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Abstract
This paper investigates the problem of cluster lag synchronization in the heterogeneous dynamical networks by using an

intermittent pinning control strategy. Previous related works mainly focused on the time-varying delays in the self-

dynamics, which was not consistent with the real world. The transmission delay in the communication channels is

considered in this paper. We present several criteria to guarantee cluster lag synchronization without assuming the coupling

matrix being symmetric and irreducible. A decentralized adaptive intermittent pinning control scheme is employed to

reduce the control cost. An effective pinned-cluster selection scheme is adopted to guide what kind of clusters should be

pinned preferentially. Two simulations are proposed to verify the correctness of the theoretical results.

Keywords Lag synchronization � Cluster synchronization � Adaptive control � Intermittent pinning control �
Heterogeneous complex networks

1 Introduction

In the past few decades, the basic properties of complex

dynamical networks have been extensively studied [1–3]

and have attracted increasing attention, especially on the

issues of synchronization [4–6], the typical and interesting

collective behaviors. Hitherto, the cluster synchronization

and the related control problems have become a hot topic

[7–9]. The main reason lies in that it not only can well

explain many natural phenomena, but also has potential

applications in the areas of secure communication [10],

image processing [11], mechanical engineering [12], etc.

Certainly, one has already obtained many important results.

Zhang et al. [13] studied the cluster synchronization

problem in asymmetric negative coupling networks and

found that the couplings of one-node clusters to multi-node

clusters have beneficial effects in the cluster synchroniza-

tion. The authors of [14] investigated the cluster synchro-

nization problem of complex networks with stochastic

perturbations and non-identical nodes. Recently, Li et al.

[15] studied an attraction region for the frequency syn-

chronization on a class of symmetrically connected power

network systems, which was helpful to the insight into the

study of the stability of large power grids.

It is worth pointing out that time delay is of great

interest to many researchers in recent years [16–18]. For

instance, the stability of uncertain delayed and time-vary-

ing delayed neural networks was investigated in [16] and

[17], respectively. Huang et al. [18] analyzed the syn-

chronization of delayed chaotic systems with parameter

mismatches, etc. However, in real applications, there are

not only the time-varying delays in the self-dynamics but

also the transmission delay between the signal source and

destination. Namely, the signal received at the time t þ r is

always transmitted from the source at the time t. Therefore,

the research about cluster lag synchronization has an
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extremely vital significance in theory and practice. How-

ever, hitherto, in previous studies, only a few results have

been published.

Besides this, in the history of research on the network

control, controllers should be added on all nodes. However,

in actual applications, researchers find that it is impossible

to implement this requirement since there are a large

number of nodes in the super-network. With the gradual

development of the network theories, an effective control

technology, i.e., pinning control technology, is then put

forward and applied with great advantage. The controllers

only need to be added on a small percentage of nodes.

Chen et al. [19] analyzed the feasibility of the pinning

control scheme with the pinned nodes as little as possible

and proved that the pinning synchronization can be

achieved under some mild conditions. This efficient control

technology was also used for solving the cluster synchro-

nization problem in [20, 21]. Liu and Chen [22] studied the

exponential synchronization problem with the time-varying

delays by the pinning control scheme.

In the real world, it is also too expensive to implement

the controllers all the time. Therefore, some optimized

control technologies were put forward, for instance, the

impulse control technology [23], the sampled-data control

technology [24] and the event-triggered and self-triggered

technology [5, 25]. All these technologies are discontinu-

ous, which have attracted great interests and have been

used in practice widely. For the periodical intermittent

control technique, the control interval is assumed to be

periodic and each cycle consists of work time and rest time.

Liu and Chen [26] studied the problem of cluster syn-

chronization by employing this control technology, and

several conditions for synchronization were presented. The

authors of [27] discussed the finite-time synchronization

between two complex dynamical networks under this

periodically intermittent control. Cai et al. [28] investigated

the cluster synchronization of the complex networks with

the time-varying delays in the self-dynamics under the

intermittent pinning control scheme.

To the best of our knowledge, adaptive control has also

been used in many systems and applications [29–33]. In

recent years, there are a lot of works about this control

technology. For instance, an adaptive neural network

control was proposed in [31], which succeeds in controlling

the desired trajectory robustly to a small neighborhood of

zero and guarantees the boundedness of all the closed-loop

signals at the same time. In [33], the adaptive control was

adopted to handle system uncertainties and disturbances. A

common feature of these works is that there are fixed

pinned nodes or centralized nodes. Obviously, a more

reasonable adaptive approach is decentralized (or dis-

tributed), which only relies on local information instead of

global information of the whole network. A decentralized

adaptive intermittent pinning control scheme was investi-

gated for a class of discrete-time nonlinear hidden leader–

follower multi-agent systems in [34]. In [35], this control

scheme was adopted for the global synchronization of

complex directed dynamical networks. Although some

research was done about the synchronization problem in

[34–36], few works concerned the decentralized pinning

intermittent control about the cluster lag synchronization

problem. In this paper, we will solve this problem.

Enlightened by the above discussions, this paper aims at

investigating the cluster lag synchronization of the delayed

heterogeneous dynamical networks. Considering the

delayed dynamical complex networks that involve both the

transmission delay in communication channels and the

time-varying delays in self-dynamics simultaneously.

Several criteria are presented to guarantee a cluster lag

synchronization without assuming the coupling matrix

being symmetric and irreducible, which is very loose. In

addition, a decentralized adaptive intermittent pinning

control scheme is proposed to reduce the control cost.

Then, an effective pinned-cluster selection scheme is also

introduced to guide what kind of clusters should be pinned

preferentially. It is helpful to improve the cluster lag syn-

chronization efficiency.

The rest of this paper is organized as follows. Section 2

establishes an intermittent pinning-controlled complex

directed dynamical network model, which contains the

mixed delays we mentioned as above, and gives some

definitions, remarks and lemmas. Several criteria are pre-

sented in Sect. 3 to ensure the cluster lag synchronization,

and then, some theorems and corollaries are derived.

Besides this, a pinned-cluster selection scheme is intro-

duced in this section. In Sect. 4, the final control scheme is

proposed. Two simulations are provided in Sect. 5 to verify

the correctness of the theoretical results. Section 6 closes

the paper with a conclusion.

2 Preliminaries

Consider a standard directed complex network model with

N non-identical dynamical nodes, in which each node is an

n-dimensional dynamical system with the time-varying

delays in the self-dynamics. For i ¼ 1; 2; . . .;N, the net-

work can be described as

_xi tð Þ ¼ fi t; xi tð Þ; xi t � si tð Þð Þð Þ þ c
XN

j¼1;j 6¼i

bijC xj tð Þ � xi tð Þ
� �

;

ð1Þ

where xi tð Þ ¼ xi1 tð Þ; xi2 tð Þ; . . .; xin tð Þð ÞT2 Rn is an n-di-

mensional state variable of the node i. A continuous vector-

valued function fi : 0;þ1½ Þ � Rn � Rn ! Rn is used to
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control the evolution of the ith node. The time-varying

delays si tð Þ may be unknown (constant or time varying) but

be known by constraints, i.e., 0� si tð Þ� si, i ¼ 1; 2; . . .;N.

The positive constant c is the coupling strength. And the

coupling matrix B ¼ bij
� �

N�N
represents the network

topology structure, and if there is a directed link from the

jth node to the ith node (j 6¼ i), then bij [ 0; otherwise,

bij ¼ 0. This means that the network is directed and B is an

asymmetric coupling matrix. Furthermore, for

i ¼ 1; 2; . . .;N, the definition of the diagonal entry of the

matrix B is: bii ¼ �
PN

j¼1;j6¼i bij and thus
PN

j¼1 bij ¼ 0. The

inner connecting matrix C ¼ diag c1; c2; . . .; cnð Þ[ 0 is

used to describe the internal individual coupling between

nodes. The initial conditions of network (1) are obtained

from xi sð Þ ¼ ui sð Þ 2 C �s; 0½ �;Rnð Þ, i ¼ 1; 2; . . .;N, where

C �s; 0½ �;Rnð Þ represents the collection of all n-dimen-

sional continuous functions being defined on the range

�s; 0½ � with s ¼ max1� i�N si.
Assume that the collection of nodes in the network (1)

can be divided into m clusters with 1�m\N. Without loss

of generality, the kth cluster is indicated as Ck,

k 2 = ¼ 1; 2; . . .;mf g, and let

C1 ¼ 1; 2; . . .; r1f g;
C2 ¼ r1 þ 1; r1 þ 2; . . .; r1 þ r2f g;
. . .;
Cm ¼ r1 þ r2 þ � � � þ rm�1 þ 1; r1 þ r2f

þ � � � þ rm�1 þ 2; . . .; r1 þ r2 þ � � � þ rm�1 þ rmg;

where 1� rk �N and
Pm

k¼1 rk ¼ N. In many real-world

systems, such as metabolic, neural, gene regulation or

software networks, the independent nodes in each group

can be considered as functional units, see [2, 37, 38].

