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Abstract
Spectral clustering-based subspace clustering methods have attracted broad interest in recent years. This kind of methods

usually uses the self-representation in the original space to extract the affinity between the data points. However, we can

usually find a subspace where the affinity of the projected data points can be extracted by self-representation more

effectively. Moreover, only using the self-representation in the original space cannot handle nonlinear manifold clustering

well. In this paper, we present robust subspace learning-based low-rank representation learning a subspace favoring the

affinity extraction for the low-rank representation. The process of learning the subspace and yielding the representation is

conducted simultaneously, and thus, they can benefit from each other. After extending the linear projection to nonlinear

mapping, our method can handle manifold clustering problem which can be viewed as a general case of subspace

clustering. In addition, the ‘2;1-norm used in our model can increase the robustness of our method. Extensive experimental

results demonstrate the effectiveness of our method on manifold clustering.

Keywords Subspace learning � Low-rank representation � Manifold clustering � Spectral clustering-based methods

1 Introduction

In the past two decades, subspace clustering has attracted

increasing interest. Given a set of data points drawn from a

union of multiple subspaces, the task of subspace clustering

is to group these data points according to the underlying

subspaces they are drawn from. According to the review

[39], the subspace clustering methods can be roughly

divided into four categories: algebraic approaches [40],

iterative approaches [1], statistical approaches [38], and

spectral clustering-based approaches [22]. In recent years,

spectral clustering-based approaches [44, 46, 48] have

aroused heated discussion since low-rank representation

(LRR) [19, 20] and sparse subspace clustering (SSC) [4, 5]

were proposed. This kind of approaches first builds an

undirected graph representing the affinity between data

points and then applies spectral clustering [25] methods

such as normalized cut (NC) [30] to this graph to obtain the

clustering results. The construction of the graph plays a key

role in the performance of spectral clustering-based

approaches. If any approach can build the graph that the

weights between the data points drawn from the same

subspace are larger than those between the data points in
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different subspaces, it is likely to achieve the right clus-

tering results.

LRR and SSC are popular spectral clustering-based

approaches. They make use of the self-representation of the

data points to extract their affinities. In order that the data

points can be represented by those from the same subspace,

LRRandSSC add the low-rank penalty and sparse penalty on

the representationmatrix, respectively. In the past few years,

LRR and SSC generate a lot of studies discussing their

extensions [6, 8], such as subspace segmentation via quad-

ratic programming (SSQP) [41], least squares regression

(LSR) [24], correlation adaptive subspace segmentation

(CASS) [23], smooth representation (SMR) [10], structure-

constrained low-rank representation (SC-LRR) [35], dense

block and sparse representation (DBSR) [34]. As described

in [15], their models can be summarized as follows

min
Z;E

f ðZÞ þ agðEÞ s.t. X ¼ XZþ E; ð1Þ

where X denotes the dataset with each column corre-

sponding to a data point xi, Z is the representation matrix

whose element in the i-th row and j-th column stands for

the affinity between xi and xj, E denotes the noise and

outliers, f ðZÞ and gðEÞ are the penalty on Z and E,

respectively, and a is the trade-off parameter balancing

these two terms. Usually selected as Frobenius (F) norm

[50], ‘1;1-norm, and ‘2;1-norm, gðEÞ is not the main dif-

ference of these spectral clustering-based approaches. The

definition of F-norm, ‘1;1-norm, and ‘2;1-norm can be found

in Table 1. Associated with the property of Z, f ðZÞ
determines the characteristics of different approaches.

What these methods have in common is X ¼ XZþ E in

the constraint, meaning that they extract the affinity

between the data points in the original space. Although

another extension of LRR such as latent low-rank repre-

sentation [21] (LLRR) exploits a different representation

form, i.e., X ¼ XZþ LXþ E, it also conducts the repre-

sentation in the original space.

Unfortunately, in the real-world applications, the

assumption that the intrinsic structure of the dataset is a

union of multiple subspaces may be violated. Since the

linear subspace is a special case of the manifold, the

recently focused mixture of manifolds [7] is the general

problem. Suppose the data points are drawn from a union

of multiple manifolds, the task of manifold clustering is to

group the data points with each cluster corresponding to a

manifold [33]. Manifold clustering includes two branches:

linear and nonlinear [42]. The linear case is the problem of

subspace clustering. With respect to the nonlinear case, the

data points cannot be linearly represented by the data

points drawn from the same manifold, so the idea of using

self-representation in the original subspace to extract the

affinity between the data points will not be effective. In this

situation, we can extract the features of the data points,

which can also be viewed as the transformed data points in

another space. Since the features of the data points may

have the structure of a union of multiple subspaces, the

references [3, 11, 12] handle image segmentation, saliency

detection, and co-segmentation of 3D shapes by applying

the extensions of LRR and SSC to the extracted features,

respectively.

