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Abstract

This paper studies the robust exponential stabilization for a class of uncertain neutral neural networks with mixed interval
time-varying delays. The aim of the paper is to design periodically intermittent control such that the closed-loop system is
exponentially stable. By constructing a suitable Lyapunov—Krasovskii functional and by using some useful lemmas and
some new analysis techniques, the researchers generate novel exponential stabilization criteria to ensure the robust
exponential stabilization of considered uncertain neutral neural networks in terms of linear matrix inequalities. Based on
the proposed criteria, an intermittent state-feedback controller design approach is introduced. Some numerical examples
are given to show the effectiveness and benefits of the theoretical results.

Keywords Robust exponential stabilization - Uncertain neutral neural networks - Mixed time-varying delays -

Periodically intermittent control

1 Introduction

In the past decades, neural networks have been extensively
investigated as they have developed rapidly for their wide
application in a variety of fields, such as secure commu-
nication, quantum devices, pattern classification, associa-
tive memory, image processing, mathematics, ecological
system, and controlled constrained manipulators [1-4]. For
many of these applications depending on dynamical
behaviors of the network and requiring the equilibrium
point of the model to be globally stable, it is important to
consider stability problems of such kind of neural net-
works. Nowadays, the study of the stability analysis of
neural networks has gained popularity among researchers,
and some remarkable results have been reported in the
literature [5-9]. Liu et al. [5] gave improved exponential
stability criterion for neural networks with time-varying
delay. Pahnehkolaei et al. [6] investigated uniform stability
for fractional-order leaky integrator echo state neural net-
work with multiple time delays, and the existence,
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uniqueness, and stability of the equilibrium point were
provided. In [7], dynamic stability analysis of fractional-
order leaky integrator echo state neural networks was
given. Elahi et al. [8] considered the problem of finite-time
H,, stability analysis of uncertain discrete-time network
control systems with varying communication delays in a
random fashion. In [9], robustly exponential stability
analysis for discrete-time stochastic neural networks with
interval time-varying delays was given.

A special kind of neural network is neutral neural net-
work. It contains delays in both the state and the deriva-
tives of the state. It is generally known that neutral neural
network has more complicated characteristics. Many real-
world systems can be fitly described by neutral-type neural
networks. Many real-world systems can be adequately
described by neutral-type neural networks, which interests
scholars to study the neutral neural networks, especially the
stability and stabilization analysis for the neutral-type
neural networks, see [10—12]. Dharani et al. [10] resear-
ched on the delay-dependent stability for switched Hop-
field neural networks of neutral type with additive time-
varying delay components. In [11], a class of delayed
neural networks described by nonlinear delay differential
equations of the neutral type was studied and a sufficient
condition for the existence, uniqueness and global
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exponential stability of an equilibrium point was derived.
Park et al. [12] gave a new criterion for the global
asymptotic stability of bidirectional associative memory
neural networks of neutral type.

Intermittent control was proposed in the seminal paper
of Craik (see [13]) and has aroused a wide range of
interests because of its extensive applications [13—15].
Measuring the output of a system intermittently, rather than
continuously, constitutes an effective control approach.
Intermittent control has been extensively studied, which
has generated an expanding body of literature in the field of
chaotic systems and the field of neural networks [14—18].
In [14], exponential stabilization of neural networks with
time-varying delay was investigated by periodically inter-
mittent control. In [16], exponential stabilization of chaotic
systems with delay was considered by periodically inter-
mittent control. Zhang et al. [17] investigated the expo-
nential stabilization for neutral-type neural networks with
mixed interval time-varying delays by using intermittent
control.

As we all know, uncertain factors such as environmental
noise, uncertain parameters, and disturbance can be very
often found in various practical systems [19]. The existence
of uncertainty causes modeling errors, parameter varia-
tions, and measurement errors, making it rather difficult to
develop an exact mathematical model [19-21]. Besides, the
existence of uncertainty always leads to poor performance
and even instability of control systems. In recent years,
there has been a growing research interest in stability and
stabilization of uncertain systems, yielding some results on
this topic in the literature [2, 19, 20]. To the best of the
authors’ knowledge, no result has been produced through
the investigation for the stabilization of uncertain neutral-
type neural networks with mixed time-varying delays via
intermittent control, which motivates our research on this
topic.

This paper studies the problem of exponential stabi-
lization for uncertain neutral neural networks with time-
varying delay via periodically intermittent control. By
employing new Lyapunov—Krasovskii functional and
introducing free-weighting matrices, we have established
new sufficient conditions of robustly exponential stabi-
lization for a class of uncertain neutral neural networks by
intermittent control. The developed stabilization criteria
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are delay dependent and characterized by linear matrix
inequalities (LMlIs), which can be easily calculated by
MATLAB LMI control toolbox. We also provide two
numerical examples to demonstrate the effectiveness of the
proposed stability results.

The rest of the paper is organized as follows. Section 2
first provides some preliminary details, necessary defini-
tions, and useful lemmas. Then, some new criteria are
established to guarantee the exponential stabilization of
neutral neural networks in Sect. 3. Section 4 gives two
numerical examples, illustrating the effectiveness of the
obtained results. And finally, Sect. 5 concludes the paper
with a summary of the findings.

Notations: throughout this paper, R" denotes the n-di-
mensional Euclidean space. R"*" is the set of all n x m real
matrices; * represents the elements below the main diag-
onal of a symmetric matrix. MT means the transpose of M;
|-l is the Euclidean norm of a vector;
M > 0(<0, <0, >0) means that the matrix is symmetric
positive (negative, semi-negative, semi-positive) definite
matrix; / is an appropriately dimensioned identify matrix;
Amin(M) and A, (M) stand for the minimum and maximal
eigenvalue of a matrix M, respectively.

