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Abstract
Machine learning and computer vision have driven many of the greatest advances in the modeling of Deep Convolutional

Neural Networks (DCNNs). Nowadays, most of the research has been focused on improving recognition accuracy with

better DCNN models and learning approaches. The recurrent convolutional approach is not applied very much, other than

in a few DCNN architectures. On the other hand, Inception-v4 and Residual networks have promptly become popular

among computer the vision community. In this paper, we introduce a new DCNN model called the Inception Recurrent

Residual Convolutional Neural Network (IRRCNN), which utilizes the power of the Recurrent Convolutional Neural

Network (RCNN), the Inception network, and the Residual network. This approach improves the recognition accuracy of

the Inception-residual network with same number of network parameters. In addition, this proposed architecture gener-

alizes the Inception network, the RCNN, and the Residual network with significantly improved training accuracy. We have

empirically evaluated the performance of the IRRCNN model on different benchmarks including CIFAR-10, CIFAR-100,

TinyImageNet-200, and CU3D-100. The experimental results show higher recognition accuracy against most of the

popular DCNN models including the RCNN. We have also investigated the performance of the IRRCNN approach against

the Equivalent Inception Network (EIN) and the Equivalent Inception Residual Network (EIRN) counterpart on the

CIFAR-100 dataset. We report around 4.53, 4.49 and 3.56% improvement in classification accuracy compared with the

RCNN, EIN, and EIRN on the CIFAR-100 dataset respectively. Furthermore, the experiment has been conducted on the

TinyImageNet-200 and CU3D-100 datasets where the IRRCNN provides better testing accuracy compared to the Inception

Recurrent CNN, the EIN, the EIRN, Inception-v3, and Wide Residual Networks.

Keywords DCNN � RCNN � Inception network � Residual network � Deep learning

1 Introduction

Recently, deep learning using Convolutional Neural Net-

works (CNNs) has shown great success in the field of

machine learning and computer vision. The CNNs provide

state-of-the-art accuracy in various image recognition tasks

including object recognition [1], segmentation [2], human

activity analysis [3], image super resolution [4], object

detection [5], tracking [6], image captioning [7], and scene

understanding [5, 8]. Additionally, this approach has been

applied passively in video processing tasks including video

classification [9], video representation, and classification of

human activity [10]. Deep learning is applied in sentiment

analysis which is used for online movie recommendation

systems, in addition to other applications [11]. Deep learn-

ing approaches are used in the field of machine translation
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and natural language understanding, and they achieve state-

of-the accuracy in this application domain [12, 13]. Fur-

thermore, this technique has been used extensively in the

field of speech recognition [14]. Moreover, the deep learn-

ing technique is not limited to signal, natural language,

image, and video processing tasks; it has been successfully

applied in the field of game development [15, 16]. Machine

intelligence provides improved performance in many dif-

ferent fields including calculation, chess, memory, and

pattern matching, where as human intelligence still shows

better performance in the fields of object recognition and

scene understanding tasks. In the recent years, deep learning

techniques (DCNNs in particular) have been providing

outstanding performance for most of the tasks in computer

vision. The DCNN is a hierarchical feature learning

approach with multi-level and multi-scale abstraction of

features, which aids in the learning of global contextual

information from the input samples. However, there is still a

gap that must be closed before human level intelligence can

be achieved when performing visual recognition tasks. To

reach human level performance during recognition tasks, a

lot of research is dedicated to understanding the actual

process of recognition, as well as understanding the tasks of

the visual cortex in the human brain. Studies show that the

human brain processes visual information using operations

that are similar to convolution or filtering, activation,

pooling, and normalization with recurrent connectivity in

the visual cortex [17]. The recurrent connectivity of

synapses in the human brain plays a big role for context

modeling in visual recognition tasks [17, 18] (Fig. 1).

If we observe the structure of recently developed DCNN

models, most functionalities are included to design better

architectures which are successfully applied to segmenta-

tion, detection, and recognition tasks. However, the con-

cept of Recurrent Convolution Layers (RCLs) is included

in very few DCNN models, the most prominent being the

Recurrent Convolutional Neural Network (RCNN) [19], a

CNN with LSTM for object classification [20], a general

Recurrent Multilayer Perceptron (RMLP)for dynamic

control system [21] and the Inception RCNN (IRCNN) for

object recognition [22]. On the other hand, Inception [23],

and Residual [24, 25] architectures are commonly used for

solving computer vision tasks. The common practice in the

most recently developed Inception and Residual networks

is to implement larger and deeper networks to archive

better performance. As the model becomes larger and

deeper, the parameters of the network are increased dra-

matically. As a result, the model becomes more complex to

train and thus, more computationally expensive. Therefore,

it is very important to design an architecture which pro-

vides better performance using reasonably fewer numbers

of network parameters. While others are trying to imple-

ment bigger and deeper DCNN architectures like Goo-

gLeNet [26], or a Residual Network with 1001 layers [24]

to achieve high recognition accuracy on different bench-

mark datasets. We are presenting an improved version of

the DCNN model inspired by the recently developed

promising DCNN architectures like Inception-v4 [23],

Residual [25], and the RCNN [19]. The proposed model

not only ensures better recognition accuracy with same

number of network parameters against other DCNN

architectures, but also helps to improve the overall training

accuracy. The contributions of this work are as follows:

– A new deep learning model named the Inception

Recurrent Residual Convolutional Neural Network

(IRRCNN) is proposed.

