
ORIGINAL ARTICLE

Deep learning to detect botnet via network flow summaries

Abdurrahman Pektaş1 • Tankut Acarman2

Received: 17 November 2017 / Accepted: 23 June 2018 / Published online: 21 July 2018
� The Natural Computing Applications Forum 2018

Abstract
Compromised computer systems on the Internet, namely botnets, receive commands and share information with their

central malicious systems while executing frequent and common network activities. Former botnet detection methods such

as blacklists and botnet’s signature matching cannot timely and reliably discover evolving botnet variants. Analysis of

botnet network communication flows can be used to discover behavior of botnets toward detection. A rich dataset

constituted by both botnet and normal network traffic flow summaries can be used for training and testing purposes.

Furthermore, neural networks along emerging parallelization computing tools and processors may improve classification

statistical metric results in an efficient manner. A neural network built by a higher number of layers and its architecture

enhances classification accuracy. In this paper, we present a combination of convolutional and recurrent neural network to

identify botnets. To validate the effectiveness of the proposed method, we test and benchmark the proposed method with

two publicly available datasets, which are CTU-13 and ISOT, involving both botnet and normal data traffic. We evaluate

statistical metric results by tuning the neural network architecture and compare the results with respect to baseline

classifiers. Our experiment results show that the presented deep network learning-based botnet detection method is reached

at 99.3% level in accuracy and 99.1% in F-measure, respectively.

Keywords Network security � Network flow � Botnet detection � Machine learning � Network traffic modeling

1 Introduction

A botnet is defined as the network of bots, which are

compromised computer systems or devices on the Internet.

These bots are commanded remotely by a botmaster, which

is also called command and control (C&C) server. Unin-

tended malicious activities such as sending spam e-mails,

phishing, click-fraud, distributed denial of service (DDoS)

attacks against critical targets are executed via these bots

without the authorization of their system owner. The

impact of a botnet can be severe due to its spreading

capacity of malicious software, and large-scale malicious

attacks are targeted to steal safety-critical or liability-crit-

ical personal data. Due to the constantly evolving behavior

of botnets, the former approaches such as blacklists and

botnet signature matching fail to detect botnets [7].

Blacklists ensure accurate defense against known and

emerging cyber threats. For instance, blacklists are publicly

advertised in [23, 30], but botnets change frequently their

network connections, their IP addresses or domain names

to evade detection. The usefulness of blacklists is rather

limited, and blacklist-based approaches are not reliable and

timely security solutions at identifying a botnet. Analysis

of packet payload to search and match characteristics of

botnet data, namely botnet signature, is computationally

expensive and not scalable with respect to the volume of

data generated by botnets on a high-speed network. For

instance, Botzilla [39], Rishi [19] and Snort IDS rules [16]

identify C&C channels in network traffic using payload

byte signatures belonging to a fairly small set of known

botnets. But in case of using encrypted C&C protocol, the

payload data become irrelevant and not meaningful to

capture characteristics of payload patterns. Payload

& Abdurrahman Pektaş

a.pektas@ebebek.com

Tankut Acarman

tacarman@gsu.edu.tr

1 Ebebek, Icerenkoy Mahallesi Degirmen Yolu Caddesi No:37

D:6, 34752 Ataşehir, Istanbul, Turkey

2 Computer Engineering Department, Galatasaray University,

Ciragan Cad., 36, Ortaköy, 34349 Istanbul, Turkey

123

Neural Computing and Applications (2019) 31:8021–8033
https://doi.org/10.1007/s00521-018-3595-x(012 3456789().,- volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3595-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3595-x&domain=pdf
https://doi.org/10.1007/s00521-018-3595-x

analysis cannot be used for identification of encrypted or

obfuscated C&C protocols.

