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Abstract
In the power system operation, the reduction of the power loss in distribution systems has significance in the reduction of

operating cost. In this paper, a novel chaotic stochastic fractal search (CSFS) method is implemented for determining the

optimal siting, sizing, and number of distributed generation (DG) units in distribution systems. The objective of the optimal

DG placement problem is to minimize the power loss in distribution systems subject to the constraints such as power

balance, bus voltage limits, DG capacity limits, current limits, and DG penetration limit. The proposed CSFS method

improves the performance of the original SFS by integrating chaotic maps into it. On the other hand, ten chaotic maps are

utilized to replace the random scheme of the original SFS to enhance its performance in terms of accuracy of solution and

convergence speed, corresponding to ten chaotic variants of the SFS where variant being chosen is the best chaotic variant

regarding search performance. For solving the problem, the CSFS is implemented to simultaneously find the optimal siting

and sizing of DG units and the optimal number of DG units will be obtained via comparing optimal results from different

numbers of DG in the problem. The proposed method is tested on the IEEE 33-bus, 69-bus, and 118-bus radial distribution

systems. The obtained results from the CSFS are verified by comparing to those from the original SFS and other methods in

the literature. The result comparisons indicate that the proposed CSFS method can obtain higher quality solutions than the

original SFS version and many other methods in the literature for the considered cases of the test systems. Moreover, the

incorporation of chaos theory allows performing the search process at higher speeds. Therefore, the proposed CSFS method

can be a very promising method for solving the problem of optimal placement of DG units in distribution systems.

Keywords Distribution systems � Optimal placement of distributed generators � Power loss reduction � Chaotic stochastic

fractal search algorithm

1 Introduction

The power demand in the world is always increasing

together with the development of economy and society.

However, the expansion of the power supply and trans-

mission system is limited; thus, the existing system cannot

keep pace with the growth. The reason for the limitation is

that the hydropower has been very thoroughly exploited

and the fossil energy sources are being exhausted and

increasingly environmental pollution while the nuclear

energy is a controversial issue. Therefore, the solution is to

find alternative energy sources to replace traditional energy

sources. As a result, renewable energy sources have

emerged as one of the priority options for dealing with the

exhaustion of fossil energy sources. These renewable

energy sources are often used as small power sources with

the size ranging from a few kW to some MW and directly

connected to the distribution systems or to the customer

side of the meter. The International Council on Large

Electricity Systems (CIGRE) considers these small power

sources as distributed generation (DG) units [1]. DG units

may be internal combustion engines, combustion turbines,

micro-turbines, wind turbines, photovoltaic, biomass, fuel

cells, geothermal, small hydro, etc. [2]. Thanks to the
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benefits of DG units on electrical systems, the installation

of them in distribution systems has become more popular.

Some major advantages of DG units integrated into dis-

tribution systems are power loss decrease, voltage profile

enhancement, power quality improvement, and environ-

mental pollution reduction [3]. However, the inappropriate

placement of DG units may cause an increase of system

losses and relevant costs [3]. Based on the mentioned

benefits, many problems in the DG placement and opera-

tion have been also considered. The common optimal DG

placement (ODGP) problem refers to the examination of

the optimal location and size of DG units to be installed

into the existing distribution systems depending on the

power system operation and DG operation constraints as

well as investment constraints. In general, the ODGP

problem is a complex mixed-integer nonlinear optimization

problem [3]. In addition to the optimal site and size of DG

units, the optimal number of DG units needs to be also

investigated since a large number of DG units in a distri-

bution system might negatively result in the system such as

overvoltage, line overloading, and losses increment.

Therefore, the problem of optimal number, location, and

sizing of DG units has attracted the attention of many

researchers.

Several conventional methods have been proposed for

solving the ODGP problem such as gradient-based method

(GM) [4], linear programming (LP) [5], nonlinear pro-

gramming (NLP) [6], sequential quadratic programming

(SQP) [7], and dynamic programming (DP) [8]. In general,

these conventional methods are especially effective for

dealing with small-scale optimization problems in terms of

saving time. However, the key challenge is that they cause

time-wasting or no-found solution because of large search

space of large-scale and complex optimization problems. In

addition, many researchers have also implemented analyt-

ical approaches for solving the ODGP problem. In [9], an

analytical approach was proposed to optimally integrate a

single DG unit generating only active power into both

radial and looped systems to reduce power losses. How-

ever, the optimum DG size is ignored in this research.

Hung et al. [10] used analytical expressions for choosing

the optimal placement, size, and power factor of four types

of DG units to minimize the losses in distribution systems.

However, there is only one DG unit investigated in this

study. In [11], the authors presented three analytical

methods for placing different renewable DG types such as

biomass, wind, and photovoltaic for minimizing of power

and energy losses considering the uncertainties of demand

and DG generation. An improved analytical method was

proposed in [12] for allocating four types of multiple DG

units for loss reduction in distribution systems. The ana-

lytical methods are initially applied only to solve the

problem with single DG, and they are then developed to

deal with the optimal placement of multiple DG units.

However, there are only a predetermined number of DG

units considered in this research and there is no standard

available for determining the optimal number of DG units.

Moreover, the main drawback of the analytical approach is

that the more the number of DG units installed, the more

the complication of the problem suffered.

Recently, meta-heuristic search methods have become

popular for solving the ODGP problem due to their

advantages of simple implementation and ability to find the

near-optimal solution for complex optimization problems.

Various meta-heuristic methods have been applied for

solving the problem such as augmented Lagrangian genetic

algorithm (ALGA) [13], particle swarm optimization

(PSO) [14], constriction factor particle swarm optimization

(CFPSO) [15], krill herd algorithm (KHA) [16], tabu

search (TS) [17], ant colony optimization (ACO) [18],

cuckoo search (CS) [19], harmony search algorithm (HSA)

[20], bacterial foraging optimization algorithm (BFOA)

[21], gravitational search algorithm (GSA) [22], grey wolf

optimizer (GWO) [23], ant lion optimization algorithm

(ALOA) [24], improved honey bee mating optimization

algorithm (IHBMO) [25], improved multi-objective har-

mony search (IMOHS) [26], Taguchi method and the

technique for order of preference by similarity to ideal

solution (TM-TOPSIS) [27], and symbiotic organism

search (SOS) [28]. In [13], the authors utilized a method-

ology based on ALGA for the optimal determination of

location and size of renewable DG units so as to reduce the

total active power loss in radial distribution systems. In

[14], a PSO-based method was proposed to determine the

optimal size and site of DG units and the reactive power

compensation to minimize power losses in unbalanced

distribution systems. In [15], a CFPSO-based method was

suggested for DG planning considering the loss mini-

mization and viability analysis in electricity market sce-

narios. A novel krill herd algorithm (KHA) method was

presented in [16] to find out the optimal location and size of

multiple DG units in distribution systems with the aims of

minimizing the active power loss and energy loss. Nara

et al. [17] employed a TS method for seeking the optimal

location and size of DG units to minimize the network loss.

In [18], the authors used an ACO algorithm for solving the

DG sizing and placement in order to minimize the invest-

ment cost of DG units and operating cost of the network.

A CS-based approach for optimal DG allocation to

improve voltage profile and reduce the power loss of dis-

tribution systems was reported in [19]. In [20], a group of

researchers applied a HSA-based approach for selecting the

siting and sizing of multiple DG units with the purposes of

the active power loss minimization and voltage profile

improvement in distribution systems. The study in [21]

presented a newly fast combined method of loss sensitivity
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factor and BFOA to identify the optimum site and size of

multiple DG units to minimize the total power loss and

operational cost and improve the voltage stability in RDSs

considering various types of loads. GSA was adopted by

[22] for finding out the optimal siting and sizing of DG

units in distribution systems to minimize active power loss

and improve voltage profile. Sultana et al. [23] presented a

multi-objective approach to optimally identify the position

and size of multiple DG units in distribution systems using

GWO with the objective functions of reactive power losses

and voltage deviation. Ali et al. [24] employed ALOA for

optimal siting and sizing of solar and wind-based DG units

to reduce the total power losses and improve the voltage

profiles and voltage stability index of distribution systems.

A Pareto-based multi-objective IHBMO approach was

developed by Niknam et al. [25] for optimizing the site and

size of renewable energy sources in distribution systems

with the objectives of generation costs, emission, and

power losses minimization and voltage profile improve-

ment. In [26], IMOHS was proposed for finding the optimal

location and size of DG units based on the Pareto-optimal

front. In [27], the authors introduced a new approach for

solving the multi-objective ODGP problem based on a

combination of the Taguchi method and the technique for

the order of preference by similarity to ideal solution (TM-

TOPSIS). In [28], the researchers proposed a SOS algo-

rithm for determination of the optimal size and location of

DG units in radial distribution systems for the reduction of

system power loss.

In addition to the single methods, hybrid methods have

been also widely implemented for solving the ODGP

problem such as a hybrid genetic algorithm (GA) and PSO

[29], a hybrid GA and intelligent water drop (IWD) [30], a

hybrid PSO and shuffled frog leaping (SFL) [31], and a

hybrid analytical method (AM) and PSO [32] to improve

the performance of the single methods. For further analy-

sis, Moradi and Abedini [29] proposed a hybrid GA-PSO

algorithm to evaluate the DG site and size for the 33-bus

and 69-bus RDSs in simultaneously minimizing the active

power loss and voltage deviation together and improving

the voltage stability. Moreover, a newly integrated

approach based on GA and IWD was proposed for opti-

mally installing DG units into microgrids for the power

loss and voltage deviation minimization and the voltage

stability improvement of 33-bus and 69-bus RDSs as in

[30]. Gitizadeh et al. [31] implemented a hybrid PSO-SFL

algorithm for the multi-objective distribution system

expansion planning problem considering DG. In [32], a

combination of AM-PSO was presented to optimally place

different types of multiple DG units in distribution systems

in order to minimize power losses and improve voltage

profile while considering different loading levels. Nor-

mally, the solutions obtained by the hybrid methods are

better than those obtained by the single ones but their main

disadvantages are time-consuming and difficulty in

implementing.

