

f ðnÞ�hmðn� alÞj2 � -mðal� bÞ

¼
X

k

X

l

jhf ;MbkTal�hmij2 � -mðal� bÞdðbkÞ

¼ hGa;b
�hm;mF

f ; f i:

with mFðk; lÞ ¼ Tb-mðlÞdðbkÞ. To obtain the error estimate

in Corollary 1, first note that by straightforward computa-

tion using the operators’ representation by their spreading

functions as in (12)

jMSgðf Þðb; mÞ � FBhmðf Þðb; mÞj ¼ Ga;b
g;m � G

a;b
�hm;mF

� �
f ; f

D E�
�
�

�
�
�

¼ g
g
b
a ;m

� g�hbam;mF

� �
;V f f

D E�
�
�

�
�
�� ga;bg;m � ga;b�hm;mF

	
	
	

	
	
	 � kfk22

and we can estimate the error by the difference of the

spreading functions. We write the sampled version of Km

by using the Dirac comb Ib:

KmðbkÞ ¼ ðIbKmÞðtÞ ¼
P

k KmðtÞdðt � bkÞ and analo-

gously for -m using Ia to obtain m ¼ TbdðalÞ�IbKm and

mF ¼IaTb-m � dðbkÞ. Applying the symplectic Fourier

transform (14) to m then gives:

Now it is a well-known fact that the Fourier transform

turns sampling with sampling interval b into periodization

by 1=b, in other words, into a convolution with I1
b
:

hence

Mmðx; nÞ ¼
X

l

Tl
b
F�1ðKmÞðxÞ � e�2pibn:

Completely analogous considerations for -m and Ia lead

to the periodization of Fð-mÞ and thus the following

expression for the symplectic Fourier transform of mF:

Mm
Fðx; nÞ ¼

X

l

Tl
a
Fð-mÞðnÞ � e�2pibn:

Plugging these expressions into (13) gives the bound (8).

Remark 5 It is interesting to interpret the action of an

operator in terms of its spreading function. In view of (12),

we see that the spreading function determines the amount

of shift in time and frequency, which the action of the

operator imposes on a function. For Gabor multipliers, if

well-concentrated window functions are used, it is imme-

diately obvious that the amount of shifting is moderate as

well as determined by the window’s eccentricity. At the

same time, the aliasing effects introduced by coarse sub-

sampling are reflected in the periodic nature of M. Since,

for F�1ðKmÞ the sub-sampling density in frequency,

determined by b, and for Fð-mÞ the sub-sampling density

in time, determined by a, determine the amount of aliasing,

the overall approximation quality deteriorates with

increasing sub-sampling factors.
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