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Abstract
The extreme learning machine (ELM) is a new, non-tuned and fast training algorithm for feedforward neural networks

(FFNN). It is highly precise and randomly produces the input weights of single-layer FFNN. In the current study, the scour

depth around bridge piers is predicted by ELM as a powerful method of nonlinear system modeling. To predict scour depth,

the effective dimensionless parameters are determined through dimensional analysis. Due to the complexity of scour

mechanisms around bridges, different models with diverse input numbers are presented. In 5 categories, 31 different

models were obtained for modeling and ELM analysis. Following the training and validation of each model presented, the

optimum model was selected from each of the 5 categories and its relationship to the respective category was identified to

help determine scour depth in practical engineering. For the best models presented in the different input modes, new

explicit expressions were deduced. The results show that the most important parameters affecting relative scour depth (ds/

y) include ratio of pier width to flow depth (D/y) and ratio of pier length to flow depth (L/y) (RMSE = 0.08; MARE =

0.0.35). The ELM performance was compared for a range of pier geometries with regression-based equations. The results

confirm that ELM outperforms other methods.
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List of symbols
D Pier width

ds Local scour depth

d50 Median diameter of particles

Fr Froude number

g Gravitational acceleration

g(x) Activation function (Eq. 5)

L Pier length

l Neurons in the hidden layer

Q Number of input samples (Eq. 5)

U Average velocity of approaching flow

w Input-hidden layer

wij Connecting weight between the ith input neuron and

the jth hidden neuron (Eq. 3)

Y Flow depth

B Hidden-output layer weight

bjk Connecting weight between the jth hidden neuron

and the kth output neuron (Eq. 3)

r Standard deviation related to bed grain size

1 Introduction

One of the most significant problems in bridge design

regards the prediction of local scour depth around bridge

abutments and piers. This is an intricate 3D problem

challenging civil engineers around the world. Scour is a

natural occurrence that suddenly alters river flow velocity

and generates vorticities that spin at the pier nose and

produce churning close to, or on the channel bed.

The precise forecasting of scour depth around bridge

piers (SDABP) is essential for secure and economic plans.

It is troublesome to formulate and define numerical meth-

ods of predicting scour influenced by the pier, bed mate-

rials and flow. On account of these factors, expanding a

procedure to predict SDABP is problematic. Although
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numerous studies addressing scour depth prediction have

been accomplished, the literature indicates the need for

credible mathematical models in this field for different

hydraulic conditions.

The results of each existing technique significantly dif-

fer from each other, therefore leading to controversies

regarding the cost and design of protection approaches

against scour as well as pier foundations [1, 2]. Subse-

quently, there has been continuous noteworthy research

enthusiasm to evolve new approaches of approximating

SDABP with precision. The majority of scour depth pre-

diction formulas accessible in the literature have been

established based on dimensional analyses and small-scale

experimental tests under various assumptions, such as

constant depth, uniform and non-cohesive bed materials

and stable flow [3–6]. To gain full understanding of scour

depth prediction and owing to the importance of amelio-

rating forecasting potency, numerous researchers have

probed and refined techniques of increasing classical

physical-based analyses.

Artificial intelligence (AI)-based approaches have been

recently recognized as a puissant alternative for modeling

complex nonlinear problems and are widely employed in

prediction problems [7–13]. AI methods yield more precise

results than classical regression-based methods. Previous

scour surveys have shown that with the expected flexibility

and complexity, intelligence methods can make up for the

lack of validation by existing regression-based methods

[14].

In past decades, different AI techniques have been

developed to predict scour, including genetic programming

[15–18], support vector regression [19, 20], artificial neural

networks (ANN) [21], model trees (MT) [22] and group

method of data handling (GMDH) [23–27]. Recently,

extreme learning machine (ELM), a new machine learning

technique, has become greatly popular. Olatunji et al. [28]

investigated ELM accuracy, performance and feasibility in

predicting the permeability of wells. The authors surveyed

the performance of their proposed model in comparison

with a general neural network and support vector machines.