From the literature survey, it can be observed that the

ODGP problem is approached in different ways according

to research objectives. Various techniques are used to solve

single- or multi-objective problems. From the mentioned

studies, the factors are mainly considered in the ODGP

problem including the location and size of DG units and

used technology. Among the factors mentioned above, the

two most vital ones in the DG planning are the optimal

location and size of DG units. However, most of the studies

in this problem have not considered the optimal number of

DG units for minimizing power losses. On the other hand,

only the location, size, and used technology have been

concerned, whereas the optimal number of DG units which

also plays an important role in reducing power losses has

been taken no notice. Therefore, the present work is to

develop a novel and powerful computation technique to

find the optimal number of DG units for the active power

loss minimization in distribution systems. Recently, Salimi

[33] has developed a promising meta-heuristic algorithm,

called stochastic fractal search (SFS) algorithm. This

method based on the growing process of nature is powerful

and straightforward to apply to various optimization

problems due to the use of fewer control parameters than

other meta-heuristic search methods. The SFS method was

successfully applied to solve some optimization problems

in various fields such as optimal relay coordination [34],

optimal design of planar steel frames [35], and monitoring

of an aerospace structure [36]. However, the original SFS

still suffers from local minima stagnation and slow speed

of convergence when dealing with complex and large-scale

problems. Therefore, a newly modified SFS was proposed

by Rahman [37] to avoid being trapped in local minima as

well as speed up its convergence to the optimal solution.

The modification is the integration of the SFS algorithm

and chaos theory in order to increase both exploration and

exploitation capabilities of the SFS algorithm named as

chaotic stochastic fractal search (CSFS) algorithm. On the

other hand, the formation of the proposed CSFS method

involves replacing some random sequences with chaotic

maps. The reason for this replacement is that chaos pos-

sesses better statistical and dynamical properties, and thus

the searching process for a near-optimal solution can be

performed at higher speeds.

In terms of improving search performance through

CSFS, the number of iterations is reduced and the best

solution is found with suitable computational time once the

proper chaotic maps are employed. The CSFS algorithm is

proposed for finding the optimal location and capacity of

DG units in the test systems. The main contributions of this

paper can be briefly described as follows:
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1. Improved SFS algorithm with chaos is proposed to

improve the search performance of original SFS

algorithm when tackling the ODGP problem. Specif-

ically, ten chaotic maps, namely Chebyshev, Circle,

Gauss/Mouse, Iterative, Logistic, Piecewise, Sine,

Singer, Sinusoidal, and Tent, are employed to be

integrated into SFS. As a result, ten different variants

of the CSFS are proposed for search performance

evaluation and the best one is chosen.

2. A new specific process for evaluating the optimal

number of DG units with the help of the proposed

CSFS is introduced. On the other hand, the solution

provided by this process is the inclusion of the optimal

number, location, and size of DG units compared to

only optimal location and size of DG units from the

previous studies.

3. Two different mechanisms of optimizing the decision

variables of the problem are considered. The first

mechanism, as suggested in this study, is the simul-

taneous optimization of decision variables. Meanwhile,

the second mechanism which serves as a comparable

mechanism is the separate treatment of these variables.

4. In addition, the CSFS-based version has not ever been

applied for solving the ODGP problem in previous

studies. Therefore, this is a great implementation for

finding the optimal location and size of DG units in

distribution systems to reduce total system loss by

employing the CSFS for the first time.

For the implementation of the proposed method, the two

location and size variables are simultaneously found by

CSFS to ensure the obtained near-optimal solutions for the

problem. In order to prove the superiority of this mecha-

nism in evaluating the optimal DG siting and sizing, a

mechanism based on the clear separation between siting

and sizing is also applied for result comparison. As a fur-

ther analysis of this separation mechanism, the loss sensi-

tivity factor is first used to find a priority list of the

potential locations where DG units can be installed and

then meta-heuristic algorithm is applied to find the optimal

size of DG units with a predetermined number of DG units.

For obtaining the optimal number of DG units, the pro-

posed method is implemented for the problem with dif-

ferent numbers of DG units and the case with a feasible

solution corresponding to the lowest power loss among the

investigated cases is considered as the best solution with

the optimal number of DG units. The proposed method is

tested on the IEEE 33-bus, 69-bus and 118-bus systems,

and the results obtained by the proposed method are veri-

fied by comparing to those from the original SFS as well as

other well-known methods in the literature.

The remaining of the paper is organized as follows.

Section 2 provides the mathematical formulation of the

ODGP problem. Section 3 describes the original SFS

algorithm in detail. The introduction of chaotic maps and

the method of integrating them into SFS are provided in

Sect. 4. The implementation of CSFS algorithm to the

ODGP problem is expressed in Sect. 5. The numerical

results and discussion follow Sect. 6, and finally, the con-

clusion is given.

2 Problem formulation

In this research, the objective of the ODGP problem is to

minimize the total real power losses in distribution systems

satisfying all constraints of the system and DG units.

Mathematically, the ODGP problem is formulated as

follows:

The objective function for minimization of the total

active power loss in a distribution system is expressed by:

F ¼ min Plossð Þ; ð1Þ

where Ploss is the total active power loss of the system

expressed as:

Ploss ¼
rij

ViVj

 XN
i¼1

XN
j¼1

cos di � dj
� �

PiPj þ QiQj

� �

þ sin di � dj
� �

QiPj � PiQj

� �!
;

ð2Þ

where Vi and di are the voltage magnitude and angle at bus

i, respectively; Vj and dj are the voltage magnitude and

angle at bus j, respectively; rij is the resistance of the dis-

tribution line connecting buses i and j; Pi and Pj are the net

active power at buses i and j, respectively; Qi and Qj are the

net reactive power at buses i and j, respectively; and N is

the number of buses in the system.

The optimal location and sizing of DG need to satisfy all

of the operational constraints such as the power balance

constraints, limitation of bus voltages, limitation of DG

capacity, limitation of branch currents, and limitation of

DG penetration as follows.

• Power balance constraints The power flow equations

are defined as equality constraints in the ODGP

problem. The mathematical representation is given by:

PG;i � PL;i ¼ jVij
XN
j¼1

jYijjjVjj cosðdi � dj � hijÞ; ð3Þ

QG;i � QL;i ¼ jVij
XN
j¼1

jYijjjVjj sinðdi � dj � hijÞ; ð4Þ
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where PG,i is the active power output of the generator at

bus i; PL,i is the active power of load at bus i; QG,i is the

reactive power output of the generator at bus i; QL,i is the

reactive power of load at bus i; and Yij and hij are the

modulus and angle of ith element in the admittance matrix

of the system related to bus i and bus j, respectively.

• Bus voltage limits The voltage magnitude at each bus

must be maintained in their lower and upper limits:

Vi;min �Vi �Vi;max; i ¼ 1; . . .;N ð5Þ

where Vi,min and Vi,max are the minimum and maximum

voltage levels at bus i, respectively.

• Branch current limits The current flow in branches

should not exceed their limits.

Ibr;k
�� ��� Imax

br;k

��� ���; k ¼ 1; . . .;Nbr ð6Þ

where Ibr,k represents the branch current of kth branch

of the system; Imax
br;k is the maximum permissible current

flows through kth branch; and Nbr is the number of

branches of the system.

• DG capacity limits The used DG units must have the

allowable size in their following range:

Pmin
DG;i �PDG;i �Pmax

DG;i; i ¼ 2; . . .;N ð7Þ

where Pmin
DG;i and Pmax

DG;i are, respectively, the minimum

and maximum power output limits of the DG at bus

i and PDG,i is the power output of the DG at bus i.

• DG penetration limits This constraint is to limit the

total amount of DG power output to be installed in the

distribution system expressed by:

XND
i¼1

PDG;i �
XN
j¼1

PD;j þ
XNbr

k¼1

Ploss;k ð8Þ

where PDG,i is the power output of the ith DG; PD,j is the

demand of active power at bus j;Ploss,k is the active power

loss in kth branch, and ND is the number of DG units.

• DG candidate location constraint Allocating some DG

units in the same bus is impractical, hence a constraint

for site of used DG units is given as:

LoDG;i 6¼ LoDG;j; i; j 2 N ð9Þ

where LoDG refers to candidate locations for DG units.

3 Stochastic fractal search algorithm

The stochastic fractal search (SFS) algorithm developed by

Salimi [33] is a relatively new meta-heuristic algorithm

which is inspired by the growing process of nature. This

algorithm uses a mathematical idea named the fractal to

simulate the growth. SFS consists of two main processes,

namely the diffusing process and the updating process. The

operation of these two processes is described in the next

subsections.

3.1 Diffusion process

In the diffusion process, each individual diffuses around its

current position to ensure the capability to exploit the

search space. The purposes of the diffusion are to increase

the probability of finding the global minimum and avoid

being trapped in local minima. The new individuals are

created by using the Gaussian distribution. The application

of the Gaussian walks in this process can be described by

the two mathematical equations as follows:

Xd
inew;1 ¼ GaussianðlXbest

; rÞ þ ðe � Xbest � e0 � XiÞ if rand\W

Xd
inew;2 ¼ GaussianðlX ; rÞ otherwise

(

ð10Þ

in which, W is an optional parameter that helps in selecting

Gaussian walks to solve the problem; e and e
0
are the

random numbers limited to [0, 1]; Xd
inew is the new modified

position of point Xi at the dth diffusion; Xbest and Xi are the

position of the best point and the ith point in the group,

respectively; lXbest
, lX and r are Gaussian parameters

where lXbest
is equal to Xbest, lX is equal to Xi, and the

standard deviation r is calculated by:

r ¼ logðgÞ
g

� ðXi � XbestÞ
����

����; ð11Þ

where g is the iteration number. The function
logðgÞ

g
is uti-

lized to adjust the size of the Gaussian jumps over the

course of iterations. This means that when g increases, the

value of the function
logðgÞ

g
decreases, resulting in a corre-

sponding reduction in the size of the Gaussian jumps.