According to their functions, any pair of nodes in different

clusters is essentially different. Assume that the nodes from

the same cluster have the same dynamical behavior, while

the nodes from different clusters show the distinct behav-

iors. In this case, the dynamical behavior of each node from

the kth cluster can be expressed by

_xi tð Þ ¼ ~fk t; xi tð Þ; xi t � sk tð Þð Þð Þ; i 2 Ck: ð2Þ

Then, the directed delayed dynamical network (1) can

be described as

_xi tð Þ ¼ ~fk t; xi tð Þ; xi t � sk tð Þð Þð Þ þ c
XN

j¼1

bijCxj tð Þ; i 2 Ck:

ð3Þ

In this paper, we pay attention driving network (3) to the

cluster lag synchronization by employing the intermittent

pinning control scheme. For this purpose, a definition about

the cluster lag synchronization of a dynamical network is

given.

We first give some notations that will be used. A posi-

tive constant r is the transmission delay, and let sk t � rð Þ
denote the lag synchronous state for the cluster Ck. Then,

the desired cluster lag synchronous state of network (3)

denotes by s tð Þ ¼ s1 tð Þ; s2 tð Þ; . . .sm tð Þð Þ.

Definition 1 We say the cluster lag synchronization of

network (3) is realized, if the nodes of network (3) can be

divided into m clusters as mentioned above, such that, for

any node i 2 Ck, k 2 =, one has

lim
t!þ1

xi tð Þ � sk t � rð Þk k ¼ 0 and

lim
t!þ1

sk tð Þ � sj tð Þ
�� �� 6¼ 0; j 6¼ k:

According to the network (3), we know that each sk tð Þ
satisfies

_sk tð Þ ¼ ~fk t; sk tð Þ; sk t � sk tð Þð Þð Þ

þ c
Xm

p¼1

X

j2Cp

bijCsp tð Þ; i 2 Ck; k 2 =: ð4Þ

Apparently, for each i 2 Ck, the lag synchronous state

sk tð Þ in the same cluster should be uniform, see [38]. In

order to achieve the cluster lag synchronization of network

(3), we put forward the following assumption.

Assumption 1 Assume that the coupling matrix B ¼
bij
� �

2 RN�N of network (3) can be expressed by

B ¼

B11 B12 . . . B1m

B21 B22 . . . B2m

..

. ..
. . .

. ..
.

Bm1 Bm2 . . . Bmm

0
BBB@

1
CCCA:

Each block Buv ¼ bij
� �

2 Rru�rv u; v 2 =ð Þ is a matrix

that has the same sum of row, which means there exist

some constants buv; u; v 2 =, such that
P

j2Cv
bij ¼ buv,

i 2 Cu.

Remark 1 Based on Assumption 1, the cluster lag syn-

chronous manifold diagram of the network (3) satisfies

M ¼

xT
1 tð Þ; xT

2 tð Þ; . . .; xT
N tð Þ

� �T2 RnN :

x1 tð Þ ¼ x2 tð Þ ¼ � � � ¼ xr1
tð Þ;

xr1þ1 tð Þ ¼ xr1þ2 tð Þ ¼ � � � ¼ xr1þr2
tð Þ;

. . .

xr1þr2þ���þrm�1þ1 tð Þ ¼ xr1þr2þ���þrm�1þ2 tð Þ ¼ � � � ¼ xN tð Þ

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

:

It is an invariant manifold of network (3) and is a

precondition for the cluster synchronization [38]. Addi-

tionally, the information communication in the same

cluster is represented by each diagonal block in the matrix

B, and the information communication among different
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clusters is expressed by each non-diagonal block,

respectively.

Remark 2 In the traditional literature about the cluster lag

synchronization of the complex dynamical networks, each

block unit in the coupling matrix of the network is sup-

posed to be a zero-row-sum matrix. This condition is

introduced to ensure the cluster synchronization of the

network, see [39, 40]. This requests that the average of the

influence from the other cluster for each node is equal to

zero. In fact, it is relatively conservative. In this paper, we

assume that each block of the coupling matrix is an equal-

row-sum matrix; furthermore, the sum of each block can be

different. Therefore, the hypothesis is less conservative

than that in [39, 40].

Under Assumption 1, we can reduce formula (4) to

_sk tð Þ ¼ ~fk t; sk tð Þ; sk t � sk tð Þð Þð Þ þ c
Xm

p¼1

bkpCsp tð Þ;

k 2 =:
ð5Þ

Formula (5) is referred to as the cluster lag synchronous

form of network (3). One can clearly see that the values of

the cluster lag synchronous states are sets of un-decoupled

trajectories instead of decoupled ones. This is different

mostly from previous works [37, 39, 40], where the cluster

lag synchronous states were selected as the particular

solutions of the decoupled node systems when they worked

on the problems of synchronization, i.e.,

_sk tð Þ ¼ ~fk t; sk tð Þ; sk t � sk tð Þð Þð Þ.
To achieve the cluster lag synchronization of the

delayed dynamical network (3), an intermittent pinning

control scheme will be used. As is known, the nodes that in

the same cluster usually have the same properties. Thus,

while studying the cluster lag synchronization, each cluster

can naturally be seen as a whole [37]. According to this, we

put each cluster of the network (3) as a whole and control

part of them intermittently to achieve the cluster lag syn-

chronization. Let the first l 1� l\mð Þ clusters to be pinned,

without loss of generality, and then, we have the delayed

dynamical network under pinning control as

_xi tð Þ ¼ ~fk t; xi tð Þ; xi t � sk tð Þð Þð Þ þ c
Xm

p¼1

X
j2Cp

bijCxj tð Þ

þ ui tð Þ; i 2 Ck; 1� k� l;

_xi tð Þ ¼ ~fk t; xi tð Þ; xi t � sk tð Þð Þð Þ þ c
Xm

p¼1

X
j2Cp

bijCxj tð Þ;

i 2 Ck; 1 þ l� k�m:

8
>>>>><

>>>>>:

ð6Þ

The intermittent controllers ui tð Þ 2 Rn are defined as

ui tð Þ ¼ cdk tð ÞC sk t � rð Þ � xi tð Þð Þ; i 2 Ck; 1� k� l;

ð7Þ

where the intermittent feedback control gain dk tð Þ of the

cluster Ck is described by

dk tð Þ ¼ dk; xT � t\xT þ d; i 2 Ck; 1� k� l;
0; xT þ d� t\ xþ 1ð ÞT ; i 2 Ck; 1� k� l:

�

ð8Þ

where dk [ 0 is a constant, the control period T [ 0, the

control width d[ 0, and T � d is the non-control width,

where x ¼ 0; 1; 2; . . .. It is found that the control time of

controllers (7) is cyclical, and each period T is composed

by the work time d and the rest time T � d. As a result, the

control behavior is intermittent rather than continuous and

it can reduce the cost of control.

For i 2 Ck, k 2 =, define the synchronous errors as

eik tð Þ ¼ xi tð Þ � sk t � rð Þ. Let h ¼ d=T be the ratio of the

control width d to the control period T , which is also

referred to as the control rate. From the control law (8), the

error dynamical system is obtained as

where ~f sk ;rk t; xi; skð Þ ¼ ~fk t; xi tð Þ; xi t � sk tð Þð Þð Þ � ~fk t � rð Þ;ð
sk t � rð Þ; sk t � sk tð Þ � rð ÞÞ. For the error dynamical sys-

tem (9), if the zero solution is globally exponentially stable,

then obviously, for the pinning-controlled delayed

dynamical network (6), the global cluster lag synchro-

nization is achievable.

According to the above, the following assumption is

needed.

Assumption 2 For the vector-valued function
~fk t; x tð Þ; x t � sk tð Þð Þð Þ, supposing that there exist some

constants L0
k and Lsk � 0, such that, for any x tð Þ; y tð Þ 2 Rn

and k 2 =,

_eik tð Þ ¼ ~f sk ;rk t; xi; skð Þ þ c
Pm

p¼1

P
j2Cp

bijCejp tð Þ � cdkCeik tð Þ; xT � t\ xþhð ÞT; i 2 Ck; 1� k� l;

_eik tð Þ ¼ ~f sk ;rk t; xi; skð Þ þ c
Pm

p¼1

P
j2Cp

bijCejp tð Þ; xþhð ÞT � t\ xþ 1ð ÞT ; i 2 Ck; 1� k�m;

_eik tð Þ ¼ ~f sk ;rk t; xi; skð Þ þ c
Pm

p¼1

P
j2Cp

bijCejp tð Þ; xT � t\ xþhð ÞT; i 2 Ck; lþ 1� k�m;

8
><

>:

ð9Þ
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x tð Þ � y tð Þð ÞT ~fk t; x tð Þ; x t � sk tð Þð Þð Þ � ~fk t; y tð Þ;ð
�

y t � sk tð Þð ÞÞÞ
� L0

k x tð Þ � y tð Þð ÞTC x tð Þ � y tð Þð Þ
þ Lsk x t � sk tð Þð Þ � y t � sk tð Þð Þð ÞTC x t � sk tð Þð Þð
�y t � sk tð Þð ÞÞ:

Remark 3 Some requirements about the dynamical

change in the nodes in the cluster Ck are given in

Assumption 2. If the function ~fk t; xi tð Þ; xi t � sk tð Þð Þð Þ of

each node in the cluster Ck satisfies the Lipschitz condition

[41, 42], then

~fk t; x tð Þ; x t � sk tð Þð Þð Þ � ~fk t; y tð Þ; y t � sk tð Þð Þð Þ
� ��� ��

�K0
k x tð Þ � y tð Þk k þ Ks

k x t � sk tð Þð Þ � y t � sk tð Þð Þk k:

We can choose L0
k ¼

2K0
kþKs

k

2kmin Cð Þ and Lsk ¼
Ks

k

2kmin Cð Þ to satisfy

Assumption 1. In addition, almost all the famous chaotic

systems with or without delay also satisfy Assumption 1.