In fact, the above-mentioned approaches also exploit the

features to handle subspace clustering problems. In their

experiment, they usually preprocess the data points by

projecting them into a low-dimensional space via principle

component analysis (PCA). This step can reduce the

dimensionality of the data points to improve the compu-

tation speed. More importantly, the extracted features can

improve the performance to some extent. This result

implies two aspects: The first is that even if the data points

have the structure of a union of subspaces, learning features

also favor the affinity extraction by self-representation. The

second is that the subspace where the affinity of the

transformed data points can be extracted by self-represen-

tation effectively usually exists. Hence, with respect to

manifold clustering, whether the linear case or the non-

linear case, learning a subspace to favor the extraction of

affinity by self-representation is worthy to be considered.

Latent space sparse subspace clustering (LS3C) [29] is an

approach using the strategy of learning a subspace to obtain

the representation. It seeks the low-dimensional subspace

by minimizing the reconstruction error, which can be

understood as PCA. Therefore, the idea of learning a

subspace in LS3C is more about the dimensionality

reduction, not from the view of favoring affinity extraction

by self-representation. In addition, its model enforcing the

F-norm on the noise is not robust.

In this paper, we propose robust subspace learning-

based low-rank representation (RSLLRR) for manifold

clustering. RSLLRR can simultaneously learn the subspace

and obtain the low-rank representation. By means of linear

Table 1 Notation summary

Matrix Bold capital symbol, e.g., X

Vector Bold lower case symbol, e.g., x

½X�ij The element in the i-th row and j-th column in the matrix X

½X�:j The j-th column of the matrix X

½X�i: The i-th row of the matrix X

k � kF F-norm, i.e., kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i;j½X�
2
ij

q

k � k1;1 ‘1;1-norm, i.e., kXk1;1 ¼
P

i;j j½X�ijj
k � k2;1 ‘2;1-norm, i.e., kXk2;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

j k½X�:jk2
q

k � k� Nuclear norm, i.e., the sum of all the singular values

Id The identity matrix with the size of d � d

diagðriÞ The diagonal matrix whose i-th diagonal element is ri
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projection and nonlinear projection, RSLLRR can learn

linear subspace and nonlinear subspace to handle the linear

case and nonlinear case of manifold clustering well,

respectively. It is notable that our method is distinct from

the strategy in the experiment of previous work, i.e., first

project the data into the low-dimensional space and then

obtain the representation matrix. Their strategy separates

the process of learning the subspace from obtaining the

representation, leading to the result that the subspace is

only determined by the dimensionality reduction methods

and thus may not favor the extraction of the affinity. In our

method, the learned subspace is also affected by the low-

rank penalty on the representation matrix to some extent.

Hence, RSLLRR can learn the subspace favoring affinity

extraction by low-rank representation. In order to achieve

this aim effectively, we design special term describing the

property of the learned subspace instead of PCA in our

model. Furthermore, since the robustness of ‘2;1-norm is

verified by previous work [17, 19, 20, 45], we add it in our

model. Although ‘2;1-norm brings the difficulty in numer-

ical solution, we design special iteration strategy to solve

this problem, enabling RSLLRR to usually perform better

than our conference version using F-norm [36]. In our

experiment, our algorithm always converges well and

outperforms the state of the art. In summary, our contri-

butions are as follows.

1. We present robust subspace learning-based low-rank

representation. It can learn the subspace favoring

affinity extraction by self-representation.

2. We successfully incorporate ‘2;1-norm in our model; it

can enhance the robustness of our method.

3. By designing special term describing the property of

the learned subspace instead of PCA, our method

performs well in manifold clustering.

The reminder of the paper is organized in the following: In

Sect. 2, we present subspace learning-based low-rank

representation. In Sect. 3, we extend our model as robust

subspace learning-based low-rank representation. In

Sect. 4, we test the performance of our method on synthetic

data and five benchmark databases. In Sect. 5, we conclude

this paper.

2 Subspace learning-based low-rank
representation

In this section, we present the model with F-norm enforced

on the noise. By means of alternating direction method

(ADM) [18], we can obtain its numerical solution easily.

First, we will develop our model only devoted to subspace

clustering. Then, we extend the mapping to obtain the

model for nonlinear manifold clustering.

2.1 The basic model

In view of the observation that the data points may exhibit

more meaningful linear structure in another space instead of

the original space, we present the subspace learning-based

low-rank representation model (SLLRR) [36] to learn a

subspace for low-rank representation in the following.

min
Z;W

kZk� þ akWX�WXZk2F þ bf ðWÞ

s.t. WWT ¼ Id;
ð2Þ

where W 2 Rd�D stands for linear projection transforming

D-dimensional space into d-dimensional space. The con-

straint WWT ¼ Id is used to keep W as the orthogonal

basis. X 2 RD�n means that the dimensionality and the

number of the data points are D and n, respectively. The

terms kZk� and kWX�WXZk2F are used to enforce the

low-rank property on the representation matrix and keep

the projected data points in the learned subspace repre-

sented by itself as well as possible, respectively. Both a and
b are the trade-off parameters balancing these terms. f ðWÞ
describes the property of the learned subspace. The detailed

discussion about it is in the following.

Although f ðWÞ can be constructed by the result in graph

embedding framework [43], the energy in those dimen-

sionality reduction approaches is usually constructed for

the property of discrimination since the recognition is their

main application. If the data points in different subspace

are projected into one subspace in spite of the desired

separation in each class, it will be more difficult for us to

segment these projected data points in the learned subspace

by self-representation. Hence, the rule in previous dimen-

sionality reduction work may not be suitable for the self-

representation extracting the affinity between data points.