– Empirical evaluation of the performance of the pro-

posed model against different DCNN models on

different benchmark datasets such as CIFAR-10,

CIFAR-100, TinyImageNet-200, and CU3D-100.

– Empirical investigation of the impact of the RCLs of

the IRRCNN against that of the equivalent inception

and inception-residual models on the CIFAR-100 and

TinyImageNet-200 datasets.

– Large scale implementation to investigate the learning

behavior of IRRCNN model and comparison against

Inception-v3 and WRN models on the CU3D-100

dataset.

The rest of the paper has been organized as follows: Sect. 2

describes related work, and Sect. 3 presents the theoretical

details of the IRRCNN model. Results and discussion are

provided in Sect. 4, and conclusions and future work are

discussed in Sect. 5.

Fig. 1 Visual information processing pipeline of the human brain, where v1 though v4 represent the visual cortex areas. The visual context areas

of v1 though v4 process information using recurrent techniques
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2 Related work

Most of the breakthroughs in the field of computer vision

(as well as the ImageNet challenges) have driven the

development of the different DCNN architectures in recent

years. The deep learning revolution began in 1998 with

[27]. From then on, several different architectures have

been proposed that have shown great success using many

different benchmark datasets including MNIST, SVHN,

CIFAR-10, CIFAR-100, ImageNet, and many more. Of the

DCNN architectures, AlexNet [1], VGG [28], NiN [29], the

All Convolutional Network [30], GoogLeNet [26], Incep-

tion-v4 [23], and the Residual Network [25] can be con-

sidered the most popular deep learning architectures due to

their outstanding performance on different benchmarks for

object classification tasks. In most cases, researchers

experiment with different models such as NIN, the All

Convolutional Network, VGG, GoogLeNet, Inception, and

Residual networks, and then select the best model for their

application based on the performance. Nevertheless, new

models, hybrid models, and optimized versions of existing

models have been proposed to achieve better accuracy with

less network parameters in the last few years. The concept

of Inception was introduced with GoogLeNet [26], and it

won the most difficult ImageNet challenge for visual object

recognition called the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) in 2014 with remarkably

few parameters. The main contribution of this network is to

reduce the network parameters drastically when compared

to the traditional CNN used in AlexNet. This model

introduced a new technique called an inception layer. This

approach is not only computationally convenient when

compared to the traditional approach, but it also provided

the best recognition accuracy in ILSVRC 2014. In terms of

network parameters and memory, GoogLeNet needs only

4M whereas AlexNet needs around 60M [26]. An improved

version of the Inception network was proposed by Szegedy

et al. in 2015, where they scaled up the Inception model

utilizing more computation with factorized convolution

and aggressive regularization [23, 31]. This model shows a

significant improvement in recognition accuracy on

ILSVRC 2012. In 2015, He et al. proposed a new DCNN

architecture called the Residual Network [25] and won the

most difficult ILSVRC in 2015. This deep learning tech-

nique achieves state-of-the-art recognition accuracy on

different benchmarks including ImageNet and CIFAR, as

well as on object detection and segmentation tasks on

PASCAL VOC and MSCOCO. This architecture is applied

to different application domains including machine trans-

lation [32], speech synthesis [33], speech recognition [34]

and audio classification [35]. Residual networks provide

the possibility of building deep network architectures with

thousands of layers resulting in significantly improved

recognition accuracy [24]. However, improving just a

fraction of a percentage in recognition accuracy requires

almost doubling the number of layers in the networks. As a

result, the number of model parameters and complexity

increases. Therefore, training with very deep networks

becomes very difficult due to diminishing feature reuse,

which makes the networks very slow to train. Research has

been conducted focusing on designing alternative models

that produce the same level of recognition accuracy like

SqueezeNet, which requires significantly less model

parameters [36]. To overcome the problem of training

complexity in residual networks, wide residual networks

(WRN) have been proposed [37], where the width (number

of feature maps) of the networks is increased instead of the

depth (number of layers). In 2016, the aggregated residual

network was also proposed which is a slight variant of the

basic residual network structure [38].