Such as Lorenz system, Chen system, Rössler system,

Chua’s circuit, as well as delayed Ikeda equations, delayed

cellular neural networks, and so on, see [41, 42].

Lemma 1 (Gershgorin disk theorem [43]) Let A ¼
aij
� �

n�n
be a complex matrix. For i ¼ 1; 2; . . .; n, define

R0
i Að Þ ¼

P
j¼1;j6¼i aij

�� �� as the absolute row sums of A be-

sides the diagonal elements, and consider the n Gershgorin

disks as

z 2 C z� aiij j �R0
i Að Þ

��� �
:

All the eigenvalues of A are included in the Gershgorin

disks set as

G Að Þ ¼
[n

i¼1

z 2 C z� aiij j �R0
i Að Þ

��� �
:

Lemma 2 (Schur complement [41]) The linear matrix

inequality

Q xð Þ U xð Þ
U xð ÞT

R xð Þ

	 

\0;

where Q xð Þ ¼ Q xð ÞT
, R xð Þ ¼ R xð ÞT

and U xð Þ is a matrix

with suitable dimensions, can be represented by one of the

following situations.

1ð Þ Q xð Þ\0; R xð Þ � U xð ÞT
Q xð Þ�1

U xð Þ\0;
2ð Þ R xð Þ\0; Q xð Þ � U xð ÞR xð Þ�1

U xð ÞT\0:

3 Intermittent pinning criteria for cluster
lag synchronization

We explore the stability condition of the delayed dynam-

ical network (6) under pinning control in this section and

introduce some criteria, which can be used to ensure that

the globally exponential stability with an intermittent

pinning control scheme is realizable. With Lemma 2, we

will show how to set the appropriate control parameters

dk k ¼ 1; 2; . . .; lð Þ, d and T in the delayed dynamical net-

work (6) such that the cluster lag synchronization is

reachable. For convenience, we will introduce the follow-

ing notations.

Let r0 ¼ 0, and for each i 2 Ck, k 2 =, let

aki ¼
P

j2Ck
bji þ bij
� �

, nki ¼
PN

j¼1 bji, Ak ¼ diag

akr0þr1þ���þrk�1þ1; . . .; a
k
r0þr1þ���þrk�1þrk

� �
and Wk ¼ diag

nkr0þr1þ���þrk�1þ1; . . .; n
k
r0þr1þ���þrk�1þrk

� �
:

Define two block diagonal matrices Z 2 RN�N and D 2
RN�N as

Z ¼

Z11 0 � � � 0 0 � � � 0

0 Z22 � � � 0 0 � � � 0

..

. ..
. . .

. ..
. ..

.
� � � ..

.

0 0 � � � Zll 0 � � � 0

0 0 � � � 0 Zlþ1;lþ1 � � � 0

..

. ..
. ..

. ..
. ..

. . .
. ..

.

0 0 � � � 0 0 � � � Zmm

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

and

D ¼

d1Ir1
0 � � � 0 0 � � � 0

0 d2Ir2
� � � 0 0 � � � 0

..

. ..
. . .

. ..
. ..

.
� � � ..

.

0 0 � � � dlIrl 0 � � � 0

0 0 � � � 0 0 � � � 0

..

. ..
. ..

. ..
. ..

. . .
. ..

.

0 0 � � � 0 0 � � � 0

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

;

where Zkk ¼ zij
� �

2 Rrk�rk ¼ Bs
kk þ 1

2
Wk þ L0

k

c

� �
Irk�1

2
Ak,

Bs
kk ¼ 1

2
Bkk þ BT

kk

� �
, k 2 = and Irj represents the rj-di-

mensional identity matrix, j ¼ 1; 2; . . .; l.

Theorem 1 Suppose that Assumptions 1 and 2 hold. If

there are two positive constants a1 and a2 such that

ðiÞ a1IN þ cZ � cD\0;
ðiiÞ cZ � a2IN � 0;
ðiiiÞ q� p1\0;
ðivÞ - ¼ k� p1 þ p2ð Þ 1 � hð Þ[ 0;

where p1 ¼ 2a1kmin Cð Þ, p2 ¼ 2a2kmax Cð Þ,
q ¼ 2 max1� k�m Lsk

� �
kmax Cð Þ, and the unique positive

solution of the equation k� p1 þ qeks ¼ 0 is k[ 0, then

the cluster lag synchronization of the delayed dynamical

network (6) can be realized.

Proof See ‘‘Appendix 1.’’ h

Remark 4 For a directed complex network with non-

identical time-varying delayed dynamical nodes,
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Theorem 1 presents a novel cluster lag synchronous con-

dition by combining the intermittent control technique with

pinning scheme. As far as we know, there is a little work

concerning the cluster lag synchronization of the hetero-

geneous complex dynamical networks with intermittent

pinning control. It should be emphasized that in this paper,

we discuss the cluster lag synchronization with both the

time-varying delays and transmission delay and treat each

cluster as a whole. Moreover, the desired cluster lag syn-

chronous states are chosen as a collection of uncoupled

trajectories instead of the particular solutions of the

decoupled node systems. Most of the existing researches on

the cluster lag synchronization problems are different with

the precondition that we set [37, 39, 40]. In addition, from

Theorem 1, we can see that the cluster lag synchronous

specification relies mostly on the control rate h rather than

the control width d or the control period T . With regard to

the actual problems, the cluster lag synchronization can be

realized by randomly selecting the control period T .

Theorem 1 provides a general control standard to ensure

that the cluster lag synchronization of the delayed

dynamical network (3) can be realized. However, how to

choose an appropriate control gain matrix D and a control

rate h is still not clear. Using Lemma 2 and the matrix

decomposition method [41, 44], some simplified versions

of Theorem 1 are constructed (see below). These simplified

versions are more convenient when estimating the control

rate and the control gains.

Let Q ¼ a1IN þ cZ, a1IN þ cZ � cD ¼ Q� cD ¼
G� c ~D 0

0T ~Q

	 

, d ¼ min1� k� l dk, where G and ~D are two

block diagonal matrices. The definitions of E and ~D are

G ¼

cZ11 þ a1Ir1
0 � � � 0

0 cZ22 þ a1Ir2
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � cZll þ a1Irl

0
BBBB@

1
CCCCA

and

~D ¼

d1Ir1
0 � � � 0

0 d2Ir2
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � dlIrl

0

BBBB@

1

CCCCA
:

Obviously, the real matrix Q is symmetric, and by

removing its first r1 þ r2 þ � � � þ rlð Þ row–column pairs,

the matrix ~Q is obtained. In virtue of Lemma 2, we can

verify that ~Q\0 and d[ a1

c
þ max1� k� l kmax Zkkð Þð Þ is

equivalent to Q� cD\0. If d can be large enough (we can

set di [ a1

c
þ max1� k� l kmax Zkkð Þð Þ, i ¼ 1; 2; . . .; l), then

Q� cD\0 is equivalent to ~Q\0.

Let Hkk ¼ #k
ij

� �
2 Rrk�rk ¼ Bs

kk þ 1
2
Wk � 1

2
Ak ¼ Zkk�

L0
k

c
Irk and � k ¼ kmax Hkkð Þ þ L0

k

c
; k 2 =.

Noticing that

~Q ¼

cZlþ1;lþ1 þ a1Irlþ1
0 � � � 0

0 cZlþ2;lþ2 þ a1Irlþ2
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � cZm;m þ a1Irm

0
BBB@

1
CCCA

and kmax Hkkð Þ�� k; k 2 =, the following corollary can

be concluded from Theorem 1.

Corollary 1 Suppose that Assumptions 1 and 2 hold. If the

intermittent feedback control gains di 1� i� lð Þ are large

enough, and there exists a positive constant a1 [ q
2kmin Cð Þ

such that

i0ð Þ � k\� a1

c
; lþ 1� k�m;

ii0ð Þ 1 � k
p1 þ p2

\h\1;

then the cluster lag synchronization of the delayed

dynamical network (6) is realizable.

An explanation of the notations in Corollary 1 is given.

The definitions of k, p1 and q are the same as Theorem 1,

and p2 ¼ 2ckmax Zð Þkmax Cð Þ. We set

di [ a1

c
þ max1� k� l kmax Zkkð Þð Þ.

Furthermore, assume that a1 is given as a0
1 [

q
2kmin Cð Þ.

We substitute a1 ¼ a0
1 into the equation k� p1 þ qeks ¼ 0,

where k ¼ / a0
1

� �
. Let di [

a0
1

c
þ max1� k� l kmax Zkkð Þð Þ and

p1 ¼ 2a0
1kmin Cð Þ. Besides this, the variables p2 and q are

the same with Corollary 1. Then, we can put the above

corollary in the following way.