Moreover, the label information required by the supervised

approaches cannot be obtained in this unsupervised

problem.

Our idea is to learn a subspace by keeping the local

structure of the data points drawn from the same subspace.

We intend to shorten the distance of the nearby data points

in the same subspace to make them represented by each

other better. Although the neighbors of the data points near

the intersection of the subspaces will include the data

points drawn from different subspaces, numerous data

points with small Euclidean distance are in the same sub-

space. With respect to the data points close to the inter-

section of the subspaces, the angles between every two data

points can be used to separate them. Hence, we first choose

n/2c nearest neighbors of each data point by Euclidean

distance, where c denotes the number of the subspaces.

Then, by selecting the data points with the k smallest

angles in the neighbors, we establish G in the following
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½G�ij ¼
�

1 xi 2 NðxjÞ or xj 2 NðxiÞ
0 otherwise

; ð3Þ

where NðxjÞ denotes the data points with the k smallest

angles in the n/2c nearest neighbors. In the last, we pull

these nearby data points probably in the same subspace

close to each other in the learned subspace by minimizing

the following energy.
X

i;j

kWxi �Wxjk22½G�ij: ð4Þ

It can be reformulated as

trðWXSXTWTÞ; ð5Þ

where S ¼ H�G is the Laplacian matrix, H is the diag-

onal matrix with ½H�ii ¼
Pn

j¼1½G�ij . Hence, SLLRR can be

formulated in the following

min
Z;W

kZk� þ akWX�WXZk2F þ btrðWXSXTWTÞ

s.t. WWT ¼ Id:
ð6Þ

2.2 Nonlinear extension

In order to make SLLRR applicable to manifold clustering,

we extend our model in the following.

min
Z;W

kZk� þ akW/ðXÞ �W/ðXÞZk2F

þ btrðW/ðXÞS/ðXÞTWTÞ s.t. WWT ¼ Id: ð7Þ

With regard to manifold clustering, we assume the data

points can be linearly represented by the data points drawn

from the same manifold after a nonlinear mapping /. Then,
we also learn a subspace favoring the affinity extraction in

order that we can get the effective segmentation results by

the spectral clustering algorithm. Hence, we change X in

model (6) into /ðXÞ in model (7). The new model can be

understood in the perspective that we learn a nonlinear

subspace for the low-rank representation.

Since the bases can be linearly represented by the

mapped data points, we have W ¼ U/ðXÞT . Then model

(7) can be reformulated in the following

min
Z;U

kZk� þ akUK� UKZk2F þ btrðUKSKTUTÞ

s.t. UKUT ¼ Id;
ð8Þ

where K ¼ /ðXÞT/ðXÞ is the kernel. We develop different

kernels for different problems with detailed discussion

provided in the experiments.

2.3 Numerical solution

Model (8) can be easily solved by ADM after introducing

one auxiliary variable J to make the objective function

separable.

min
Z;J;U

kJk� þ akUK� UKZk2F þ btrðUKSKTUTÞ

s.t. UKUT ¼ Id Z ¼ J:
ð9Þ

Then, we obtain the following augmented Lagrange

function

kJk� þ akUK� UKZk2F þ btrðUKSKTUTÞ

þ l
2
ðkZ� Jk2FÞ þ hK;Z� Ji:

ð10Þ

We iteratively update each variable by fixing the others.

Fortunately, the closed-form solution exists for each opti-

mization problem. The numerical algorithm of model (8) is

provided in Algorithm 1 where the convex optimization in

step 2 can be solved by singular value thresholding (SVT)

operator [2]. Since the generalized eigenvalue decompo-

sition, the singular value decomposition, and the inverse of

the matrix are the main computation cost in each step, the

computational complexity of this algorithm is Oðn3Þ.

Algorithm 1 Solving Problem (8) by ADM
Input: K, S, α, β, d.
Initialize: Z = In×n, U = Id×n, Λ = 0, μ = 10−6, μmax = 1030 , ρ = 1.1, ε = 10−4.
while not converged do

1. Fix the others and update U by computing the generalized eigenvalue decomposition problem:
(βKSKT + α(K − KZ)(K − KZ)T )UT = λKUT .
2. Fix the others and update J
J = argmin 1

µ
J ∗ + 1

2 J − (Z + Λ
µ
) 2

F .

3. Fix the others and update Z
Z = (μI + 2αKTUTUK)−1(2αKT UTUK + μJ − Λ).
4. Update the multipliers
Λ = Λ + μ(Z − J).
5. Update the parameter μ
μ = min(ρμ, μmax).
6. Check the convergence conditions
Z − J ∞ < ε.

end while

7924 Neural Computing and Applications (2019) 31:7921–7933

123



3 Robust subspace learning-based low-rank
representation

Comparedwith ‘2;1-norm,F-norm is not robust to the outliers.

