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Abstract
The electrocardiogram (ECG) is a picture of heart electrical conduction, which is widely used to diagnose many types of

diseases such as abnormal heartbeat rhythm (arrhythmia). However, it is very difficult to detect the abnormal ECG

characteristics because of the nonlinearity and the complexity of ECG signals from one side, and the noise effect of these

signals from the other side, which make it very difficult to perform direct information extraction. Therefore, in this study

we propose a very deep convolutional neural network (VDCNN) by using small filters throughout the whole net to reduce

the noise affect and improve the performance. Our approach introduces multi-canonical correlation analysis (MCCA), a

method to learn selective adaptive layer’s features such that the resulting representations are highly linearly correlated and

speed up the training task. Moreover, the Q-Gaussian multi-class support vector machine (QG-MSVM) is introduced for

classification, an algorithm which has a better learning performance and generalization ability on ECG signals processing.

As a result, we come up with expressively more accurate architecture which is able to differentiate between the normal

(NSR) heartbeats and three common types of arrhythmia atrial fibrillation (A-Fib), atrial flutter (AFL), and paroxysmal

supraventricular tachycardia (PSVT) without performing any noise filtering or pre-processing techniques. Experimental

results show that the proposed algorithm outperforms the state-of-the-art methods.

Keywords Arrhythmia � Convolution neural network � ECG � Very deep learning � Multi-canonical correlation analysis �
Multi-support vector machine

1 Introduction

Cardiovascular diseases (CVDs) are one of the most

important death causes across the globe. Hence, building

fast and accurate techniques for automatic electrocardio-

gram (ECG) abnormal heartbeat signal detection is crucial

for clinical diagnosis of different CVDs.

Arrhythmia is one of the CVDs types, which is an

irregular heartbeat (also called dysrhythmia); and during

this case the heart can beat too fast (Tachycardia), too slow

(Bradycardia), or with an irregular rhythm [1]. The most

common test used to diagnose arrhythmias is ECG, which

is simple and painless test to detect and record the normal

and abnormal individual heartbeats [2]. The most frequent

deadly arrhythmias that affect the elderly population are:

atrial fibrillation (A-Fib), atrial flutter (AF), and paroxys-

mal supraventricular tachycardia (PSVT), which are

depicted as follows: The A-Fib is the most common sus-

tained cardiac arrhythmia which will continue to grow

rapidly. A-Fib occurs when action potentials fire very

rapidly within the pulmonary veins or atrium in a chaotic

manner. The result is a very fast atrial rate of 400–600

beats per minute because the atrial rate is so fast, the action

potentials produced are of such low amplitude, and P

waves will not be seen on the ECG in patients with atrial

fibrillation [3]. AF is a type of arrhythmia that occurs when

the chambers in the top of the heart (atria) beat faster than

the bottom ones (ventricles), which cause the heart rhythm

to be out of sync [4]. PSVT is episodes of rapid heart rate

that start in a part of the heart above the ventricles. There

are a number of specific causes of PSVT, and it can

develop when doses of the heart medicine, digitalis are too

high. It can also occur with a condition known as Wolff–
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Parkinson–White syndrome, which is most often seen in

young people and infants [5]. Figure 1 illustrates plots of

normal sinus rhythm (NSR), A-Fib, AF, and PSTV ECG

signals.

As shown in Fig. 1, all the arrhythmia signals are noisy

signals, nonlinear, and complex, so it is difficult to detect

the characteristics from these signals. To tackle these

problems, many computer-aided diagnosis (CAD) systems

are used to automatically detect arrhythmias and categorize

different types of arrhythmia into their respective classes

[6–14]. These methods include multi-resolution wavelet

transform, which proposed by Sahoo et al. [6] to classify

four types of ECG beats: normal (N), left bundle branch

block (LBBB), right bundle branch block (RBBB), and

paced beats (P) using neural network (NN) and SVM

classifier with average accuracy of 96.67%. Ebrahimzadeh

et al. [9] presented a system for classification of the normal

heartbeats and premature ventricular contraction (PVC). In

this method, the authors used stationary wavelet transform

(SWF) for noise reduction in the ECG signals. Then, a

higher-order statistics and Hermite basis functions expan-

sion represent the ECG signals, and finally they adopted

multi-layer perceptron (MLP) neural networks for classi-

fication with accuracy of 98%. Desai et al. [13] imple-

mented a CAD system to diagnose the four-class

arrhythmia NSR, A-Fib, AF, and V-Fib using rotation

forest (ROF) ensemble method with accuracy 98.37%.

