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Abstract
This paper investigates the application of three artificial intelligencemethods, includingmultivariate adaptive regression splines

(MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) for the prediction of the mechanical

behavior of recycled aggregate concrete (RAC). A large and reliable experimental test database containing the results of 650

compressive strength, 421 elastic modulus, 152 flexural strength, and 346 splitting tensile strength tests of RACs with no

pozzolanic admixtures assembled from the published literature was used to train, test, and validate the three data-driven-based

models. The results of themodel assessment show that theLSSVRmodel provides improved accuracyover the existingmodels in

the prediction of the compressive strength of RACs. The results also indicate that, although all three models provide higher

accuracy than the existingmodels in the prediction of the splitting tensile strength of RACs, only the performance of the LSSVR

model exceeds those of the best-performing existing models for the flexural strength of RACs. The results of this study indicate

that MARS, M5Tree, and LSSVR models can provide close predictions of the mechanical properties of RACs by accurately

capturing the influences of the key parameters. This points to the possibility of the application of these three models in the pre-

design and modeling of structures manufactured with RACs.

Keywords Recycled aggregate concrete (RAC) � Mechanical properties � Least squares support vector regression
(LSSVR) � M5 model tree (M5Tree) � Multivariate adaptive regression splines (MARS)

1 Introduction

The high demand for concrete because of the rapid growth

in urbanization and industrialization has resulted in an

increase in the consumption of natural aggregates, which

typically makes up approximately 70% of the total volume

of concrete [1]. Furthermore, rapid industrialization and

urbanization have led to an increase in the generation of

construction and demolition (C&D) wastes, which conse-

quently resulted in the depletion of landfill space [2, 3].

Over the past two decades, recycled aggregate concrete

(RAC), obtained by crushing concrete sourced from C&D

waste, has been considered as an alternative concrete

material to conserve natural aggregate resources and to

minimize the environmental impact of C&D waste [4, 5].

During this period, a large number of studies have been

conducted to understand the mechanical behavior of RACs
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(e.g., [6–9]). Existing studies confirmed that compressive

strength, elastic modulus, flexural strength, and splitting

tensile strength are the main mechanical properties for

design and analysis of RACs [10–12]. In addition, a

comprehensive literature review [1] revealed that a number

of models have been proposed either based on experi-

mental test results of the original study [13, 37–48, 65–69]

or compiled databases from the results of previous studies

[14–18] to predict the mechanical properties of RACs.

However, owing to the limitations in the number of input

parameters considered, as well as the use of relatively

small number of test results in the calibration of most

existing models, these models are not generalizable.

Therefore, additional studies are needed to investigate the

mechanical properties of RACs using computationally

economical techniques based on a comprehensive test

database containing key input parameters.

Machine learning-based models have been extensively

used to predict the properties of concrete [19–22]. Recently,

with the development of computer-aided modeling methods,

the use of artificial intelligence techniques has been consid-

ered to predict the mechanical behavior of RACs. Younis and

Pilakoutas [23] used multilinear and nonlinear regression

methods to develop a model for the prediction of the com-

pressive strength of RAC. Duan et al. [24] and Sahoo et al.

[25] predicted the compressive strength of RAC using artifi-

cial neural network (ANN) technique. Deshpande et al. [26]

used ANN, M5Tree, and nonlinear regression methods for the

prediction of the compressive strength of RAC. Duan et al.

[27] and Behnood et al. [28] used ANN and M5Tree tech-

niques for the prediction of the elastic modulus of RAC,

respectively. Gonzalez-Taboada et al. [29] applied genetic

programming and multivariable regression methods for the

prediction of the compressive strength, elastic modulus, and

splitting tensile strength of RAC. Recently, Ozbakkaloglu

et al. [2] and Gholampour et al. [30] predicted the compres-

sive strength, elastic modulus, flexural strength, and splitting

tensile strength of RACs with the use of nonlinear regression

and gene expression programming methods, respectively.

However, most of these techniques were either computa-

tionally complex, unable to handle a large number of data-

bases, or unable to accurately capture the influences of the

key input parameters for solving nonlinear problems. There-

fore, more robust and simple artificial intelligence techniques

should be applied to predict the properties of RACs.