Based on this particular mechanism, the particles are ori-

ented to a more localized search and a closer approach to

the optimal solution.

3.2 Updating process

There are two statistical procedures in the updating pro-

cess. The impact of the first statistical procedure is on each

individual vector index while the second is on all points.
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3.2.1 The first statistical procedure

In the first statistical procedure, all points are ranked based

on the following equation:

Pai ¼
rankðXiÞ

NP
; ð12Þ

where rank(Xi) is referred as the rank of point Xi in the

group and NP is the number of points in the group.

For each point Xi in the group, if the condition Pai\ e is
satisfied where e is a random number between 0 and 1, the

jth component of Xi is updated according to Eq. (13).

Otherwise, no update process occurs.

X0
iðjÞ ¼ XrðjÞ � e � ðXtðjÞ � XiðjÞÞ; ð13Þ

where X0
i is the new modified position of Xi; Xr and Xt are

the randomly selected points in the group; and e is a ran-

dom number between 0 and 1.

3.2.2 The second statistical procedure

Firstly, all points obtained by the first procedure are ranked

based on Eq. (12). Then, the condition Pai\ e is checked.

If the condition is satisfied, the current position of X
0

i is

modified according to Eq. (14). Otherwise, there will be no

change in the current position.

X00
i ¼ X0

i � e00 � X0
t � Xbest

� �
if e0 � 0:5

X00
i ¼ X0

i þ e00 � X0
t � X0

r

� �
otherwise

�
; ð14Þ

where X00
i is the new modified position of X0

i; X
0
r and X0

t are

the randomly selected points obtained from the first pro-

cedure; and e0 and e00 are random numbers between 0 and 1.

If X00
i gives a better fitness value than X

0
i , X

0
i will be replaced

by X00
i . Otherwise, the value of X0

i is kept.

3.3 Chaotic maps for SFS

In this section, at first, the chaotic maps utilized are

described in detail in mathematical form. The visualization

of these maps is also shown. Then, the method of inte-

grating them into SFS is introduced.

3.4 Chaotic maps

The chaotic maps chosen are presented as follows:

• Chebyshev map [38]:

xkþ1 ¼ cos kcos�1 xkð Þ
� �

ð15Þ

• Circle map [39]:

xkþ1 ¼ mod xk þ b� a

2p

� �
sinð2pxkÞ; 1

� �
;

a ¼ 0:5 and b ¼ 0:2
ð16Þ

• Gauss/mouse map [40]:

xkþ1 ¼
1 xk ¼ 0

1

modðxk; 1Þ
otherwise

8<
: ð17Þ

• Iterative map [41]:

xkþ1 ¼ sin
ap
xk

� 	
; a ¼ 0:7 ð18Þ

• Logistic map [41]:

xkþ1 ¼ axk 1�xkð Þ; a ¼ 4 ð19Þ

• Piecewise map [42]:

xkþ1 ¼

xk

P
0� xk\P

xk � P

0:5� P
P� xk\0:5

1� P� xk

0:5� P
0:5� xk\1� P

1� xk

P
1� P� xk\1

; P ¼ 0:4

8>>>>>>>><
>>>>>>>>:

ð20Þ

• Sine map [43]:

xkþ1 ¼
a

4
sinðpxkÞ; a ¼ 4 ð21Þ

• Singer map [44]:

xkþ1 ¼ l 7:86xk � 23:31x2k þ 28:75x3k � 13:302875x4k
� �

;
l ¼ 1:07

ð22Þ

• Sinusoidal map [45]:

xkþ1 ¼ ax2k sinðpxkÞ; a ¼ 2:3 ð23Þ

• Tent map [46]:

xkþ1 ¼

xk

0:7
xk\0:7

10

3
ð1� xkÞ xk � 0:7

8><
>: ð24Þ

These chaotic maps are illustrated in Fig. 1.
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Fig. 1 Visualization of chaotic maps
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Note that the starting point of all the chaotic maps is 0.7

and the chaotic values are normalized to a range between 0

and 1.

3.5 Method of integrating chaotic maps into SFS

The calculation of Gaussian walk has a significant impact

on the performance of SFS. The fundamental of this meta-

heuristic technique is usually to use uniform distribution to

generate random particles. Nevertheless, when facing

complex nonlinear and multimodal problems, this choice

exposes its main drawback. To overcome this challenge,

the uniform distribution parameter is replaced, e with

several chaotic maps, to improve the convergence rate and

fitness accuracy. Two main equations of the original SFS

algorithm modified with the introduction of the chaotic

variable named cv are shown as follows:

Parameter e
0
of the first Gaussian equation is replaced

with the chaotic variable cv, and part of Eq. (10) is mod-

ified by:

Xd
inew;1 ¼ GaussianðlXbest

; rÞ þ ðe � Xbest � cv � XiÞ ð25Þ

In the original SFS, e
0
is a random number between 0

and 1 but in the CSFS it is a chaotic number between 0 and

1. Parameter e of the equation in the first updating process

is modified using the selected chaotic maps, and the

equation is modified by:

X
0

iðjÞ ¼ XrðjÞ � cv � ðXtðjÞ � XiðjÞÞ ð26Þ

In the original version of SFS, e and e0 are uniformly dis-

tributed random numbers between 0 and 1, and in the

CSFS, they are chaotic numbers between 0 and 1.

Based on these new chaotic equations, the particles are

oriented toward the position of the current best point in a

chaotic way. In addition, ten different chaotic maps are

employed to investigate the effects of them on improving

the performance of SFS in terms of local minima avoidance

and convergence rate.

4 Implementation of CSFS to ODGP problem

This section describes the application of the CSFS for

solving the ODGP problem to minimize the total active

power loss in distribution systems. The overall procedure

of CSFS for the ODGP problem is presented in the fol-

lowing steps:

Step 1: Select the parameters of CSFS including number

of points (NP), maximum diffusion number

(MDN), and the maximum number of iterations

(max_iter).

Step 2: Tuning of parameters by using chaotic maps

[e
0
in Eq. (10) and e in Eq. (13)].

Step 3: The initial population is represented as

X ¼ ½X1;X2; . . .;XNP�T, where each point in the

population represented by Xi ¼ LoiDG;1; Lo
i
DG;2

h
; . . .; LoiDG;ND;P

i
DG;1;P

i
DG;2; . . .;P

i
DG;ND�, i = 1, 2,

…, NP, in which LoiDG;1; Lo
i
DG;2; . . .; Lo

i
DG;ND are

the buses for installation of DG units;

Pi
DG;1;P

i
DG;2; . . .;P

i
DG;ND are sizes of DG units

(MW) to be installed at the corresponding buses.

Similar to other population-based methods, the

points in the SFS are also randomly generated

between their upper and lower bounds. Then,

the first ND elements of points which presented

the installed locations of DG units are rounded

to the nearest integers.

Xi ¼ LBþ randð0; 1Þ � ðUB� LBÞ ð27Þ
Xið1 : NDÞ ¼ roundðXið1 : NDÞÞ ð28Þ

where UB and LB are the upper and lower

bound vectors, respectively.

7714 Neural Computing and Applications (2019) 31:7707–7732

123



Step 4: The initialized population is evaluated by using

a fitness function defined by:

FF ¼ F þ kv
XN
i¼1

Vi � V lim
i

� �2

þ ki
XNbr
k¼1

Ibr;k � Ilimbr;k

� �2
;

ð29Þ

where kv and ki are penalty factors. The penalty

factors used in this study are set to 100,000.

The constraint violations belonging to the

dependent variables are expressed as the fol-

lowing

equations:

V lim
i ¼

Vi;max if Vi [Vi;max

Vi;min if Vi\Vi;min

Vi if Vi;min\Vi\Vi;max

8<
: ; ð30Þ

Ilimbr;k ¼
Ibr;k if Ibr;k � Imax

br;k

Imax
br;k if Ibr;k [ Imax

br;k

�
; ð31Þ

where V lim
i and Ilimbr;k are represented for the limits

of Vi and Ibr,k, respectively.

The fitness value of each point is determined by

performing the power flow to find the total active

power loss of the distribution system. In this

paper, a Matpower toolbox [47] based on New-

ton–Raphson algorithm is applied for solving the

power flow problem. The bus voltage and branch

current limits are also considered in this step. The

evaluation of points is done via choosing the best

fitness value having minimum value among the

fitness values of all points, and the corresponding

point is chosen as the best point Xbest. Set the

iteration counter k = 1.

Step 5: Generation of new solution via diffusion process.

The new point Xd
inew generated via the Gaussian

walk is calculated based on Eq. (25) and part of

Eq. (10). Limit violations are checked, and a

repairing action is needed as any violations

found. Evaluate the fitness function for the new

point. Note that the best created point from this

process is the only point that is retained referred

as Xinew and the rest of the points are discarded.

The point corresponding to the best fitness value

is updated as the best point Xbest obtained by this

process.

Step 6: The first updating process.

Firstly, all points are ranked based on Eq. (12).

Next, the new point X0
i is created based on

Eq. (26). For the new point, limit violations are

checked and a repairing action is needed as any

violations found. Then, the fitness value is

calculated using (29). Each new point X0
i is

accepted if it gives a better fitness value than the

original Xinew. Finally, the minimum fitness value

is found and the corresponding point is set to the

best point Xbest.

Step 7: The second updating process.

Once all points obtained by the first process are

ranked based on Eq. (12), the position of the

points not rated well will be modified based on

Eq. (14). For the newly obtained point X00
i , limit

violations are checked and a repairing action is

needed as any violations found. The value of the

fitness function is calculated using (29). Each

new point X00
i is accepted if it gives a better

fitness value than the original X0
i .

Step 8: If k\max_iter, k = k ? 1 and return Step 5.

Otherwise, stop.