Botnets can be deployed in a centralized, decentralized

or hybrid fashion depending on their C&C architecture (see

for instance [2]). A botnet uses different communication

protocols such as IRC, HTTP, P2P and IM. The IRC-based

centralized C&C structure was very popular and commonly

used by botnet creators. Currently, the HTTP(S)-based

centralized or decentralized approach is executed. Because

this protocol is the most prominent and used by Internet

applications. To complicate detection, the cyber criminals

may blend normal web traffic into botnet traffic flow.

Encrypted or obfuscated C&C communication protocols

hinder traditional signature-based botnet detection

approaches, which inspect contents of C&C messages and

trigger an alert if a malicious pattern is discovered.

Bots must communicate with their botmaster (i.e., C&C)

to receive commands, to update their status or to exfiltrate

critical data. Connection activities of bots constitute a

particular behavior. Even evasive bots have been discov-

ered by modeling behavior of botnet communication

activities [5, 17, 26]. Bots generate uniform communica-

tion patterns of flows during the procedure of communi-

cation with their C&C server. And botnet traffic can be

discovered by extracting these communication traces

involving the underlying patterns of communication

activities.

In this study, our particular focus is on the extraction of

statistical-based network flow features between two hosts

such as duration, size of packets, standard deviation of

packet size, and other related flow-based features. Without

loosing of generality, the proposed approach is also

applicable to detect botnets that use encrypted communi-

cation protocols. The proposed system extracts network

flow features and does not inspect the payload data. Then,

we evaluate the performance of the deep neural network

trained by flow-based features to identify botnets. Fur-

thermore, we discuss the flexibility of the deep learning

approach at inferring the distinguishable knowledge from

the network dataset.

We make the following contributions to botnet detection

by using flow-based features and deep learning:

(i) We design a botnet detection method combining

both network flow information and deep learning.

(ii) For feature extraction, we use a graph structure to

represent network connections between hosts.

Using a structured graph, we easily extract

statistical-based network flow features to build

deep learning model.

(iii) We perform extensive experiments on large-scale

real-world network capture traces. We test and

benchmark publicly available datasets. The

experimental results show that our approach

outperforms the existing results and achieves high

detection accuracy and very low false positive

rate.

The rest of this paper is organized as follows. The lit-

erature review is presented in Sect. 2. In Sect. 3, we review

the fundamental concept of deep learning. In Sect. 4, we

introduce our method and we describe the feature set. In

Sect. 5, we present our experimental study subject to real-

world large-scale network captures. Finally, we draw some

conclusions and discuss future work.

2 Related work

Since the last decade, dynamic and static analysis of a mal-

ware has attracted a lot of attention; computationally effi-

cient accurate identification has been targeted. System

resources such as network connections, processes, windows

registry and file operations have been monitored to identify

malware samples [35]. Computationally efficient identifi-

cation of n-grams, mining and searching n-gram over API

call sequences is introduced to discover episodes repre-

senting behavior-based features of a malware [36]. To

identify a botnet, signature-based methods inspecting pay-

load data, machine learning (ML) algorithms extracting

features from network traffic patterns generated by connec-

tivity between C&C server and bots have been introduced.

Haddadi and Zincir-Heywood [22] compared the effec-

tiveness of five different botnet detection methods. Two

methods are signature-based, which are named BotHunter

and Snort. The remaining methods apply ML algorithms

(MLAs) over different feature sets involving packet pay-

load-based and network flow-based features. This study

assesses the efficiency of these methods while performing

multi- and binary classification tests on a dataset of 25

public botnets. The authors investigated the features with a

minimum amount of a priori information to increase the

detection accuracy. The experimental results show that

flow-based features, such as interarrival time features, are

the most representative features to model botnet commu-

nication and the highest classification accuracy is reached

by C4.5 algorithm. The feature selection to detect anomaly

was elaborated by Drasar et al. [15]. The impact of flow-

based features to detection accuracy enhancement is eval-

uated. ML presents a significant advantage of automatically

extracting representative and distinguishable characteris-

tics from the botnet dataset. They do not require any prior

information about botnet traffic such as the communication

protocol, the heartbeat interval (i.e., packets sent back and

forth to bots to sustain connectivity between C&C server

and bots).