Most existing research has been concentrated on

improving recognition accuracy with different DCNN

models. Out of the many modes, very few studies are using

RCLs in their models. However, the recurrent approach is

very important for context modeling in sequential images

and videos. The RCNN structure was proposed for object

recognition tasks by Ming et al. in 2015 [19]. This deep

learning model contains several blocks of RCLs followed

by a max-pooling layer. The global max-pooling layer is

placed before the classification layer with Softmax at the

end. This model provided state-of-the-art accuracy for

object classification at that time [19]. In 2014, the Long-

term Recurrent Convolutional Network (LRCN) was pro-

posed for visual recognition and description by Donahue

et al. [20]. This architecture contains of two popular

techniques, the CNN and LSTM. The CNN technique is

used for feature extraction, and LSTM is applied to observe

how features vary with respect to time. This model shows

outstanding performance for visual description [20].

Moreover, some research is being conducted that empha-

sizes on bridging gap between machine and human intel-

ligence, where the proposed networks utilize recurrent

concepts using residual network models [39]. Inception and

Residual architectures are very prevalent in the computer

vision community. The success of both architectures in the

last few years has produced a new path of research that

focuses on the discovery of even better models with better

performance. Incorporating the new functionalities of

RCLs into these state-of-the-art models improves overall

recognition accuracy while utilizing the same number of

the network parameters. This will have significant impact

on the both computer vision and machine learning com-

munities. In this paper, we have proposed an improved

DCNN architecture based on Inception [23], Residual

networks [25] and the RCNN architecture [19]. Therefore,
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we call this model the Inception Recurrent Residual Con-

volutional Neural Network (IRRCNN).

3 IRRCNN architecture

The main objective of this model is to improve recognition

performance using the same number or fewer computa-

tional parameters when compared to alternative equivalent

deep learning approaches. In this model, the inception-

residual units utilized are based on Inception-v4 [23]. The

Inception-v4 network created by Szeged et al. in 2015 is a

deep learning model that concatenates the outputs of the

convolution operations with different sized convolution

kernels in the inception block [23]. Inception-v4 is a sim-

plified structure of Inception-v3 containing more inception

modules using lower rank filters. Furthermore, Incpetion-

v4 includes a residual concept in the inception network

called the Inception-v4 Residual Network, which improves

overall accuracy of recognition tasks. In the inception-

residual network, the outputs of the inception units are

added to the inputs of the respective units. The overall

structure of the proposed IRRCNN model is shown in

Fig. 2. From the figure, it can be clearly seen, that the

overall model consists of several convolution layers,

IRRCNN blocks, transition blocks, and a softmax at the

output layer.

The most significant part of this proposed architecture is

the IRRCNN block that includes RCLs, inception units,

and residual units (shown in detail in Fig. 3). The inputs

are fed into the input layer, then passed through inception

units where RCLs are applied, and finally the outputs of the

inception units are added to the inputs of the IRRCNN-

block. The recurrent convolution operations perform with

respect to the different sized kernels in the inception unit.

Due to the recurrent structure within the convolution layer,

the outputs at the present time step are added with the

outputs of previous time step. The outputs at the present

time step are then used as inputs for the next time step. The

same operations are performed with respect to the time

steps that are considered. For example, here k = 2 means

that 3 RCLs are included in IRRCNN-block. In the

IRRCNN-block, the input and output dimensions do not

change, this is simply an accumulation of feature maps

with respect to the time steps. As a result, the healthier

features ensure that better recognition accuracy is achieved

with the same number of network parameters.

The operations of the RCL are performed with respect to

the discrete time steps that are expressed according to the

RCNN [20]. Lets consider the xl input sample in the lth

layer of the IRRCNN-block and a pixel located at (i,j) in an

input sample on the kth feature map in the RCL. Addi-

tionally, lets assume the output of the network Ol
ijk tð Þ is at

the time step t. The output can be expressed as follows:

Ol
ijk tð Þ ¼ w

f
k

� �T

� xf i;jð Þ
l tð Þ þ wr

k

� �T � xr i;jð Þ
l t � 1ð Þ þ bk

ð1Þ

Here x
f i;jð Þ
l tð Þ and x

r i;jð Þ
l t � 1ð Þ are the inputs to the

standard convolution layers and for the lth RCL respec-

tively. The w
f
k and w

r
k values are the weights of the standard

convolutional layer and the RCL of the kth feature map

respectively, and bk is the bias. The outputs of RCL are fed

to the standard ReLU activation function f and are

expressed as:

y ¼ f Ol
ijk tð Þ

� �
¼ max 0;Ol

ijk tð Þ
� �

ð2Þ

Here f is the standard Rectified Linear Unit (ReLU)

activation function. We have also explored the perfor-

mance of this model with the Exponential Linear Unit

(ELU) activation function in the following experiments.