The results indicated that ELM outperforms other tech-

niques in terms of accuracy. To overcome convergence to

local minima and time consumption, Li and Cheng [29]

utilized ELM to forecast monthly discharge. Deo and Şahin

[30] confirmed ELM is a simple and fast nonlinear method

of forecasting the Effective Drought Index (EDI) in eastern

Australia. To examine the performance of ELM in terms of

learning speed and forecasting ability, a comparison was

conducted between ELM and a basic ANN trained with the

Levenberg–Marquardt algorithm. The results demonstrated

the higher accuracy and speed of ELM compared to ANN.

Cao et al. [31] utilized ELM to estimate reservoir param-

eters, such as porosity and permeability.

The main objective of the current study is to develop the

extreme learning machine (ELM) technique to predict

SDABP using field datasets. For this purpose, the main

parameters affecting local scour depth are determined, after

which dimensionless parameters are proposed using the

Buckingham theorem. To survey the effectiveness of each

parameter on scour depth, 5 different categories with

diverse input combinations are proposed. Therefore, for all

categories 31 models are presented for ELM modeling.

After selecting the best model in each category, the best

input combination is selected and compared with existing

regression-based models.

2 Methodology

In order to estimate SDABP, the effective factors should be

determined first. To predict the factors influencing this

phenomenon due to the complex scour mechanisms around

the pier, the pier geometry, bed sediment properties and

flow conditions should be considered. According to Khan

et al. [32], the parameters affecting scour depth can be

estimated as follows:

ds ¼ f ðU; y; d50; g;D; L; rÞ ð1Þ

where ds is the local scour depth, y is the flow depth, U is

the average velocity of approaching flow, d50 is the median

diameter of particles, g is the gravity acceleration, D is the

pier width, L is the pier length, and r is the standard

deviation related to bed grain size.

Applying dimensionless parameters leads to superior

scour depth prediction [33–35]. Thus, according to the

Buckingham theory, a functional equation for estimating

scour depth is:

ds=y ¼ f ðL=y;D=y; d50=y;Fr; rÞ ð2Þ

where Fr denotes the Froude number.

Subsequent to determining the dimensionless parame-

ters for scour depth estimation, it is necessary to formulate

a relationship with as few parameters as possible and with

the best result among the parameters that can be used in

different conditions. Therefore, 5 categories with 31 vari-

ous models are suggested. The number of input parameters

for the network is fixed in each category but differs among

categories. All models proposed are presented in Table 1.

Here, categories 1, 2, 3, 4 and 5 have, respectively, 1, 5, 10,

10 and 5 models. After establishing the models, the relative

scour depth parameter value (ds/y) is estimated using ELM.

In this study, a total of 476 field data are employed. The

data were initially obtained by Mohammed et al. [36] and

Landers and Mueller [37] who utilized ELM to predict

SDABP at fourteen bridge sites that experience scour in

three countries (Canada, India and Pakistan). The data are
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for four pier geometries, including round (231 data), square

(107 data), sharp (95 data) and cylindrical (43 data). All

experimental data samples are divided into training and

testing datasets. The ‘‘random sampling without replace-

ment’’ method is employed, and 20% of the data (96 data)

are selected to comprise the testing dataset. The remaining

data samples (i.e., 80% of samples = 380 data) comprise

the training dataset. The parameter ranges applied in this

study are presented in Table 2. Following training and

model validation, the models in each category are evalu-

ated, and finally, the best model is selected with a specific

relationship determined for its category. The flowchart of

the proposed methodology to develop ELM for predicting

SDABP is presented in Fig. 1, while the classical regres-

sion-based models are provided in Table 3.

3 Extreme learning machines (ELM)

The ELM method for predicting SDABP is presented in

this section. Owing to the superior performance in solving

complex problems, simplicity and training algorithm

speed, ELM is used extensively for a wide range of engi-

neering problems. ELM is a simple and fast learning pro-

cedure that involves the least-squares techniques for

generalizing single-layer feedforward neural networks

(SLFFNN). The ELM utilized in this study for scour depth

sensitivity analysis is shown in Fig. 2.

ELM contains three layers: input, hidden and output

layers. The input layer introduces the knowledge to the

ELM model. The core of ELM calculations is the hidden

layers, which transfer the input layer information to the

output layer. The information from the hidden layers is

gathered in the output layer to prepare the ELM results.