Corollary 2 Suppose that Assumptions 1 and 2 hold. If the

intermittent feedback control gains di 1� i� lð Þ are large

enough, and there exists a positive constant a0
1 [

q
2kmin Cð Þ

such that

i00ð Þ � k\� a0
1

c
; lþ 1� k�m;

ii00ð Þ 1 �
/ a0

1

� �

p1 þ p2

\h\1;

then the cluster lag synchronization of the delayed

dynamical network (6) is realizable.

Remark 5 Corollary 2 allows us to simply determine the

control rate h and the feedback control gains di 1� i� lð Þ,
thus, the intermittent controller (7)–(8) can be conveniently

designed.
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Remark 6 An undirected delayed dynamical network can

be regarded as a special case of the directed delayed

dynamical network with symmetrically coupling matrix,

i.e., B ¼ BT. Therefore, the theoretical results that we

obtained in this paper establish the appropriate conditions

for the cluster lag synchronization of the undirected com-

plex dynamical delayed networks under the intermittent

pinning control.

In the above, we regard the each cluster as a whole and

put forward some low-dimensional specifications to ensure

that we can implement the cluster lag synchronization by

intermittently controlling a part of clusters of the delayed

dynamical network (3). But, how to choose these pinned

clusters? We make use of an effective scheme, which was

originally proposed in [28]. To facilitate the applications,

we give the selection scheme as follows. At first, the fol-

lowing notations are given.

Intra-InDeg i; kð Þ denotes the sum weights of the directed

edges e i; jð Þ with j 2 Ck into i 2 Ck, i.e., the intra-in-degree

of the ith node of the cluster Ck [38]. Extra-InDeg i; kð Þ
denotes the sum weights of the directed edges e i; jð Þ with

j 62 Ck into i 2 Ck, i.e., the extra-in-degree of the ith node

in the cluster Ck [38]. Similarly, Intra - OutDeg i; kð Þ
denotes the sum weights of the directed edges e j; ið Þ with

j 2 Ck from i 2 Ck, i.e., the intra-out-degree of the ith node

in the cluster Ck [38]. Extra-OutDeg i; kð Þ denotes the sum

weights of the directed edges e j; ið Þ with j 62 Ck from

i 2 Ck, i.e., the extra-out-degree of the ith node in the

cluster Ck [38]. In addition, InDeg i; kð Þ and OutDeg i; kð Þ,
respectively, denote the in-degree and the out-degree of the

ith node of the cluster Ck [38]. According to the definition

about the coupling matrix B of network (1), for any i 2 Ck,

one has

Intra-InDeg i; kð Þ ¼
P

j2Ck ;j6¼i bij and Extra-InDeg

i; kð Þ ¼
Pm

p¼1;p 6¼k

P
j2Cp

bij;

Intra-OutDeg i; kð Þ ¼
P

j2Ck ;j 6¼i bji and Extra-OutDeg

i; kð Þ ¼
Pm

p¼1;p 6¼k

P
j2Cp

bji;

InDeg i; kð Þ ¼ Intra-InDeg i; kð Þ þ Extra-InDeg i; kð Þ ¼PN
j¼1;j6¼i bij ¼ �bii;

OutDeg i; kð Þ ¼ Intra-OutDeg i; kð Þ þ Extra-OutDeg i; kð Þ
¼
PN

j¼1;j 6¼i bji:

Furthermore, Intra-InDeg kð Þ stands for the sum of the

intra-in-degree for all nodes of the cluster Ck, i.e., the intra-

in-degree of the cluster Ck in network (1) [38].

Extra-InDeg kð Þ denotes the sum of the extra-in-degree for

all nodes of the cluster Ck, i.e., the extra-in-degree of the

cluster Ck in network (1) [38]. Similarly, define

Intra-OutDeg kð Þ (Extra-OutDeg kð Þ) as the intra(extra)-out-

degree of the cluster Ck in network (1). This means the sum

of the intra(extra)-out-degree for all nodes of the cluster Ck

[38]. Additionally, define InDeg kð Þ and OutDeg kð Þ as the

in-degree and the out-degree of the cluster Ck in network

(1), respectively [38]. Then, we have

InDeg kð Þ ¼
X

i2Ck

InDeg i; kð Þ

¼
X

i2Ck

Intra-InDeg i; kð Þ þ Extra-InDeg i; kð Þð Þ

¼ Intra-InDeg kð Þ þ Extra-InDeg kð Þ;

OutDeg kð Þ ¼
X

i2Ck

OutDeg i; kð Þ

¼
X

i2Ck

Intra-OutDeg i; kð Þ þ Extra-OutDeg i; kð Þð Þ

¼ Intra-OutDeg kð Þ þ Extra-OutDeg kð Þ

and

OutDeg kð Þ � InDeg kð Þ ¼
X

i2Ck

OutDeg i; kð Þ � InDeg i; kð Þð Þ

¼
X

i2Ck

XN

j¼1;j 6¼i

bji �
XN

j¼1;j6¼i

bij

 !
¼
X

i2Ck

XN

j¼1

bji:

Obviously, the information about the intra-cluster

communication is represented by the intra-in-degree and

the intra-out-degree of the cluster, and the information

about the inter-clusters communication is represented by

the extra-in-degree and the extra-out-degree of the cluster.

In order to meet the control condition i00ð Þ, at least we

need to choose some pinned nodes to make

� k\0; lþ 1� k�m. To achieve this purpose, based on

the degree information of each cluster defined as above, we

give the following theorem.

Theorem 2 For any k 2 =,

kmax Hkkð Þ� maxi2Ck
OutDeg i; kð Þ � InDeg i; kð Þð Þ

2
: ð10Þ

In particular, for some k, if

maxi2Ck
OutDeg i; kð Þ � InDeg i; kð Þð Þ\0, then

kmax Hkkð Þ\0.

Proof Noting Hkk ¼ #k
ij

� �
2 Rrk�rk ¼ Bs

kk þ 1
2
Wk � 1

2
Ak,

then for any i 2 Ck,

#k
ii þ

X
j2Ck ;j 6¼i

#k
ij

���
��� ¼

X

j2Ck

bij þ bji

2

 !
þ nki

2
� aki

2

¼ 1

2

X

j¼1;j 6¼i

bji

 !
þ 1

2
bii

¼ OutDeg i; kð Þ � InDeg i; kð Þ
2

:

ð11Þ

Let kk be an eigenvalue of Hkk. According to Lemma 1,

we get
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kk �
[

i2Ck

z 2 R z� #k
ii

�� ���
X

j2Ck ;j 6¼i
#k
ij

���
���

���
���

n o
: ð12Þ

With (12), we have

kk � max
i2Ck

OutDeg i; kð Þ � InDeg i; kð Þð Þ=2; ð13Þ

and if maxi2Ck
OutDeg i; kð Þ � InDeg i; kð Þð Þ\0, then kk\0.

The proof is thus completed. h

Remark 7 Theorem 2 provides some useful guidance

about how to set up the pinned clusters to achieve the

cluster lag synchronization. For k 2 =, define

DiffDeg kð Þ ¼ OutDeg kð Þ � InDeg kð Þ

as the difference between the out-degree and the in-degree

of the cluster Ck. Noticing that for any k 2 =, one has

maxi2Ck
OutDeg i; kð Þ � InDeg i; kð Þð Þ�DiffDeg kð Þ=rk.

Thus, if the out-degrees of some unpinned clusters are

bigger than their in-degrees, then according to Theorem 2,

for those clusters which are not be pinned, we have

kmax Hkkð Þ[ 0. Namely, condition i00ð Þ may not be met.

This means that, to satisfy condition i00ð Þ, these clusters

whose out-degrees are bigger than their in-degrees should

be chosen as pinned candidates preferentially. Based on

Theorem 2 and condition i00ð Þ, we adopt the following

special pinned scheme to choose the pinned clusters for the

delayed dynamical networks:

1. Define a cluster information vector

CluInf kð Þ ¼ L0
k

c
þ 1

2
max
i2Ck

OutDeg i; kð Þ � InDeg i; kð Þð Þ;
k 2 =:

2. Select the cluster which has zero-in-degrees as the

clusters be pinned firstly.

3. According to the value of CluInf kð Þ, rearrange the rest

of the clusters in descending order. For those clusters

having the same CluInf kð Þ, rearrange them in descend-

ing order according to their out-degrees. According to

the sequence of the cluster information to increase the

number of clusters to be pinned until the restrain

condition i00ð Þ holds. In addition, from condition i00ð Þ,
we know that the number of clusters being selected and

pinned to achieve the cluster lag synchronization of the

delayed dynamical network (6) is at least equal to l0
which is bounded by

� l0�1 � � a0
1

c
and � l0\� a0

1

c
:

4 Adaptive intermittent pinning control
scheme

In order to realize the cluster lag synchronization of the

dynamical delayed network (6), we can set the intermittent

feedback control gains according to the following

condition.

di [
a0

1

c
þ max

1� k� l
kmax Zkkð Þð Þ; i ¼ 1; 2; . . .; l: ð14Þ

Unfortunately, the theoretical values, i.e., the intermit-

tent feedback control gains given by condition (14), are

usually bigger than the actual need. In practice, however, it

cannot be realized if the control gains are too large [19]. To

make the control gains as small as possible for practical

applications, a better way is to adjust the gains by an

adaptive intermittent feedback control approach. In this

section, by introducing a local adaptive strategy for the

intermittent feedback control gains, a decentralized adap-

tive intermittent pinning control scheme is proposed in

order to realize the cluster lag synchronization of the

delayed dynamical network (3).