2 Problem statement and preliminaries

Consider the following uncertain neutral neural networks
with mixed interval time-varying delays

X(t) = (CH+AC@))x(t — (1)) = —(A + 4A(2))x(2)
+ (B+ 4B(1))f (x(1)) + (D + AD(1))f (x(t — h(1)))
+ Eu(t), >0,
x(t) = (1), Vre[-h,0],
(1)

where x(-) = [x1(-),x2(-), .. .,x(-)]" € R" is the state vec-
tor of the neural networks associated with n neurons at time
L) =[A),40), . fa()]" denotes the neuron activa-
tion function with f(0) =0, and u(¢) € R" is the control
input vector. The matrix A = diag(ay,as,...,a,) is a
diagonal matrix with positive entries @; > 0,i = 1,2,...,n,
and C is a known constant matrix with appropriate
dimension. B and D are the connection weight matrix and
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delayed connection weight matrix, respectively. E is a (t) — C(0)i(t — 1(1)) = —(A(r) — EK)x(1)
reversible matrix. 4A(z), 4B(t), AC(t) , and AD(t) are all B (x(t)) + DOVf (x(t — h(1))), 1 € [KT,KT + 5),
unknown time-varying matrices with appropriate dimen- _ _ ’
sions which represent the system uncertainty and stochastic x(t ) F( )it — (1)) = A( )x(1) + B(1)f (x(1))
perturbation uncertainty, respectively, which satisfy: (0)f (x(t — h(2))), € [kT + 6, (k+ 1)T),
[4A(1) 4B(s) AC(r) AD(1)] = HE (X, X; X5 Xu], <>:”“)’ el ”0}

(5)
where H, X, X», X3, X4 are known real constant matrices _ _ _
with appropriate dimensions, and F(f) is unknown real where _ A(r) = A+ 4A(1), B(1) = B+ 4B(1), C(1) = C+
time-varying matrix with Lebesgue measurable elements AC(1),D(t) = D + AD(t).
bounded by Definition 1 System (1) is said to be robustly a-expo-

F'(t)F(1) <.

The initial condition ¢(¢) denotes a continuous vector-
valued initial function on the interval [— &, 0].

Assumption 1 The time delays, h(f) and t(¢) are time-
varying differentiable function that satisfies
0<h <h(t)<hy<oo, h(t)<hs<l,
0<t <t(t)<mp<oo, 1(t)<ty<1, (2)
h = max{h,,1,},
where h; and t; are the lower bound of A(¢) and <(¢), h, and

1, are the upper bound of A(r) and t(z), respectively, and A,
and 1, are the real constants.

Assumption 2 [20] The nonlinear activation function f(-)

satisfies the following condition, for any i=1,2,...,n

there exist constants /; and ;" such that

l; f’(> fl”glﬁ, i=1,2,...n, (3)
X=y

where x,y € R, x # y.
For expression convenience, we denote

Ly = diag (15, 15, ., L),

% n

-+ + -+

RN Y )

Ly = diag(max{|(7 |, ||}, max{|5; |, i3]}, .-
max{[L, |, [ |})-

For system (1) with initial value, we consider an inter-
mittent state-feedback controller expressed as follows:

u(t) = {Kx(t), t € [kT,kT + 9),

0, te€ kT +0,(k+1)T), “)

for any nonnegative integer k, where K is a constant control
gain, T is the control period, 0<d <T, and § is the so-
called control width.

When the intermittent state-feedback control (4) is
applied to (1), system (1) can be rewritten as follows:

nentially stabilizable via intermittent state-feedback control
(4), if there exist o > 0 and ¢ > O such that the solution
x() of system (5) satisfies

[x(5)|| < 0e™™||p, Vt>0,
for all admissible uncertainties FT(t)F(t) <1, where

161l = supge—s o {IIX(O)]], ()1}

Lemma 1 [21] For any matrix R € R™", R=R" >0,
scalars o and B : f <o, vector x : [, o]—R" such that the
integration concerned are well defined, then:

—/”W) K(s)ds < — TRy,

B
/ / s)dsdf < 2 IRy
S - 28 A2s
B (o0 — ﬁ)z
where
X = / ‘x(s)ds, 1 = / / x(s)dsd0.
B B Jo
Lemma 2 [20] For a given matrix M > 0, the following

inequality holds for all continuously differentiable function
 in [a,b] — R":

1

b
/ O (WM > L ((b) — ola) M((b) — o(a)
+ ;TGQTMQ,

where
b
Q= w(b)+ w(a) — 5 i a/ o(u)du.

And that could be turned into the following matrix
inequality,

b 1
/ o7 (u)Ma(u)du > 5

o’ Qw,
—a

where
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am oM —eM]"
Q=| x aM —6M |
* * 12M
T T 1 o !
@ =| o' (b) o’ (a) b_a/aw(u)du] .
Lemma 3 [20] For matrices Y, D and E of appropriate

dimensions, where Y is a symmetric matrix, then

Y + DFE + ETFTD" <0,

holds for all matrix F satisfying FTF <1, if and only if
there exist a constant ¢ > 0, such that

Y +¢DDT + ¢ 'ETE <0,

holds.

3 Main results

In this section, robustly the exponential stabilization by
periodically intermittent control is investigated. The main
result is stated as follows.

Theorem 1 Suppose that Assumptions 1 and 2 are satis-
fied. For given constants o > 0 and ), system (1) is robustly
a-exponentially stabilizable via intermittent state-feedback
controller (4), if there exist matrices P >0,
0;>0(=1,2,3,456), R >0, §>0 V>0,
W; >0 (j=1,2), Uy >0, Z, K and positive scalars ;1 > 0
and € > 0 such that

11; = [“”" “1“}<0, j=12, (6)
* faod)
ao — p(T —0) >0, (7)
where
RZ Oy, 0 (on 0 0 0
* 11, 0 0 0 0 0
* * 033 0 0 0 0
Sy = | ok * * My 0 0 o |,
* * * * Oss 0 0
* * * * * Il 0
| * * * * * * H77_
IIs O, @; 0 05 O A PH
0 0 0 0 0 O 0 0
0 0 0 0 0 0 0 0
Epj=1| 0 0 0 0 0 0 A o1,
0 0 0 0 0 0 0 0
0 LW, 0 0 0 0 0 0
L O 0 0 0 0 0 0 0 ]
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- Eni Em
Ep = - |