The outputs y of the inception units for the different size

kernels and average pooling layer are defined as y1�1 xð Þ,
y3�3 xð Þ, and y

p
1�1 xð Þ respectively. The final outputs of

Inception Recurrent Convolutional Neural Networks

(IRCNN) unit are defined as F xl;wlð Þ which can be

expressed as

Fig. 2 The overall layer flow diagram of proposed IRRCNN consisting of the IRRCNN-Block, the IRRCNN-Transition block, and the Softmax

layer at the end
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F xl;wlð Þ ¼ y1x1 xð Þ � y3x3 xð Þ � y
p
1x1 xð Þ ð3Þ

Here � represents the concatenation operation with

respect to the channel or feature map axis. The outputs of

the IRCNN-unit are then added with the inputs of the

IRRCNN-block. The residual operation of the IRRCNN-

block can be expressed by the following equation.

xlþ1 ¼ xl þ F xl;wlð Þ ð4Þ

where xlþ1 refers to the inputs for the immediate next

transition block, xl represents the input samples of the

IRRCNN-block, w1 represents the kernel weights of the lth

IRRCNN-block, and F xl;wlð Þ represents the outputs from

of lth layer of the IRCNN-unit. However, the number of

feature maps and the dimensions of the feature maps for the

residual units are the same as in the IRRCNN-block shown

in Fig. 3. Batch normalization is applied to the outputs of

the IRRCNN-block [40]. Eventually, the outputs of this

IRRCNN-block are fed to the inputs of the immediate next

transition block.

In the transition block, different operations are per-

formed including convolution, pooling, and dropout,

depending upon the placement of the transition block in the

network. We did not include inception units in the

transition block on the small-scale implementation for

CIFAR-10 and CIFAR-100. However, we have applied

inception units to the transition block during the experi-

ment using the TinyImageNet-200 dataset and for the

large-scale model which is the equivalent model of

Inception-v3 [31]. The down-sampling operations are per-

formed in the transition block where we perform max-

pooling operations with a 33 patch and a 22 stride. The

non-overlapping max-pooling operation has a negative

impact on model regularization, therefore we used over-

lapped max-pooling for regularizing the network which is

very important when training a deep network architecture

[26, 41]. Late use of a pooling layer helps to increase the

non-linearity of the features in the network, as this results

in higher dimensional feature maps being passed through

the convolution layers in the network. We have applied two

special pooling layers in the model with three IRRCNN-

blocks and a transition-block for the experiments that use

the CIFAR-10 or CIFAR-100 dataset. We used only 1� 1

and 3� 3 convolution filters in this implementation, as

inspired by the NiN [29] and Squeeze Net [34] models.

This also helps to keep the number of network parameters

at a minimum. The benefit of adding a 1� 1 filter is that it

helps to increase the non-linearity of the decision function

Fig. 3 The Inception Recurrent Residual Convolutional Neural

Network (IRRCNN) block consisting of the inception unit at the

top which contains recurrent convolutional layers that are merged by

concatenation, and the residual units (summation of the input features

with the outputs of the inception unit can be seen at the end of the

block)
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without having any impact on the convolution layer. Since

the size of the input and output features does not change in

the IRRCNN blocks, it is just a linear projection on the

same dimension and non-linearity is added to the RELU

and ELU activation functions. We used a 0.5 dropout after

each convolution layer in the transition block. Finally, we

used a softmax, or normalized exponential function layer at

the end of the architecture. For input sample x, weight

vector w, and k distinct linear functions, the softmax

operation can be defined for the ith class as follows:

pðy ¼ ijxÞ ¼ ex
T

wiPK
k¼1 e

xTwk

ð5Þ

This proposed IRRCNN model has been investigated

through a set of experiments on different benchmark

datasets and compared across different models.

Table 1 Statistics for the

datasets studied in these

experiments

Dataset Training samples Val./testing samples Total samples

CIFAR-10 50,000 10,000/10,000 (same) 60,000

CIFAR-100 50,000 10,000/10,000 (same) 60,000

TinyImageNet-200 100,000 10,000/10,000 (different) 120,000

CU3D-100 12,717 1413/4710 (different) 18,840

Fig. 4 Example images from the CIFAR-10 dataset
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4 Experimental results and discussion

The proposed IRRCNN model has been evaluated using

four different benchmark datasets: CIFAR-10 [36],

CIFAR-100 [36], TinyImageNet-200 [38], and CU3D100

[35]. The dataset statistics are provided in Table 1. We

used different validation and testing samples for the

TinyImageNet-200 dataset. The entire experiment was

conducted on a Linux environment with Keras [42] and

Theano [43] at the backend running on a single GPU

machine with an NVIDIA GTX-980Ti.