Theorem 3 Suppose that Assumptions 1 and 2 hold, and

there are l clusters being pinned such that condition i00ð Þ
satisfies. With the adaptive intermittent pinning control

(16), if

1 �
/ a0

1

� �

p1 þ p2

\h\1; ð15Þ

then the cluster lag synchronization of the network (6) with

transmission delay r can be realized.

Proof See ‘‘Appendix 2.’’ h

The variables a0
1, p1 and p2 are the same as that in

Corollary 2, and Eq. (16) is given in the following:

ui tð Þ ¼
�cdk tð ÞCeik tð Þ; xT � t\ xþ hð ÞT ; i 2 Ck; 1� k� l;

0; otherwise,

�

ð16Þ

where eik tð Þ ¼ xi tð Þ � sk t � rð Þ, with the adaptive rules
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_dk tð Þ ¼ hk
X

i2Ck

eik tð ÞTCeik tð Þ; xT � t\ xþ hð ÞT ; ð17Þ

where for k ¼ 1; 2; . . .; l, the initial conditions dk 0ð Þ� 0

and constants hk [ 0. Assume that dk t�x
� �

¼ limt!t�x dk tð Þ
exists and dk xþ 1ð ÞTð Þ ¼ dk t�x

� �
, where tx ¼ xþ hð ÞT .

When the transmission delay r ¼ 0, the values of a0
1, p1

and p2 keep the same with Theorem 3. Theorem 3 reduces

to the following result.

Theorem 4 Suppose that Assumptions 1 and 2 hold, and

there are l clusters being pinned such that condition i00ð Þ
satisfies. With the adaptive intermittent pinning control

(19), if

1 �
/ a0

1

� �

p1 þ p2

\h\1; ð18Þ

then the cluster synchronization of the network (6) can be

realized.

Equation (19) is given in the following:

ui tð Þ ¼
�cdk tð ÞC xi tð Þ � sk tð Þð Þ; xT � t\ xþ hð ÞT ; i 2 Ck; 1� k� l;

0; otherwise;

�

ð19Þ

with the adaptive rules

_dk tð Þ ¼ hk
X

i2Ck

xi tð Þ � sk tð Þð ÞTC xi tð Þ � sk tð Þð Þ;
xT � t\ xþ hð ÞT;

ð20Þ

where for k ¼ 1; 2; . . .; l, the initial conditions dk 0ð Þ� 0

and constants hk [ 0. Assume that dk t�x
� �

¼ limt!t�x dk tð Þ
exists and dk xþ 1ð ÞTð Þ ¼ dk t�x

� �
, where tx ¼ xþ hð ÞT .

Remark 8 In [28], the cluster synchronization under the

intermittent pinning control has been studied; however, the

authors ignored the transmission delay in the process of

communication. In this paper, we analyze a more general

network model with non-identical dynamical nodes con-

taining both time-varying delays and transmission delay.

And an intermittent adaptive control strategy is discussed.

The adaptive update rules for the controlled clusters only

determined by the state information of the controlled

cluster itself and the information of the desired cluster

synchronous state of the cluster. Namely, the intermittent

adaptive control strategy only depends on some local

information rather than the global information of the entire

network. Therefore, the results obtained in the paper are

more practically applicable.

5 Numerical simulations

In this section, we present two numerical examples to verify

the validity of the theoretical results in the previous section.

5.1 Example A: cluster lag synchronization
of a directed network with 15 nodes

We design a directed network consisting of 15 non-iden-

tical delayed dynamical nodes, and suppose it can be

divided into three clusters: C1 ¼ 1; 2; 3; 4; 5f g,

C2 ¼ 6; 7; 8; 9; 10f g, C3 ¼ 11; 12; 13; 14; 15f g. The net-

work state equation is

_xi tð Þ ¼ �1:5xi tð Þ þ 0:75 tanh xi t � s1 tð Þð Þð Þ

þ c
X3

p¼1

X
j2Cp

bijCxj tð Þ; i 2 C1;

_xi tð Þ ¼ �2:5xi tð Þþ tanh xi t � s2 tð Þð Þð Þ

þ c
X3

p¼1

X
j2Cp

bijCxj tð Þ; i 2 C2;

_xi tð Þ ¼ 0:375xi tð Þ þ tanh xi t � s3 tð Þð Þð Þ

þ c
X3

p¼1

X
j2Cp

bijCxj tð Þ; i 2 C3;

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð21Þ

where xi tð Þ 2 R3, C ¼ I3, s1 tð Þ ¼ s2 tð Þ ¼ s3 tð Þ ¼ 0:02 et

1þet
,

the transmission delay r ¼ 0:5, and the coupling strength

c ¼ 8. It can be verified that L0
1 ¼ �1:5, Ls1¼ 0:75,

L0
2 ¼ �2:5, Ls2¼ 1, L0

3¼ 0:375, Ls3¼ 1, and thus, Assump-

tion 2 is satisfied. We assume that the characteristics of the

coupling matrix B ¼ bij
� �

15�15
¼

B11 B12 B13

B21 B22 B23

B31 B32 B33

0
@

1
A are

as follows:

B11 ¼

�16 1 0 1 1

0 �16 1 1 1

1 0 �16 1 1

1 1 1 �16 0

1 1 1 0 �16

0

BBBBBB@

1

CCCCCCA
;

B12 ¼

0 6 0 0 0

0 0 6 0 0

6 0 0 0 0

0 0 0 6 0

0 0 0 0 6

0

BBBBBB@

1

CCCCCCA
; B13 ¼

0 0 5 0 2

5 0 0 2 0

0 5 0 0 2

5 0 2 0 0

0 5 0 2 0

0

BBBBBB@

1

CCCCCCA
;

B21 ¼

0 0 5 0 2

5 0 0 2 0

0 5 0 0 2

5 0 2 0 0

0 5 0 2 0

0

BBBBBB@

1

CCCCCCA
;
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B22 ¼

�16 1 0 1 1

0 �16 1 1 1

1 0 �16 1 1

1 1 1 �16 0

1 1 1 0 �16

0

BBBBBB@

1

CCCCCCA
;

B23 ¼

0 6 0 0 0

0 0 6 0 0

6 0 0 0 0

0 0 0 6 0

0 0 0 0 6

0

BBBBBB@

1

CCCCCCA

B31 ¼

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0
BBBBBB@

1
CCCCCCA
; B32 ¼

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 1 0 0 0

0
BBBBBB@

1
CCCCCCA
;

B33 ¼

�5 0 1 1 1

1 �5 0 1 1

1 1 �5 0 1

1 1 1 �5 0

1 1 1 1 �6

0
BBBBBB@

1
CCCCCCA
:

Obviously, b11 ¼ �13, b12 ¼ 6, b13 ¼ 7, b21 ¼ 7,

b22 ¼ �13, b23 ¼ 6, b31 ¼ 1, b32 ¼ 1, b33 ¼ �2. There-

fore, the cluster lag synchronous equations of network (21)

can be described as

_s1 tð Þ ¼ �105:5s1 tð Þ þ 48s2 tð Þ þ 56s3 tð Þ þ 0:75 tanh s1 t � s1 tð Þð Þð Þ;
_s2 tð Þ ¼ 56s1 tð Þ � 106:5s2 tð Þ þ 48s3 tð Þþ tanh s2 t � s2 tð Þð Þð Þ;
_s3 tð Þ ¼ 8s1 tð Þ þ 8s2 tð Þ � 15:625s3 tð Þ þ tanh s3 t � s3 tð Þð Þð Þ:

8
><

>:

ð22Þ

Through calculation, the network (22) has three equi-

librium points described by

S�1 ¼ �5:7456;�5:7007;�5:9245ð Þ; S�2 ¼ 0; 0; 0ð Þ;
S�3 ¼ 5:7456; 5:7007; 5:9245ð Þ:

We choose S�3 as the desired cluster lag synchronous

state. By calculation, we get q ¼ 2 and kmax Zð Þ ¼ 6:0366.

Let a0
1 ¼ 12, from conditions i00ð Þ and ii00ð Þ, we have

� k\� 1:5; lþ 1� k� 3; 0:8215\h\1: ð23Þ

Since CluInf 1ð Þ ¼ �1:1875, CluInf 2ð Þ ¼ �3:3125 and

CluInf 3ð Þ ¼ 7:5469, according to the descending order of

the values, the rearranging order of cluster is C3, C1, C2.

Noticing that � 3 ¼ 6:0366, � 2 ¼ �3:3125 and

� 1 ¼ �2:3095, then the cluster lag synchronization of the

network (21) can be realized by controlling the first rear-

ranged cluster, i.e., C3. Moreover, from condition (14), we

get the lower bound of di is 7:5366.