In this section, we extend SLLRR by replacing the F-norm

with the ‘2;1-norm. Although this change causes some diffi-

culty in solving the model, we design a special iteration to

overcome this problem. We will start by formulating our

model formanifold clustering and then provide the algorithm.

3.1 Robust extension

To enhance the robustness, we change the F-norm of model

(8) into the ‘2;1-norm. The model, named robust subspace

learning-based low-rank representation (RSLLRR), can be

formulated in the following

min
Z;U

kZk� þ akUK� UKZk2;1 þ btrðUKSKTUTÞ

s.t. UKUT ¼ Id:
ð11Þ

Similar to the spectral clustering-based methods such as

LRR and SSC for subspace clustering, SLLRR and

RSLLRR can handle manifold clustering by Algorithm 2

after obtaining Z from Algorithms 1 and 3, respectively.

Algorithm 2Manifold Clustering by RSLLRR or SLLRR
1. Obtain Z from Algorithm 3 or Algorithm 1.
2. Let Z = 1

2 (|Z|+ |ZT|).
3. Apply NC to Z to conduct a segmentation.

3.2 Numerical solution

In the following, we will show how to solve our model by

ADM. First, introduce one auxiliary variable J to make the

objective function separable

min
Z;J;U

kJk� þ akUK� UKZk2;1 þ btrðUKSKTUTÞ

s.t. UKUT ¼ Id Z ¼ J:
ð12Þ

Second, construct the augmented Lagrange function

kJk� þ akUK� UKZk2;1 þ btrðUKSKTUTÞ

þ l
2
kZ� Jk2F þ hK;Z� Ji:

ð13Þ

Third, iteratively minimize each variable with the others

fixed. Algorithm 3 outlines the ADM algorithm of RSLLRR,

whereZk denotes the value ofZ in the k-th iteration. Ifwe can

find the optimal solution of each subproblem, the value of the

augmented Lagrange function decreases after each step. The

details are in the following. The value of the augmented

Lagrange function in the k-th iteration is

Lk;0 ¼ kJkk� þ akUkK� UkKZkk2;1 þ btrðUkKSKTUT
k Þ

þ lk
2
kZk � Jkk2F þ hKk;Zk � Jki: ð14Þ

After step 1,

Lk;0 � Lk;1 ¼ kJkk� þ akUkþ1K� Ukþ1KZkk2;1
þ btrðUkþ1KSKTUT

kþ1Þ þ
lk
2
kZk � Jkk2F

þ hKk;Zk � Jki: ð15Þ

After step 2,

Lk;1 � Lk;2 ¼ kJkþ1k� þ akUkþ1K� Ukþ1KZkk2;1
þ btrðUkþ1KSKTUT

kþ1Þ þ
lk
2
kZk � Jkþ1k2F

þ hKk;Zk � Jkþ1i: ð16Þ

After step 3,

Lk;2 � Lk;3 ¼ kJkþ1k� þ akUkþ1KB � Ukþ1KAZkþ1k2;1
þ btrðUkþ1KASK

T
AU

T
kþ1Þ

þ lk
2
kZkþ1 � Jkþ1k2F þ hKk;Zkþ1 � Jki: ð17Þ

As the iteration proceeds, lk tends to be infinity. When

Z ¼ J, we obtain the optimal solution of model (11).

Algorithm 3 Solving Problem (11) by ADM
Input: K, S, α, β, d.
Initialize: Z0 = In×n , U0 = Id×n, Λ0 = 0, μ0 = 10−6, μmax = 1030 , ρ = 1.1, ε = 10−4 ,

k = 0.
while not converged do

1. Fix the others and update U
Uk+1 = argmin

UKUT =Id

α UK − UKZk 2,1 + βtr(UKSKTUT ).

2. Fix the others and update J
Jk+1 = argmin J ∗ + µk

2 J − Zk
2
F + Λk, Zk − J .

3. Fix the others and update Z
Zk+1 = argminα Uk+1K − Uk+1KZ 2,1 + µk

2 Jk+1 − Z 2
F + Λk, Z − Jk+1 .

4. Update the multipliers
Λk+1 = Λk + μk(Zk+1 − Jk+1).
5. Update the parameter μ
μk+1 = min(ρμk , μmax).
6. Check the convergence conditions
Zk+1 − Jk+1 ∞ < ε.

7. k = k + 1.
end while
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Next, we discuss the closed-form solution of the sub-

problem in Algorithm 3. The subproblem in step 2 can be

reformulated as

Jkþ1 ¼ argminkJk� þ
lk
2

J� Zk þ
Kk

lk

� �
�

�

�

�

�

�

�

�

2

F

: ð18Þ

Its optimal solution can be obtained by singular value

thresholding (SVT) operator [2]. However, we do not find

the optimal solution of the subproblem in step 1 and step 3.

Fortunately, by means of special updating rule and the

following formula:

kEk2;1 ¼ tr E

1

k½E�:1k2
0 � � � 0

0
1

k½E�:2k2
. .
. ..

.

..

. . .
. . .

.
0

0 � � � 0
1

k½E�:nk2

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

ET

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

;

ð19Þ

we can smooth these subproblems to obtain the approxi-

mate solutions. The details are in the following. With

respect to the subproblem in step 1, we replace some U

with Uk and change a into a
2
in the ðkþ 1Þ-th iteration.