4.1 Experiments on CIFAR-10 and 100 datasets

In this experiment, we used two convolution layers at the

beginning of the architecture, three IRRCNN blocks fol-

lowed by three transition blocks, and one global average

pooling and Softmax layer at the end. First, we evaluated

the IRRCNN model using the stochastic gradient descent

(SGD) technique with the Keras 2.0 [42] default initial-

ization technique. We used momentum equal to 0.9 [39]

and decay equal to 9:99� e�7 in this experiment. Second,

we evaluated the same model with the Layer-sequential

unit-variance (LSUV) initialization method [44] and the

latest improved version of the optimization function called

EVE [45]. The hyper parameters for the EVE optimization

function are as follows: the value of learning rate kð Þ is

1� e� 4, decay cð Þ is 1� e� 4, b1 ¼ 0:9, b2 ¼ 0:9,

b3 ¼ 0:9, k ¼ 0:1, K ¼ 10, and � ¼ 1� e� 08. The values

b1; b2ð Þ 2 ½0; 1Þ are exponential decay rates for moment

estimation in Adam. The b3 2 ½0; 1Þ is exponential decay

rate for computing relative changes. The IRRCNN-block

uses the l2 � norm for a weight regularization of 0.002. We

used the ReLU activation function in the first experiment,

and the ELU activation is used in the second experiment. In

both experiments, we trained the networks for 350 epochs

with a batch size of 128 for CIFAR-10 and 100.

CIFAR -10 The CIFAR-10 dataset is a benchmark

dataset for object classification [36]. The dataset consists of

3232 color images split into 50,000 samples for training,

and the remaining 10,000 samples are used for testing

(classification into one of 10 classes) (Fig. 4). The exper-

iment was conducted with and without data augmentation.

When using data augmentation, we applied only random

horizontal flipping. Using this proposed approach, we have

achieved around 8.41% testing error without data aug-

mentation and 7.37% testing error with augmented data

(only horizontal flipping) using SDG techniques (Fig. 4).

The proposed model shows better recognition against

most of the DCNN models displayed in Table 2. Further-

more, improved performance is observed in the IRCNN

that used LSUV [44] initialization and the EVE [45]

optimization function. The results show a testing error of

around 8.17 and 7.11% without and with data augmenta-

tion respectively. It is also observed that the IRRCNN

shows better performance when compared to the equivalent

IRCNN model [21].

CIFAR -100 Another similar benchmark for object

classification was developed in 2009 [36]. The dataset

contains 50,000 samples for training and 10,000 samples

for validation and testing. Each sample is a 32� 32� 3

image, and the dataset has 100 classes. The proposed

IRRCNN model was studied with and without data aug-

mentation. During the experiment with augmented data, the

SGD and LSUV [44] initialization approaches and the EVE

optimization function were used [45]. In both cases, the

Table 2 Testing error (%) of the

IRRCNN on CIFAR-10 object

classification dataset without

and with data augmentation

Methods Number of Param. C10 C10?

Maxout [46] [ 6M 11.6 9.38

NiN [29] [ 1M 10.4 8.81

DSN [47] [ 1M 9.69 7.97

CNN?Prob. maxout [48] – 9.39 –

All-Conv. [30] – 9.08 7.25

Highway Net. [49] – – 7.72

RCNN [19] – 8.69 7.09

dasNet [50] – – 9.22

FitNet [51] [ 2:5M – 8.39

Residual Net. [25] – – 7.51

IRCNN ? SGD ? ReLU � 3:5M 8.41 7.37

IRCNN ? LSUV ? EVE ? ReLU � 3:5M 8.17 7.11

IRRCNN ? SGD ? ReLU � 3:5M 8.14 7.11

IRRCNN ? LSUV ? EVE ? ReLU � 3:5M 8.11 7.06

For unbiased comparison, we have listed the accuracy stated in recent studies using a similar experimental

setting. Here C10 refers without data augmentation and C10? refers with data augmentation

Bold numbers indicate the lowest testing errors
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proposed technique shows better recognition accuracy

compared with different DCNN models including the

IRCNN [21]. The validation accuracy of the IRRCNN

model for both experiments on CIFAR-100 with data

augmentation is shown in Fig. 5. The proposed IRRCNN

model shows better performance in the both experiments

when compared to the IRCNN [21], EIN, and EIRN

models. The experimental results when using CIFAR-100

are shown in Table 3. The IRRCNN model provides better

testing accuracy compared to many recently developed

methods. We have achieved 72.78% recognition accuracy

with LSUV?EVE which is around a 4.49% improvement

compared to one of the baseline RCNN methods with

almost the same number of parameters � 3:5Mð Þ [19].