The ELM hidden layer weights (wij) and biases (b) are

determined randomly, and only the output layer’s weights

(bjk) are tuned in the training procedure [41]. Thus, the

training load of an ELM model is much lower compared

with other neural networks, which is why such model

performs very fast in many cases.

In the ELM structure (Fig. 2), all hidden and input

layers are linked to all output and hidden layers, respec-

tively. If m and n are, respectively, the numbers of output

and input variables for the problem considered, the ELM

Table 1 Input combination for each model

Category no. Model no. Inputs Fr d50/y D/y L/y r Category no. Model no. Inputs Fr d50/y D/y L/y r
1 2 3 4 5 1 2 3 4 5

1 1 [1,2,3,4,5] d d d d d 4 17 [1,2] d d

2 2 [1,2,3,4] d d d d 18 [1,3] d d

3 [1,2,3,5] d d d d 19 [1,4] d d

4 [1,2,4,5] d d d d 20 [1,5] d d

5 [1,3,4,5] d d d d 21 [2,3] d d

6 [2,3,4,5] d d d d 22 [2,4] d d

3 7 [1,2,3] d d d 23 [2,5] d d

8 [1,2,4] d d d 24 [3,4] d d

9 [1,2,5] d d d 25 [3,5] d d

10 [1,3,4] d d d 26 [4,5] d d

11 [1,3,5] d d d 5 27 [1] d

12 [1,4,5] d d d 28 [2] d

13 [2,3,4] d d d 29 [3] d

14 [2,3,5] d d d 30 [4] d

15 [2,4,5] d d d 31 [5] d

16 [3,4,5] d d d

Table 2 Field dataset ranges
Pier geometry Parameters

L (m/s) D (m) d50 (m) L (m) y (m) r ds (m)

Round 0.1–4.5 0.6–4.6 0.00012–0.09 0–25.3 0.5–12 1.3–20. 0–5.6

Square 0.2–2.4 0.3–3.5 0.00038–0.0069 7–14.4 0.2–2.5 1.8–6.2 0–7.1

Sharp 0.2–3.5 0.5–5.5 0.00017–0.108 6.1–27.4 0.1–20 1.2–14.1 0.1–4.1

Cylindrical 0.2–2. 0.8–2.4 0.00018–0.00751 2.4–13.1 0.3–9.2 1.9–6.9 0.2–3
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Fig. 1 Flowchart of the

proposed methodology to

develop ELM for estimating

SDABP
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model has m and n neurons in the output and input layers,

respectively. Thus, by considering the number of neurons

in the hidden layer is equal to l, the weight matrices to

connect the input layer to the hidden layer (w) and the

hidden layer to the output layer (b) are defined as follows:

w ¼

w11 w12 . . . w1l

w21 w22 � � � w2l

..

. ..
. ..

.

wn1 wn2 � � � wnl

2
66664

3
77775
n�l

;

b ¼

b11 b12 . . . b1m
b21 b22 � � � b2m

..

. ..
. ..

.

bl1 bl2 � � � blm

2
66664

3
77775
l�m

ð3Þ

where wij is the weight matrix connecting the jth hidden

neuron with the ith input neuron, and bjk is the weight

matrix connecting the kth output neuron with the jth hidden

neuron.

The matrices of the output (Y) and input (X) variables

for the estimation problem are as follows:

X ¼

x11 x12 . . . x1Q

x21 x22 � � � x2Q

..

. ..
. ..

.

xn1 xn2 � � � xnQ

2
66664

3
77775
n�Q

;

Y ¼

y11 y12 . . . y1Q

y21 y22 � � � y2Q

..

. ..
. ..

.

ym1 ym2 � � � ymQ

2
66664

3
77775
m�Q

:

ð4Þ

The final ELM model results are obtained as T = (t1, t2,

…, tQ)m9Q, where tj is defined as:

tj ¼

t1j

t2j

..

.

tmj

2
66664

3
77775
m�1

¼

Pl
i¼1 bi1g wixi þ bið ÞPl
i¼1 bi2g wixi þ bið Þ

..

.