Then, it becomes

Ukþ1 ¼ argmin
UKUT¼Id

a
2
trðUðK�KZkÞFkðKT � ZT

kK
TÞUTÞ

þ btrðUKSKTUTÞ; ð20Þ

where Fk ¼ diagð 1
k½UkK�UkKZk�:ik2Þ

. The closed-form solution

can be obtained by keeping the eigenvectors associated

with the d smallest eigenvalues of the following general-

ized eigenvalue decomposition problem:

bKSKT þ a
2
ðK�KZkÞFkðK�KZkÞT

� �

UT ¼ kKUT :

ð21Þ

Similarly, with respect to the subproblem in step 3, we

solve the following problem by replacing some Z with Zk

and changing a into a
2
in the ðk þ 1Þ-th iteration.

Zkþ1 ¼ argmin
a
2
tr ðUkþ1K� Ukþ1KZÞGkðKTUT

kþ1 � ZTKTUT
kþ1Þ

	 


þ lk
2
kJkþ1 � Zk2F þ hKk;Z� Jkþ1i;

ð22Þ

where Gk ¼ diagð 1
k½Ukþ1K�Ukþ1KZk�:ik2Þ

. The i-th column of Z

has the following closed-form solution

aKTUT
kþ1Ukþ1K

k½Ukþ1K� Ukþ1KZk�:ik2
þ lkI

� ��1

lk½Jkþ1�:i � ½Kk�:i þ
aKTUT

kþ1Ukþ1½K�:i
k½Ukþ1K� Ukþ1KZk�:ik2

� �

:

ð23Þ

Since each column of Z is separated, the computation of Z

can be paralleled.

We can prove that our strategy can also make the aug-

mented Lagrange function decreasing by the following

theorems. This may be the reason that our algorithm

always converges well in the extensive experiments. Sim-

ilar to Algorithm 1, the computational complexity of this

algorithm is also Oðn3Þ when the computation of Z is

paralleled.

Theorem 1 Ukþ1 obtained by Eq. (21) satisfies inequality

(15).

Theorem 2 Zkþ1 obtained by Eq. (23) satisfies inequality

(17).

The proofs of these two theorems can be found in

‘‘Appendix’’.

4 Experimental results

In this section, we evaluate the performance of our meth-

ods on synthetic data and five benchmark databases.

Because our methods can be viewed as an extension of

LRR, LRR and its extensions, e.g., LSR, LLRR, and SC-

LRR, are selected to be compared in our experiment. In

addition, since LS3C has the idea of learning a subspace

for self-representation, we also compare LS3C and SSC in

our experiment. In Sects. 4.2–4.6, clustering error, defined

as the ratio of the number of the misclassified data points to

the number of all the data points, is exploited as the

evaluation metric. According to its definition, lower clus-

tering error means better performance. In Sect. 4.7, we also

report the performance of all the methods on another

evaluation measure. We use the source codes provided by

the original authors and tune important parameters of each

compared method empirically to achieve the best result.

4.1 Synthetics data

In this section, we generate two spirals to test the perfor-

mance on manifold clustering. As shown in Fig. 1a, the

data points marked as triangle and circle are drawn from

two nonlinear manifolds instead of linear subspaces,

respectively. In this situation, the methods exploiting self-

representation in the original space cannot extract the

affinity well and thus will not obtain the right clustering

results. As a representative, the result of LRR is provided
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in Fig. 1b, where the data points near the intersection are

misclassified. Following the strategy often exploited in the

experiment of previous work, we preprocess the data points

by PCA for LRR. However, the data points drawn from the

same spiral cannot be projected into one linear subspace by

PCA, so LRR still achieves the wrong clustering result

shown in Fig. 1c.

Since LS3C has the idea of learning a subspace for self-

representation extracting the affinity, we test its perfor-

mance on this synthetic data. As shown in Fig. 1d, by

means of the polynomial kernel frequently used in its

experiment, LS3C cannot achieve the right clustering

result. Hence, we construct a kernel for LS3C in the

following:

½K�ij ¼ exp �
1� ðŷTi ŷjÞ

2

r2

 !

; ð24Þ

where ŷi ¼ yi
kyik2

; i ¼ 1; . . .;N, r2 is empirically set as
P

i;j
ð1�ðŷTi ŷjÞ

2Þ
N2 . Y ¼ ½y1; . . .; yi; . . .; yn� is constructed as

follows

Y ¼ M	Q; ð25Þ

where Q is similar to K in Eq. (24) by replacing yi with xi,

M is the binary matrix
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Fig. 1 The results of different methods on two spirals: a the original

data. The data points marked as triangle and circle are drawn from

two spirals, respectively. b The clustering result of LRR. c The

clustering result of LRR by using PCA as a preprocessing step. d The

clustering result of LS3C with the polynomial kernel. e The projected
data points in the latent space of LS3C with the kernel in Eq. (24).

f The clustering result of LS3C with the kernel in Eq. (24). g The

transformed data points in the learned subspace of our method with

the kernel constructed in Eq. (24). h The clustering result of our

method with the kernel constructed in Eq. (24). i The clustering result

of our method with the kernel in Eq. (24) and the criterion of PCA on

the learned subspace
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½M�ij ¼
�

1 xi 2 DðxjÞ or xj 2 DðxiÞ
0 otherwise

; ð26Þ

where DðxiÞ denotes the k-nearest neighbors of xj mea-

sured by Euclidean distance.