Acharya et al. [14] also proposed a CAD system for

automated diagnosis of the four-class arrhythmia (NSR,

A-Fib, AFL, and V-Fib), of which they extracted entropy

features from the ECG signals, and the obtained features

are then subjected to automated classification using deci-

sion tree (DT) classifier with accuracy of 96.3%. However,

these CAD systems follow the conventional process where

Fig. 1 An illustration of ECG segments
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the ECG signals are pre-processed, then the pre-processed

signals are passed to feature extraction followed by the

classification process to detect the diagnosis, which give

low performance when validated on a separate dataset.

Recently, convolutional neural network (CNN) has been

employed in the automated classification of ECG signals.

Acharya et al. [15] employed an eleven-layer CNN to

automatically classify the four classes of ECG signals:

NSR, A-Fib, AF, and ventricular fibrillation (V-Fib) with

accuracy of 94.90%. They used Daubechies wavelet 6 [16]

for signal denoising and baseline removing. Zubair et al.

[17] extracted R-peak ECG beat patterns for the training of

three-layer CNN, with low accuracy in detecting the ECG

beats into five classes: normal, fusion beat, supraventricu-

lar ectopic beat, unknown beat, and ventricular ectopic

beat. Acharya et al. [18] developed a 9-layer deep CNN to

automatically identify five different categories of heart-

beats in ECG signals: non-ectopic (N), supraventricular

ectopic (S), ventricular ectopic (V), fusion (F), and

unknown (Q). They used pre-processing algorithm to

remove noise from ECG signals and achieved an accuracy

of 94.03 and 93.47% in the diagnostic classification of

heartbeats in original and noise-free ECGs. However, these

works [15, 17, 18] used pre-processing techniques to

remove the noise, which is time-consuming. In addition,

they used relatively large filters size in the first convolution

layers, which decrease the number of parameters, and lead

to integrate less discriminative decision function (ReLU).

In our study, we solved these problems by using very small

receptive fields throughout the whole net.

The major contributions of this paper are fourfolds:

1. We proposed a novel feature extraction and combina-

tion method which takes advantage of very deep

convolutional neural network (VDCNN) to extract the

very deep features and reduce the noise effect, and

apply the feature-level fusion due to the feature level

provides more information and details, which lead to a

better classification performance.

2. We introduced small-size convolution filters to

decrease the number of parameters in each layer and

control the model sizes as the network goes deeper. In

addition, we integrated more ReLU to have more

discriminative decision function and lower computa-

tion cost. Consequently, we come up with expressively

more accurate network architecture, which is used as

fixed feature extractor to extract the very deep features

from the ECG signals without performing any noise

filtering or pre-processing techniques.

3. To speed up the training task (i.e. remove irrelevant

features) and improve the classification accuracy, we

propose a multi-canonical correlation analysis

(MCCA), an algorithm to learn selective adaptive

layer’s features such that the resulting representations

are highly linearly correlated.

4. Extensive experiments on three public available

arrhythmia ECG databases [19] show that our algo-

rithm achieves better performance than the other state-

of-the-art methods, and it can be served as a tool to

help clinicians in confirming their diagnosis.

2 Methodology

This work presents a novel approach to automatically

detect NSR, A-fib, AF, and PSVT classes of ECG signals

using VDCNN without performing any noise filtering or

pre-processing techniques. Figure 2 shows the architecture

of the proposed VDCNN model which consists of three

main stages: very deep features extraction, multi-CCA

algorithm to fuse the learned layers’ features, and QG-

MSVM classifier for classification. In the following sec-

tions, each aspect of the proposed algorithm is described in

more details.

2.1 The proposed network

Using deep neural networks to learn effective feature rep-

resentations has become very popular in biometric recog-

nition [20–24]. It is also employed in the medical field as

an automated diagnostic tool to aid clinicians [25–29]. In

contrast to the aforementioned CNNs that usually have five

or seven layers, the proposed network is based on the

VDCNN for feature extraction, which it has a much deeper

architecture (up to 19 weight layers) and hence can provide

many informative features [30]. Therefore, we steadily

increased the network depth by adding more convolutional

layers, which is achievable due to the use of very small

(3 9 3) convolution filters in all layers. Our proposed

algorithm is based on the fusion of the very deep features

learned by our network model, of which the outputs of

some selected layers are used as a feature descriptor of the

input signal to describe it by informative and significant

features. In this paper, we used the first and second output

fully connected layers of the proposed net as the feature

descriptor of the ECG signal for arrhythmia detection to

describe it with informative features.