In recent years, data-driven techniques, such as multi-

variate adaptive regression splines (MARS), M5 model tree

(M5Tree), and least squares support vector regression

(LSSVR) models, have received a significant attention to

solve critical civil engineering problems. MARS is a

nonlinear and nonparametric regression method, and its

main advantages are efficiency and robustness to explore a

large number of intricate nonlinear relations and rapid

detection of interactions between them despite their com-

plexity [31]. M5Tree model is a binary decision tree with a

series of linear regression functions, and its main advan-

tages are the simple geometric structure and the ability to

efficiently handle a large number of datasets with different

attributes [32]. LSSVR is a statistical learning model,

which adopts a least squares linear system as a loss func-

tion instead of the quadratic program in the original support

vector machine (SVM) [33]. LSSVR solves a set of linear

equations by linear programming that is computationally

very simple [33]. Recent studies illustrated that because of

their main advantages of (1) easy handling of a large

number of databases, (2) computational simplicity, and (3)

strong ability of solving nonlinear problems, MARS,

M5Tree, and LSSVR models can be efficient alternatives to

existing artificial intelligence methods in solving key civil

engineering problems. Cheng and Cao [34] used MARS

model to predict the shear strength of reinforced concrete

beams. Behnood et al. [28] applied M5Tree model for the

prediction of the elastic modulus of RACs. Aiyer et al. [35]

applied LSSVR model to predict the compressive strength

of self-compacting concrete. Pham et al. [36] predicted the

compressive strength of high-performance concretes using

LSSVR model. However, no study has been reported to

date on the application of LSSVR and MARS models for

the prediction of the mechanical properties of RAC and

only a single study on the application of M5Tree model for

the prediction of the elastic modulus of RAC.

To address the above-mentioned research gaps, three

robust artificial intelligence techniques, namely MARS,

M5Tree, and LSSVR, were adopted in this study for the

prediction of the compressive strength, elastic modulus,

flexural strength, and splitting tensile strength of RAC.

Existing experimental test database of RACs is initially

presented, which is followed by the details of the three

models developed in this study. Subsequently, an assessment

of the prediction results of the three models is presented.

2 Experimental test database

The database of RAC, presented in Gholampour et al. [30],

was assembled based on 69 experimental studies published

in the open literature on RACs containing no pozzolanic

admixtures. The RAC database consisted of 332, 318, 421,

152, and 346 datasets, respectively, for compressive

strength of cube specimens (fcm,cube), compressive strength

of cylinder specimens (fcm,cylinder), elastic modulus (Ec),

flexural strength (fr), and splitting tensile strength (fst).
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The cylinder specimens had either a 100 or 150 mm

diameter and a 200 or 300 mm height; the cube specimens

had a dimension of either 100 or 150 mm; and beams had a

dimension of either 100 9 100 9 500 mm or 150 9

150 9 750 mm. Effective water-to-cement ratio (weff/c) of

specimens varied from 0.19 to 0.87, coarse recycled con-

crete aggregate replacement ratio (RCA%) varied from 0 to

100, aggregate-to-cement ratio (a/c) varied from 1.2 to 6.5,

bulk density of recycled concrete aggregate (qRCA) varied
from 1946 to 2720 kg/m3, water absorption of coarse recy-

cled concrete aggregate (WARCA) varied from 1.5 to 11.9%.

In addition, fcm,cube, fcm,cylinder, Ec, fr, and fst in the database

ranged from 18.9 to 104.3 MPa, 26.6 to 61.2 MPa, 12.5 to

50.4 GPa, 1.9 to 10.2 MPa, and 1.1 to 6.3 MPa, respec-

tively. The distribution of the histogram of the key param-

eters (i.e., weff/c, RCA%, a/c, qRCA, and WARCA) for the

specimens in the database is illustrated in Fig. 1.