The optimal number of DG units can be found by

investigating the effect of the different numbers of DG

units on the active power loss. To illustrate the effective-

ness of the proposed algorithm, two different ways of

finding the optimal location and size of DG units are

investigated. The first one is that both the optimal location

and size of DG units are simultaneously found using the

proposed CSFS method. The second one is that the loss

sensitivity factor [48] is used to find a priority list of the

potential locations where DG units can be installed and the

top ND buses from the priority list are selected for instal-

lation of DG units and then the optimal size of DG units is

found using the PSO. The sizing of the DG units varies in

discrete steps at the specified location during the opti-

mization process. The number of DG units which results in

the smallest total active power loss among the considered

cases is considered as the optimal number of DG units. The

process of determining the optimal number of DG units by

employing the proposed CSFS can be described as in

Fig. 2.

5 Numerical results and discussion

The proposed CSFS method is tested on the IEEE 33-bus,

69-bus, and 118-bus radial distribution systems [49–51].

For the test systems, the control parameters of the proposed

CSFS method such as the number of points, the maximum

diffusion number, and the maximum number of iterations
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are selected by experiments. Likewise, the control param-

eters of the PSO including the number of particles (NP),

the cognitive acceleration coefficient (c1), the social

acceleration coefficient (c2), the maximum value of the

inertia weight (wmax), and the minimum value of the inertia

weight (wmin) are also chosen via experiments. By tuning,

these values are selected for each test system as presented

in Table 1. The proposed method is run ten independent

trials for each system to obtain the best solution. In this

research, both the fixed number of DG units and the opti-

mal number of DG units for installation in test systems are

considered. For the case with the fixed number of DG units,

the results obtained by CSFS for the systems are analyzed

and compared to those from other methods in the literature.

For the case with the optimal number of DG units, the PSO

and original SFS methods are also implemented to solve

the problem for a result comparison. The PSO and original

SFS methods are also performed ten independent runs for

obtaining the best solution.

5.1 The IEEE 33-bus radial distribution system

This test system consists of 33 buses and 32 branches from

[49]. The total active and reactive power loads of the

system are 3.715 MW and 2.300 MVAr, respectively. The

maximum and minimum power outputs of DG units are

Randomize a number of points, NP

Evaluate fitness function and 
find the best point (Xbest) 

Number of DG units (ND) = 1 

k = 1 

Generate new solution via diffusion process 
Evaluate fitness function and update Xbest

Perform the first updating process 
Evaluate fitness function and update Xbest

Perform the second updating process 
Evaluate fitness function and get Xbest

k = max_iter? 

 TotalDGpower > 
MaxDGpenetration? 

Yes 

No 

ND = ND+1 
No 

Yes 

STOP 
The optimal number of DG units is 

determined corresponding to the case 
with the minimum total power loss 

obtained as well as the all constraints 
fulfilled 

k = k+1 

CHAOTIC 
STOCHASTIC 

FRACTAL SEARCH 
ALGORITHM 

Fig. 2 Flowchart for the process of finding the optimal number of DG units performed by CSFS
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2.786 and 0.2 MW, respectively. The DG penetration limit

is set to 3.926 MW. The base voltage of this system is

12.66 kV. The active and reactive power losses in the

system calculated from the power flow are 210.99 kW and

143.13 kVAr, respectively.

5.1.1 Fixed number of DG units

For the cases with a fixed number of DG units, the pro-

posed method is implemented for solving the problem with

a predetermined number of DG units of 1, 2, and 3. For

each DG unit, two decision variables need to be determined

in the optimization problem including siting and sizing and

these variables will be optimized simultaneously by uti-

lizing the proposed method. Regarding the siting decision

variables, a set of candidate buses for the installation of DG

units is mentioned as a possible combination in the search

space. Specifically, with the considered 33-bus test system,

the number of possible combinations is 32, 496, and 4960

corresponding to the test cases of 1, 2, and 3 DG units. The

corresponding sizing variables are also included in the

same vector of siting variables and randomly initialized

within their upper and lower limits. It can be perceived that

the more the number of DG units considered, the more the

complication of the problem suffered due to many potential

combinations of DG sitings. Furthermore, the presence of

many local minima in the search space of the problem is

also a major challenge for optimization methods. In terms

of the solution method chosen, note that CSFS algorithm

with Gauss/mouse map named as CSFS3 is considered as a

solution method for this case due to the remarked

improvement of optimal solution and convergence speed as

compared with other variants.

In order to illustrate the effectiveness of the proposed

method, the results obtained from the proposed CSFS3

method are compared to those from other well-known

methods such as Method 1 [52], Method 2 [52], Method 3

[52], efficient analytical (EA) [52], EA with optimal power

flow (EA-OPF) [52], exhaustive OPF (EOPF) [52], AM-

PSO [32], exhaustive load flow (ELF) [12], improved

analytical (IA) [12], loss sensitivity factor (LSF) [12],

backtracking search optimization algorithm (BSOA) [53],

rank evolutionary PSO (REPSO) [54], KHA [16], GA [29],

GA-PSO [29], IWD [30], GA-IWD [30], simulated

annealing (SA) [55], BFOA [21], invasive weed opti-

mization (IWO) [56], TLBO [57], quasi-oppositional

teaching–learning-based optimization (QOTLBO) [57],

harmony search algorithm with PSO embedded artificial

bee colony (HSA-PABC) [58], and original SFS as in

Tables 2, 3 and 4. It can be observed from the table that for

the case with one DG unit, the power loss by the proposed

method is reduced from 210.99 kW in the base case to

111.02 kW in the case with the optimal allocation of the

DG unit. In this case, the total power loss obtained by the

proposed CSFS3 is lower than that from Method 1 [52],

Method 3 [52], EA [52], AM-PSO [32], ELF [12], IA [12],

LSF [12], and BSOA [53] and identical to that from

Method 2 [52], EA-OPF [52], EOPF [52], and original SFS

methods. The lower power loss value reveals that the

CSFS3 successfully outperforms these methods in search-

ing the best optimum solution. Also, the CSFS3 is capable

of providing highly competitive solutions to the remaining

methods such as Method 2 [52], EA-OPF [52], EOPF [52],

and original SFS methods because the obtained loss values

are the same. Moreover, the minimum active power loss for

the case with two DG units obtained by the CSFS3 is found

to be 87.17 kW, which is less than a total power loss of

91.63 kW from Method 2 [52], 107.95 kW from Method 3

[52], 87.172 kW from EA [52], 87.28 kW from AM-PSO

[32], 116.71 kW from REPSO [54], 87.63 kW from ELF

[12], 91.63 kW from IA [12], 100.69 kW from LSF [12],

and 89.34 kW from BSOA [53] and identical to 87.17 kW

from EA-OPF [52], EOPF [52], and original SFS. For the

case with three DG units, the total power loss is reduced to

72.79 kW with the help of CSFS3, which is the lowest one

compared to that from the cases with one and two DG

units. Likewise, the reduction percentage of power loss is

up to 65.50%, which is the highest one among the con-

sidered cases. This means that the increase in the number

of DG units installed into the system leads to more reduced

system loss. So, it is necessary to evaluate the performance

of the system with larger DG numbers as well as to suggest

the optimum DG number for integrating into the system. In

addition, via comparing the best power loss in the case with

Table 1 Control parameters of CSFS, SFS, and PSO methods for three test systems

Control

Parameters

33-bus system 69-bus system 118-bus system

CSFS NP = 50, MDN = 5, max_iter = 100 NP = 50, MDN = 5, max_iter = 300 NP = 50, MDN = 5, max_iter = 1000

SFS NP = 50, MDN = 5, max_iter = 100 NP = 50, MDN = 5, max_iter = 300 NP = 50, MDN = 5, max_iter = 1000

PSO NP = 100, c1= c2= 2, wmax= 0.9, wmin=

0.05, max_iter = 100

NP = 100, c1= c2= 2, wmax= 0.9, wmin=

0.05, max_iter = 300

NP = 100, c1= c2= 2, wmax= 0.9, wmin=

0.05, max_iter = 1000
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Table 2 Result comparison for the IEEE 33-bus system with one DG unit

Method DG size in MW (location) Total DG size (MW) Power loss (kW) Loss reduction (%)

Method 1 [52] 2.49 (6) 2.49 111.24 47.28

Method 2 [52] 2.6 (6) 2.6 111.02 47.38

Method 3 [52] 1.5 (30) 1.5 125.21 40.66

EA [52] 2.53 (6) 2.53 111.07 47.36

EA-OPF [52] 2.59 (6) 2.59 111.02 47.38

EOPF [52] 2.59 (6) 2.59 111.02 47.38

AM-PSO [32] 2.49 (6) 2.49 111.17 47.31

ELF [12] 2.601 (6) 2.601 111.10 47.34

IA [12] 2.601 (6) 2.601 111.10 47.34

LSF [12] 0.743 (18) 0.743 146.82 30.41

BSOA [53] 1.8575 (8) 1.8575 118.12 44.02

SFS 2.590 (6) 2.590 111.02 47.38

CSFS3 2.590 (6) 2.590 111.02 47.38

Table 3 Result comparison for the IEEE 33-bus system with two DG units

Method DG size in MW (location) Total DG size (MW) Power loss (kW) Loss reduction (%)

Method 2 [52] 0.72 (6) 2.52 91.63 56.57

1.8 (14)

Method 3 [52] 1.5 (30) 2.50 107.95 48.84

1.0 (25)

EA [52] 0.844 (13) 1.993 87.172 58.68

1.149 (30)

EA-OPF [52] 0.852 (13) 2.01 87.17 58.69

1.158 (30)

EOPF [52] 0.852 (13) 2.01 87.17 58.69

1.158 (30)

AM-PSO [32] 0.83 (13) 1.94 87.28 58.64

1.11 (30)

REPSO [54] 1.4830 (30) 1.8666 116.71 44.68

0.3836 (32)

ELF [12] 1.020 (12) 2.040 87.63 58.51

1.020 (30)

IA [12] 1.800 (6) 2.520 91.63 56.61

0.720 (14)

LSF [12] 0.720 (18) 1.620 100.69 52.28

0.900 (33)

BSOA [53] 0.880 (13) 1.804 89.34 57.66

0.924 (31)

SFS 0.852 (13) 2.010 87.17 58.69

1.158 (30)