4.2 Impact of recurrent convolution layers

A question may arise here is there any advantage of the

IRRCNN model against the EIRN and EIN architectures?

The EIN and EIRN models are implemented with a similar

architecture with same number of network parameters

� 3:5Mð Þ. We used sequential convolution layers with the

same time-step with the same size kernels instead of using

RCLs for implementing the EIN and EIRN models. In

addition, in the case of EIRN, we incorporated the residual

concept with an Inception-block like Inception-v4 [23].

Furthermore, we have investigated the performance of the

IRRCNN model against the RCNN with same number of

parameters on the TinyImageNet-200 dataset.

A possible second question may arise Is the IRRCNN

model providing better performance due to the use of

advance deep learning techniques? It is noted that LSUV

initialization approach applied to the DCNN architecture

called FitNet4 achieved 70.04% classification accuracy on

augmented data with mirroring and random shifts for

CIFAR-100 [51]. In contrast, we only applied random hor-

izontal flipping for data augmentation and achieved around

1.76% better recognition accuracy against FitNet4 [51].

The model accuracy for both training and validation are

shown in Fig. 5. From the figure, it is clearly observed that

this proposed model shows lower loss and highest recog-

nition accuracy compared to EIN and EIRN, which proves

the necessity of the proposed models. The testing accuracy

of IRRCNN, IRCNN, EIN, and EIRN are shown in Fig. 6.

It can be summarized that the proposed IRRCNN provides

around 1.02, 4.49, and 3.56% improved testing accuracy

compared to IRCNN, EIN, and EIRN respectively.

Fig. 5 Training and validation accuracy for IRRCNN, IRCNN, BIN,

and BIRN on CIFAR-100. The vertical and horizontal axis represents

accuracy and epochs respectively. Our proposed model shows the best

recognition accuracy in all cases

Table 3 Testing error (%) of the

IRRCNN on the CIFAR-100

object classification dataset

without and with data

augmentation

Methods Number of Param. C100 C100?

Maxout [46] [ 6M – 38.57

CNN?Prob. maxout [48] [ 6M – 38.14

NiN [29] [ 1:98M – 35.68

DSN [47] – – 34.57

dasNet [50] – – 33.78

All-Conv. [30] – – 33.71

RCNN-160 [19] 1.87M – 31.75

Highway Net. [49] – – 32.24

FitNet [51] – – 35.04

BO with DNN [52] – – 27.40

IRCNN ? SGD ? ReLU � 3:5M 34.13 31.22

IRCNN ? LSUV ? EVE ? ReLU � 3:5M 30.87 28.24

IRRCNN ? SGD ? ReLU � 3:5M 33.07 29.21

IRRCNN ? LSUV ? EVE ? ReLU � 3:5M 29.67 27.10

For unbiased comparison, we have listed the accuracy provided by recent studies in a similar experimental

setting. Here C100 refers without data augmentation and C100? refers with data augmentation

Bold numbers indicate the lowest testing errors
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4.3 Experiment on TinyImageNet-200

We also evaluated the proposed approach on the TinyI-

mageNet-200 dataset [45]. This dataset contains 100,000

samples for training, 10,000 samples for validation, and

10,000 samples for testing. These images are sourced from

200 different classes of objects. Some of the example

images are shown in Fig. 7. The main difference between

the main ImageNet dataset and Tiny ImageNet is the

images are down sampled from 224� 224 to 64� 64.

There are some negative impacts of down-sampling, like

loss of detail. Therefore, down sampling the images leads

to ambiguity, which makes this problem even harder and

this effects overall model accuracy. For this experiment,

we used the IRRCNN model with two general convolution

layers with a 3� 3 kernel at the beginning of the network

followed by sub-sampling layer with 3� 3 convolution

using a stride of 2� 2. After that, four IRRCNN blocks are

used followed by four transition blocks. Finally, a global

average pooling layer is used followed by a softmax layer.

We have experimented with the IRRCNN, IRCNN,

equivalent RCNN, EIN, and EIRN using the TinyI-

mageNet-200 dataset. The training accuracy of this

experiment is shown in Fig. 8. The proposed IRRCNN

model provides better recognition accuracy during training

compared to equivalent models including IRCNN, EIN,

and EIRN with almost the same number of network

Fig. 6 Testing accuracy of the proposed IRRCNN model against

IRCNN, EIN, and EIRN on the augmented CIFAR-100 dataset

Fig. 7 Sample images from the TinyImageNet-200 dataset
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parameters � 15Mð Þ. Generally, DCNN takes a lot of time

and power when training a reasonably large model. The

inception-residual networks with RCLs significantly reduce

training time with faster convergence and better recogni-

tion accuracy. The validation accuracy for all of these

models is shown in Fig. 9. We have evaluated our proposed

approach for both Top-1% and Top-5% testing accuracy as

shown in Fig. 10. From the bar graph, the impact of

recurrent connectivity is clearly observed, and we have

achieved 52.23% top-1% testing accuracy whereas the

EIRN and EIN show 51.14 and 45.63% top-1% testing

accuracy. The same behavior is observed for Top-5%

accuracy as well. The IRRCNN provides better testing

accuracy when compared against all other models in both

cases which absolutely displays the robustness of the pro-

posed deep learning architecture.