3 Existing models for the prediction
of mechanical properties of RAC

Models proposed to date for the prediction of the

mechanical properties of RACs were assembled from 21

different studies, as previously presented in Gholampour

et al. [30]. All models contained closed-form expressions

obtained from regression analysis of the test results. Fur-

thermore, two sets of expressions recently proposed by

Gholampour et al. [30] through the use of gene expression

programming (GEP) and Ozbakkaloglu et al. [2] using

regression analysis were also considered in the present

study. Existing models include 11 models for compressive

strength [2, 15, 16, 23, 30, 37–39], 18 models for elastic

modulus [2, 13–15, 30, 40–47, 65, 66], six models for

flexural strength [2, 15, 30, 45–47], and eight models for

splitting tensile strength [2, 15, 16, 30, 43, 46–48] of RAC.
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d qRCA, and e WARCA
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4 Overview of MARS, M5Tree,
and LSSVR models

4.1 Multivariate adaptive regression splines
(MARS)

MARS is a form of regression analysis that was developed

by Friedman [31] for the prediction of continuous numer-

ical outcomes. Its algorithm consists of a forward and

backward stepwise procedure [49]. The backward proce-

dure removes the unnecessary variables among the previ-

ous selected set in the forward procedure to improve the

prediction accuracy. Therefore, the variable X is transferred

to variable Y using either of the following equations by an

inflection point along the input values [50]:

Y ¼ max 0;X � cð Þ or max 0; c� Xð Þ ð1Þ

in which c is a threshold value. In MARS, a function

applies for each input variable in forward–backward step-

wise procedure to find the location of the inflection point in

which the function value changes. MARS is a nonpara-

metric statistical technique in which piecewise curves and

polynomials give flexible results that can handle not only

linear but also nonlinear behavior [49]. Detailed informa-

tion about MARS is available in Ref. [50].

4.2 M5 model tree (M5Tree)

M5Tree model, which was originally proposed by Quinlan

[32], is based on a binary decision tree with a series of

linear regression functions at the terminal (leaf) nodes. In

the first stage, a decision tree is created by splitting the data

into subsets and assuming the standard deviation of class

values that reach a node as a measure of the error at that

node. Subsequently, the expected reduction in the error as a

result of testing each attribute at the node is calculated. The

standard deviation reduction (SDR), which is used to

describe the reduction in the error, is defined as follows

[51]:

SDR ¼ sd Tð Þ �
X Tij j

T
sd Tið Þ ð2Þ

where T, Ti, and sd represent a set of examples that reach

the node, subset of examples that have the ith outcome of

the potential set, and standard deviation, respectively.

Because of the splitting process, the standard deviation of

data in child nodes (i.e., lower nodes) becomes lower than

that of parent node. The split that maximizes the expected

error reduction is selected after examining all possible

splits [32].

4.3 Least squares support vector regression
(LSSVR)

LSSVR, proposed by Suykens and Vandewalle [33], is a

supervised learning method based on the principle of

structural risk minimization. By considering a given

training set of xk; ykf gNk¼1 with input data of xk 2 Rn and

output data of yk 2 R with class labels of yk 2 �1;þ1f g,
the linear classifier in the primal space is defined as:

y xð Þ ¼ sign wTu xð Þ þ b
� �

ð3Þ

in which b is a real constant. LSSVR is defined in dual

space for nonlinear classification as:

y xð Þ ¼ sign
XN

k¼1

akykK xTk ; x
� �

þ b

 !
ð4Þ

in which ak is a positive real constant and K xTk ; x
� �

is a

kernel function that is defined as u xkð Þ;u xð Þ, where u xð Þ is
a nonlinear map from original space to the high-dimen-

sional space. The following expression is used to estimate a

function:

y xð Þ ¼
XN

k¼1

akK xk; xð Þ þ b ð5Þ

In order to use radial basis function (RBF) kernel in the

modeling, two tuning parameters of c and r are added to

Eq. 5, in which c and r are regularization constant and

width of RBF kernel, respectively. The main advantage of

LSSVR compared to support vector regression (SVR) is the

use of the linear squares principle for the loss function in

the LSSVR. In the SVR, however, quadratic programming

is employed for this purpose, which is not computationally

efficient. Consequently, LSSVR is faster than the SVR in

computation [52]. Detailed information about LSSVR can

be obtained from Ref. [53].