2.1.1 Configuration

In our network configurations, we use a stack of convolu-

tional layers followed by three fully connected layers. All

hidden layers are supplied with the rectified linear unit

(ReLU) and do not contain local response normalization

(LRN) as it does not improve the performance on our ECG
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signal dataset, instead it leads to increase the time com-

plexity and the memory consumption. The final layer is the

softmax layer.

The reason for using very small 3 9 3 receptive fields

instead of using quite large receptive fields in the first

(Conv.) layers (e.g. 11 9 11 with stride 4 [31] or 7 9 7

with stride 2 [32]) is that: first, we decrease the number of

parameters and therefore reduce the computation cost as

the CNN goes deeper as follows: we suppose that the three-

layer 3 9 3 convolution kernels stack has z channels, and

the stack is parameterized by 3(32z2) = 27z2 weights; in the

same time, a single 7 9 7 (Conv.) layer requires

72z2 = 49z2, which needs 81% more of parameters. In

addition, using small filter sizes throughout the whole net

reduces the noise effect and achieves better performance

[33]. Second, we integrate ReLU in each convolution stack

to have more discriminative decision functions and lower

computation cost.

2.2 Feature fusion based on multi-canonical
correlation analysis (MCCA)

ECG signal has its own special characteristics (nonlinearity

and complexity), and it cannot only be detected in a fixed

size and need information from different sizes of a signal

[34]. Hence, we propose multi-canonical correlation anal-

ysis (MCCA) to learn selective adaptive layer’s features

such that the resulting representations are highly linearly

correlated and therefore speed up the training task and

improve the performance. In this section, we first introduce

the basic idea of canonical correlation analysis (CCA)

fusion technique and then we propose our feature-level

fusion method (MCCA).

2.2.1 Canonical correlation analysis (CCA)

Canonical correlation analysis (CCA) is a well-known

technique for finding the correlations between two sets of

representations. Suppose that X(p 9 n) and Y(q 9 n) are two

matrices containing n training feature vectors. The aim of

CCA is to find the projection direction of aT and bT that

maximizes the pairwise correlations X� ¼ aTX and Y� ¼
bTY across the two feature sets [35] as shown in Fig. 3.

The transformation matrices a and b are then found by

solving the eigenvalue equations as in Eq. (1) [36]:

V ¼ covðxÞ covðx; yÞ
covðy; xÞ covðyÞ

� �
¼ Vxx Vxy

Vyx Vyy

� �
; ð1Þ

V�1
xx VxyV

�1
yy Vyx a

^ ¼ K2 a
^

V�1
yy VyxV

�1
xx Vxy b

^
¼ K2

b
^

8<
:

where a
^
and b

^
are the eigenvectors and K2 is the diagonal

matrix of eigenvalues. The number of nonzero eigenvalues

in each equation is d ¼ rank ðVxyÞ�min n; p; qð Þ which will
be organized in decreasing order r1 � r2 � � � � � rd . For the

transformed very deep features, the covariance matrix

defined in Eq. (1) will be as:

Fig. 2 Overall architecture of the proposed algorithm
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V� ¼

1 0 � � � 0 j r1 0 � � � 0

0 1 � � � 0 j 0 r2 � � � 0

..

. . .
.

j ..
. . .

.

0 0 � � � 1 j 0 0 � � � rd
r1 0 � � � 0 j 1 0 � � � 0

0 r2 � � � 0 j 0 1 � � � 0

..

. . .
.

j ..
. . .

.

0 0 � � � rd j 0 0 � � � 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð2Þ

where the above matrix shows that the canonical variates

have nonzero correlation only on their indices. Finally, the

feature-level fusion is implemented by summation as in

(3):

C ¼ X� þ Y� ¼ aTx X þ bTy Y ¼ ax
bY

� �T
X

Y

� �
ð3Þ

where C is called the very deep discriminant features

(VDDFs).

2.2.2 Multi-canonical correlation analysis (MCCA)

Multi-canonical correlation analysis (MCCA) generalizes

CCA to be appropriate to more than two sets of features.

We assume that we have k sets of features Fi 2 <pi�n,

i = 1, 2,…,k which are sorted by their rank as: rank(F1)-

C rank(F2) C � � � C rank(Fk). MCCA applies CCA on

two sets of features at the same time to attain the maximum

possible length of the fused feature vector, of which in each

step the two feature sets with the highest ranks are fused

together as illustrated in Fig. 4.