Pl
i¼1 bimg wixi þ bið Þ

2
666664

3
777775
m�1

;

j ¼ 1; 2; . . .;Qð Þ ð5Þ

where Q and g(x) denote the input samples and activation

function, respectively. Therefore, the ELM result takes the

following form:

Hb ¼ TT ð6Þ

where H is:

H ¼

g w1x1 þ b1ð Þ g w2x1 þ b2ð Þ � � � g wlx1 þ blð Þ
g w1x2 þ b1ð Þ g w2x2 þ b2ð Þ � � � g wlx2 þ blð Þ

..

. ..
. ..

.

g w1xQ þ b1ð Þ g w2xQ þ b2ð Þ � � � g wlxQ þ blð Þ

2
6664

3
7775
Q�l

ð7Þ

If the numbers of input samples (Q) and hidden neurons (l)

are the same, theELMestimation errorwith the training dataset

becomes zero. However, to obtain a simple model as well as to

avoid overtraining that occurs when the difference between the

training and testing estimation errors is high, l is lower thanQ.

Therefore, the modeling error is obtained as follows [42]:

XQ

j¼1

tj � yj
�� ��\e e[ 0ð Þ ð8Þ

ELM generates the w and b matrices randomly [42] and

determines b using the following objective function:

Table 3 Classical regression-

based models for estimating

SDABP

Authors Equation No.

Richardson and Davis [38] ds=y ¼ 2:6ðD=yÞ0:65ðFr0:43Þ 3

Johnson [39] ds=y ¼ 2:02ðFr0:21ÞðD=yÞ0:98ðr�0:98Þ 4

Shen et al. [40] ds=y ¼ 3:4ðFr0:67ÞðD=yÞ0:67 5

Laursen and Toch [3] ds=y ¼ 1:35ðD=yÞ0:7 6

Fig. 2 ELM structure

Neural Computing and Applications (2019) 31:9145–9156 9149

123



min
b

Hb� TT
�� �� ð9Þ

Therefore, if H? is the Moore–Penrose generalized

inverse (MPGI) matrix of H, the results of Eq. (9) are:

b̂ ¼ HþTT ð10Þ

With the present ELM method, trial and error is used to

determine the number of neurons in the hidden layer.

Moreover, the sigmoid function serves as activation func-

tion d in the training algorithm.

4 Results and discussion

This section investigates the modeling results of predicting

scour depth around bridge piers using ELM and traditional

regression-based equations. For this purpose, two statistical

indices are employed, namely mean absolute relative error

(MARE) and root mean squared error (RMSE). MARE and

RMSE are defined as follows:

MARE ¼
Xn
i¼1

ds=yð ÞObserved� ds=yð ÞModeled

ds=yð ÞObserved

� �
ð11Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ds=yð ÞObservedi� ds=yð ÞModeledi

� �2

n

vuut
ð12Þ

The results of estimating scour depth around a pier (ds/

y) using the ELM algorithm for categories 2–5 that include

more than one model (Table 1) are given in Fig. 3. Among

4-input parameter models, model 4 that contains L/y, d50/y,

r and Fr as the input parameter combination for scour

depth estimation (ds/y) performs the best (RMSE = 0.09;

MARE = 0.42). The model results indicate that among five

parameters proposed to estimate ds/y (Eq. 2), D/y has the

Fig. 3 Appraisal of ds/y predictions by ELM according to statistical indices related to all input combinations with 1–4 input variables
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least impact and its deficiency leads to better results for the

models from category 2 with 2 input combinations.

It is also observed that model 3, which uses parameter

D/y compared with model 4 which uses parameter L/y, has

good results (RMSE = 0.08; MARE = 0.5). Therefore,

using one of D/y or L/y in estimating scour depth with the

models from category 2 does not lead to a significant

increase or decrease in model performance. If each of the

three parameters Fr, d50/y and r were considered as input

parameters in the models proposed in category 2, the

models would exhibit significant performance reduction.

Among the models in category 2, r is deemed the most

important parameter.

Among category 3 models, in which all defined input

combinations contain 3 input parameters (Table 1), model

12 performs the best (RMSE = 0.096, MARE = 0.42).

This model’s input combination is r, L/y and Fr. In addi-

tion, model 14 performs well among category 3 models.