L * Z223

g eXiXy uB’P 0 XX,
~ * Ioo uD’P 0 XX,
so = * * IT0,10 0 uPC

* * * I 0

L * * * * 2,12

[o 0 0

0 0 0 I35 0 0
Emi =10 0 WPH |, Eypjz = * II14,14 0 1,

0 0 0 * * —el

0 0 0

=20P+ Q01+ Q2+ Q3+ 04+ 05+ Qs + MR,
+ Ry —PA-ATP+Z+ 7" — LW,

b4

1
_ 4, —20hy
e I

V) =20P+ Q1+ Q0+ 03+ 04+ 05+ Q6

1
+ hiR; + TRy — e~ h—v1 — LW,
1

1 -
Vi — dem —Vat eXT X1,
1

1
— PA—ATP —4e ™ —V, + eXT X,
!
Mg = PB+ LW, — X' X,
& = —pA"P 4+ pZ", &, = —pA"P,

1
Iy = —e M Q) — 4e7%M FVI-,
1

. _ 1
Iy = —e ZMIQ3 —4e 2 Va,
T

Mes = —(1 — ha)e Qs — LiWs,

177 = —(1 — t4)e 2 Qg,

Hgs = Uy — W + X3 Xa,

Moy = —(1 — hg)e Uy — W, + eX] X,
o 10 =81+ S + Vi + 11 Vo — 2uP,
i1 = —(1 = hg)e 8y,

M = —(1 — t)e 228, + eXa X3,

A= Ly,
T
1
M35 = —hje MRy — 12e7% h—Vl,
1
1
1414 = —‘Eleizﬂ’Rz — 12672&11 —Va, p=y-—uqa,
Ti

1 1
O = —2e72M —V, 0y = —2e71 —V;,

hy 7
Oy = —e 20,

012 = PD — X[ Xy,

Oss = —e 220,
015 = PC — X X3,

1
016 = 62! — V).
16 c I 1
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Moreover, the gain matrix in the periodically intermittent
controller (4) is K = (PE)™'Z.

Proof Choose a Lyapunov—Krasovskii functional candi-
date as:

V() =Vi(r) + Vz(l) + V3(t) + V(1) + Vs(2) + Ve(2),

(8)
where
Va(t) = (1P,
Vil = [T ()0u(5)s
+ /Zh e 5=0xT (5)Qx(s)ds
+ /l 20T (5)Q3x(s)ds
+ /I 20T (5)Qux(s)ds
+ /Ith(t) e?070xT () Osx(s)ds
+ /l =0T (5) Qx(s)ds,
/ / 20 xT (§)Ryx(s)dsd6
hy
/ / =0 xT ()Ryx(s)dsd),
+0
v = [ S
+/(>e2 (=04 (5)Spk(s)ds,
S(1) = / ' / © 3T (), (s)dsdO
hy
/ / #5052 (5)Vai(s)dsd),
+0
Ve(t) = 2 U
= [ ) (o)
It is clear that
V() > Zamin (P) (1) |- 9)

Calculating the time derivatives of V;(¢), i =1,2,...,6,
along the trajectory of system (1) yields

Vi(t) =2xT(1)Pi(r)
= — 2T (1)P(A + AA())x(1) + 227 (1) PEu(r)
+ 2 (H)P(C + AC(1))i(t — (t))
+ 2" (£)P(B + AB(1))f (x(1))
+ 2" (£)P(D + AD(1))f (x(t — h(r))),

Va(t) = = 2005 (1) + (1) 01x(1) + ¥ (1) Q2(1)
— e T (t — hy)Oux(t — hy)
— e My (1 — 1y) Qox(t — o)
— e 2 (1 — 1) O3x(t — 1)) + 2T (1) Q3x(2)
+ xT<t>Q4x<r) +a(1Qsx(1) + 1 (1)Qex(1)
e 2 x (1 — 1) Qux(t — 72)
— (1= h(t)e > Ox" (1 = h(r)) Qsx(t — h(1))
— (1= 2(0)e " (1 — 2(1)) Qex(t — =(1))

< = 200(t) + " (1) Qux(t) + 57 (1) Qax(1)
— eyt ( 1) O1x(t — ) +x (1) Q3x(1)
— e 25T (1 — hy)Qox(t — hy) + xT (1) Qux()
— e 2yl ( 71)Q3x(t — 71) + x7 (1) Qsx(1)
— e 2xl (1 — 1)) Qux(t — 12) + x7 (1) Qex(1)

— (1 = hag)e 22T (r — h(1))Qsx(t — h(r))
— (1 = tg)e22x T (1 — 1(1)) Qex(r — (1)),

Vs (1) = — 2aV3(t) + hix” ()R x(¢) + 11x7 (1) Rox (1)
- /t e?60xT (5)Ryx(s)ds (]0)

t
—/ e2*60xT (5)R,x(s)ds

Vi(t) = = 2aV4(t) + &7 (0)S15(e) + 27 (1) S24(t)
MO (1 — h(1))$1(1 — h(1))
e 20T (1 — 1(1))S2x(r — (1))
< —20V4(1) 4 7 (1) S15(t) + 2T (1) S2i(t

— (1 = hg)e 25T (t — n(2))S13(t — h(t))

— (1 = g)e 22347 (1 — (1)) S (1 — (1)),

Vs(1) = — 2aVs(t) + mx! (1) Vii(e) + 1’ (1) Vax (1)
- / LT () k(s)ds
t—h
- /f 2605 (5)V,k(s)ds,
Ve(r) =—20<Ve(t) T U (=) = (1= h(1))
e M OfT (x(t — h(1)))Urf (x(t — h(1)))

< 720cV6()+fT< O)U (x(1) = (1 = ha)
x e 2f T (x(t = h(1))) UL (x(t = h(1)).
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By using Lemma 1, it can be seen that

t
- / e?0=0xT ()R x(s)ds
t—hy

!