2.3 Classification

In this study, Q-Gaussian multi-class support vector

machine (QG-MSVM) is proposed to classify ECG signals

data into four classes (NSR, A-Fib, AF, and PSVT) where

Q-Gaussian function is used as SVM kernel function

[37, 38]. Q-Gaussian function is employed by replacing the

exponential expression in the standard Gaussian function

with Q-exponential expression to maximize the entropy

under certain constraints as in Eq. (4):

K x; xið Þ ¼ eq � x� xik k2

3� qð Þr2

 !
ð4Þ

where q is a real valued parameter and eq is q-exponential

function defined in [39] and given by Eq. (5):

eq ¼ 1� q� 1ð Þð Þ
�1
q�1; if 1� q� 1ð Þð Þ� 0 ð5Þ

The equation in (4) can be rewritten as Eq. (6):

K x; xið Þ ¼ 1þ q� 1

3� qð Þr2 x� xik k2
� � 1

1�q

ð6Þ

In this paper, after lots of experiments, eventually, 1
r2 is

assigned to 0.5 and q to 1.5.

Fig. 3 Description of CCA

Fig. 4 Multi-canonical correlation analysis techniques for five sample

sets with rank(F1)[ rank(F2)[ rank(F3)[ rank(F4) = rank(F5)
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3 Experimental results

In this study, three public arrhythmia ECG datasets are

used for the experiments, which are available to be

downloaded [19]. The datasets are described and then the

results attained throughout the classification are discussed.

3.1 ECG datasets

We have obtained NSR (normal sinus rhythm) ECG signals

from MIT-BIH Arrhythmia Database (mitdb), A-Fib (atrial

fibrillation) and AF (atrial flutter) ECG signals from MIT-

BIH atrial fibrillation database (afdb), and PSVT (parox-

ysmal supraventricular tachycardia) ECG signals from

MIT-BIH Supraventricular Arrhythmia Database (svdb). In

this work, we have used Lead II ECG signals as it is the

most commonly used lead, besides it is often times the best

lead to use for interpreting the heart’s rhythm.

Table 1 shows the details of the ECG signals used in this

study, of which we have used ten-second duration of ECG

segments and the total number of ECG segments is

111,901.

3.2 Experiment configuration and results

The proposed algorithm is trained on a PC workstation

with 2.7-GHz CPU with 32 GB of memory and a moderate

graphics processing unit (GPU) card. All methods have

been implemented using Microsoft Windows 10 Pro 64-bit

and MATLAB R2016a. We randomly selected the ECG

samples for the training and the testing data sets, and we

evaluated the final statistical results after five runs. After

every run of training is completed, our algorithm performs

a test on the CNN model. We used 80% for training and

20% for testing. The average result of all five runs gives the

total performance of the system.

During training, ECG waveform is the input to our

network, which is passed through a stack of convolutional

(Conv.) layers, where very small filters (3 9 3) are used.

Five max-pooling layers are used in this network, which is

performed over a 2 9 2-pixel window, with stride 2 and

each max-pooling layer follows some of the (Conv.) layers

(not all (Conv.) layers are followed by max-pooling). A

stack of convolutional layers (which has a different depth

in different architectures) is followed by three fully con-

nected (FC) layers: the first two have 4096 channels each,

the third performs C-way ECG classification and thus

contains C channels (one for each class). The final layer is

the softmax layer.

Figure 5 presents a confusion matrix of the classification

performance on two cases: (a) the proposed algorithm

without fusion technique and (b) the proposed algorithm

with fusion technique. It can be seen from Fig. 5 that:

100% ECG segments are correctly classified as NSR class,

100% of ECG segments are correctly classified as A-Fib,

100% of ECG segments are correctly classified as AF, and

\ 2% of the ECG heartbeats are wrongly classified using

the proposed algorithm with fusion technique. Without

fusion technique, 100% ECG segments are correctly clas-

sified as NSR class, 100% ECG segments are correctly

classified as AF class, and\ 10% of the ECG heartbeats

are wrongly classified. The errors were found in detection

of PSVT and A-fib. Figure 6 shows the comparison of

average accuracy between the proposed algorithm with

fusion and without fusion technique.

Table 2 shows the average classification performance of

each class. The overall average classification performance

(accuracy, equal error rate (EER), sensitivity, and speci-

ficity) for all classes is collected in Table 3.