5 Prediction of mechanical properties
of RAC

MARS, M5Tree, and LSSVR techniques were applied to

estimate the compressive strength, elastic modulus, flexural

strength, and splitting tensile strength of RAC. The main

parameters influencing the mechanical properties of RACs

were determined based on the accurate assessment of the

specimens in the database. Based on this assessment, it was

found that weff/c, RCA%, a/c, qRCA, and WARCA are the

most influential parameters on the mechanical behavior of

RACs. Therefore, these parameters were used as inputs to

the models. The number of data points available for the

validation and testing of the models was 171, 156, 224, 79,
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and 168 for fcm,cylinder, fcm,cube, Ec, fr, and fst of RACs,

respectively. For each model, 80% of the database was

used for training and validation of the models and

remaining 20% was used for testing. The results of the

three models were subsequently compared with the exist-

ing models using the root-mean-square error (RMSE),

mean absolute error (MAE), and mean absolute percentage

error (MAPE) (also referred to as the average absolute

error, AAE, in previous studies) statistics to evaluate the

performance of the three models. Definitions of these sta-

tistical indicators are given as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

Modi � Expið Þ2
s

ð6Þ

MAE ¼ 1

n

Xn

i¼1

Modi � Expij j ð7Þ

MAPE ¼ 1

n

Xn

i¼1

Modi � Expij j � 100

Expi
ð8Þ

where Modi and Expi are the estimated and experimental

values of mechanical properties of RAC and n is the

number of time steps.

An open-source code (http://www.esat.kuleuven.be/

sista/lssvmlab/) was used for the LSSVR model. Various

numbers from 1 to 100 were tried for c and r control

parameters. The optimal c and r values were calculated as

15.6 and 3.0 for fcm,cube, 17.1 and 3.3 for fcm,cylinder, 22.4

and 4.4 for Ec, 7.9 and 1.5 for fr, and 16.8 and 3.3 for fst of

RAC, respectively. For MARS and M5Tree techniques,

open-source codes (http://www.cs.rtu.lv/jekabsons/regres

sion.html) were used.

5.1 Compressive strength

In order to assess the accuracy of the compressive strength

models, their performance was evaluated using the test

database. Based on the available input parameters in the

test database, only six compressive strength models

[2, 15, 30, 38, 39] could be used in the model assessments,

among which three of them were for cube specimens and

three for cylinder specimens. The remaining models

[16, 23, 37] required specific inputs that were not available

in the database.

Table 1 shows the prediction statistics of MARS,

M5Tree, and LSSVR models and existing models for

fcm,cube of RAC. It can be seen in the table that the model

by Gholampour et al. [30] was the best-performing fcm,cube

model in the literature. However, LSSVR model provided

improved accuracy over the existing models in predicting

fcm,cube. This observation can be attributed to the ability of

the model to accurately capture the influences of the key

input parameters (i.e., weff/c, RCA%, a/c, qRCA, and

WARCA) in the analysis. Figure 2 shows the comparison of

MARS, M5Tree, and LSSVR model predictions with the

experimental fcm,cube at the validation stage. As can be seen

in the figure, LSSVR model developed a higher accuracy in

predicting fcm,cube of RACs than that of MARS and M5Tree

models.

Table 2 shows the prediction statistics of MARS,

M5Tree, and LSSVR models and existing models for

fcm,cylinder of RAC. As can be seen in the table, those by

Gholampour et al. [30] showed the best performance

among the existing models. It can be seen in Table 2 that

only LSSVR model performed better than the existing

models in predicting fcm,cylinder. Figure 3 shows the com-

parison of MARS, M5Tree, and LSSVR model predictions

with the experimental fcm,cylinder at the validation stage. As

can be seen in the figure, similar to the case of fcm,cube,

LSSVR model exhibited a higher accuracy in the predic-

tion of fcm,cylinder of RACs compared to that of MARS and

M5Tree models. This is attributed to the fact that LSSVR is

based on a learning method that is dependent on the sta-

tistical learning theory. In this method, the use of a regu-

larization parameter helps to avoid over-fitting in the

modeling [54].