CSFS3 0.852 (13) 2.010 87.17 58.69

1.158 (30)
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three DG units, the proposed CSFS3 has the same power

loss value as the other solution methods such as EA [52],

EA-OPF [52], EOPF [52], and original SFS, but the

proposed CSFS3 has much lower power loss value than

Method 2 [52], Method 3 [52], AM-PSO [32], REPSO

[54], GA-PSO [29], IWD [30], GA-IWD [30], SA [55],

KHA [16], BFOA [21], IWO [56], ELF [12], IA [12], LSF

[12], BSOA [53], TLBO [57], QOTLBO [57], and HSA-

PABC [58] methods available in the literature. Based on

the result comparisons, it can be seen that the best solutions

obtained by the proposed CSFS3 do not dominate {Method

2 [52], EA-OPF [52], EOPF [52]} for one DG unit case,

{EA-OPF [52], EOPF [52]} for two DG units case, and

{EA [52], EA-OPF [52], EOPF [52]} for three DG units

case. For further analysis, Method 2 [52], EA [52], EA-

OPF [52], and EOPF [52] methods are referred to as an

improved form of analytical methods, but they have some

Table 4 Result comparison for the IEEE 33-bus system with three

DG units

Method DG size in

MW (location)

Total DG

size (MW)

Power

loss (kW)

Loss

reduction

(%)

Method 2

[52]

0.9 (6) 2.52 81.05 61.59

0.9 (14)

0.72 (31)

Method 3

[52]

1.5 (30) 2.72 107.35 49.12

1.0 (25)

0.22 (24)

EA [52] 0.798 (13) 2.947 72.787 65.50

1.099 (24)

1.050 (30)

EA-OPF

[52]

0.802 (13) 2.947 72.79 65.50

1.091 (24)

1.054 (30)

EOPF [52] 0.802 (13) 2.947 72.79 65.50

1.091 (24)

1.054 (30)

AM-PSO

[32]

0.79 (13) 2.87 72.89 65.45

1.07 (24)

1.01 (30)

REPSO

[54]

1.2274 (6) 2.5212 76.91 63.55

0.6068 (14)

0.6870 (31)

GA [29] 1.5 (11) 2.9942 106.3 49.61

0.4228 (29)

1.0714 (30)

GA-PSO

[29]

1.2000 (32) 2.9880 103.40 50.99

0.8630 (16)

0.9250 (11)

IWD [30] 0.7294 (18) 2.9777 121.4 42.46

0.9118 (14)

1.3365 (30)

GA-IWD

[30]

1.2214 (11) 3.1182 110.51 47.62

0.6833 (16)

1.2135 (32)

SA [55] 1.1124 (6) 2.4677 82.03 61.12

0.4874 (18)

0.8679 (30)

KHA [16] 0.8107 (13) 2.4885 75.412 64.26

0.8368 (25)

0.8410 (30)

BFOA

[21]

0.6521 (14) 1.9176 89.90 57.38

0.1984 (18)

1.0672 (32)

Table 4 (continued)

Method DG size in

MW (location)

Total DG

size (MW)

Power

loss (kW)

Loss

reduction

(%)

IWO [56] 0.6247 (14) 1.7856 85.86 57.47

0.1049 (18)

1.0560 (32)

ELF [12] 0.9 (13) 2.7 74.27 64.83

0.9 (24)

0.9 (30)

IA [12] 0.9 (6) 2.52 81.05 61.62

0.9 (12)

0.72 (31)

LSF [12] 0.720 (18) 2.430 85.07 59.68

0.810 (33)

0.900 (25)

BSOA

[53]

0.632 (13) 1.669 89.05 57.79

0.487 (28)

0.550 (31)

TLBO

[57]

0.8246 (10) 2.7419 75.540 64.20

1.0311 (24)

0.8862 (31)

QOTLBO

[57]

0.8808 (12) 3.0114 74.101 64.88

1.0592 (24)

1.0714 (29)

HSA-

PABC

[58]

1.068 (30) 2.896 72.81 65.49

1.073 (24)

0.755 (14)

SFS 0.802 (13) 2.947 72.79 65.50

1.091 (24)

1.054 (30)

CSFS3 0.802 (13) 2.947 72.79 65.50

1.091 (24)

1.054 (30)
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limitations as follows: The larger the number of DG units,

the more complex the problem; possibility of inaccurate

solutions in complex problems; and lack of robustness.

Consequently, these methods may be difficult to cope with

large-scale and complex optimization problems consider-

ing the integration of a large number of DG units.

Therefore, it can be concluded that the proposed CSFS3

method has equal or better performance than the recently

reported state-of-the-art methods as well as the original

SFS method for dealing with the fixed number of DG units

study case for the tested 33-bus system. It is noteworthy

that the proposed CSFS3 method reveals a better global

search capability than all of the well-recognized members

of the family of meta-heuristic methods.

The superiority of the SFS algorithm over other well-

known algorithms can be explained as follows: The SFS

possesses two powerful processes for exploring the prob-

lem search space, which includes the diffusion process and

the update process. In the first process of the SFS, random

walk based on Gaussian distribution is employed to gen-

erate fractal shapes so that intensification (exploitation)

property is satisfied. The purposes of this process are to

increase the probability of finding the global minima and

also avoid being trapped in local minima. In addition, the

size of Gaussian jumps is adjusted to a downward trend as

the number of iterations increases, meaning that the search

radius of the points would be narrowed over the course of

iterations. Such a decreasing trend assists the SFS to

achieve a proper balance between exploration and

exploitation. In the latter update process, two statistical

procedures are utilized to increase the exploration capa-

bility of the problem space, which satisfies the diversifi-

cation (exploration) property. It is worth noting that the

integration of chaos theory into the original SFS aims to

improve the performance of SFS in terms of avoiding local

minima and boosting convergence rate. On the other hand,

chaotic maps promote the original SFS to achieve a better

trade-off between exploration and exploitation, especially

when dealing with complex optimization problems with a

large number of local optimum solutions.

5.1.2 Optimal number of DG units

In this case, the optimal number of DG units is obtained via

the investigation on different numbers of DG units for

installation in the system. Therefore, the problem will be

solved many times with each corresponding to a fixed

number of DG units. The effect of the different numbers of

DG units on the active power loss is investigated by testing

the different numbers of DG units as long as the total

amount of DG power outputs does not exceed the total

permissible DG penetration and the number of DG units

leading to the minimum power loss among the different

numbers of DG units is considered as the optimal number

of DG units for the system.

Among the values of the active power loss by the dif-

ferent numbers of DG units, a minimum active power loss

of 63.668 kW is obtained corresponding to the number of

DG units which is 8. Therefore, the optimal number of DG

units for the 33-bus system is 8 yielding the smallest total

active power loss.

Table 5 exhibits the optimal result obtained by the

applied CSFS1-10 and the original SFS from the optimal

number of DG units. It is worth mentioning here that

CSFS1 to CSFS10 employ Chebyshev, Circle, Gauss/

Mouse, Iterative, Logistic, Piecewise, Sine, Singer, Sinu-

soidal, and Tent, respectively. As observed from Table 5,

the proposed CSFS3 can yield the best results for total loss

with the corresponding optimal number of DG units com-

pared to the remaining variants. Clearly, the proposed

CSFS3 method outperforms all of the examined CSFS

variants when dealing with the problem of determining the

optimal number of DG units. Moreover, CSFS3 also shows

a significant improvement in terms of solution quality

compared to its original version. Intuitively, CSFS3 with

the incorporation of chaotic behaviors results in a better

trade-off between the exploration and exploitation proper-

ties of search points, which is evidenced by a prominent

search performance.

Table 6 shows the results in detail on optimal location

and size of DG units corresponding to the optimal number

of DG units. For further analysis, the optimal number of

DG units found by both CSFS3 and SFS is 8 while that

found by the PSO method is 12 and the total power loss

obtained by the CSFS3 is less than that from both PSO and

original SFS methods. With the optimal number of DG

units, the active power losses obtained by the proposed

CSFS3, original SFS, and PSO methods are, respectively,

63.668, 64.596, and 77.034 kW as shown in Table 7. Thus,

Table 5 Result comparison for the IEEE 33-bus system with the

optimal number of DG units by the SFS with different chaotic maps

Method Power loss (kW) Total DG power output (MW)

SFS 64.596 3.795

CSFS1 64.873 3.641

CSFS2 64.498 3.735

CSFS3 63.668 3.530

CSFS4 64.361 3.621

CSFS5 64.225 3.698

CSFS6 64.075 3.681

CSFS7 63.923 3.565

CSFS8 64.991 3.739

CSFS9 66.154 3.718

CSFS10 65.080 3.729
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it is clear that CSFS3 achieves the lowest power loss value

compared with original SFS and PSO methods thanks to

integrating the optimum DG number into the system. This

reveals that the CSFS3 is computationally more efficient

than the original SFS and PSO in terms of solution quality.

Furthermore, these results also indicate that a simultaneous

optimum solution for siting and sizing of DG units

obtained by the proposed CSFS3 and original SFS is better

than a solution obtained by the PSO with the separate

treatment of siting and sizing variables. The reason is that

the separation of the siting and sizing of DG units in the

same optimization process may be trapped in the wrong

siting and the sub-optimal sizing.

Figure 3 displays the convergence characteristics of the

CSFS1-10 and SFS methods for the 33-bus system with the

optimal number of DG units. It can be clearly observed that

CSFS3 has the fastest convergence speed among other

variants. Moreover, CSFS3 also provides a stable and quick

convergence with a global searching capability in finding

the optimal location, size, and number of DG units in

distribution systems. In order to further analyze the con-

vergence process of the proposed CSFS3 method, the

CSFS3 outperforms nearly all other methods due to

obtaining the lowest loss objective after just 58 iterations

and then converges rapidly to the optimal solution, which

is obtained at the 99th iteration. Meanwhile, the searching

process of the remaining variants, as well as the original

SFS method, may be trapped in local minima because these

methods do not show much improvement in their objective

function values from the 80th iteration to the last iteration.