(11)
t
_ / eza(sft)xT(s)sz(S)dS
-7
1 t T t
< e (/ x(s)ds> R, (/ x(s)ds).
T1 -1 =7
(12)
Based on Lemma 2, it holds that
t 1
- fh 245057 (5) Vi (s)ds < e 22 h—lwale, (13)
t—m
t
— [ 0T (5)Vai(s)ds < e —m) O, (14)
-1
where
_ | ;
o =) L—-h) — </ x(s) ) »
i o \Jin,
_ : .
Wy = xT(l) xT(t _ Tl) — (/ x(s) ) )
i 71 -1
4T
— 4V, -2V, oV
L k * - 12V]
QZ = * —4V2 6V2
| * — 12V, |

Furthermore, for any matrices Wy >0 and W, > 0 and
utilizing Assumption 2, we have

o Tl e Tee s
o [ B

(16)
where f(t) = f(x(t — h(1))).

In the following, we consider two cases in calculating
the derivative of Lyapunov—Krasovskii functional: ¢ €
KT, kT + o) and t € [kT + 9, (k+ 1)T).

Case 1 For t € [kT,kT + 5). The first subsystem of (5)
can be written as

@ Springer

#(t) = (C + AC()x(t — ©(t)) + (B + AB(1))f (x(1))
— (A + 4A(1) — EK)x(1)

+ (D 4+ AD())f (x(t — h(z))), t € [KT,kT + 9).
It is easy to see that
20 (1)P(C + AC(1))xk(1 — <(t)) — (A + AA(1)
— EK)x(1) + (B + AB(1))f(x()) (17)
+ (D + 4D(1))f (x(t — h(1))) — x(1)] = 0.
Setting
Z = PEK, (18)
and combining (10)-(17), we get that
V(1) + 20V (1) < & (1) I (1), (19)
where
ﬁl _ ‘—"511,1 :';’;1'2.1
L * =922
(¥, On 0 Ou 0 0 0
* I 0 0 0 0 0
* * 033 0 0 0 0
Ena=| * * * jim 0 0 0 |,
* * * * Oss 0 0
* * * * * I 0
| * * * * * * 1177 |
Epy =06, 6y,
(s  P(D+4D()) & 0]
0 0 0 0
0 0 0 0
0, = 0 0 0 0],
0 0 0 0
0 LW, 0 0
L 0 0 0 0]
2oty i 201y i
(C+4C(t)) 6 Vo6 V2
20thy i
0 6e I Vi 0
9 — 0 0 0
i 0 0 6e 20 Ly, |
7
0 0 0
0 0 0
L 0 0 0 ]
s -Fl FZ
=22 = |« F3 }
s 0 (P(B + AB(1))]" 0
[ Moy u[P(D+ 4AD(1))]” 0
L=
* * Io10 0
L * * * Iy 1
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ﬁ] _ -—ﬁ:]l.l '—ﬁ:AIZ,] ,
0 0 0 * En
¥ On 0 Oy 0 0 0
F2 = 0 0 O s * H22 0 0 0 0 0
UP(C + AC(1))] 0 0 x x  O0n 0 0 0 0
0 0 0 é11,1 =1 = * * 144 0 0 o |,
) _ * * * * (] 0 0
Ijs = diag(I12,12, 13,13, I14,14) . . . . *55 Me 0
Vi =20P+ Q1+ 0+ 03+ 04+ 05+ Q6+ R * * * * * Iy )
— LiW; — P(A + 4A(1)) — (A + AA(r))" P Iy PD & 0 PC O 6V,
1 1 0 0 o0 0 0 O 0
=+ V4 =+ ZT =+ ‘L'1R2 — 46_2ahl h_ V1 — 46_2111 —Vz, 0 0 0 0 0 016 0
1 T 2 1
- =121 = 2oty
s = P(B + AB(1)) + LWy, °© 0 0 000 &RV
- T r 0 0 0 0 0 0 0
Dy = [ uP(A+ 4A(1))|" +uz”, 0O LW 0 0 0 0 0
1 0 0 0 0 0 0 0
20l o —2o0thy L ]
My = —e Q1 —4de Vi, [ [gg 0 uB'P 0 0 0 0
—2a1 “2ugy | * Iy pD"P 0 0 0 0
Iy = —e 703 —4de™ 17V2’ % ¥ Moo 0 uPC 0 0
“2uhy ! Eyp = | * * * JUETRY! 0 0 0o 1,
Hes = —(1 — ha)e" =" Qs —~L1 Wa, . ; . . T 0 0
77 = —(1 — ta)e " Q¢, Ilgg = Uy — Wi, * * * * * 3,13 0
~ _ _ —ahy _ L * * * * * * [714,14
Iloo = —(1 hd); Ur = Wa, ¥, =20P + Q) + Qs + Qs + Qi+ Qs + Qs + hiR,
I = —2uP
10,10 =581+ 5 + 1;/1h+‘51V2 uP, +TIR27PA7ATP+Z+ZT74e—Zo<h|hiV1746—21UTLV27L1W1’
_ _ —20thy 1 1
~ T =—-( hdzj o Mg =PB+ LWy, &) = —pA"P + uZ",
i =— (1 - Td)e MzSZa flss =Uy — Wi, Tlog = —(1 — ha)e ™2U; — Wa, [T110 = —(1 — 14)e 2285,
| - ~
Hl'& 3= _hlefbch]Rl _ 126720(h1 _Vla AT(E) = U, ({2 i
e hl | * Us
B B 1 (Y 0 0 0 0 0 0 PAB(t) PAD()]
Hiss = —7ie 7Ry — 1272 r—le‘ « 0 0 0 0 0 0 0
) - « 0 0 0 0 0 0 0 0
&)= [E@), &0, 80)], + 0 0 0 0 0 0 0 0
) = 0 - >,xT<r o) " (1~ ), Gi=|+ 0 0 0 0 0 0 0 0
T « 0 0 0 0 0 0 0 0
Xl (1 — 1), x" (1 — h(1))]", « 0 0 0 0 0 0 0 0
&) = W' (1 —2(t).f (X(t) ST (e = h(2))), 1(2), *» 000000 0 0
T lx 0 0 0 0 0 0 0 0
Xt —h(r),x(t —=(1)], [—pdAT(P 0 PAC(H) 0 0]
T 0 0 0 0 0
1 t T 1 t T
&) = |— </ x(s)ds) ,— (/ x(s)ds) 0 0 0 0 0
h \Ji-n, 1 \Jiq 0 0 0 0 0
U, = 0 0 0 0o 0f,
Note that I, <0 is not standard LMI due to the exis- 0 0 0 0 0
tence of parameter uncertainties, which will be further AB?,( P g 8 g 8
e . ~ . uAB* (1
dealt with via the following approach. I, can be written as | DT 0 0 0o o]
s [0 0 wPAC() O 0O
II, =11, + Al
1 1+ (1), « 0 0 0 0
where Uy =[x =« 0 0o o,
* * * 0 0
| * * * * 0
T = — PAA(t) — AAT (1)P.