The only parameter common in both models 12 and 14 is r.
Similar to category 2, this parameter is very important in

category 3. Not using this parameter in category 3 models

that include three input parameters (models 7, 8, 10 and 13)

causes a 5 to 10% increase in relative error. Besides r
model 14 includes d50/L and D/y. Models 7, 13 and 14

contain two parameters d50/L and D/y of the three input

parameters. It is observed that the models’ performance is

not the same. Therefore, using these two parameters in

category 3 models is not always associated with good

performance, whereas selecting the third parameter dis-

plays a significant impact on model performance.

Category 4 entails different combinations of 2 input

parameters to predict scour depth. Figure 3 indicates that

model 24 performs the best in this category (RMSE = 0.08;

MARE = 0.36) and estimates scour depth (ds/y) using two

parameters: D/y and L/y. Furthermore, model 25 (r, L/

y) performs relatively better than model 24 (D/y, L/y).

Models 18 and 21 employ parameter D/y to estimate scour

depth along with r and Fr as the second parameter,

respectively. Unlike models 24 and 25, the higher statisti-

cal index values of models 18 and 21 indicate significant

ELM ds/y prediction reduction. Models 19, 22 and 24

contain L/y as one of two parameters to estimate scour

depth. The results of these three models have about 12%

difference. Therefore, using one of these two parameters in

model 24 (the best model in category 4) to estimate ds/

y does not always lead to good results, but the simultaneous

use of parameters L/y and D/y to estimate ds/y as a two-

parameter model results in high-accuracy estimation.

Model 17 [ds/y = f (Fr, d50/y)] performs the weakest in this

category. According to models 17, 21, 23 and 23, none of

which performs well, d50/y is one of the two most effective

parameters.

Category 5 includes 5 models that all use 1 input

parameter to estimate scour depth. Single-equation models

are normally regarded as unreliable. Figure 3 indicates that

the highest RMSE and MARE statistical index values for

category 5 are for one input parameter. Model 30 (ds/y = f

(L/y)) performs the best (RMSE = 0.10; MARE = 0.46) in

category 5. This parameter in the best models with 2, 3 and

4 parameters is recognized as an effective parameter. The

equations of the optimal models from each category with

different numbers of inputs are as follows:

ds=y ¼
1

1þ exp InW� InVþ BHIð Þð Þ

� 	T
�OutW ð13Þ

where BHI is the matrix of hidden neuron bias, InV is the

matrix of input variables, and InW and OutW are the

matrices of input and output weights (respectively). The

values of BHI, InV, InW and OutW differ for each model

based on the numbers of input variables and hidden layer

neurons. Each matrix for the best model in each category is

presented as follows:

for Model 1 (5 inputs)

InV ¼

Fr

d50=y

D=y

L=y

r

2
6666664

3
7777775

BHI ¼

0:54

0:83

0:59

0:63

0:92

0:91

0

0:08

0:51

0:07

0:26

0:46

0:81

0:31

0:27

0:4

0:35

0:86

0:28

0:92

0:98

0:8

0:18

0:97

2
6666666666666666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777777777777777775

OutW ¼

0:4

� 75:31

1:9

� 0:07

3:67

� 1:46

53:45

2:92

� 1:29

� 3:09

� 0:44

� 5:75

�235:96

16:04

� 4:06

0:08

1:51

20:25

0:22

� 19:33

284:64

� 0:87

� 17:91

1:37

2
6666666666666666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777777777777777775
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InW ¼