In addition, it can also be seen that the convergence speed

of the original SFS algorithm is very slow, meaning that

the SFS undergoes slow exploitation. Clearly, the SFS may

fail to obtain an optimal solution in this case.

The voltage profiles of the system after installation of

the optimal number of DG units by the CSFS1-10, SFS,

and PSO methods are shown in Fig. 4. From the figure, it

can be seen that the voltage magnitude at all buses of the

system is significantly improved after installing the optimal

DG number. It is to be noted from the figure that the

voltage magnitudes in a large number of load buses

obtained by CSFS3 and SFS are better improved than those

obtained by PSO. This shows that the mechanism of opti-

mizing the decision variables simultaneously, i.e., the sit-

ing and sizing of DG units, is more effective than those

separately in terms of bus voltage profile improvement.

In general, the proposed CSFS3 outperforms the original

SFS in terms of quality of solution and convergence

mobility when solving the problem of determining the

optimal number of DG units in the 33-bus test system. On

the other hand, the chaotic behaviors, when embedded into

SFS, show the ability not only to avoid local optima (ex-

ploration) but also to boost convergence speed (exploita-

tion). In addition, the simultaneous optimization of

decision variables is known as an efficient mechanism for

handling complex problems with multiple local minima.

5.2 The IEEE 69-bus radial distribution system

The second test system is the 69-bus radial distribution

system from [50] with a total load demand of 3.80 MW and

2.69 MVAr. The active and reactive power losses of this

test system are 225.001 kW and 102.165 kVAr, respec-

tively. The minimum and maximum power outputs of DG

units are 0.2 and 2.852 MW, respectively. The DG pene-

tration limit is 4.027 MW, and the base voltage of this

system is 12.66 kV.

Table 6 Results of the optimal

number of DG units for the

IEEE 33-bus system by PSO,

SFS, and CSFS3

PSO (The optimal number of DG units: 12)

Locations 6 28 29 8 30 9 13 10 27 31 26 14

Sizes (MW) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.309 0.2 0.2

SFS (The optimal number of DG units: 08)

Locations 9 20 6 24 25 32 29 16

Sizes (MW) 0.430 0.531 0.567 0.419 0.584 0.455 0.425 0.384

CSFS3 (The optimal number of DG units: 08)

Locations 25 9 32 15 6 20 30 24

Sizes (MW) 0.405 0.376 0.404 0.466 0.628 0.375 0.390 0.486

Table 7 Result comparison for the IEEE 33-bus system with the

optimal number of DG units by PSO, SFS, and CSFS3

Power loss (kW) Total DG power output (MW)

PSO SFS CSFS3 PSO SFS CSFS3

77.034 64.596 63.668 2.509 3.795 3.530
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5.2.1 Fixed number of DG units

For the case of the number of DG units fixed in advance,

the proposed method is implemented for solving the

problem with the number of DG units of 1, 2, and 3. For the

siting decision variables, when considered with the 69-bus

distribution system, the number of possible combinations is

68, 2278, and 50,116 corresponding to the test cases of one,

two, and three DG units. Moreover, the problem becomes

very complicated because there are many local minima in

the search space. Note that among the different variants of

CSFS, CSFS with Gauss/mouse map known as CSFS3 has

the highest performance in terms of quality of solution and

convergence speed, so it is selected as a solution approach

to tackle the problem in this case. The simulation results of

the power loss minimization objective by the proposed

CSFS3 method for the three different cases are given in

Tables 8, 9, and 10. Obviously, it may be noted that the

total power loss in the system for the case with installed

DG units is reduced to 83.224, 71.677, and 69.428 kW

corresponding to the cases with one, two, and three DG

units compared to 225.001 kW for the base case without
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DG units. The percentage of power loss reduction for the

cases with one, two, and three DG units is 63.01, 68.14,

and 69.14%, respectively. Among three cases, the power

loss reduction in the case with three DG units is the highest

one, which demonstrates that the increase in the number of

DG units installed into the system results in the better

reduction in power loss. This motivates us to propose a

specific standard for determining the optimum DG number

for the system to achieve the desired objective.

To verify the effectiveness of the proposed CSFS3, the

results obtained by CSFS3 are compared to those from

other well-established methods such as Method 1 [52],

Method 2 [52], Method 3 [52], efficient analytical (EA)

[52], EA with optimal power flow (EA-OPF) [52],

exhaustive OPF (EOPF) [52], AM-PSO [32], loss sensi-

tivity factor-based method (LSM) [20], GA-PSO [29],

IWD [30], GA-IWD [30], GA [59], adaptive genetic

algorithm (AGA) [59], SA [55], KHA [16], BFOA [21],

IWO [56], TLBO [57], QOTLBO [57], and original SFS as

shown in Tables 8, 9, and 10. It is obvious that the pro-

posed CSFS3 can obtain lower total power loss than the

previously reported methods, namely Method 1 [52],

Method 2 [52], Method 3 [52], AM-PSO [32], LSM [20],

GA-PSO [29], IWD [30], GA-IWD [30], GA [59], AGA

[59], SA [55], KHA [16], BFOA [21], IWO [56], TLBO

[57], and QOTLBO [57] for all the test cases of the system.

Also from the table, it is clear that the CSFS3 shows a

similar performance to EA [52], EA-OPF [52], and EOPF

[52] for the three cases because its best solutions are

slightly better or identical to those of EA [52], EA-OPF

[52], and EOPF [52]. However, EA [52], EA-OPF [52], and

EOPF [52] methods have some major limitations as men-

tioned above, which is a rather serious challenge when

applied to large-scale and complex optimization problems,

especially in the case with the consideration of a large

number of DG units. In addition, the minimum loss values

yielded by the CSFS3 are identical to those from the

original SFS method for all the simulated cases. In sum-

mary, the proposed CSFS3 can be a very effective method

Table 8 Result comparison for the IEEE 69-bus system with one DG unit

Method DG size in MW (location) Total DG size (MW) Power loss (kW) Loss reduction (%)

Method 1 [52] 1.81 (61) 1.81 83.4 62.93

Method 2 [52] 1.9 (61) 1.9 83.25 63.00

Method 3 [52] 1.9 (61) 1.9 83.25 63.00

EA [52] 1.878 (61) 1.878 83.23 63.01

EA-OPF [52] 1.87 (61) 1.87 83.23 63.01

EOPF [52] 1.87 (61) 1.87 83.23 63.01

AM-PSO [32] 1.81 (61) 1.81 83.37 62.95

LSM [20] 1.4363 (65) 1.4363 112.10 50.17

GA [59] 2.085 (61) 2.085 84.776 62.32

AGA [59] 1.872 (61) 1.872 83.225 63.01

SFS 1.873 (61) 1.873 83.22 63.01

CSFS3 1.873 (61) 1.873 83.22 63.01

Table 9 Result comparison for the IEEE 69-bus system with two DG

units

Method DG size in MW

(location)

Total DG

size (MW)

Power

loss (kW)

Loss

reduction

(%)

Method

2 [52]

1.7 (61) 2.21 71.95 68.02

0.51 (17)

Method

3 [52]

1.9 (61) 1.92 83.23 63.01

0.02 (64)

EA [52] 1.795 (61) 2.329 71.68 68.14

0.534 (17)

EA-OPF

[52]

1.781 (61) 2.312 71.68 68.14

0.531 (17)

EOPF

[52]

1.781 (61) 2.312 71.68 68.14

0.531 (17)

AM-

PSO

[32]

0.52 (17) 2.24 71.80 68.09

1.72 (61)

LSM

[20]

1.3791 (65) 1.8252 100.39 55.38

0.4461 (27)

GA [59] 2.176 (61) 2.892 78.917 64.92

0.715 (15)

AGA

[59]

1.848 (61) 2.217 72.763 67.66

0.389 (18)

SFS 0.531 (17) 2.312 71.68 68.14

1.781 (61)

CSFS3 0.531 (17) 2.312 71.68 68.14

1.781 (61)
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for dealing with the fixed number of DG units case for the

test 69-bus system.

5.2.2 Optimal number of DG units

For the case of finding the optimal number of DG units, the

proposed CSFS3 method is investigated on the effect of the

different numbers of DG units on the active power loss.

Among the obtained total power losses corresponding to

the investigated numbers of DG units, the minimum active

power loss of 67.157 kW is obtained when the number of

DG units is 7 which is considered as the optimal number of

DG units.

Table 11 illustrates the comparison of the obtained

results corresponding to the optimal number of DG units

from the proposed CSFS3 with the ones of the original SFS

and other variants. It can be seen that the CSFS3 achieves a

high-quality solution among the rest of the variants.