Setting h ¼ 0:85 and d3 ¼ 8, conditions (14) and (23)

are satisfied. Select the control period T ¼ 0:01. The net-

work with the intermittent controllers (7)–(8) can realize

the desired cluster lag synchronization by pinning the first

rearranged cluster, which uses the parameters chosen as

above. Figure 1 shows the time evolutions of

xi tð Þ 1� i� 15ð Þ with different initial values under the

intermittent controllers (7)–(8). It can be seen that the

cluster lag synchronization is realized with the nodes in the

kth cluster converges to the kth component of

S�3 k ¼ 1; 2; 3ð Þ.
We apply the adaptive intermittent pinning control

schemes (16)–(17) to network (21) based on Theorem 3.

Select h ¼ 0:85, T ¼ 0:1, h3 ¼ 0:2 and r ¼ 0:5. The time

evolutions of xi tð Þ 1� i� 15ð Þ and d3 tð Þ are, respectively,

illustrated in Figs. 2 and 3. We can see that the cluster lag

synchronization of network (21) is realized and the adap-

tive intermittent feedback gain d3 tð Þ converges to 0.4741

finally, which is smaller than the fixed intermittent feed-

back gain we select as above. When the set S�1 is chosen as

the desired cluster lag synchronous state, we can get the

similar simulation results, not shown here.

5.2 Example B: cluster lag synchronization
of a directed scale-free network

In this case, we consider the cluster lag synchronization of

the directed scale-free network which consists of 300 non-

identical delayed dynamical nodes. We suppose that the

nodes can be divided into three clusters: C1 ¼
1; 2; . . .; 100f g; C2 ¼ 101; 102; . . .; 200f g,

C3 ¼ 201; 202; . . .; 300f g. The network state equations are

as follows:

_xi tð Þ ¼ ~fk t; xi tð Þ; xi t � sk tð Þð Þð Þ þ c
X3

p¼1

X
j2Cp

bijCxj tð Þ;
i 2 Ck; k 2 = ¼ 1; 2; 3f g;

ð24Þ

where C ¼ I3, B ¼ bij
� �

300�300
is an asymmetrical coupling

Fig. 1 Time evolutions of xi tð Þ 1� i� 15ð Þ for network (21) under the

intermittent pinning control schemes (7)–(8), where r ¼ 0:5,

h ¼ 0:85, T ¼ 0:01 and d3 ¼ 8
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matrix, and the coupling strength c ¼ 15. The node

dynamics of the three clusters are chosen as the delayed

Chua oscillators with different system parameters, i.e.,

_xi tð Þ ¼ ~fk t; xi tð Þ; xi t � sk tð Þð Þð Þ
¼ Xkxi tð Þ þ ~f 1

k xi tð Þð Þ þ ~f 2
k xi t � sk tð Þð Þð Þ; i 2 Ck;

ð25Þ

where

xi tð Þ ¼ xi1 tð Þ; xi2 tð Þ; xi3 tð Þð ÞT2 R3;

~f 1
k xi tð Þð Þ ¼ � 1

2
ak a� bð Þ

	 

xi1 tð Þ þ 1j j � xi1 tð Þ � 1j jð Þ; 0; 0ð ÞT2 R3;

~f 2
k xi tð Þð Þ ¼ 0; 0;�wk1 sin txi1 t � sk tð Þð Þð Þð ÞT2 R3;

Xk ¼
�ak 1 þ bð Þ ak 0

1 �1 1

0 �wk �xk

0
B@

1
CA;

a ¼ �1:4325, b ¼ �0:7831, t ¼ 0:5, 1 ¼ 0:2, sk tð Þ ¼ 0:02

and the transmission delay r ¼ 0:2. In this simulation, we

select a1 ¼ 10, w1 ¼ 19:53, x1 ¼ 0:1636 for the cluster

C1, a2 ¼ 10:5, w2 ¼ 20:53, x2 ¼ 0:2636 for the cluster C2,

a3 ¼ 11, w3 ¼ 18:53, x3 ¼ 0:3636 for the cluster C3. We

verify Assumption 2 as

x tð Þ � y tð Þð ÞT ~fk t; x tð Þ; x t � sk tð Þð Þð Þ � ~fk tð Þ; y tð Þ; y t � sk tð Þð Þð Þ
� �

� 1

2
x tð Þ � y tð Þð ÞT Xk þ XT

k

� �
x tð Þ � y tð Þð Þ þ ak a� bð Þj j x1 tð Þ � y1 tð Þð Þ2

þ wk1t x3 tð Þ � y3 tð Þj j x1 t � sk tð Þð Þ � y1 t � sk tð Þð Þj j
� kmax

~Xk

� �
x tð Þ � y tð Þð ÞT

x tð Þ � y tð Þð Þ
þ wk1tð Þ= 2-ð Þ x t � sk tð Þð Þ � y t � sk tð Þð Þð ÞT

x t � sk tð Þð Þð
�y t � sk tð Þð ÞÞ
¼ L0

k x tð Þ � y tð Þð ÞTC x tð Þ � y tð Þð Þ þ Lsk x t � sk tð Þð Þð
�y t � sk tð Þð ÞÞTC x t � sk tð Þð Þ � y t � sk tð Þð Þð Þ:

Here, ~Xk ¼ Xk þ XT
k

� �

2 þ diag ak a� bð Þj j; 0;- wkðð

�

1tÞ=2ÞÞ, L0
k ¼ kmax

~Xk

� �
and Lsk ¼ wk1tð Þ= 2-ð Þ can be

determined by selecting the proper parameter -[ 0.

Therefore, Assumption 2 is satisfied.

For convenience, we take the coupling matrix B as

B ¼ bij
� �

300�300

¼
U1 � 15I100 8I100 7I100

6I100 U2 � 15I100 9I100

4I100 2I100 U3 � 6I100

0
@

1
A;

where U1, U2 and U3 represent the intra-coupling matrices

of the three scale-free characteristics clusters. And

b11 ¼ �15, b12 ¼ 8, b13 ¼ 7, b21 ¼ 6, b22 ¼ �15,

b23 ¼ 9, b31 ¼ 4, b32 ¼ 2, b33 ¼ � 6. Hence, the cluster

lag synchronous equations of network (24) can be char-

acterized by

_sk tð Þ ¼ ~fk t; si tð Þ; si t � sk tð Þð Þð Þ þ c
X3

p¼1
bkpsp tð Þ;

k 2 =:
ð26Þ

Setting - ¼ 2, then we can get that L0
1¼ 11:3931,

Ls1¼ 0:4883, L0
2¼ 11:9654, Ls2¼ 0:5133, L0

3¼ 11:4442,

Ls3¼ 0:4633, therefore q ¼ 1:0266. We have

CluInf 1ð Þ ¼ �1:7405, CluInf 2ð Þ ¼ �1:7023, CluInf 3ð Þ ¼
5:7629 and kmax Zð Þ ¼ 5:7629 through computation.

According to the descending order of values, the rear-

ranging order of the cluster is C3,C2,C1. Choosing a0
1 ¼ 25,

under conditions i00ð Þ and ii00ð Þ, we have

� k\� 1:6667; lþ 1� k� 3; and 0:7802\h\1:

ð27Þ

Due to � 3 ¼ 5:7629, � 2 ¼ �1:7023, � 1 ¼ �1:7405,

then the cluster lag synchronization of network (24) can be

realized by controlling the first rearranged cluster, i.e., C3.

Considering Theorem 3, we use the adaptive intermit-

tent pinning control schemes (16)–(17) to achieve the

cluster lag synchronization of network (24). Setting

Fig. 2 Time evolutions of xi tð Þ 1� i� 15ð Þ for network (21) under the

adaptive intermittent pinning control schemes (16)–(17), where

r ¼ 0:5, h ¼ 0:85, T ¼ 0:1 and h3 ¼ 0:2

Fig. 3 Time evolutions of d3 tð Þ for network (21) under the adaptive

intermittent pinning control schemes (16)–(17), where r ¼ 0:5,

h ¼ 0:85, T ¼ 0:1 and h3 ¼ 0:2
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h ¼ 0:8, conditions (15) and (27) are satisfied. Select a

control period T ¼ 0:1 and h3 ¼ 0:01. Figures 4, 5, 6 and

7, respectively, show the time evolutions of the syn-

chronous errors Ek
ij tð Þ k 2 =ð Þ and the adaptive intermittent

feedback gain d3 tð Þ. Define the lag synchronous errors as

Ek tð Þ, k 2 =, i.e., E1
j tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP100
i¼1 xij tð Þ � s1j t � rð Þ
�� ��2

.
100

r
, E2

j tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP200

i¼101 xij tð Þ � s2j t � rð Þ
�� ��2

.
100

r
, E3

j tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP300

i¼201 xij tð Þ � s3j t � rð Þ
�� ��2

.
100

r
, where j ¼ 1; 2; 3.

Then, Figs. 8, 9 and 10 show the time evolutions of the lag

synchronous errors Ek tð Þ. We can see that the cluster lag

synchronization is realized and the feedback gain d3 tð Þ
converges to 0.3258 at last.