8022 Neural Computing and Applications (2019) 31:8021–8033

123

Supervised ML methods are effective solutions for

solving various classification tasks in different domains by

building a classification model from labeled training

dataset. Stevanovic and Pedersen [48] introduced a flow-

based botnet detection method. A total of 39 flow features

such as source port, destination port, standard deviation of

packets size, flow duration, are used to model malicious

traffic. The authors evaluated eight supervised MLAs

including naive Bayesian classifier, decision tree, SVM

(NB), Bayesian network classifier (BNet), logistic regres-

sion. For experimental study, they used a publicly available

dataset called ISOT [40]. According to the evaluation

results, random forest algorithm identifies botnets with

95.7% accuracy. Chen et al. [8] focused on detection of

botnet in high-speed and complex network by using

supervised MLAs. They combined flow- and conversa-

tional-based features to build classification model. The

experiments were conducted by using well-known CTU-13

dataset and the performance of different MLAs was ana-

lyzed. Random forest algorithm is reached at 94% level in

accuracy.

Kirubavathi and Anitha [25] introduced a botnet detec-

tion method based on behavioral modeling of network

traffic using flow features and supervised ML methods. The

features are extracted from the information provided by

small size packets sent and received in a flow; for instance,

the ratio of incoming and outgoing packets, the initial

packet length, the ratio of bot-response packets versus total

packets in a flow constitute the four features used in this

study. Naive Bayesian classifier is reached at 99% accuracy

and 96.9% F-measure. But however, four features may not

adequately represent botnet patterns and reliability of

detection results need to be evaluated by more represen-

tative knowledge and characteristics.

Nogueira et al. [32, 41] proposed a botnet detection

relying on characteristic traffic patterns. They used artifi-

cial neural networks (ANNs) as classification method to

differentiate malicious traffic patterns versus benign or

normal. The proposed method can generate alarms and

trigger security actions. However, these triggered actions

are not autonomous and need to be approved by security

experts. ANN is built as a simple feed-forward back-

propagation network consisting of input, hidden and output

layers. Input layer has a dimension of n, where n is the

number of features to represent a sample. The output layer

has one neuron whose output shows whether the input

sample is a botnet or normal traffic. The number of neurons

in the hidden layer is tuned to reach at more accurate

classification results. The experiments are carried out by

using licit traffic captures (e.g., HTTP, P2P file sharing,

video streaming and Skype), and illicit traffic captures are

generated by SubSeven rootkit. Botnet detection rate is

87.56%. The usability of the results is rather weak since the

feature set used by ANN to detect botnet is not described

and the size of each application categories in the dataset is

not presented.

Guntuku et al. [21] integrated a Bayesian regularization

model to pre-process features and to select the most rep-

resentative feature set. Botnet samples are executed in a

controlled environment, and their network traces are cap-

tured as pcap files. Network flows of the captured traces are

used as a feature set excluding source and destination IPs

and ports, which are assumed to be volatile. Overall, the

botnet dataset includes 55,824 network flows. To discover

the most influential and representative features, the infor-

mation gain method is used. Totally, 15 statistical flow-

based features are extracted. Although the size of benign

traffic dataset and their categories is not given, the pro-

posed method detects botnets with an accuracy of 99.2%.

Oujezsky et al. [33] analyzed botnet’s behavior to extract

life spans of C&C communication. The dataset includes

real-world and simulated botnet traffic. Features are

extracted from network flows such as duration, IP address

and port numbers. Qiu et al. [38] implemented active

learning to detect unknown botnets. This study is focused

on the bidirectional packet size sequence information in

order to discover the features and to capture periodical

beacon signals sent to the bots. Alejandre et al. [3]

extracted the feature set from network flows by applying

genetic algorithm. The feature set includes 19 statistical

flow features, and detection accuracy is evaluated by C4.5

algorithm. In our recent study [37], we evaluated feature

selection methods. Linear models penalized with the L1

norm (aka Lasso), recursive feature elimination (RFE) and

tree-based feature selection (aka random forest feature

ranking) are compared while experimenting on public

botnet traces. We tested and benchmarked flow-based

statistical feature set extracted from network flow and

empirically examined the impact of these extracted flow

features on botnet detection.