� 0:39 � 0:77 0:48 �0:2 0:5

� 0:8 � 0:17 0:62 0:15 0:94

� 0:11 0:25 0:81 0:4 � 0:12

0:57 0:9 � 0:41 � 0:95 � 0:86

0:67 0:7 0:68 � 0:1 � 0:69

0:65 0:56 � 0:57 � 0:11 0:25

0:52 � 0:4 � 0:71 � 0:55 � 0:73

0:73 0:96 � 0:95 � 0:41 0:19

0:85 0:74 0:39 0:06 � 0:48

0:28 0:87 0:28 � 0:09 0

0:57 � 0:21 0:24 0:73 � 0:77

� 0:16 0:87 � 0:83 0:47 0:81

0:79 0:31 0:51 0:37 0:96

� 0:45 � 0:01 � 0:08 0:06 0:77

� 0:43 0:28 � 0:25 0:81 0:68

� 0:83 � 0:82 0:38 � 0:79 0:41

� 0:85 � 0:84 0:6 � 0:66 � 0:02

� 0:19 0:22 0:93 0:43 0:31

� 0:64 0:45 0:37 0:11 � 0:32

� 0:92 0:54 � 0:07 � 0:38 � 0:91

� 0:21 0:06 0:69 0:33 0:93

� 0:24 � 0:1 � 0:34 � 0:58 0:59

� 0:96 0:29 � 0:33 � 0:65 � 0:95

0:77 0:24 0:83 0:47 � 0:4

2
6666666666666666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777777777777777775

for Model 4 (4 inputs)

InV ¼

Fr

d50=y
L=y
r

2
664

3
775 BHI ¼

0:38
0:93
0:16
0:51
0:92
0:48
0:04
0:14
0:61
0:46
0:31
0:15
0:29
0:73
0:67
0:3
0:29
0:04
0:07
0:82
0:57
0:37
0:59
0:77

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

OutW ¼

� 59:55
� 38:93
� 1:36
� 0:52
22:2
26:4
14:97

� 30:39
� 0:47
16:94
25:76
0:04

� 0:95
1:77

� 0:87
62:57
� 9:13
3:16

� 21:31
0:24

� 15:85
0:42

� 25:35
29:58

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

InW =

0:28 � 0:36 1 0:41

� 0:68 0:58 � 0:33 � 0:77

0:77 0:67 � 0:31 0:53

0:09 � 0:7 0:2 0:22

0:23 �0:21 0:85 0:85

� 0:57 � 0:17 � 0:3 � 0:64

� 0:89 � 0:17 � 0:43 � 0:28

0:03 � 0:14 0:33 0:76

� 0:42 � 0:16 0:03 0:59

� 0:02 � 0:93 0:37 0:94

0:59 � 0:49 0:52 0:2

� 0:91 � 0:26 0:17 � 0:61

0:24 0:79 0:63 � 0:51

0:15 � 0:88 � 0:25 � 0:21

� 0:5 0:91 �0:25 0:15

0:33 � 0:65 0:87 0:32

0:2 0:5 0:97 0:17

0:47 � 0:71 � 0:96 � 0:02

0:37 0:36 � 0:84 � 0:45

� 0:94 0:3 0:09 � 0:89

0:9 0:53 0 � 0:4

0:6 � 0:24 0:44 � 0:66

� 0:78 0:65 0 0:29

� 0:38 0:36 � 0:7 � 0:57

2
6666666666666666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777777777777777775

for Model 12 (3 inputs)

InV ¼
Fr

L=y
r

2
4

3
5 BHI ¼

0:89
0:67
0

0:38
0:85
0:36
0:33
0:63
0:04
0:73
0:93
0:26
0:14
0:89
0:76
0:79
0:15
0:98
0:94
0:86

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

OutW ¼

� 76:99
22:86
2:47

� 2:96
6:77

� 58:06
27:01

� 31:53
16:19

� 80:92
77:52
10:39
0:36

� 3:14
60:75
138:1

� 133:91
0:15

� 4:27
0:04

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775
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InW ¼

0:41 � 0:64 � 0:46
0:15 � 0:22 � 0:73

� 0:08 0:19 � 0:22
� 0:9 � 0:21 � 0:29
� 0:61 0:01 0:26
� 0:2 � 0:95 � 0:6
0:52 0:75 0:01
�0:61 0:56 0:14
� 0:17 � 0:58 � 0:31
� 0:22 � 0:46 � 0:7
0:32 � 0:61 � 0:61
0:37 0:1 0:92
0:45 0:18 � 0:55
0:64 0:51 � 0:13

� 0:79 � 0:61 � 0:8
0:68 0:61 0:48
0:4 0:67 0:37
0:73 � 0:89 0:81
0:23 0:88 0:06
0:99 � 0:78 0:33

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

for Model 24 (2 inputs)