The construction of K is inspired by the work [37].

Referring to its analysis, ½K�ij represents the angle between
the ŷi and ŷj transformed by the Veronese map of degree 2,

which can transform some disjoint but not independent

subspaces into independent subspaces. Since independent

subspace clustering is an easier task than disjoint subspace

clustering [32], the K can improve the result for subspace

clustering. Our idea is applying the transformed data points

approximately with the structure of multiple subspaces for

K. Hence, we construct Y which can be viewed as the

transformed data points. In order to enable Y to approxi-

mately have the appreciated structure, we try to let the

transformed data points drawn from the same spiral have

small angles between them. Both the local information

collected in M and the angle measure represented by Q are

integrated to achieve this aim. Although we deliberately

devise the kernel for LS3C, it does not achieve the right

clustering result, too. The reason may be that its penalty on

the learned subspace does not favor the self-representation

extracting the affinity. Figure 1e shows the transformed

data points in the latent space by setting its dimensionality

as 2. Since these projected data points do not have the

structure of multiple subspaces, LS3C yields the wrong

clustering result shown in Fig. 1f.

In the last, we try the K in Eq. (24) for our method on

this synthetic data by setting the dimensionality of the

learned subspace as 2. It can be seen from Fig. 1h that our

method can achieve the right clustering result. The trans-

formed data points in the learned subspace are shown in

Fig. 1g where the data points drawn from the same spiral

are projected into one line. This result indicates that our

method can learn a subspace favoring the self-representa-

tion to extract affinity and thus performs well. Moreover,

we apply the criterion of PCA on the learned subspace to

our method and then provide the result in Fig. 1i, where

our method does not perform well. This result implies the

importance of the penalty on the learned subspace.

4.2 Extended Yale B

The Extended Yale [14] database includes 2432 frontal

face images of 38 subjects. Each subject has 64 images

under varying illumination conditions. For a Lambertian

object, it has been shown that the set of all images taken

under all lighting conditions forms a cone in the image

space, which can be well approximated by a low-dimen-

sional subspace [9]. Hence, the images of different subjects

in the Extended Yale B are usually used as a benchmark for

subspace clustering. In this experiment, we choose the

kernel defined in Eq. (24) by replacing yi with the original

data points. We make two comparisons by selecting the

first 20 images of the first 20 subjects and all the 38 sub-

jects. The selected images are all resized as 48� 42. The

experimental results are shown in Table 2, where the sec-

ond row and the third row report the clustering error on 20

and 38 subjects, respectively. It can be found that our

methods outperform the state of the art. RSLLRR always

achieves better results than SLLRR. LRR and its exten-

sions achieve low clustering error than SSC and its

extensions. In this experiment, the subspace number is at

least 20. The reason may be that the sparse affinity matrix

can easily result in over-segmentation in this case [26].

4.3 CMU PIE

We choose another face database to compare these meth-

ods on the linear case of manifold clustering. Hence, we

also select the kernel defined in Eq. (24) by replacing yi
with the original data points. The CMU PIE [31] database

contains more than 40,000 facial images of 68 subjects

under different poses, illumination conditions, and facial

expressions. We conduct two experiments by selecting 40

images of the first 10 and 20 subjects to test the perfor-

mance of all the compared methods. The size of the images

in this experiment is 32� 32. The clustering errors of all

the compared methods on 10 and 20 subjects are shown in

the second row and third row of Table 3, respectively. It

can be found that our methods also outperform the state of

the art.

4.4 COIL 20

In this part, we test the performance of all the compared

methods on the nonlinear case of manifold clustering.

Following the work [47], we choose COIL 20 [27] database

to achieve this aim. The COIL 20 database consists of 1440

grayscale images of 20 objects. These images are acquired

by a fixed camera capturing the rotated objects every 5
.
Hence, each object has 72 images. The processed version

of COIL 20 is used in our experiment. In this version, the

size of the image is 128� 128 and the background has

been discarded. We extract the spatial pyramid bag of

words (SPBOW) [13] by setting the size of the dictionary

at 80 and explore these descriptors as the original data

points. With respect to the kernel methods, the Gaussian

kernel with the Euclidean distance is exploited. Due to the

effectiveness of SPBOW, the results in Table 4 are much

better than those in Table 3 of the reference [47]. It can be

found from Table 4 that our methods achieve better results.
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4.5 Caltech 101

Caltech 101 [16] database includes the color images of 101

objects. With respect to each object, the image number

usually locates in the range [40, 800] and the image size is

usually different. Different from the images used in COIL

20, several images contain both the object and the back-

ground. The images of the following ten objects: camera,

dollar bill, inline-skate, pagoda, panda, pizza, starfish,

wrench, and yin-yang are collected to make the compari-

son. We also extract SPBOW and then use the descriptors

and Gaussian kernel with the Chi-square distance, but set

the dictionary size at 100. With respect to the subspace

clustering methods learning the affinity matrix by self-

representation in the original space, this experiment is very

challenging. LS3C learns a subspace to make the self-

representation, but the PCA does not favor affinity

extraction. Table 5 reports the clustering errors of all the

compared methods. It can be found that our methods

achieve a great improvement.