6 Conclusion

In this paper, we investigated the cluster lag synchroniza-

tion of the intermittent pinning-controlled directed com-

plex dynamical networks, which have the non-identical

dynamical nodes with time-varying delays in the self-dy-

namics. Each cluster was regarded as a whole in the study

of the cluster lag synchronization. The desired cluster lag

synchronous states were chosen as a collection of the un-

decoupled trajectories rather than the particular solutions of

the systems with decoupled nodes. We generalized the

intermittent control scheme from the cluster

Fig. 4 Time evolutions of the synchronous errors E1
ij tð Þ ¼

xij tð Þ � s1j t � rð Þ
�� ��; i 2 C1; j ¼ 1; 2; 3ð Þ for the first cluster of network

(24) under the adaptive intermittent pinning control schemes (16)–

(17), where h ¼ 0:8, T ¼ 0:1, r ¼ 0:2 and h3 ¼ 0:01

Fig. 5 Time evolutions of the synchronous errors E2
ij tð Þ ¼

xij tð Þ � s2j t � rð Þ
�� ��; i 2 C2; j ¼ 1; 2; 3ð Þ for the second cluster of

network (24) under the adaptive intermittent pinning control schemes

(16)–(17), where h ¼ 0:8, T ¼ 0:1, r ¼ 0:2 and h3 ¼ 0:01

Fig. 6 Time evolutions of the lag synchronous errors E3
ij tð Þ ¼

xij tð Þ � s3j t � rð Þ
�� ��; i 2 C3; j ¼ 1; 2; 3ð Þ for the third cluster of net-

work (24) under the adaptive intermittent pinning control schemes

(16)–(17), where h ¼ 0:8, T ¼ 0:1, r ¼ 0:2 and h3 ¼ 0:01

Fig. 7 Time evolutions of the adaptive intermittent feedback gain

d3 tð Þ for the network (24) under the adaptive intermittent pinning

control schemes (16)–(17), where h ¼ 0:8, T ¼ 0:1, r ¼ 0:2 and

h3 ¼ 0:01

7956 Neural Computing and Applications (2019) 31:7945–7961

123



synchronization without the transmission delay to the

cluster lag synchronization involving both the time-varying

delays in the self-dynamics and the transmission delay in

the communication channels. By making some mild

assumptions, we proposed the main theorems and the cri-

teria for the cluster lag synchronization. Two numerical

simulations were given to verify the correctness of the

theoretical results.

As a more general case, the cluster lag synchronization

of general delayed dynamical networks under the pinning

control technology is worth studying in the near future.

Topic of the work time of controller being time-varying is

also interesting.
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Appendix 1

Proof of Theorem 1

Let E tð Þ ¼ ET
1 tð Þ;ET

2 tð Þ; . . .;ET
m tð Þ

� �T
, where

E1 tð Þ ¼ eT
1;1 tð Þ; . . .; eT

r1;1
tð Þ

� �T

, E2 tð Þ ¼ eT
r1þ1;2 tð Þ; . . .;

�

eT
r1þr2;2

tð ÞÞT; . . .:Em tð Þ ¼ eT
r1þr2þ���þrm�1þ1;m tð Þ; . . .; eT

N;m

�

tð ÞÞT:

Construct a Lyapunov candidate as follows, where 	 is

defined as Kronecker product.

W tð Þ ¼ 1

2
ET tð Þ IN 	 Inð ÞE tð Þ ¼ 1

2

Xm

k¼1
ET
k tð Þ Irk 	 Inð ÞEk tð Þ

¼ 1

2

Xm

k¼1

X
i2Ck

eT
ik tð Þeik tð Þ

Fig. 8 Time evolutions of the lag synchronous error

E1
j tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P100

i¼1 xij tð Þ � s1j t � rð Þ
�� ��2

.
100

r
; j ¼ 1; 2; 3ð Þ for the net-

work (24) under the adaptive intermittent pinning control schemes

(16)–(17), where h ¼ 0:8, T ¼ 0:1, r ¼ 0:2 and h3 ¼ 0:01

Fig. 9 Time evolutions of the lag synchronous error

E2
j tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P200

i¼101 xij tð Þ � s2j t � rð Þ
�� ��2

.
100

r
; j ¼ 1; 2; 3ð Þ for the

network (24) under the adaptive intermittent pinning control schemes

(16)–(17), where h ¼ 0:8, T ¼ 0:1, r ¼ 0:2 and h3 ¼ 0:01

Fig. 10 Time evolutions of the lag synchronous error

E3
j tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P300

i¼201 xij tð Þ � s3j t � rð Þ
�� ��2

.
100

r
; j ¼ 1; 2; 3ð Þ for the

network (24) under the adaptive intermittent pinning control schemes

(16)–(17), where h ¼ 0:8, T ¼ 0:1, r ¼ 0:2 and h3 ¼ 0:01
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When t 2 xT; xþ hð ÞT½ Þ, x ¼ 0; 1; 2; . . ., the time

derivative of W tð Þ along the trajectory of (9) at time t can

be given as

_W tð Þ ¼
Xm

k¼1

X

i2Ck

eT
ik tð Þ~f sk ;rk t; xi; skð Þ

þ c
Xm

k¼1

X

i2Ck

Xm

p¼1

X

j2Cp

bije
T
ik tð ÞCejp tð Þ

� c
Xl

k¼1

ET
k tð Þ dkIrk 	 Cð ÞEk tð Þ:

ð28Þ

In virtue of Assumption 2, we can get

Xm

k¼1

X

i2Ck

eT
ik tð Þ~f sk ;rk t; xi; skð Þ

�
Xm

k¼1

X

i2Ck

L0
ke

T
ik tð ÞCeik tð Þ

þ
Xm

k¼1

X

i2Ck

Lske
T
ik t � sk tð Þð ÞCeik t � sk tð Þð Þ

¼
Xm

k¼1

ET
k tð Þ L0

kIrk 	 C
� �

Ek tð Þ

þ
Xm

k¼1

ET
k t � sk tð Þð Þ LskIrk 	 C

� �
Ek t � sk tð Þð Þ:

ð29Þ

Noticing that
Pm

p¼1

P
i¼Cp

bij ¼
PN

j¼1 bij ¼ 0, i ¼
1; 2; . . .;N with ~C ¼ diag

ffiffiffiffiffi
c1

p
;
ffiffiffiffiffi
c2

p
; . . .;

ffiffiffiffiffi
cn

p� �
, one has

Xm

k¼1

X

i¼Ck

Xm

p¼1

X

j2Cp

bije
T
ik tð ÞCejp tð Þ ¼

Xm

k¼1

Xm

p¼1

ET
k tð Þ Bkp 	 C

� �
Ep tð Þ

¼
Xm

k¼1

ET
k tð Þ Bs

kk 	 C
� �

Ek tð Þ þ
Xm

k¼1

Xm

p¼1;p6¼k

X

i¼Ck

X

j2Cp

bij ~Ceik tð Þ
� �T ~Cejp tð Þ

� �

�
Xm

k¼1

ET
k tð Þ Bs

kk 	 C
� �

Ek tð Þ þ 1

2

Xm

k¼1

Xm

p¼1;p6¼k

X

i¼Ck

X

j2Cp

bij eT
ik tð ÞCeik tð Þ þ eT

jp tð ÞCejp tð Þ
� �

¼
Xm

k¼1

ET
k tð Þ Bs

kk 	 C
� �

Ek tð Þ � 1

2

Xm

k¼1

ET
k tð Þ Ak 	 Cð ÞEk tð Þ

þ 1

2

Xm

k¼1

ET
k tð Þ Wk 	 Cð ÞEk tð Þ

¼
Xm

k¼1

ET
k tð Þ Bs

kk þ
1

2
Wk �

1

2
Ak

	 

	 C

	 

Ek tð Þ

ð30Þ

Substituting (29) and (30) into (28), we get

_W tð Þ� cET tð Þ Z � Dð Þ 	 Cð ÞE tð Þ

þ q

2
sup

t�s� s� t

Xm

k¼1

ET
k sð ÞEk sð Þ

 !
: ð31Þ

According to condition ið Þ and the properties of the

Kronecker product of matrix [42], from (31), one has

_W tð Þ�ET tð Þ cZ � cDþ a1INð Þ 	 Cð ÞE tð Þ

� a1E
T tð Þ IN 	 Cð ÞE tð Þ þ q sup

t�s� s� t
W sð Þ

	 


� � 2a1kmin Cð ÞW tð Þ þ q sup
t�s� s� t

W sð Þ
	 


¼ �p1W tð Þ þ q sup
t�s� s� t

W sð Þ
	 


:

Similarly, when t 2 xþ hð ÞT; xþ 1ð ÞT½ Þ,
x ¼ 0; 1; 2; . . ., using condition iið Þ, we can deduce

_W tð Þ�ET tð Þ cZ � a2INð Þ 	 Cð ÞE tð Þ þ a2E
T tð Þ

IN 	 Cð ÞE tð Þ þ q sup
t�s� s� t

W sð Þ
	 


� 2a2kmax Cð ÞW tð Þ þ q sup
t�s� s� t

W sð Þ
	 


¼ p2W tð Þ þ q sup
t�s� s� t

W sð Þ
	 


:

As a result, we have

_W tð Þ� � p1W tð Þ þ q sup
t�s� s� t

W sð Þ
	 


; xT � t\ xþ hð ÞT ;

_W tð Þ� p2W tð Þ þ q sup
t�s� s� t

W sð Þ
	 


; xþ hð ÞT � t\ xþ 1ð ÞT :

8
>><

>>:

ð32Þ

Next, we will prove that conditions (iii)–(iv) imply that,

for t� 0, we have _W tð Þ� sup�s� s� 0 W sð Þ
� �

e�-t.