InV ¼ D=y
L=y

� 	
BHI ¼

0:72
0:47
0:39
0:37
0:53

2
66664

3
77775

OutW ¼

� 1:78
3:46

� 2:84
� 5:01
6:45

2
66664

3
77775

InW ¼

0:13 � 0:72
0:17 � 0:12

� 0:63 � 0:1
� 0:6 � 0:56
� 0:66 � 0:72

2
66664

3
77775

for Model 30 (1 input)

InV ¼ L=y½ � BHI ¼
0:81
0:8
0:1

2
4

3
5 OutW ¼

6:05
2:53

� 10:56

2
4

3
5

InW ¼
� 0:23
� 0:92
� 0:28

2
4

3
5

According to the above explanation, the best models

selected from all categories with different numbers of input

parameters are compared, and the most capable model is

selected for estimating SDABP. Since category 1 includes

only 1 model, model 1 is the best in this category.

Accordingly, in categories 2, 3, 4 and 5, models 4, 12, 24

and 30 are selected as the optimal models, respectively. It

can be seen in Table 1 that parameter L/y is present in each

superior model with one to five inputs, indicating the

importance of this parameter in scour depth estimation.

The best models selected in each category are compared in

Fig. 4. The statistical index results for five models selected

are presented in this figure. Evidently, the RMSE index is

almost equal for the selected models. The highest RMSE

value is for Model 30 (RMSE = 0.104), which only con-

tains L/y as an input variable. Employing both of L/y and

D/y simultaneously as input variables in the ELM network

(Model 24) results in the lowest RMSE value (RMSE =

0.08) among all 31 models proposed in this study. Similar

to the RMSE index, the lowest and highest MARE values

are for Model 24 (MARE = 0.357) and 30 (MARE =

0.464), respectively. The MARE index for models with 5,

4 and 3 inputs (models 1, 4 and 12, respectively) is rela-

tively equal, but model 24 displays the best performance

according to this index. In fact, it is observed that the

absence of parameter D/y from 4-parameter models does

not cause a significant change in performance.

Figure 5 compares the ds/y estimation results using

ELM with the regression-based equation results. The

Fig. 4 RMSE and MARE error

histogram for ds/y predictions

by ELM with the best model in

each category
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greatest estimation error according to this figure is pro-

duced by Shen’s et al. [40] equation, which overestimates

most of the time. The relative error for Laursen and Touch

[3] and Shen’s et al. [40] equations is very high. However,

according to the statistical indices for ELM and the

regression-based equations in Table 3, the mean relative

error for Laursen and Touch’s [3] equation is about 30%

higher than Shen’s et al. [40]. Richardson and Davis’ [38]

equation also does not perform well in predicting SDABP,

as it produces a high relative error and makes overesti-

mations. According to Table 4, the relative error is about 5

times higher than ELM. Johnson’s [39] equation makes

overestimated predictions much like other models

(RMSE = 0.15; MARE = 0.37). Therefore, it can be said

that none of the regressions provide good results, and using

them would lead to uneconomical plans—something that

can be alleviated by applying ELM. According to Table 4,

ELM significantly increases estimation accuracy and

solves problems caused by overestimation. Each statistical

index value presented for ELM is superior to all regression-

based equations. An advantage of ELM is the need for

fewer parameters (D/y and L/y) than Johnson’s [39] (Fr, D/

y and r) equation.

5 Conclusion

Since scour can significantly influence the flow around

bridge foundations, it is necessary to analyze and evaluate

scour in bridge design and maintenance. Therefore, in the

current study, SDABP was predicted using ELM, which is

known as a swift and highly accurate prediction method.

The parameters affecting scour were determined, and

dimensionless parameters were presented. To evaluate the

different input combinations using sensitivity analysis, 31

models with different input combinations were presented.

The best models with all input combinations did not sig-

nificantly differ from each other. The best model presented

in this study contains two inputs: L/y and D/

y (RMSE = 0.08; MARE = 0.36). From the best models

selected according to various input combinations, different

relationships were derived for practical engineering. A

comparison of ELM with regression-based equation results

demonstrates a significant increase in scour depth estima-

tion accuracy using the explicit expressions presented in

this study. Existing regression relationships often make

overestimated predictions with high relative error. In future

studies, the methodology presented in this study can be

extended using other artificial intelligence methods, such as

group method of data handling, gene expressing program-

ming, etc.
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