4.6 USC SIPI

USC SIPI1 database is comprised of the 128� 128 grays-

cale texture images in 13 categories. Each kind of textures

includes 112 images under the view of 0
, 30
, 60
, 90
,
120
, 180
, and 210
. We collect the first 8 images under

each view of all the textures to compare the state of the art.

There are 728 images in total. We extract the rotation

invariant local binary pattern (LBP) on the 3� 3 grid as the

original data points. The kernel is also selected as the

Gaussian kernel with the Chi-square distance. The clus-

tering errors of all the compared methods on USC SIPI are

reported in Table 6, where our methods perform better than

the state of the art. This result further confirms the effec-

tiveness of our method.

4.7 More discussions

In this subsection, we make more discussions on the

experiment. First, we evaluate all the compared methods by

the adjusted Rand index in Table 7. Note that, the higher

value indicates better performance for this measure. It can

be found that our methods usually achieve better results

than other methods. Second, we test the sensitivity of the

parameter k in Eq. 3. Figures 2 and 3 illustrate the results

on USC SIPL and Caltech 101, respectively. Although our

results fluctuate with the change of k, our performance is

usually better than that of the compared methods.

5 Conclusion and future works

In this paper, we extend the popular subspace clustering

method LRR by proposing the method learning a subspace

for self-representation extracting the affinity between the

data points. After learning a nonlinear subspace, our

Table 2 Clustering errors of all the compared methods on Extended Yale B

# Clusters LRR (%) SSC (%) LLRR (%) LSR (%) SC-LRR (%) LS3C (%) SLLRR (%) RSLLRR (%)

20 19.50 30.25 20.00 18.50 19.00 19.00 17.25 16.75

38 24.34 36.71 26.18 25.00 23.55 26.58 21.32 18.68

The second row and the third row report the results on 20 and 38 subjects, respectively

Table 3 Clustering errors of all the compared methods on CMU PIE

# Clusters LRR (%) SSC (%) LLRR (%) LSR (%) SC-LRR (%) LS3C (%) SLLRR (%) RSLLRR (%)

10 16.75 22.25 16.50 16.75 16.50 15.75 13.25 12.75

20 22.50 39.50 22.25 22.63 22.50 19.50 16.50 16.13

The second row and the third row report the results on 10 and 20 subjects, respectively

Table 4 Clustering errors of all the compared methods on COIL-20

# Clusters LRR (%) SSC (%) LLRR (%) LSR (%) SC-LRR (%) LS3C (%) SLLRR (%) RSLLRR (%)

20 27.78 26.18 30.35 25.42 25.69 25.42 20.63 21.04

1 http://sipi.usc.edu/database/database.cgi?volume=textures.
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method can handle the nonlinear manifold clustering. We

construct the penalty on the learned subspace and enforce

the ‘2;1-norm on the noise successfully in our model.

Extensive experimental results verify the effectiveness of

our method on manifold clustering. Furthermore, the

experiment indicates that the manifold clustering methods

have great potential on the data analysis. They can handle

the data with the nonlinear structure such as Caltech 101 by

exploiting the features and special metric to construct the

kernel. Because the features can be viewed as the nonlinear

transformation of the dataset, developing effective features

can contribute to the wide application of the manifold

clustering methods. In recent years, the deep learning has

achieved many fruitful results, as done in [28, 49]. We

expect the combining of our methods and deep learning

features for more applications.

Table 5 Clustering errors of all the compared methods on Caltech 101

# Clusters LRR (%) SSC (%) LLRR (%) LSR (%) SC-LRR (%) LS3C (%) SLLRR (%) RSLLRR (%)

10 44.14 49.80 37.50 44.92 43.95 46.48 31.25 28.32

Table 6 Clustering errors of all the compared methods on USC SIPI

# Clusters LRR (%) SSC (%) LLRR (%) LSR (%) SC-LRR (%) LS3C (%) SLLRR (%) RSLLRR (%)

13 32.83 32.01 36.68 43.68 32.97 32.55 29.81 28.98

Table 7 The adjusted Rand

index of all the compared

methods

Dataset LRR SSC LLRR LSR SC-LRR LS3C SLLRR RSLLRR

YaleB20 0.6569 0.4004 0.6569 0.6876 0.6748 0.6682 0.7084 0.7102

YaleB38 0.6012 0.2180 0.5831 0.6005 0.5769 0.5323 0.5991 0.6153

PIE10 0.6532 0.4898 0.6602 0.6532 0.6592 0.7296 0.7229 0.7702

PIE20 0.6013 0.2064 0.6039 0.6147 0.6014 0.7351 0.7391 0.7358

Coil20 0.6438 0.6684 0.6080 0.6538 0.6580 0.6676 0.7059 0.7378

Caltech101 0.2723 0.1820 0.3810 0.3051 0.2823 0.2760 0.4977 0.5037

USC SIPI 0.5484 0.5731 0.4959 0.4860 0.5449 0.5665 0.5779 0.5866
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Fig. 2 a Clustering error curves of our methods versus k on USC SIPL. b The adjusted Rand index curves of our methods versus k on USC SIPL
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Appendix