Torres et al. [51] applied recurrent neural networks

(RNNs) to detect botnet by modeling the behavior of net-

work communications as a sequence of time-varying states.

The behavior model of network connection is built by

analyzing the long-term network activities and extracting

distinguishable characteristics and patterns from these

connections. A behavior model is built for each flow

according to 4-tuple; the source and destination IP

addresses, the destination port and the protocol. Mainly,

size, duration and periodicity (interarrival time) feature of

each flow are used to assign a state symbol subject to

3-level rating (i.e., short, medium and high). And the

behavior of network connection is represented by a string

of symbols. Behavioral string is transformed into a feature

matrix by using a one-hot encoder that maps each symbol

with a binary vector. The proposed approach was evaluated

Neural Computing and Applications (2019) 31:8021–8033 8023

123

with two different real-world datasets with a particular

attention given to the effect of imbalanced network traffic

in terms of a number of samples belonging to botnet and

normal traffic, and the length of the sequence. According to

the evaluation based on a stratified tenfold cross-validation,

97% detection rate and 3% false positive rate are achieved

with the first dataset. However, for the second dataset, the

detection accuracy and false positive rate are 81 and 3%,

respectively. The proposed method suffers from detection

loss about 16% in comparison with respect to the results of

the first experiment. Large variation occurs because the

first dataset contains significantly different behaviors

between botnet and normal traffic, whereas the second

dataset does not. More clearly, the botnet and normal traffic

of the second dataset largely present the similar behavior.

For the interested readers, Stevanovic and Pedersen [47]

presented a comprehensive overview of MLAs applied to

botnet detection. The authors summarized the existing

botnet detection methods in three main sections dedicated

to algorithms, feature set, performance evaluation and

limitations.

The flow-based features have been largely investigated

since packet payload inspection is computationally

expensive and inefficient subject to botnet traffic volume

and scale. Alauthaman et al. [2] focused on the connection

behaviors between C&C server and bots, and they defined

six rules to select the desired packets in order to reduce the

number of packets to be analyzed and to avoid the

encrypted traffic. A total of 29 TCP features are extracted

based on the connection period equal to 30 s. A classifi-

cation and regression tree is proposed, the entropy impurity

at a given node is applied to determine the next node to be

visited, and the ReliefF algorithm is applied to discover the

impact of attributes subject to their values that discriminate

between the instances near to each other. Features ranked

by these two feature selection algorithms vary largely, and

different subsets of features are identified. The ISOT

dataset and the ISCX dataset are used for evaluation pur-

poses, and the presented approach detects botnets with

98.32% accuracy, 98.69% F-measure and 0.75% false

positive rate. Computation time for feature selection is 2.5

s and shorter with respect to the ReliefF algorithm. Shei-

khan and Jadidi [45] leveraged flow-based detection to

reduce the data size and processing time versus packet-

based intrusion detection in high-speed links. ANNs and a

multilayer perceptron neural architecture is used to detect

untrained attacks, and a modified gravitational search

algorithm (MGSA) was introduced to tune the intercon-

nection weights of the neural anomaly detector. Dataset

features are the number of packets per flow, the size per

flow, flow duration, source and destination ports, TCP flags

and IP protocol. By using test dataset, classification rate of

flow-based anomaly detection is reached at 97.76% for the

MGSA slightly higher than 97.71% for the particle swarm

optimization (PSO) algorithm and 96.14% for the tradi-

tional error back-propagation (EBP) algorithm. Training

time of the MGSA costs 2065 s, which is less than PSO’s

training time about 7136 s and considerably higher than the

EBP about 98 s.