5.2 Elastic modulus

Table 3 illustrates the prediction statistics of MARS,

M5Tree, and LSSVR models and existing models for Ec of

RACs. As can be seen in the table, Ozbakkaloglu et al. [2],

Table 1 Model predictions of cube compressive strength (fcm,cube) of RAC

Model Number of all datasets RMSE (MPa) MAE (MPa) MAPE (%) Specimen type

Xiao et al. [15] 74 11.3 4.7 12.7 Cube

Pereira et al. [38] 157 11.8 9.4 22.2 Cube

Gholampour et al. [30] 156 8.9 5.5 12.7 Cube

MARS 156 9.1 5.4 13.0 Cube

M5Tree 156 8.3 5.9 14.2 Cube

LSSVR 156 7.7 4.6 12.6 Cube

Neural Computing and Applications (2020) 32:295–308 299

123

http://www.esat.kuleuven.be/sista/lssvmlab/
http://www.esat.kuleuven.be/sista/lssvmlab/
http://www.cs.rtu.lv/jekabsons/regression.html
http://www.cs.rtu.lv/jekabsons/regression.html


Rahal [40], Corinaldesi [41], and Zilch and Roos [14]

models showed the best performance among the models in

the literature to predict Ec of RAC. As can also be seen in

Table 3, MARS, M5Tree, and LSSVR models provide

nearly identical accuracy to that of the best-performing

models in the literature in the prediction of Ec of RACs.

Furthermore, MARS, M5Tree, and LSSVR models pro-

vided improved accuracy over Gholampour et al. [30]

model in the prediction of Ec of RACs.

Figure 4 shows the comparison of MARS, M5Tree, and

LSSVR model predictions with the experimental Ec of

RACs at the validation stage. As can be seen in the figure,

LSSVR model developed a higher accuracy in predicting

the Ec of RAC than that of M5Tree and MARS models,

confirming the suitability of the LSSVR model for this

application.

5.3 Flexural strength

Table 4 illustrates the prediction statistics of MARS,

M5Tree, and LSSVR models and existing models for fr of

RACs. As can be seen in the table, the models by

Ozbakkaloglu et al. [2], Xiao et al. [15], and Gholampour

et al. [30] performed the best for the prediction of fr of

RAC among the existing models. It can be seen in

Table 4 that LSSVR model provided slightly higher

accuracy than those of the best-performing models in the

literature in the prediction of fr of RACs. Comparison of

MARS, M5Tree, and LSSVR model predictions with the

experimental results shown in Fig. 5 further illustrates the

better accuracy of the LSSVR model compared to that of

MARS and M5Tree models in the prediction of the fr of

RACs.

5.4 Splitting tensile strength

Table 5 illustrates the comparison of prediction statistics of

MARS, M5Tree, and LSSVR models with those of existing

models in predicting the fst of RAC. As can be seen in the

table, Ozbakkaloglu et al. [2], Tavakoli and Soroushian

[46], Xiao et al. [15], and Gholampour et al. [30] models

performed the best among the existing models. It can also

be seen in Table 5 that MARS, M5Tree, and LSSVR

models provided improved accuracy over these best-per-

forming models in the prediction of fst of RACs. The results
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Fig. 2 Compressive strength estimates of cube RAC (fcm,cube) by

aMARS, bM5Tree, c LSSVR models at the validation stage. Circle-,

triangle-, and cross-shaped points are data points for validation set 1,

2, and 3, respectively

Table 2 Model predictions of cylinder compressive strength (fcm,cylinder) of RAC

Model Number of all datasets RMSE (MPa) MAE (MPa) MAPE (%) Specimen type

Ozbakkaloglu et al. [2] 257 8.0 4.7 14.5 Cylinder

Thomas et al. [39] 257 8.1 4.8 14.6 Cylinder

Gholampour et al. [30] 171 7.9 5.3 14.5 Cylinder

MARS 171 8.4 6.4 16.3 Cylinder

M5Tree 171 8.2 6.4 16.5 Cylinder

LSSVR 171 7.4 4.6 14.3 Cylinder
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suggest that all the three models are suitable for the pre-

diction of the splitting tensile strength of RACs, which

varies with the considered input parameters in a highly

nonlinear fashion. However, in some cases, data-driven

models (e.g., MARS) may over-fit the data in training

period and provide lower accuracy in test period compared

to the simple models (e.g., regression method).

Figure 6 shows the comparison of MARS, M5Tree,

and LSSVR model predictions with the experimental fst
results of RACs at the validation stage. It can be seen in

the figure that LSSVR model provided higher accuracy

than that of MARS and M5Tree models in estimating the

fst of RAC.