According to Assumption 1, I, could be rewritten as
I, =11, + YITF()Y, + YITFT (1)1,

where
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i=[HP" 0o 0 0 O 0 0 O
YZZ[*Xl 0 0 0 0 0 0 X2

X, 0 0 X3 0 0.

By Lemma 3 and ||F(¢)|| <I, IT; <0 holds if and only if
there exists a positive scalar ¢ such that,

I + e 'Yly, + e¥ly, <0.

As a result, since (6) holds, it is deduced from (19) that
V(t) + 22V (t) <0. (21)
Then, we have

V(1) < V(KT )e 2=k, (22)
V(KT + ) < V(kT)e>*. (23)

Case 2 For t € [kT + 6, (k+ 1)T). The second subsystem
of (5) can be written as
X(t) = (C+ AC(1))x(t — (1)) — (A + AA(2))x(¢)
+ (B+ 4B(1))f (x(1)) + (D + AD(t))f (x(¢
t€ kT + 0, (k+1)T).

— h(1))),

It is easy to see that
24" (1)P[(C + AC(1))i(r — (1))
— (A + AA(0))x(1) + (B + AB(1))f (x(1))
+ (D4 4D(1))f (x(t — h(t))) — x(¢)] = 0.
From (10)—(16) and (24), we get that
V(1) + 20V (1) < ET(6) T2 E(2) + 29x" (1) Px(z)
<&M + 29V (1),

(24)

that is,
V() = 2(y — )V (1) < & () T2¢(r),

where IT, = I1, + AIl(r), and

@ Springer

fts = .
* =22
¥, O 0 Oy 0 0 0 ]
* Iy 0 0 0 0 0
* * Os;3 0 0 0 0
_&11_2 = % * * m 0 0 0
* * * * Oss 0 0
* * * * * e 0
L * * * * * * 1177
I PD —wATP 0 PC O  6e 2 % Vs
0 0 0 0 0 gn 0
. 0 0 0 0 0 0 0
Er2=| g 0 0 0 0 0 66’2”‘%%
0 0 0 0 0 0 0 l
0 LW, 0 0 0 0 0
L O 0 0 0 0 0 0
[Tss 0 uBTP 0 0 0 0
* flog  uD™P 0 0 0 0
* * o 10 0 uPC 0 0
Ep = * * * VISR 0 0 (U
* * * * IA712~12 0 0
* * * * * 1133 0
* * * * * * 1414 |

¥y =20P + Qi + Q2+ Q3 + Qs + Os + Q6 + Ry

1
+ TiRy — PA — ATP — 4¢= %M T
1

1
— 4e”H Vv, — LW,
T1

According to Assumption 1, IT, could be rewritten as

I, = I, + YTF(£)Y, + YT FT (1) Y.

By Lemma 3 and F” (¢)F(t) <1, IT, <0 holds if and only if
there exists a positive scalar e such that,

I + e 'YTy, + e¥ly, <0.
By using the condition (6), we have
V(1) =20y — V(1) = V(1) = 20V (1) <0, (26)

where p =7 — a.
Then, we have

V(1) < V(KT + §)e*=+1=9), (27)
V((k+ 1)T) < V(KT + §)e* T, (28)

From (23) and (28), we have
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V((k + I)T) < V(O)ef(kﬁL1)[235672;)(T75)]7

V(KT + 8) < V(0)e 220Ukt 1)+20(T=0)k

(29)
(30)

Therefore, on the one hand, for ¢ € [kT,kT + 9), from
(22) (29) and (7) we get

V( ) (kT) —20(t—kT)
(O)C k[200—2p(T— ())] —20(t—kT)
(O)e k[200—2p(T—9)] (31)
(0)e2yo 2p(T— 5 (20(572p(T70))M
SﬁIV(O) = (2w~ 2p ))7
where f5; = em S5 % On the other hand, for
t € [kT + 0, (k + 1)T), from (27), (30) and (7), we get
v() V(KT + §)e==0)
V(0)e ~223(k+1)+2p(T—8)k o 2p(1—KT ~0)
(O)e*Z“‘) (k1) +2p(T—8)k 2|l [(k+1)T—KT ~3] (32)
(O)ef(zxo 2pT 8)(k+1)T 2(|p|7p)(T7¢5)
— (200~ 7p(T )t
S ﬁZV(O) )

where f, = e2PI=P)T=9) Let p = max{p,,B,}. From (31)
and (32), we have

—(200—2p(T—0))t

V() <pV(0)e™ 7

Obviously, we have

. Vi>0. (33)
0
V(0) = x"(0)Px(0) +/ e*xT(5)01x(s)ds
0 0
2%x T d 2o T
+./7h2e 5)0a2x(s s+/ e x’ (5)Q3x(s)ds