Recently, graph-based features and social network graph

structure have been introduced in order to improve botnet

identification. Wang and Paschalidis [53] introduced two-

stage early botnet detection approach. At the first stage,

flow- and graph-based anomaly detection methods are

used. Both of these methods employ the theory of large

deviations [43]. The flow-based approach quantizes net-

work flow and examines the histogram of quantized data.

Then, the anomaly detection approach creates graphs based

on packet level data extracted from network traces and

considers their distributions. At the second stage, social

network graphs are created to characterize the interaction

of bots. Then, community detection method is applied to

capture highly interactive nodes. The detected node is

labeled as a probable botnet. The proposed method is

evaluated with the subset of the CTU-13 botnet dataset [18]

and achieves 0.14, 0.088, 0.21, 0.082 and 0.14 F1-measure

score for each scenario. Chowdhury et al. [10] considered

seven graph-based features representing bot’s connectivity.

Then, a cluster of nodes, which are possibly bot candidates,

is formed in order to fast detect bots. The cluster size is less

than 100 nodes, which are less than 0.1% of all nodes in the

network. But only CTU-13 dataset is used for testing.

In this study, we exploit network communication traffic

between endpoints by representing the whole traffic in a

graph. We extract the feature set generated by flow

statistics between each host for 3 different protocols,

namely TCP, UDP and ICMP. For instance, communica-

tion between each host is represented by these protocols as

a matrix of summary network information. Therefore, any

prior knowledge about botnet such as communication

protocols (for instance, HTTP, IRC, P2P) and information

about port or payload data are not required. We build a

graph structure to represent network connections between

hosts, and we derive statistical-based network flow fea-

tures. Beyond the state-of-the-art, our particular focus is on

the development of the long short-term memory (LSTM)

and convolution neural network (CNN) to improve botnet

detection system performance.

3 Deep learning

Deep learning refers to an artificial neural network (ANN)

and is a sub-field of machine learning. The deep term

becomes very popular in artificial intelligence and refers to

the number of hidden layers in the neural network. ANN is

8024 Neural Computing and Applications (2019) 31:8021–8033

123

biologically inspired by the architecture and function of the

human brain that learns from large-scale observational

data. The usefulness and applicability of neural networks

are enhanced by the introduction of CNN and RNN

architectures. The CNN architecture is designed to

manipulate and to encode certain hidden properties of input

data, which are generally multi-dimensional array. The

dimension of the input arrays can be adapted such as 1D for

sequences of text, 2D for gray scale images and 3D for

colored images or videos. CNNs are composed of three

layers, which are convolution, pooling and fully connected

layers. Convolutional layer applies convolution operation,

i.e., it performs dot products between given filters and local

regions of the input data and creates the convolved fea-

tures. Fully connected layer is a former neural network

layer, and it has connections to all units in the pooling

layer. Pooling layer corresponds to gradual reduction of the

spatial size of the convolved features and reduces compu-

tation cost and the size of parameters to be tuned.

RNN is mainly designed to extract semantical infor-

mation from the sequential data. The traditional feed-for-

ward neural network (including CNN) independently

processes inputs in only one direction from the input layer

to the output layer. However, for many tasks including

sequential data such as text, speech or video, inputs and

outputs are highly correlated. RNNs perform same opera-

tion for every element of a sequence and also for the output

of the previous computations. For instance, the output of a

layer is added to the following input and fed again to the

same layer. Training RNN is costly due to its particular

architecture. At each time index, RNN is equivalent to an

entire layer in a feed forward network. From the compu-

tation cost perfective, training RNN for 500 times is similar

to training a 500-layer feed-forward network simultane-

ously. Typical RNN architecture is illustrated in the left

side of Fig. 1, and unfolded form into a fully connected

network is plotted in the right side, where W presents the

weight vector, Xt indicates the input, yt is the output, and St
is the hidden state at time index t. LSTM network has been

introduced to reduce the complexity inherited by the

architecture of RNN. Basically, LSTM acts as a dynamic

caching and assists the network to decide when to ignore

the current input and when to recall it. LSTM is a type of

RNN that tracks gradient parameter optimization and

remembers long-range dependencies. (The interested

readers may investigate the chapter 9 and 10 elaborating

CNN, RNN and LSTM in [20].)