Figure 7 shows the variation of the accuracy of the

classifier during different runs (five runs) in both cases

(with and without fusion).

The classification accuracy of the proposed algorithm is

compared with several state-of-the-art methods and the

results are shown in Table 4.

4 Discussion

The proposed very deep learning structure for detection of

ECG signals is motivated by its application to image

analysis and classification. Several studies based on CNN

have been implemented for the automated detection of

abnormal ECG signals. Acharya et al. [42] proposed a tool

for an automated differentiation of shockable and non-

shockable ventricular arrhythmias from 2 s ECG segments.

Table 1 Overview of the data

used and ECG segments
Database Type No. of segments

MIT-BIH Arrhythmia Database (mitdb) NSR 90,592

MIT-BIH Atrial Fibrillation Database (afdb) A-Fib

AF

18,804

1840

MIT-BIH Supraventricular Arrhythmia Database (svdb) PSVT 665

Creighton University Ventricular Tachyarrhythmia (cudb) V-Fib 163

Total segments 112,064
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(a) (b)

Fig. 5 Confusion matrix of the classification performance on two cases: a without fusion technique and b with fusion technique

Fig. 6 Column chart of the

average accuracy between the

proposed algorithm with fusion

and without fusion

Table 2 Classification

performance of each class using

the proposed algorithm

Class Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) False positive rate

NSR 100 100 100 100 0

A-Fib 100 100 100 100 0

AF 100 100 96.875 85.714 0.03125

PSVT 95 95 100 100 0

Table 3 The overall classification results for the classification of NSR, A-Fib, AF, and PSVT classes

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) False positive rate

97.37 98.75 99.22 96.43 0.0078
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They obtained an accuracy of 93.18% to classify the two

types of ECG signals. In [43], Acharya et al. proposed an

approach based on CNN for the automated detection of a

normal and MI ECG beats. They achieved an accuracy of

93.53 and 95.22% using ECG beats with noise and without

noise removal, respectively. Acharya et al. [15] developed

an eleven-layer CNN structure to characterize the ECG

signals to four classes. They obtained 92.50% accuracy

when using 2 s of ECG signals and 94.90% accuracy for

5 s of ECG signals. Luo et al. [41] proposed a patient-

specific heartbeat classification framework using time–

frequency representation and a deep neural network (DNN)

classifier for classifying the heartbeats into four classes.

They reported overall accuracy of 97.5% for classifying the

four types of ECG signals. In this study, we take the

advantage of very deep convolutional neural network to

extract the very deep features from the original ECG unlike

the previous studies that extract the features after pre-

processing or segment the ECG signals as in [44]. Hence,

making the proposed system is suitable for real-time

arrhythmia detection.

From the analysis of the results, it is evident that our

proposed algorithm is more robust as compared to state-of-

the-art works mentioned in Table 4. Most of the previous

works are used relatively large filters size in the first con-

volution layers, which decrease the number of parameters,

and lead to integrate less discriminative decision function

(ReLU). In our study, we solved these problems by using

very small receptive fields throughout the whole net. In

addition, our proposed algorithm does not require any pre-

processing methods, where most of the works reported in

Table 4 are used pre-processing techniques in their study.

Our results are comparable to the previous works described

in Table 4 which proves that using filters or pre-processing

techniques is not necessary for the classification of

arrhythmia. In this paper, we selected the first and second

output fully connected layers of the proposed net as the

feature descriptor of the ECG signal for arrhythmia

detection to describe it with informative features. Figure 8

shows the criterion of considering the selected layers by

selecting the two layers that achieve the highest accuracy

comparing to other layers in the proposed model.

To make our work more robust and efficient, we pro-

posed a fusion technique named MCCA, which increases

the accuracy by 3% comparing to the proposed algorithm

without fusion. Our results using fusion are comparable to

the previous works in Table 4, where the sensitivity rate is

98.75% and the specificity rate is 99.22%.

The computational cost of the proposed system is rela-

tively low. The algorithm is implemented in a computer

with specifications of 2.7-GHz CPU with 32 GB RAM.

Moreover, the proposed algorithm used small filters size

(3 9 3) comparing to other methods and therefore the

implementation is economical and requires simple

hardware.

To the best of our knowledge, this is the first study to

implement a very deep CNN for the automated detection

system of NSR, A-Fib, AF, and PSVT ECG signals without

using any pre-processing methods.