4.4 IRRCNN versus Inception-v3 and WRN
models

We have evaluated the IRRCNN model with large scale

implementation against the Ineption-v3 and WRN net-

works. The IRRCNN model is implemented with a similar

structure to the Incpeiton-v3 for impartial comparison. We

have used the default implementation of Keras version 2.0

and just incorporated the RCLs for k ¼ 2, where k ¼ 2ð Þ,
which means one forward convolution and two RCLs are

used in the Inception units and a residual layer is used at

the end of the blocks. The WRN is implemented according

to the structure described in [32]. We trained the networks

with the SGD optimization method with momentum 0.9 for

25 epochs.

4.4.1 CU3D-100 dataset

Another high quality visual object recognition dataset with

well-controlled images (e.g., object invariance, feature

complexity) is CU3D-100, which is suitable for evaluation

of new deep learning algorithms. This dataset contains

18,840 color images in total that have a dimension of 64�
64� 3 with 20 samples per exemplar [35]. Figure 11

shows some example images from the CU3D-100 dataset.

The images in this dataset are three-dimensional views

of real-world objects normalized for different positions,

orientations, and scales. The rendered images have a 400

depth rotation about the y-axis (plus a horizontal flip), a

200 tilt rotation about x-axis, and an 800 overhead lighting

rotation. We used 75% percent of the images for training

and the remaining 25% of the images for testing, which

were selected randomly from the whole dataset. The

example images in the fish category with different lighting

conditions and affine transformations are shown in Fig. 12.

Fig. 8 Training accuracy during training for TinyImageNet-200

dataset

Fig. 9 Validation accuracy on the TinyImageNet-200 dataset

Fig. 10 Top-1% and Top-5% testing accuracy on TinyImageNet-200

dataset
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4.4.2 Experimental results on CU3D-100 dataset

We have conducted two different experiments, and in first

experiment, the models are trained using the scratch and

transfer learning approach. The pretrained weights from the

ImageNet dataset are used for the second experiment. Both

experiments are conducted using the CU3D-100 dataset.

We considered an implementation of IRRCNN, which is an

equivalent of Inception-v3 that contains � 19:74M and

� 21:25M network parameters respectively. The WRN

model consists of deep and wide factors n ¼ 6 and k ¼ 6

respectively, and contains � 31:25M network parameters

[32, 53]. The entire dataset was first divided into two sets

where 75% of the (14,130) samples are used for training

and validation, and the remaining 25% (4710) of the

samples are used for testing. For the first experiment, using

14,130 samples, 10% of the samples are used for validation

during training. The training and validation accuracies for

25 epochs are shown in Fig. 13. Figure 13 shows that the

IRRCNN model exhibits lower error during training and

validation when compared to the Incpeiton-v3 and WRN

models.

In the testing phase of the first experiment, we have

achieved 99.81, 99.13, and 98.51% testing accuracy with

IRRCNN, Inception-v3, and WRN respectively. The

IRRCNN model shows 0.68 and 1.30% higher testing

accuracy against Inception-v3 and WRN respectively. A

recently published paper with sparse parameterization

back-propagation in a network with recurrent layers

reported about 94.6% testing accuracy on the CU3D-100

dataset [35], which is around 5.24% less testing accuracy

compared to this proposed IRRCNN model. In the second

experiment, the pre-trained ImageNet weights are used as

initial weights for IRRCNN and Inception-v3 models

Fig. 11 Example images of the CU3D-100 dataset
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where we have trained only a few of the layers at the top of

the models. The pretrained weights were taken from

GitHub [54]. The proposed model gives about 98.84%

testing accuracy whereas Inception-v3 model gives 92.16%

testing accuracy on the CU3D-100 dataset. The IRRCNN

model shows around 6.68% better testing accuracy com-

pared to the similar Inception-v3 model and clearly

demonstrates the impact of RCL and residual layers in the

models. This experiment also proves the robustness of the

IRRCNN model when dealing with scale invariance,

position and rotation invariance, and different lighting

condition input samples.