0
+/ e x7 (5)Qux(s) d5+/ &> x7 (5)Qsx(s)ds
—

0

+ / e2xT(5)Qpx(s)ds + / / 25T ()R x(s)dsd6
-7(0) hy Jo

/ / 2557 (5)Raox(s)dsd0 + / 57 (5)81%(s)ds

-1, J0
-0

+ / ¥ 57 (5)S2%(s)ds + / / ¥ (5)Vy1(s)dsd0
—1(0) hy

//} 2t vzxrdvde+lh(o) 2 (x(5)) Usf (x(5) s

< NJig|I%,

where

N = /lmax(P) + hl/ﬂbmax(Ql) + hZ)Vmax(QZ)
+ Tlimax(QS) + TZ;Lmax(Q4) + hZXmax(QS)

h? 72
+ TZ£max(Q6) + ?l/bmax(Rl) + éjvmax(RZ)

h2
+ hZ/lmax(Sl) + TZ/Imax(SZ) +—= ) )»max(vl)
2. ]
+ E/Lmax(VZ) + h25ﬂtmax(U1 )7

6 = max{ (1), (1), ()" (1) (5)% (1)
Hence from (9), (33) and (34), we get

BN

il (33)

(@) <

Vvt >0.

As a result, according to Definition 1 and (35), neutral
neural network (1) with multiple time-varying delays is
robust a-exponentially stabilization under the intermittent
controller (4). Furthermore, the state-feedback intermittent
gain matrix is K = (PE)"'Z. The completes the proof of
Theorem 1.

We give the following assumption.

Assumption 3 The time delays A(f) and () are time-
varying function that satisfies

0<mh Sh(t)§h2<oo,

- 36
0<t<1(f) <1p<00, h=max{h,1,}, (36)

where /1y and 1, are the lower bound of A(z) and (z), h, and
1, are the upper bound of A(r) and (r) respectively.

Remark 1 Theorem 1 gives the robustly a-exponentially
stabilization criterion for system (1) with

0<h; <h(t)<hy<oco, h(t)<hy,
0<t <t(t) <mp<00, (1) <1y,

where h, and 1, are given constants. In many cases, h; and
14 are unknown. Considering this case, the following cri-
teria independent of derivatives of time delays are derived
as follows.

Theorem 2 Suppose that Assumption 2 and 3 are satis-
fied. For given constants o > 0 and 7, system (1) is robustly
o -exponentially stabilizable via intermittent state-feedback
controller (4), if there exist matrices P >0,
0;>0(i=1,2,3,4), R>0,V;>0, W;>0(j=1,2),
Z, K and positive scalars u > 0 and € > 0 such that

;= [‘“-f ‘_12'1} <0, j=1,2, (37)
* faol}
ad — p(T —6) > 0, (38)

where
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RZ 01 0 O 0 0 Proof In (8),let Qs =Q¢=0,5 =S5, =0, U; =0, and
* JIgs 0 0 0 0 replace (17) and (24) by the following equalities
= | * —e7%h(, 0 0 0 respectively
A * * * Jim 0 0 T -T .
., . R g, o 2u[x" (1) = & (1 = (1)) ]P[(C + AC(2))x(r — x(1))
L+ * . * I — (A+ 4A(1) — EK)x(1) + (B + 4B(1))f (x(1))
o PD-X[Xe @ T, 06 4P + (D+ AD()f (x(r — h(1))) = §(1)] =0,
0 0 0 0 o 0 0 .
1 I 2 (1) — & (1 — <()IPI(C + AC())ilr — (1))
i 0 o 0 0 A 0 — (A+ 4A(1))x(1) + (B + 4B(1))f (x(1))
0 0 o 0 0 0 0 T (D + AD(1))f (x(t — k(1)) - £(1)] = 0.
L O LW, 0 0 0 0 0
G G The proof is similar to the proof of Theorem 1, which is
= 1 2
EN L&) omitted. O
[T XXy pB'P X;Xs—pB'P Remark 2 Consider the neural network (1) with
G=|" s uD'P  XiX; — puD'P 1(t) = h(t), system (1) can be written as
* * Hgg ,uPC + ,LtP . .
L. . . oo X(t) = (C+AC(0)x(t — h(r)) = —(A + 4A(1))x(1)
00 0 + (B + 4B(1))f (x(2)) + (D 4+ AD(2))f (x(¢ — h(z)))
o ), 120,
i _
0 0 — uPH x(t) = (1), Vte [_hv 0],
Gs = diag(ITy 1,11, T 12,12, —el), (39)
Vi =20P+ Q1+ 0y + Q3 + Qs + Ry — LiW,

+ 1Ry —PA—ATP+ 7+ 77

_ 46—21}11 iV] _ 46—21I|
hy
Yy =20P+ 01+ 0>+ 03+ 0s+ Ry

1
+ TRy — PA — ATP — 4e7%*1 P
1

1 T
—Vy +eX| X1,
3!

1
— 4e7FM —Vy — LW, + eXTX),
T

M7 = PB+ LW, — X' Xs,

I'y = PC+ uPA — uZ — eX''Xs,
Iy = PC + uPA — eX1 X3,
&) = —pATP 4+ uz", @, = AP,

_ y w1
sz — _e—ZAIqu _ 46—24}11 h_vl
1

)

- _ 1
My = —e 271 Q5 — 4e™ 0 V2
I

Mg = —LiWa, [I77 = =W, + eX] X,
Hgg =Wy +eXj X4, p=7— 0,
Ilgo = Vi + 1,Vy — 2uP,

Mio,10 = —uPC — uC'P + X3 X3,

_ 1
H“'“ = *h18721h1R1 - 126725{}'l h—Vl,
1
ﬁ12,12 = —‘E]CizuT'Rz — 24— #PC — ,LLCTP,
a1 1
O = =27 —Vy, Oy = =2 —V,,
hy 71
) —20h 1 —201 1
016:66 'fV]7 A = 6e '*Vz.
hl T

Moreover, the gain matrix in the periodically intermittent
controller (4) is K = (PE)”'Z.

@ Springer

and then, we have the following corollary.