Based on the results, the summary of proposed algo-

rithm can be drawn as:

1. It can be argued that the proposed algorithm is

significantly robust, reliable, and efficient comparing

to other state-of-the-art ECG classification algorithms.

2. The proposed algorithm overcomes many problems

that confronted most of previous algorithms such as

large number of parameters and the noise effect.

3. To take advantage of our proposed very deep network,

we work directly on the two-dimensional ECG signal

instead of a one-dimensional signal which always need

a segmentation process.

4. The computational cost of our algorithm is lower than

other algorithms that used CNN.

5. The proposed algorithm can serve as a tool to help

clinicians in confirming their diagnosis.

Finally, we want to stress that a novel ECG algorithm

based on a very deep CNN to classify the four classes

(NSR, A-Fib, AF, and PSVT) has been already confirmed.

5 Conclusion

In this work, we propose a very deep CNN with QG-

MSVM to classify the four classes (NSR, A-Fib, AF, and

PSVT) using 111,901 ECG segments without performing

any pre-processing methods. Furthermore, we proposed

MCCA for feature-level fusion, which combines the

Fig. 7 Plot of accuracy (%) versus different runs (five runs) in the two

cases (with and without fusion)
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Table 4 Classification performance of the proposed classifier compared with some well-known methods

Author/

year

Database The size of

convolution

filters

The number of layers ECG

rhythms

Classifier Accuracy

(%)

Two-class

Ebrahim
et al. [9]

MIT-BIH – – N

PVC

MLP 98.02

Acharya
et al. [42]

MIT-BIH

VFDB

CUDB

5 9 5 11 Non-
shockable

Shockable

CNN 93.18

Acharya
et al. [43]

PTB 5 9 5 11 N

MI

CNN With noise:
93.53

without
noise:
95.22

Andersen
et al. [11]

afdb – – N

A-Fib

SVM 96.9

Three-class

Isin et al.
[40]

MIT-BIH Conv.1 11 9 11

Conv.2 5 9 5

Convs.3, 4 and 5

3 9 3

8 N

RBBB

P

Deep CNN 92

Garcia
et al. [12]

MIT-BIH – – N

S

V

SVM 92.4

Four-class

Acharya
et al. [14]

afdb

cudb

MIT-BIH

– – NSR

A-Fib

AFL

V-Fib

Decision Tree 96.3

Desai et al.
[13]

afdb

cudb

MIT-BIH

– – A-Fib

AFL

V-Fib

NSR

Rotation forest 98.3

Luo et al.
[41]

MIT-BIH 7 9 7 Three layers stacked denoising auto-encoder
(SDA) ? multi-layer DNN classifier

N

S

V

F

Deep neural network 97.5

Acharya
et al. [15]

afdb

cudb

MIT-BIH

5 9 5 11 A-Fib

AFL

V-Fib

NSR

CNN 92.5 for Net
A

94.9 for Net
B

This study MIT-BIH

afdb

svdb

3 9 3 19 NSR

A-Fib

AF

PSVT

Very deep CNN with
fusion and QG-MSVM

Very deep CNN without
fusion

97.37

with fusion

94.74
without
fusion

afdb

cudb

MIT-BIH

NSR

A-Fib

AF

V-Fib

96.62

with fusion

93.15
without
fusion

N normal, MI myocardial infarction, PVC premature ventricular contraction, Ab-N abnormal, NSR normal sinus rhythm, A-Fib atrial fibrillation,

AFL or AF atrial flutter, V-Fib ventricular flutter, RBBB right bundle branch block, P paced beats, S supraventricular ectopic beat, V ventricular

ectopic beat, F fusion beat, PSVT paroxysmal supraventricular tachycardia, afdb MIT-BIH atrial fibrillation, cudb Creighton university ven-

tricular tachyarrhythmia, svdbMIT-BIH Supraventricular Arrhythmia Database, PCA principal component analysis,MLP multi-layer perceptron,

SVM support vector machine, CNN convolution neural network
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selective adaptive layer’s features of ECG to improve the

performance and speed up the training task. Our proposed

algorithm achieved accuracy of 94.74% without using

fusion techniques, and the accuracy is significantly

improved to be 97.37% by applying MCCA. Experimental

results show that the proposed algorithm is more accurate

than the state-of-the-art methods. Hence, it is evident that

our algorithm has the possibility to be implemented in

clinical settings, which can serve as a tool to help clinicians

in confirming their diagnosis. In future, we intend to extend

the proposed model for detecting more abnormal cases.
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