4.4.3 Trade-off between split ratio versus training,
validation,and testing errors

To further investigate the performance of the proposed

IRRCNN model, the trade-o between the split ratio versus

performance is investigated against Inception-v3 [31] and

WRN [32]. During this experiment, we used different split

ratios including [0.9, 0.7, 0.5, 0.3, and 0.1]. The number of

training and validation samples are taken according to the

split ratio where the number of training samples is

increased and the number of validation samples is

decreased in the trials respectively. For example, a split

ratio of 0.9 refers to only 10% of the samples (1423) being

used for training and remaining 90% of the samples

(12815) are used for validation, while a split ratio 0.7

means 30% of the samples are used for training and the

remaining 70% of the samples are used for validation and

so on. However, it can be also observed from the Fig. 13

that the models converged after 22 epochs. Therefore, in

each trial, we considered 25 epochs and the error here is the

average training and validation error for the last five

epochs.

Figure 14 shows the training and validation errors with

respect to split ratios. This figure shows that the proposed

IRRCNN model shows less training and validation errors

for five different trials in both cases. These results clearly

demonstrate that the IRRCNN is more capable at extract-

ing, representing, and learning features during the training

phase which ultimately helps to ensure better testing per-

formance. In each trial, we tested the models with the

remaining 25% of the samples, and the testing errors are

shown in Fig. 15. From this figure, it is clear that IRRCNN

shows the lowest error for almost all trails compared to

Inception-v3 [31] and WRN [32, 53].

Fig. 12 Sample images

displaying a nine examples

from the fish category, b nine

depth, tilt, and lighting

variations of the fish category,

and c nine affine transformation

images for a single view

Fig. 13 Training and validation error with respect to the number of epochs on the CU3D-100 dataset: left figure shows training accuracy and

right figure represents validation accuracy
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4.5 Computational time

The computational time of the proposed IRRCNN and

other equivalent models for different datasets are shown in

Table 4.

4.6 Introspection

From our investigation, we have observed that the pro-

posed IRRCNN model converges faster when compared to

the RCNN, EIR, EIRN, and IRCNN models which are

clearly evaluated using a set of experiments. The proposed

techniques provide promising recognition accuracy during

the testing phase with the same number of network

parameters compared with other models. In this imple-

mentation, we have augmented input samples by applying

only random horizontal flipping. From our observation, the

proposed model will provide even better recognition

accuracy with more augmentations including transition,

central crop, and ZCA.

5 Conclusion

In this paper, we have proposed the Inception Recurrent

Residual Convolutional Neural Network (in short

IRRCNN) for object recognition where we have utilized

the power of recurrent convolution neural layers for con-

text modulation based on the Inception and Residual Net-

work architectures. The experimental results show

promising recognition accuracy compared with different

Deep Convolutional Neural Network (DCNN) models on

different benchmarks including CIFAR-10, CIFAR-100,

TinyImageNet-200, and CU3D-100. However, the pro-

posed model has been evaluated with different advanced

training approaches including SGD, initialization with

Layer-sequential unit-variance (LSUV), and the recently

proposed optimization methods of EVE. The IRRCNN

model with LSUV and EVE achieved a promising object

recognition accuracy of 72.78% on the CIFAR-100 dataset

which is about a 4.53% improvement when compared to

the Recurrent Convolutional Neural Network (RCNN)

Fig. 14 The training and validation errors versus split ratio for five different trials on CU3D-100 dataset

Fig. 15 Testing accuracy of the IRRCNN model compared to that of

the Inception-v3 and WRN networks for five trials on the CU3D-100

dataset

Table 4 Computational training

time per epoch for four datasets
Model Dataset Time/epoch (in s)

IRRCNN/IRCNN/EIN/EIRN CIFAR-10 � 422

IRRCNN/IRCNN/EIN/EIRN CIFAR-100 � 425

IRRCNN/IRCNN/EIN/EIRN TinyImageNet-200 � 765

IRRCNN/Inception-V3 /WRN CU3D-100 � 978
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[20]. In addition, our model provides about 4.49 and 3.56%

improvement in recognition accuracy when compared with

Equivalent Inception Networks (EIN) and Equivalent

Inception-Residual Networks (EIRN) on the CIFAR-100

dataset. We have achieved better recognition accuracy with

IRRCNN when compared to EIRN, EIN, RCNN, and

IRCNN on the TinyImageNet-200 dataset. Furthermore,

the trade-off between split ratio and training and validation

errors is calculated to investigate the learning behavior of

the IRRCNN, Inception-v3, and WRN models. The pro-

posed IRRCNN shows better learning capability with less

error during the training and testing phases for all trails.

The IRRCNN shows 0.68 and 1.30% better testing accu-

racy compared to Inception-v3 and WRN. Based on all

experimental evaluations, it is clearly observed that the

proposed architecture shows better performance and

accelerates the training process, which is a big issue right

now for training large scale deep learning systems. In the

future, we would like to improve this model and explore

segmentation and detection tasks.
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