6 Variation of model predictions
with influential parameters

In order to illustrate the variations of the model predictions

with key input parameters within a physically meaningful

framework, the variations of MARS, M5Tree, and LSSVR

model predictions of fcm,cube, fcm,cylinder, Ec, fr, and fst with

weff/c, RCA%, a/c, qRCA, and WARCA are investigated. As

was discussed in detail in Ref. [30], weff/c and RCA% have

an accumulative effect on the mechanical properties of

RACs. Therefore, the datasets used at the validation stage

were divided into two subgroups based on their RCA%

(i.e., RCA% of 0–50% and 51–100%) to better isolate the

individual effects of weff/c and RCA% on the mechanical

behavior of RACs.

Figures 7, 8, 9, 10, and 11 show the variation of model

predictions of fcm,cube, fcm,cylinder, Ec, fr, and fst of RACs

with weff/c at each RCA% interval, respectively. As can be

seen in the figures and as expected, an increase in weff/

c resulted in a decrease in each mechanical property of
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Fig. 3 Compressive strength estimates of cylinder RAC (fcm,cylinder)

by a MARS, b M5Tree, c LSSVR models at the validation stage.

Circle-, triangle-, and cross-shaped points are data points for

validation set 1, 2, and 3, respectively

Table 3 Model predictions of elastic modulus (Ec) of RAC

Model Number of all

datasets

RMSE

(GPa)

MAE

(GPa)

MAPE

(%)

Ozbakkaloglu et al.

[2]

351 3.09 2.23 10.8

Ravindrarajah and

Tam [13]

104 5.62 4.21 13.1

Kakizaki et al. [65] 33 4.51 3.64 10.9

Bairagi et al. [45] 104 6.76 5.55 19.1

de Oliveira and

Vazquez [66]

104 7.14 6.19 22.3

Tavakoli and

Soroushian [46]

104 6.55 5.29 16.8

Dillmann [67] 104 8.40 6.57 21.7

Dhir [68] 104 5.15 4.29 14.3

Zilch and Roos [14] 84 3.10 2.23 8.3

Kheder and Al-

Windawi [47]

172 6.76 8.12 18.7

Xiao et al. [15] 104 6.17 4.46 14.3

Rahal [40] 84 3.74 2.74 10.1

Corinaldesi [41] 172 3.85 3.13 10.1

Lovato et al. [16] 204 21.80 21.40 70.6

Hoffmann et al.

[42]

172 7.65 6.85 21.5

Pereira et al. [43] 82 10.54 9.07 31.1

Wardeh et al. [44] 104 5.79 4.86 17.2

Gholampour et al.

[30]

224 4.44 3.41 14.4

MARS 224 3.78 2.66 11.5

M5Tree 224 3.74 2.71 11.7

LSSVR 224 3.25 2.35 10.7
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Fig. 4 Elastic modulus (Ec) estimates of RAC by a MARS,

b M5Tree, c LSSVR models at the validation stage. Circle-,

triangle-, and cross-shaped points are data points for validation set

1, 2, and 3, respectively

Table 4 Model predictions of

flexural strength (fr) of RAC
Model Number of all datasets RMSE (MPa) MAE (MPa) MAPE (%)

Ozbakkaloglu et al. [2] 118 0.52 0.42 8.1

Bairagi et al. [45] 19 0.73 0.59 11.1

Tavakoli and Soroushian [46] 19 1.12 1.01 17.9

Kheder and Al-Windawi [47] 54 0.97 0.76 16.1

Xiao et al. [15] 19 0.52 0.45 8.1

Gholampour et al. [30] 79 0.54 0.45 8.3

MARS 79 0.58 0.49 9.2

M5Tree 79 0.55 0.48 8.6

LSSVR 79 0.52 0.41 8.0
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Fig. 5 Flexural strength (fr) estimates of RAC by a MARS,

b M5Tree, c LSSVR models at the validation stage. Circle-,

triangle-, and cross-shaped points are data points for validation set

1, 2, and 3, respectively
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RACs. It can also be seen in Figs. 7, 8, 9, 10 and 11 that

these properties decreased with increasing RCA% at a

given weff/c. It can be seen in the figures that all the three

models are able to accurately capture the effects of weff/

c and RCA% on the mechanical behavior of RACs to well

reproduce the test results.