Proof (Proof of Theorem 1) Because Ukþ1 in Eq. (21) is

the optimal solution of the problem Eq. (20), we can obtain

a
2
trðUkþ1ðK�KZkÞFkðKT �ZT

kK
TÞUT

kþ1ÞþbtrðUkþ1KSKTUT
kþ1Þ

� a
2
trðUkðK�KZkÞFkðKT �ZT

kK
TÞUT

k ÞþbtrðUkKSKTUT
k Þ

¼ a
2
kUkK�UkKZkk2;1þbtrðUkKSKTUT

k Þ:

ð27Þ

With respect to a[0;b[0, we can obtain

b

2
� a� a2

2b
: ð28Þ

Hence, with respect to each j ¼ 1; . . .; n

k½UkK� UkKZk�:jk2
2

�k½Ukþ1K� Ukþ1KZk�:jk2

�
k½Ukþ1K� Ukþ1KZk�:jk

2
2

2k½UkK� UkKZk�:jk2
:

ð29Þ

Computing the sum with respect to all j, we can obtain

1

2
kUkK� UkKZkk2;1 �kUkþ1K� Ukþ1KZkk2;1

� 1

2
trðUkþ1ðK�KZkÞFkðKT � ZT

kK
TÞUT

kþ1Þ:
ð30Þ

By means of inequalities (30) and (27), we can obtain

Lk;1�kJkk� þbtr Ukþ1KSKTUT
kþ1

	 


þlk
2
kZk � Jkk2F

þhKk;Zk � Jkiþ a

�

1

2
kUkK�UkKZkk2;1

þ 1

2
trðUkþ1ðK�KZkÞFkðKT �ZT

kK
TÞUT

kþ1

�

�kJkk� þbtrðUkKSKTUT
k Þ

þlk
2
kZk � Jkk2F þhKk;Zk � Jki

þ a
2
kUkK�UkKZkk2;1þ

a
2
kUkK�UkKZkk2;1 ¼ Lk;0:

ð31Þ

h

Proof (Proof of Theorem 2) Because Zkþ1 in Eq. (23) is

the optimal solution of the problem Eq. (22), we can obtain
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Fig. 3 a Clustering error curves of our methods versus k on Caltech 101. b The adjusted Rand index curves of our methods versus k on Caltech

101
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a
2
trððUkþ1K� Ukþ1KZkþ1ÞGkðKTUT

kþ1 � ZT
kþ1K

TUT
kþ1ÞÞ

þ lk
2
kJkþ1 � Zkþ1k2F þ hKk;Zkþ1 � Jkþ1i

� a
2
trððUkþ1K� Ukþ1KZkÞGkðKTUT

kþ1 � ZT
kK

TUT
kþ1ÞÞ

þ lk
2
kJkþ1 � Zkk2F þ hKk;Zk � Jkþ1i

¼ a
2
kUkþ1K� Ukþ1KZkk2;1 þ

lk
2
kJkþ1 � Zkk2F

þ hKk;Zk � Jkþ1i:
ð32Þ

With respect to a[ 0; b[ 0, we can obtain

b

2
� a� a2

2b
: ð33Þ

Hence, with respect to each j ¼ 1; . . .; n

k½Ukþ1K� Ukþ1KZk�:jk2
2

�k½Ukþ1K� Ukþ1KZkþ1�:jk2

�
k½Ukþ1K� Ukþ1KZkþ1�:jk

2
2

2k½Ukþ1K� Ukþ1KZk�:jk2
:

ð34Þ

Computing the sum with respect to all j, we can obtain

1

2
kUkþ1K� Ukþ1KZkk2;1 �kUkþ1K� Ukþ1KZkþ1k2;1

� 1

2
trððUkþ1ðK�KZkþ1ÞGkðKT � ZT

kþ1K
TÞUT

kþ1Þ:

ð35Þ

By means of inequalities (35) and (32), we can obtain

Lk;3 �kJkþ1k� þ btrðUkþ1KSKTUT
kþ1Þ þ

lk
2
kZkþ1 � Jkþ1k2F

þ hKk;Zkþ1 � Jki þ a

�

1

2
kUkþ1K� Ukþ1KZkk2;1

þ 1

2
trðUkþ1ðK�KZkþ1ÞGkðKT � ZT

kþ1K
TÞUT

kþ1Þ
�

�kJkþ1k�

þ btrðUkþ1KSKTUT
kþ1Þ þ

lk
2
kZk � Jkþ1k2F

þ hKk;Zk � Jki þ
a
2
kUkþ1K� Ukþ1KZkk2;1

þ a
2
kUkþ1K� Ukþ1KZkk2;1 ¼ Lk;2:

ð36Þ
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