Corollary 1 Suppose that Assumption 1 and 2 are satis-
fied. For given constants o >0 and 7y, system (39) is
robustly o -exponentially stabilizable via intermittent state-
feedback controller (4), if there exist matrices P > 0,
0;>0(i=1,2,3,456), R >0, S§>0 V>0,
W; >0(=1,2), U >0, Z K and positive scalars 1 > 0
and € > 0 such that

I = l““d :1“1 <0, j=1,2, (40)
* ')}
a0 — p(T —9) >0 (41)
where
[Y, —2T 0 0
= | II> 0 0
S s e (01 0) 0|
L * * * 1744
[ s T, & PC—eXIX; 671  PH]
= _|o 0 0 0 6T, 0
A 0 0 0 0 0|
L 0 LW, 0 0 0 0 |
[Mss  eXIXy  uB™P eXIX; 0 0
* s uDTP  eXTX; 0 0
= | * Il upPC 0 uPH
2 * * * ﬁgg 0 0 '
% * * * gy 0
L % * * * * —el
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¥ =20P+ Qi+ Q2+ Qs + 04 + Qs + Qs [ 0o 0 0s 0 0 0
+ (R +Ry) —PA—ATP+ 7+ 77 SO 1 £ 0 0 0 0 0
1 * * 033 0 0 0 0
_ 42l " (Vi 4+ Va) — LiW, + X[ X, Enj=| o« . .l 0 0 o
. 0. 0 0
Vo=20P+ Q01+ +03+04+ 05+ 0 * * * * 55 (
T * * * * * I g6 0
+I’l1(R1+R2)_PA_AP L * * * * * * ﬁ77
1 - i :
— 40 (Vi Va) — LWy + XX, My PD 4 0 PC 0 GV,
1 1
s = PB+ LW, — eXT X, 0 0 0o 0 0 O 0
& = —pATP + uzT, &, = —puATP, . 0 0 0 0 0 0 01
8 1 R0 0 0o 0 0 0 eV,
Iy = —e M (Q) + Q3) — 42 E(V] +V,), 0 0 0 0 0 0 0 !
My = —(1 = ha)e >"(Qs + Qs) — LiWs, 8 Lz(‘)’Vz 8 g g ((: g
IIss = Uy — Wy + X3 Xp, Tr = PD — eXT Xy, - o
N~ ook T ngg 0 ,uBTP 0 0 0 0
Heo = —(1 — hg)e *"2Uy — Wa + X, Xa, ) e uD'P 0 o 0 0
II77 =85+ 5 + (Vi + Va) — 2uP, * * o0 0 upPC 0 0
Hgg = —(1 - h(l)6721h2(51 +5)+ €X3TX3, Ep=| * * * Iy 0 0 0o |,
¥ —20h Zoan, 1 * * * * M 0 0
Mo = _hle I(Rl * R2) e ‘h_l(v1 + V2)7 * * * * * 1713,13 0
* * * * * * ﬁ14,14_

1
Ty = e 2 Vit V), p=y-a

1

Moreover, the gain matrix in the periodically intermittent
controller (4) is K = (PE)"'Z.

Remark 3 Consider the neural network (1) without para-
metric uncertainty, system (1) can be written as

X(t) — Cx(t — 1(t)) = —Ax(t) + Bf (x(¢t))
+ Df (x(t — h())) + Eu(t), t>0, (42)
x(t) = ¢(t), Vte[—h,0],

and then, we have the following corollary.

Corollary 2 Suppose that Assumption 1 and 2 are satis-
fied. For given constants o. > 0 and 7y, system (42) is o-
exponentially stabilizable via intermittent state-feedback
controller (4), if there exist matrices P >0,
0;>0(=1,2,3,456), R >0, S>0, V>0,
W;>0(=1,2), Uy >0, Z, K and positive scalars > 0
and € > 0 such that

=" <0, j=1,2, (43)
* 522

ad — p(T —0) >0, (44)

where

P =20P + Qi + Q2+ Q3 + Q4+ Os + O + R,
+ TR —PA-ATP+7+ 2"

— 4= M Lv, — 47 lv2 — LW,
h] T
¥y =20P + Q1 + Qs + 03 + Q4 + 05 + 06
+ hR, + 7R, —PA—ATP
1
— 4e 27h|E
Iliy = PB+ LW, & =—pATP 4z,

1
V) — 4e72%0 = Vo — LiW,
1

, B 1
&y = —pATP, IIp=—e MQ| —de M h*Vl,
1

Iy = —e 2105 — e %sz
Hes = —(1 — ha)e 2205 — LW,
77 = —(1 = 1g)e 2 Qg llgs = Uy — W1,
oy = —(1 = hg)e 2 U; — Wy,
Moo =S +S2+ Vi 411V — 2uP,
My = —(1 = hg)e 228y,

I = —(1 - tg)e 228,

1 1
I35 = —hje 2R, — 12¢ %M FM’
!

, 1
Migps = —1ie Ry — 126720 ;N-, p=7y—o

1 1
0y, = —De 2 V1,014 = —2e 2 Vs,
hy T

O3 = —e 0, Oss = —e 70,
_ 1
016 = 667" — V).
16 © 7 1
Moreover, the gain matrix in the periodically intermittent

controller (4) is K = (PE)"'Z.

Remark 4 For given o > 0 and y, we note that (6), (37),
(40), and (43) are linear matrix inequalities which can be
solved efficiently by MATLAB LMI Toolbox.

Remark 5 The proposed intermittent state-feedback con-
troller can ensure robustly a-exponential stabilization of
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system (1) in Theorem 1. If o > 0 and y are given, the
feasibility problem of LMI can be solved to get a suit-
able stabilization controller gain.

4 Numerical examples

In this section, we will provide numerical examples to
illustrate the effectiveness and the merits of the obtained
results.

Example 1 Consider the following uncertain neutral neu-
ral networks with mixed time-varying delays

X(t) — (C+ AC(0)x(t — (1)) = —(A+ 4A(1))x(2)
+ (B + 4B(1))f (x(1)) + (D + AD(1))f (x(t — h(1)))
+ Eu(t), >0,

where

P

0 2 0 0.9
—0.01 0
C= ,
0 —0.01

0.04 0 2 0
b= [0.5 0.08}’ E= [0 2}’
f(x(r)) = (0.12tanh(x (7)), 0.12tanh(x,(r)))",
h(t) =0.05sin(r) +0.2, (1) = 0.05cos(t) 4 0.2.