Table 12 shows the results in detail on optimal location and

size of DG units corresponding to the optimal number of

DG units. Specifically, the number of DG units of 7 con-

sidered as the optimal number of DG units is obtained by

the proposed CSFS3 method, whereas the optimal numbers

of DG units found by the SFS and PSO methods are 5 and

8, respectively. Last but not least, the CSFS3 method can

find a better total power loss than the SFS and PSO

methods for the system with the optimal number of DG

units in which the active power losses obtained by CSFS3,

SFS, and PSO methods are, respectively, 67.157, 67.588,

and 71.436 kW as referred to Table 13. This reveals that

Table 10 Result comparison for the IEEE 69-bus system with three

DG units

Method DG size in

MW (location)

Total DG

size (MW)

Power

loss (kW)

Loss

reduction

(%)

Method 2

[52]

1.7 (61) 2.55 69.97 68.90

0.51 (17)

0.34 (11)

Method 3

[52]

1.9 (61) 2.39 72.65 67.71

0.02 (64)

0.47 (21)

EA [52] 1.795 (61) 2.642 69.62 69.06

0.38 (18)

0.467 (11)

EA-OPF

[52]

1.719 (61) 2.626 69.43 69.14

0.38 (18)

0.527 (11)

EOPF [52] 1.719 (61) 2.626 69.43 69.14

0.38 (18)

0.527 (11)

AM-PSO

[32]

0.51 (11) 2.56 69.54 69.09

0.38 (17)

1.67 (61)

LSM [20] 0.1966 (65) 2.2417 73.60 67.28

0.4168 (27)

1.6026 (61)

GA-PSO

[29]

0.8849 (63) 2.9880 81.1 63.95

1.1926 (61)

0.9105 (21)

IWD [30] 0.8226 (63) 3.0851 83.47 62.90

1.4513 (61)

0.8112 (18)

GA-IWD

[30]

0.8059 (64) 3.11 80.91 64.04

1.3926 (61)

0.9115 (20)

SA [55] 0.4204 (18) 2.1813 77.1 65.73

1.3311 (60)

0.4298 (65)

KHA [16] 0.4962 (12) 2.5429 69.563 69.08

0.3113 (22)

1.7354 (61)

BFOA

[21]

0.2954 (27) 2.0881 75.23 66.56

0.4476 (65)

1.3451 (61)

IWO [56] 0.2381 (27) 1.9981 74.59 66.78

0.4334 (65)

1.3266 (61)

TLBO

[57]

1.1601 (62) 3.1636 82.172 63.47

0.9901 (61)

1.0134 (13)

Table 10 (continued)

Method DG size in

MW (location)

Total DG

size (MW)

Power

loss (kW)

Loss

reduction

(%)

QOTLBO

[57]

1.002 (63) 2.9606 80.585 64.18

1.1470 (61)

0.8114 (15)

GA [59] 2.071 (61) 3.543 77.542 65.54

0.512 (17)

0.960 (9)

AGA [59] 1.861 (61) 2.443 70.669 68.59

0.310 (21)

0.272 (12)

SFS 0.527 (11) 2.626 69.43 69.14

0.380 (18)

1.719 (61)

CSFS3 0.527 (11) 2.626 69.43 69.14

0.380 (18)

1.719 (61)
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the CSFS3 is computationally more efficient than the

original SFS and PSO in terms of solution quality. More-

over, these results also provide a strong evidence that the

attained optimal solution is much better when applying the

mechanism of simultaneous optimization of DG siting and

sizing variables than when applying the separation opti-

mization mechanism of these two variables.

Regarding the convergence characteristic, the proposed

CSFS3 method has the fastest convergence speed in the

process of detecting the optimal number of DG units

among the tested methods as presented in Fig. 5. Accord-

ing to Fig. 5, the CSFS3 outperforms all other methods due

to obtaining the lowest loss objective after just 91 iterations

and then converges rapidly to the optimal solution, which

is obtained at the 175th iteration. Meanwhile, the searching

process of the remaining variants, as well as the original

SFS method, may be trapped in local minima because these

methods do not show much improvement in their objective

function values from the 150th iteration to the last iteration.

Furthermore, it can be observed that the convergence speed

of the original SFS method is very slow, meaning that the

SFS undergoes slow exploitation.

Figure 6 shows the voltage profile curves after instal-

lation of the optimal number of DG units obtained by the

CSFS3, SFS, and PSO methods. A significant improvement

of voltage profile at all buses induced by the investigated

methods can be observed from the figure. Additionally,

simultaneously optimizing the decision variables via the

mechanism implemented by CSFS10 and SFS shows a

better improvement in the voltage magnitudes in a large

number of load buses of the test system compared to sep-

arately optimizing these variables through the mechanism

performed by PSO.

Generally speaking, the proposed CSFS3 provides better

solution quality as well as convergence profile than the

original SFS when dealing with the problem of determining

the optimal number of DG units in the 69-bus system. On

the other hand, the chaotic behaviors, when embedded into

SFS, show the ability not only to avoid local optima (ex-

ploration) but also to boost convergence speed (exploita-

tion). In addition, the simultaneous optimization of

decision variables is known as an efficient mechanism for

handling complex problems with multiple local minima.

5.3 The IEEE 118-bus radial distribution system

To illustrate the applicability of the proposed method in

large-scale distribution systems, a 118-bus radial distribu-

tion system is used to test the proposed method. This is the

large-scale distribution system without tie lines, and the

base values used are 100 MVA and 11 kV. The total active

and reactive power loads of the system are 22.710 MW and

17.041 MVAr, respectively. The initial active and reactive

power losses are 1298.091 kW and 978.736 kVAr,

respectively. The test system data such as line and load

data are taken from [51]. The minimum and maximum

power outputs of DG units are 0.2 and 17.032 MW,

respectively. The maximum penetration of DG units is

limited at 24.008 MW.

Table 11 Result comparison for the IEEE 69-bus system with the

optimal number of DG units by the SFS with different chaotic maps

Method Power loss (kW) Total DG power output (MW)

SFS 67.588 3.526

CSFS1 67.646 3.985

CSFS2 67.284 3.554

CSFS3 67.157 3.920

CSFS4 67.917 3.765

CSFS5 67.428 3.343

CSFS6 67.629 3.916

CSFS7 67.377 3.565

CSFS8 67.709 3.998

CSFS9 67.724 3.988

CSFS10 67.461 4.025

Table 12 Results of the optimal number of DG units for the IEEE

69-bus system by PSO, SFS, and CSFS3

PSO (The optimal number of DG units: 8)

Locations 15 17 57 58 59 60 61 64

Sizes (MW) 0.2 0.324 0.2 0.2 0.2 0.2 0.956 0.2

SFS (The optimal number of DG units: 5)

Locations 11 20 49 61 64

Sizes (MW) 0.531 0.403 0.844 1.357 0.391

CSFS3 (The optimal number of DG units: 7)

Locations 8 11 18 28 50 61 64

Sizes (MW) 0.380 0.380 0.380 0.380 0.717 1.302 0.380

Table 13 Result comparison for the IEEE 69-bus system with the

optimal number of DG units by PSO, SFS, and CSFS3

Power loss (kW) Total DG power (MW)

PSO SFS CSFS3 PSO SFS CSFS3

71.436 67.588 67.157 2.480 3.526 3.920
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5.3.1 Fixed number of DG units

For the cases with a fixed number of DG units, the pro-

posed method is implemented for solving the problem with

a predetermined number of DG units of 1, 3, 5, and 7. In

order to effectively investigate this case, the optimal sitings

of DG units, together with their sizings, are achieved

simultaneously through the consideration of a huge number

of possible combinations. When considering with the

118-bus distribution system, the number of possible

combinations is 117, 260,130, 167,549,733, and

49,594,720,968 corresponding to the test cases of one,

three, five, and seven DG units. Moreover, the problem

becomes very complicated because there are many local

minima in the search space. Based on the aim of improving

optimal solution and convergence speed, CSFS algorithm

with Tent map (CSFS10) can be considered as a solution

method. For investigation of the effectiveness of the pro-

posed CSFS10 method, the results obtained by CSFS10 are

compared to those from other methods such as loss

Fig. 5 Convergence curves for

the IEEE 69-bus system with

the optimal number of DG units

obtained by applying the

CSFS1-10 and SFS methods
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sensitivity factors (LSF) [58], HSA-PABC [58], SA [55],

TLBO [57], QOTLBO [57], KHA [16], MOTA [27], and

original SFS as in Table 14. From this table, it is observed

that the performance of the CSFS10 is better compared to

LSF [58], HSA-PABC [58], SA [55], TLBO [57],

QOTLBO [57], KHA [16], and MOTA [27] in terms of the

quality of solutions. For the case with one DG unit, the

proposed method obtains a total power loss of 1016.76 kW

which is less than that of 1021.09 kW from LSF [58] and

1016.77 kW from HSA-PABC [58] and identical to

1016.76 kW from original SFS. It is clear that the proposed

CSFS10 has the lowest minimum loss compared to previ-

ously reported methods. For the case with three DG units,

the CSFS10 presents a minimum active power loss value

equal to 667.29 kW, which is the same yielded by the

original SFS, and 237.09 and 10.45 kW lower than LSF

[58] and HSA-PABC [58], respectively. Similarly, for the

case with five DG units, the total power loss obtained by

CSFS10 is 581.58 kW, which is slightly higher than

QOTLBO [57], being 0.18 kW higher, but considerably

lower than the others, such as 277.23 kW compared to SA

[55] and 13.29 kW compared to TLBO [57]. Also, the

minimum power losses obtained by the proposed CSFS10

and the original SFS are the same in this case. For the case

with seven DG units, the CSFS10 provides the best

solution, with a loss value of 524.69 kW, i.e., 375.50,

66.01, 51.49, 50.02, 93.51, and 0.06 kW lower than SA

[55], TLBO [57], QOTLBO [57], KHA [16], MOTA [27],

and original SFS, respectively. Thus, it is clear that the

proposed CSFS10 yields better solutions than almost all

previously reported methods in terms of minimizing the

active power loss objective except for the QOTLBO [57]

method for the case of five DG units. However, when

considering with a larger number of DG units, namely

seven DG units, the proposed CSFS10 achieves better

solution quality than the QOTLBO [57] due to obtaining

lower power loss value. This advantage implies that the

proposed CSFS10 has more highlighted global search

capability than the QOTLBO [57] when applied to the

large-scale optimization problem. In general, the proposed

CSFS10 can be an effective method for dealing with the

fixed number of DG units case for the 118-bus test system.