Define f kð Þ ¼ k� p1 þ qeks, where p1 [ q[ 0 such

that f 0ð Þ\0, f þ1ð Þ[ 0, f0 kð Þ[ 0. Utilizing the mono-

tonicity and continuity of f kð Þ, the equation k� p1 þ
qeks ¼ 0 has a unique positive solution k[ 0. Let

M0 ¼ sup�s� s� 0 W sð Þ, V tð Þ ¼ ektW tð Þ, t� 0. Let

S tð Þ ¼ V tð Þ � hM0, where h[ 1 is a constant. Apparently,

for any t 2 �s; 0½ �, one has

S tð Þ\0: ð33Þ

Then, we indicate for all t 2 0; hT½ �, that

S tð Þ\0: ð34Þ

From (33), there exist a t0 2 0; hT½ � such that

S t0ð Þ ¼ 0; _S t0ð Þ� 0; ð35Þ
S tð Þ\0; � s� t\t0: ð36Þ

By (32), (35) and (36), we have

_S t0ð Þ ¼ kV t0ð Þ þ ekt0 _W t0ð Þ� k� p1ð ÞV t0ð Þ

þ qekt0 sup
t0�s� s� t0

W sð Þ
	 


: ð37Þ

On the other hand, from (35) and (36), we have

V tð Þ\hM0, �s� t\t0 and V t0ð Þ ¼ hM0. As a result, we

get W tð Þ\hM0e
�kt, �s� t\t0, it leads to
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supt0�s� s� t0
W sð Þ

� �
\ekshM0e

�kt0 . This means

ekt0 supt0�s� s� t0
W sð Þ

� �
\ekshM0 ¼ eksV t0ð Þ.

From (37), it can be deduced that
_S t0ð Þ\ k� p1 þ qeks

� �
V t0ð Þ ¼ 0. This is a contradiction

with inequality (35), thus, (34) is established. With (33),

we get that

W tð Þ\hM0e
�kt; 8t 2 �s; hT½ � ð38Þ

Let # ¼ p1 þ p2, for t 2 hT ; T½ Þ, we have

Q tð Þ ¼ V tð Þ � hM0e
# t�hTð Þ\0. Otherwise, there exist a

t1 2 hT; T½ Þ, such that

Q t1ð Þ ¼ 0; _Q t1ð Þ� 0; ð39Þ
Q tð Þ\0; hT � t\t1: ð40Þ

For s[ 0, according to (38)–(40), we always have

sup
t1�s� s� t1

W sð Þ\eksW t1ð Þ:

Then, one has _Q t1ð Þ\0, which is contradicts with (39).

Thus, for t 2 hT; T½ Þ,

V tð Þ\hM0e
# 1�hð ÞT :

With (33) and (34), we have

V tð Þ\hM0e
# 1�hð ÞT ; for t 2 �s; T½ Þ:

Similarly, we can prove

V tð Þ\hM0e
# 1�hð ÞT ; for t 2 T ; 1 þ hð ÞT½ Þ and

V tð Þ\hM0e
# t�2hð ÞT ; for t 2 1 þ hð ÞT ; 2T½ Þ:

Through a mathematical induction, for any integer

x ¼ 0; 1; 2; . . ., we can derive the estimates of V tð Þ as

V tð Þ\hM0e
x# 1�hð ÞT � hM0e

# 1�hð Þt; xT � t\ xþ hð ÞT ;
V tð Þ\hM0e

# t� mþ1ð ÞhT½ � � hM0e
# 1�hð Þt; xþ hð ÞT � t\ xþ 1ð ÞT :

�

Let h ! 1, from the definition of V tð Þ, we have

W tð Þ�M0e
� k�# 1�hð Þ½ �t ¼ sup

�s� s� 0

W sð Þ
	 


e�-t; t� 0:

Therefore, for the error dynamical system (9) the zero

solution is globally exponentially stable. The proof of

Theorem 1 is thus completed.

Appendix 2

Proof of Theorem 3

Construct a piecewise Lyapunov candidate function

W tð Þ ¼ 1

2

Xm

k¼1

X

i2Ck

eT
ik tð Þeik tð Þ

þ 1

2
P tð Þ

Xl

k¼1

ce�p1t
dk tð Þ � d�k
� �2

hk
;

where d�k [ 0, k ¼ 1; 2; . . .; l are constants, and P �ð Þ is a

piecewise function defined as

P sð Þ ¼ 1; �s� s� 0;
ep1xT ; xT � s\ xþ 1ð ÞT ;x ¼ 0; 1; 2; . . .

�

Obviously, while x ¼ 0; 1; 2; . . ., we have

With Assumptions 1 and 2, the time derivative of W tð Þ
along the trajectory of (9) can be calculated as follows.

When t 2 xT ; xþ hð ÞT½ Þ, x ¼ 0; 1; 2; . . ., we have

_W tð Þ�ET tð Þ cZ � cD� þ a0
1IN

� �
	 C

� �
E tð Þ

þ q

2
sup

t�s� s� t

Xm

k¼1
ET
k sð ÞEk sð Þ

	 


� a0
1E

T tð Þ IN 	 Cð ÞE tð Þ � p1

2
e�p1 t�xTð Þ

Xl

k¼1

c

hk
dk tð Þ � d�k
� �2

;

ð41Þ

where D� is a modified block diagonal matrix of D through

replacing the principal-diagonal sub-matrices dkIrk by

e�p1hTd�k
� �

Irk ; k ¼ 1; 2; . . .; l.

Set Q� ¼ a0
1IN þ cZ, a0

1IN þ cZ � cD� ¼ Q� � cD� ¼
G� � c ~D� 0

0T Q�
r

	 

, where G� ¼

cZ11 þ a0
1Ir1

0 � � � 0

0 cZ22 þ a0
1Ir2

� � � 0

..

. ..
. . .

. ..
.

0 0 � � � cZll þ a0
1Irl

0
BBB@

1
CCCA, ~D� ¼

e�p1hT

d�1Ir1
0 � � � 0

0 d�2Ir2
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � d�l Irl

0
BBB@

1
CCCA, and Q�

r is the minor

W tð Þ ¼

1

2

Xm

k¼1

X

i2Ck

eT
ik tð Þeik tð Þ þ 1

2
e�p1 t�xTð Þ

Xl

k¼1

c

hk
dk tð Þ � d�k
� �2

; xT � t\ xþ hð ÞT;

1

2

Xm

k¼1

X

i2Ck

eT
ik tð Þeik tð Þ þ 1

2
e�p1 t�xTð Þ

Xl

k¼1

c

hk
d�

2

k ; xþ hð ÞT � t\ xþ 1ð ÞT :

8
>>>><

>>>>:
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matrix of Q� by removing its first r1 þ r2 þ � � � þ rlð Þ row–

column pairs. It is obviously that Q� is a real symmetric

matrix. From the pinning condition i00ð Þ, we conclude that

kmax cZkk þ a0
1Irk

� �
¼ kmax cHkk þ L0

kIrk þ a0
1Irk

� �

\ckmax Hkkð Þ þ L0
k þ a0

1\0;

lþ 1� k�m:

This means Q�
r\0. As a result, for k ¼ 1; 2; � � � ; l, when

d�k [ 0 are large enough such that d�k [
ep1hTkmax G�ð Þ

c
. It is

easy to get Q� � cD�\0. This follows Lemma 2 directly.

With (41), we can deduce that

_W tð Þ� � p1

2

Xm

k¼1

X

i2Ck

eT
ik tð Þeik tð Þ � p1

2
e�p1 t�xTð Þ

Xl

k¼1

c

hk
dk tð Þ � d�k
� �2

þ q

2
sup

t�s� s� t

Xm

k¼1

X

i2Ck

eT
ik sð Þeik sð Þ

 !

� � p1W tð Þ þ q sup
t�s� s� t

W sð Þ
	 


:

In the same way, when t 2 xþ hð ÞT; xþ 1ð ÞT½ Þ,
x ¼ 0; 1; 2; . . ., we obtain that

_W tð Þ� p2W tð Þ þ q sup
t�s� s� t

W sð Þ
	 


:

Namely,

_W tð Þ� � p1W tð Þ þ q sup
t�s� s� t

W sð Þ
	 


; xT � t\ xþ hð ÞT ;

_W tð Þ� p2W tð Þ þ q sup
t�s� s� t

W sð Þ
	 


; xþ hð ÞT � t\ xþ 1ð ÞT :

8
>><

>>:

Then, by a similar proof of Theorem 1, we can prove

that condition (15) means

_W tð Þ� sup
�s� s� 0

W sð Þ
	 


e�-t; t� 0:

Therefore, the global cluster lag synchronization of the

delayed dynamical network (6) under the adaptive inter-

mittent pinned controllers (16)–(17) is realizable. The

proof of Theorem 3 is thus completed.
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