The parametric uncertainties are given by

[4A(1) AB(t) AC(t) AD(t)] = HF (1)[X; X X3 Xa],

where
0.1 0.3 0.1 0
H = 5 Xl = )
0 0. 0.7 0.1
0.1 0.2
X2 = )
|: 0 0.1:|
[0.1 0.4} [0.1 0.6]
X3 = 5 X4 = )
0 0.1 0.8 0.1

and F(r) is unknown real time-varying matrix with
Lebesgue measurable elements bounded by

FT(t)F(t) <.

We have that [ =15 =0, =1 =0.12,h =
0.15,h2 :0.25,/’ld= 0.05,‘61 :0.15,‘62 :0.25,Td=
0.05. Take T =2,0 = 1.95, 4 = 0.7, = 0.001, y = 0.027.

By utilizing the MATLAB LMI Toolbox solving (6) and
(7), feasible solutions can be obtained as follows:

@ Springer

R0
Q:Q(t)

time (sec)

Fig. 1 The trajectories of x;(¢r) and x,(r) of system (45) via
intermittent control

49163 0.0484
N {0.0484 7.3599]’
{0.9855 0.0751} )
- . i=1,2,3,4,5,6,
0.0751  0.7639
[ 23.1202 77.6185}
R =R, = )
—7.6185 147255
3.8705  0.7055
Si=>5= {0.7055 5.7581}’
162639  —2.7538 162639  —2.7538
' {—2.7538 16.6249 } - {—2.7538 16.6249 }
5433057  —83.0160
' {—83.0160 573.2388 }
2427700  —67.0821
T {767.0821 91.9672 }
110.7938  —20.7812 4.1438 —1.0334
' {720.7812 74.2520 } B {71.0334 3.4752 }

Furthermore, a desired intermittent feedback gain matrix is
derived by utilizing Theorem 1:
0.4222

—0.1074
—0.0730 '

K=(PE)"'Z= { 0.2368

The intermittent feedback controller is
0.4222 —0.10747 [ x1(2)
[— 0.0730 0.2368 } |:)C2([):|

t € [2k, 2k + 1.95),
0, re2k+1.952(k+1)).

u(t) =

In the simulation, we take F(¢) = 0.5]. The trajectories of
x1(#) and x,(¢) of the closed-loop system (45) are shown in
Fig. 1. The results show that the exponential stability of the
closed-loop system can be achieved by using the proposed
method of this paper.
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Remark 6 1In [14], the system is not neutral type and has
no regard for the uncertain factors. So, the conditions in
[14] cannot deal with this problem in Example 1. However,
in practical neural networks, it is necessary to take
parameter uncertainties into account. Compared with [14],
the results obtained in this paper have a greater range of
applications.

Example 2 Consider the following neutral neural net-
works with mixed time-varying delays

X(t) — Cx(t — 1(t)) = —Ax(t) + Bf (x(¢t))
+ Df (x(t — h())) + Eu(t), t>0,

where
28 0 0.1 1 0.01 0
A= ,B= C= ,
{ 0 2} { 1 09} { 70.01}

N {%064 008} { }

f(x(1)) = (0.12 tanh(x, (1)) 0. 12tanh(x2( )7,
h(t) = 0.05sin(r) +0.2. 1(r) = 0.05cos(r) +0.2.

We have that Iy =15 =0, [[=1I03=0.12, h =
0.15,hy = 0.25,h; = 0.05,7; = 0.15, 7, = 0.25, 7, =0.05.
We take T =2,0 =195, u=0.7,a = 0.01,y = 0.027.

(40)

By utilizing the MATLAB LMI Toolbox solving (43)
and (44), feasible solutions can be obtained as follows:

10117 —1154 307.8868  —29.1719
1154 1028.8 } = {729.1719 277.9632 }
i=1,2,3,4,5,6,
5431801  —45.7232
Ri=R= [745.7232 506.7260}
157.5384  —23.6084
S1=5= {723.6084 210,0452}
6.0984  0.1734 450.6355  —31.1552
' {0.1734 6.2745]’ ' [—31.1552 356.8329]
1673.8  484.6 6813510  38.4059
e {484.6 1799.0}’ 2= { 38.4059 530.1901]’
6.0984  0.1734 10004 —236.9
2= {0.1734 6,2745}’ - {7236,9 3239 ]

Furthermore, a desired intermittent feedback gain matrix is
derived by utilizing Corollary 2 :
1.0234

—0.2418

. — 03177
K=(PE)"Z= 0.5847

The intermittent feedback controller is
1.0234 —0.31777 [x1(2)
[— 0.2418 0.5847 } Lg(t)} ’
t € [2k,2k + 1.95),
0, tr€2k+1.952(k+1)).

u(r) =

The trajectories of x1(f) and x,(f) of the closed-loop
system (46) are shown in Fig. 2. From Fig. 2, it is easy to
see that the closed-loop system is exponentially stable.

- - -zt
2t za(t)

-6 . . . . . . .
0 1 2 3 4 5 6 7 8

time(sec)

Fig. 2 The trajectories of x;(f) and x,(r) of system (46) via
intermittent control

5 Conclusion

This paper has addressed the problem of robust exponential
stabilization for a class of uncertain neutral neural net-
works with multiple time-varying delays via periodically
intermittent control. Based on Lyapunov—Krasovskii
functions method and some useful lemmas, the sufficient
conditions are derived to guarantee the exponential stabi-
lization of considered uncertain neutral neural networks in
terms of linear matrix inequalities technique. The obtained
sufficient conditions use more information of the upper and
lower delay bounds and can be easily solved using any of
the available standard software. Finally, numerical exam-
ples are given to show the effectiveness of the proposed
method.
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