5.3.2 Optimal number of DG units

For finding the optimal number of DG units, the problem is

solved with different numbers of DG units and the optimal

number of DG units is determined corresponding to the

case with the minimum total power loss obtained. The

effect of the different numbers of DG units on the active

Table 14 Result comparison for the IEEE 118-bus system with fixed number of DG units

Method Number of DG

units

Optimal result

DG size in MW (location) Loss (kW)

LSF [58] 1 3.050 (70) 1021.09

3 2.8 (70), 6.8 (30), 4.7 (64) 904.38

HSA-PABC

[58]

1 3.000 (71) 1016.77

3 2.950 (71), 3.250 (47), 3.200 (108) 677.74

SA [55] 5 2.1318 (75), 0.7501 (116), 1.1329 (56), 4.5353 (36), 4.9452 (103) 858.8133

7 2.8246 (75), 0.4606 (116), 3.6739 (56), 7.4673 (36), 5.0803 (103), 2.2979 (88), 0.7109

(48)

900.1885

TLBO [57] 5 2.7759 (49), 2.4219 (72), 1.6929 (82), 1.8672 (91), 2.3296 (109) 594.8680

7 1.7553 (8), 0.5910 (10), 1.5368 (36), 2.6865 (49), 2.5014 (71), 2.4941 (79), 2.6628 (110) 590.6974

QOTLBO [57] 5 3.0135 (49), 2.5435 (72), 1.6655 (82), 1.7662 (91), 3.1376 (109) 581.4016

7 1.2463 (24), 0.7322 (42), 3.5392 (47), 2.6792 (74), 1.2483 (78), 1.0865 (94), 3.2432 (108) 576.1823

KHA [16] 7 1.7242 (48), 1.3356 (53), 1.8623 (74), 1.8653 (80), 1.6631 (96), 1.9473 (109), 1.1848

(112)

574.7097

MOTA [27] 7 1.380 (72), 3.600 (110), 1.920 (42), 2.880 (78), 2.280 (70), 4.380 (48), 1.920 (96) 618.2

SFS 1 2.979 (71) 1016.76

3 2.883 (50), 3.120 (109), 2.979 (71) 667.29

5 3.120 (109), 2.519 (79), 2.497 (50), 2.858 (71), 6.473 (29) 581.58

7 2.700 (50), 2.271 (40), 2.271 (20), 2.271 (80), 2.350 (73), 2.271 (91), 3.120 (109) 524.75

CSFS10 1 2.979 (71) 1016.76

3 2.883 (50), 2.979 (71), 3.119 (109) 667.29

5 2.519 (79), 2.497 (50), 6.473 (29), 3.120 (109), 2.858 (71) 581.58

7 2.700 (50), 3.120 (109), 2.271 (91), 2.271 (40), 2.281 (74), 2.271 (80), 2.271 (20) 524.69
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power loss is investigated. Among the values of the active

power loss, a minimum active power loss of 499.004 kW is

obtained corresponding to the number of DG units which is

10, resulting in the global optimum. Therefore, the optimal

number of DG units for the 118-bus system is 10 yielding a

total active power loss of 499.004 kW.

Table 15 demonstrates the best results with the corre-

sponding optimal number of DG units from the proposed

CSFS10, original SFS, and CSFS1-9 methods. It can be

easily realized that the CSFS10 yields the highest quality

solution among others due to the gain of the minimum

power loss value. The detailed results on optimal siting and

sizing of DG units corresponding to the optimal number of

DG units are illustrated in Table 16. It can be seen that

both CSFS10 and SFS methods find the same optimal

number of DG units of 10, whereas that found by PSO is

34, which is much higher than the quantity proposed by

both CSFS10 and SFS. Compared with the active power

loss found by the original SFS after installation of the

optimal number of DG units, the one found by the proposed

CSFS10 is slightly reduced. However, when compared

with the performance of PSO, the CSFS10 apparently

outperforms the PSO in terms of power loss minimization.

With the optimal number of DG units, the active power

losses obtained by CSFS10, SFS, and PSO methods are

499.004, 499.005, and 527.573 kW, respectively, as

referred to Table 17. The convergence curves of the

CSFS1-10 and SFS methods for the case with the optimal

number of DG units are illustrated in Fig. 7. As observed,

CSFS10 has the fastest convergence speed among different

variants as well as original SFS. Moreover, it can also be

observed from the figure that the CSFS10 illustrates a

smooth convergence to the optimal solution without any

sudden oscillation affecting the convergence process. This

confirms the convergence reliability of the proposed

CSFS10 method when dealing with a large-scale distribu-

tion system. Besides, it is worth noting that the original

SFS suffers from slow convergence speed when applied in

this case due to lacking of fast exploitation. In fact, the

original SFS takes up to 981 iterations to reach the best

solution.

Another noteworthy point is that although some variants

including CSFS6 and CSFS8 can approximately achieve

the optimal solution, in this case, their convergence rates

are still rather slow. Specifically, the proposed CSFS10

Table 15 Result comparison for the IEEE 118-bus system with the

optimal number of DG units by the SFS with different chaotic maps

Method Power loss (kW) Total DG power output (MW)

SFS 499.005 22.821

CSFS1 499.404 23.088

CSFS2 500.802 21.385

CSFS3 503.638 22.211

CSFS4 500.802 21.385

CSFS5 500.465 21.185

CSFS6 499.075 22.895

CSFS7 500.713 23.446

CSFS8 499.007 22.820

CSFS9 500.548 21.269

CSFS10 499.004 22.819

Table 16 Results of the optimal number of DG units for the IEEE 118-bus system by PSO, SFS, and CSFS10

DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8 DG9 DG10 DG11 DG12

PSO (The optimal number of DG units: 34)

Locations 70 104 68 106 108 69 67 89 110 42 47 105

Sizes (MW) 0.2 0.2 0.2 0.953 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

DG13 DG14 DG15 DG16 DG17 DG18 DG19 DG20 DG21 DG22 DG23 DG24

Locations 33 34 107 72 32 35 109 73 49 50 90 91

Sizes (MW) 0.2 0.2 0.2 0.2 0.2 1.676 0.2 0.2 0.2 0.2 0.2 0.245

DG25 DG26 DG27 DG28 DG29 DG30 DG31 DG32 DG33 DG34

Locations 111 48 71 74 80 53 81 51 96 54

Sizes (MW) 1.432 0.2 1.573 0.2 0.2 0.2 1.602 0.2 1.101 0.2

SFS (The optimal number of DG units: 10)

Locations 40 20 50 31 91 4 110 80 103 74

Sizes (MW) 2.271 2.271 2.271 2.271 2.271 2.271 2.372 2.271 2.271 2.281

CSFS10 (The optimal number of DG units: 10)

Locations 110 103 80 50 20 40 91 74 31 4

Sizes (MW) 2.370 2.271 2.271 2.271 2.271 2.271 2.271 2.281 2.271 2.271
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settles at the best solution after just 613 iterations, while

the required iteration numbers when applying the CSFS6

and CSFS8 variants are 1000 and 995 iterations,

respectively. Note that only those which meet the highest

standards of accuracy of solution and convergence speed

will be considered as an elite method for solving the

problem.

The voltage profile curves after installation of the opti-

mal number of DG units by the CSFS1-10, SFS, and PSO

methods are shown in Fig. 8. As observed from the figure,

the investigated methods result in a significant improve-

ment of the voltage at buses. In addition, simultaneously

optimizing the decision variables via the mechanism

implemented by CSFS10 and SFS shows a better

improvement in the voltage magnitudes in most load buses

Table 17 Result comparison for the IEEE 118-bus system with the

optimal number of DG units by PSO, SFS, and CSFS10

Power loss (kW) Total DG power output (MW)

PSO SFS CSFS10 PSO SFS CSFS10

527.573 499.005 499.004 13.983 22.821 22.819

Fig. 7 Convergence curves for

the IEEE 118-bus system with

the optimal number of DG units

obtained by applying the

CSFS1-10 and SFS methods
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Fig. 8 Voltage profile at buses

of the IEEE 118-bus system

with the optimal number of DG

units
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of the test system compared to separately optimizing these

variables through the mechanism performed by PSO.

All in all, it has proved that the proposed CSFS10 is able

to outperform the original SFS on improving optimal

solution and speeding up convergence for the case of the

problem of finding the optimal number of DG units in a

large-scale RDS with 118 buses. In other words, the

chaotic behaviors are capable of enhancing both explo-

ration and exploitation phases of SFS. In addition, the

efficiency of the simultaneous optimization mechanism of

control variables is again verified based on superior results

when applied to the complex study case of a large-scale

distribution system.

6 Conclusion

In this paper, the modified CSFS method has been suc-

cessfully implemented for solving the optimal placement of

distributed generators problem in distribution systems. The

proposed modification is by introducing chaos into the

original SFS algorithm. Ten chaotic maps are employed to

be integrated into SFS, resulting in ten chaotic variants of

the SFS for search performance evaluation. The considered

problem in this research includes the determination of the

optimal location, size, and number of DG units in a radial

distribution system for minimizing the total active power

loss satisfying the system and DG constraints. For the

implementation of the CSFS-based method to solve the

problem, each individual considered as a candidate solution

consists of two variables of location and size. Conse-

quently, both the optimal location and size of DG units are

simultaneously found. As revealed from the simulated

results above, this mechanism ensures the ability to find the

better near-optimal solution than the DG siting and sizing

separation mechanism. Furthermore, the study proposes a

new specific process for evaluating the optimum DG

number with the help of the proposed CSFS. The feasibility

and effectiveness of the proposed method for solving the

ODGP problem are demonstrated on the IEEE 33-bus,

69-bus, and 118-bus systems, and the obtained results are

verified via comparing to those from the original SFS and

other methods in the literature. The simulation results

confirm that the proposed CSFS easily outperforms its

basic version as well as other well-known methods in terms

of quality of solution and convergence mobility. The rea-

son for such a superior search performance is due to the

integration of chaos theory into the original SFS, which

leads to a better balance between the exploration and

exploitation properties of search points. Additionally, the

proposed method provides a significant reduction of the

power loss and improvement in the voltage profile for the

case of the installed optimal number of DG units as

compared to the case of installing the number of DG units

fixed in advance from the previous studies. Therefore, the

proposed CSFS can be a very promising method for solving

the complex and large-scale problem of optimal placement

of distributed generators in distribution systems.

With the successful application on a large-scale distri-

bution system, the proposed method can serve as a useful

simulation tool to assist the planners in proposing the

optimal location, size, and number of DG units for practical

distribution system planning problems. In future work,

besides considering the problem in a technical perspective,

we will propose an effective cost model for dealing with

the problem in an economic perspective. This cost model is

a simultaneous consideration of the involved costs,

including cost of energy losses as well as investment and

operation costs of DG units. In addition, technical and

economic risks corresponding to load and electricity mar-

ket price uncertainties may also be an interesting aspect of

research.
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