Figures 12, 13, 14, 15 and 16, respectively, illustrate the

variation of fcm,cube, fcm,cylinder, Ec, fr, and fst of RACs with

a/c, qRCA, and WARCA. As can be seen in the figures, an

increase in a/c and qRCA resulted in an increase in each

mechanical property of RACs, whereas an increase in

WARCA led to a decrease in the mechanical properties of

RACs. These observations are in agreement with the pre-

vious studies [41, 55–64]. Therefore, all the three models

are capable of accurately predicting the trend of the vari-

ation of the mechanical behavior of RACs with key influ-

ential parameters.

7 Comparison of model predictions
with design code expressions

In order to investigate the agreement of predictions of

MARS, M5Tree, and LSSVR models of mechanical

properties of conventional concrete (RCA%= 0) with those

of existing design code and standard expressions, their

overall trends were compared, as shown in Fig. 17. Table 6

shows the existing code expressions given for the predic-

tion of Ec, fr, and fst of conventional concrete based on

mean and characteristic cylinder compressive strength

(fcm,cylinder and f0c,cylinder). Figure 17 shows the variation of

the predictions of Ec, fr, and fst by code expressions and

Table 5 Model predictions of splitting tensile strength (fst) of RAC

Model Number of all

datasets

RMSE

(MPa)

MAE

(MPa)

MAPE

(%)

Ozbakkaloglu et al.

[2]

307 0.51 0.48 15.9

Tavakoli and

Soroushian [46]

109 0.57 0.44 20.3

Kheder and Al-

Windawi [47]

139 0.77 0.65 23.1

Xiao et al. [48] 109 0.67 0.52 16.6

Xiao et al. [15] 109 0.52 0.46 16.6

Lovato et al. [16] 149 2.50 2.29 76.4

Pereira et al. [43] 58 0.78 0.57 17.3

Gholampour et al.

[30]

168 0.64 0.50 16.5

MARS 168 0.60 0.47 15.8

M5Tree 168 0.61 0.47 15.7

LSSVR 168 0.53 0.46 15.6
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MARS, M5Tree, and LSSVR models with f0c,cylinder. The
comparison of the results shown in Fig. 17 indicates that

the trends of the MARS, M5Tree, and LSSVR models are

consistent with the overall trend of the existing code

expressions for conventional concrete.

8 Conclusions

This paper has presented an investigation into the capa-

bility of three artificial intelligence models, including

MARS, M5Tree, and LSSVR, for the prediction of the
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compressive strength, elastic modulus, flexural strength,

and splitting tensile strength of RACs. The test database of

RAC was used to evaluate the performance of MARS,

M5Tree, and LSSVR models and existing models in the

literature. On the basis of assessment of modeling results,

the following conclusions can be drawn:

1. LSSVR model provides a higher accuracy for the

prediction of the compressive strength of cube and

cylinder RACs (MAPE = 12.6 and 14.3%, respec-

tively) compared to those of existing models.

2. The accuracy of MARS (MAPE = 11.5%), M5Tree

(MAPE = 11.7%), and LSSVR (MAPE = 10.7%)

models for predicting the elastic modulus of RAC is

nearly identical to that of best-performing existing

models.

3. MARS (MAPE = 9.2%) and M5Tree (MAPE = 8.6%)

models predict the flexural strength of RACs with a

slightly lower accuracy than that of the best-perform-

ing existing models, whereas LSSVR model (MAPE =

8.0%) performs better than the existing models.

4. All three models of MARS (MAPE = 15.8%), M5Tree

(MAPE = 15.7%), and LSSVR (MAPE = 15.6%) per-

form better than the existing models in the prediction

of the splitting tensile strength of RACs.

5. LSSVR model performs better than MARS and

M5Tree models in predicting the compressive strength,

elastic modulus, flexural strength, and splitting tensile

strength of RACs.

6. For conventional concrete, the predictions of the

MARS, M5Tree, and LSSVR models are in agreement

with those of the existing concrete design code

expressions.
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The results of this study indicate that MARS, M5Tree,

and LSSVR models can provide close predictions of the

mechanical properties of RACs by accurately capturing the

influences of the key parameters, including the effective

water-to-cement ratio, recycled concrete aggregate

replacement ratio, aggregate-to-cement ratio, bulk density

of recycled concrete aggregate, and water absorption of

recycled concrete aggregate. These findings are promising

and point to the possibility of the application of these

techniques in the pre-design and modeling of structures

manufactured with RACs.
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