4 Proposed methodology

In order to detect botnets, we propose a novel flow-based

botnet discovery method and we deploy deep neural net-

work to classify network traffic whether normal or botnet.

As illustrated in Fig. 2, the proposed system consists of

three major stages. The first stage is called feature

extraction; it is responsible for extracting flow features

from network traffic and transforming the extracted fea-

tures into a multi-dimensional feature vector. The second

stage is dedicated to building a classification model, and

the input is the feature vector, whose elements are labeled

whether normal or botnet. In our experiments, we evaluate

deep neural network subject to the number of hidden layers

and the number of units (neuron) in each hidden layer. At

the final stage, we evaluate the accuracy of the different

deep network architecture by using a set of manually

analyzed and publicly available botnet traffic traces.

Bots connect to C&C servers on a regular basis to take

commands. As a result, the amount of data transmitted

between C&C and bot create the connection patterns,

which can be used to identify botnet in raw network traffic.

The main idea of the proposed method is to split the net-

work traffic between endpoints and to represent these flows

as a graph toward modeling the interaction and the

behavior of connection. This graph-based model of host

interaction is used to extract the feature set.

Input : NetFlow Records F
Output: Communication Graphs constructed by

endpoints(nodes): (G)
foreach flow recod(f) ∈ F do

extract flow attributes such as protocol, duration,
SrcAddr, etc.
if G has not node SrcAddr then

add SrcAddr node to Graph G
end
if G has not node DstAddr then

add DstAddr node to G
end
if G has edge between SrcAddr and DstAddr
then

append extracted flow attributes to the edge
end
else

create an edge between SrcAddr and DstAddr
append extracted flow attributes to the edge

end
end

Algorithm 1: Pseudo-code for constructing commu-ni-

cation graph using network flow data

Unfold
=

X X0 X1

y
y0

y1

W W WW
S S0 S1

Xt

yt

St

Xk

yk

Sk

Fig. 1 Overview of the recurrent neural network architecture

Neural Computing and Applications (2019) 31:8021–8033 8025

123

4.1 Feature extraction

The constructed flow graph is the core of feature extraction

process, in which all flow data are treated and processed in

order to extract the feature set. We compute different sta-

tistical features from the created flow graph. Pseudo-code

for constructing communication graph using network flow

data is given in Algorithm 1. Essentially, we iterate each

flow record, and we add each source and destination IP of

each connection and create an edge between these two

nodes. Then, flow attributes such as duration, number of

packets and bytes are affiliated with this edge. The

extracted features are evaluated for the three protocols that

are TCP, UDP and ICMP. For instance, Table 1 presents

the extracted features from flow data using TCP protocol.

Since these features are the same for both UDP and ICMP

protocols, they are not repeated, and for the sake of clarity,

TCP features are only shown in Table 1. Overall, TCP,

UDP and ICMP protocols are considered while performing

feature extraction from network flow data.

Example 1 Let us consider the network flow records

shown in Table 2. These flows are obtained from the CTU

dataset capture number 49. The network flow records are

processed line by line. In the first line, flow attributes are

extracted first and since the communication graph does not

contain the source IP (147.32.84.165) and destination IP

(147.32.80.9), these two nodes are inserted into the graph.

Then, the edge is created between these two nodes by

attaching flow attributes to the edge to represent commu-

nication. For the second flow record, the attributes are

appended to the edge. In the fifth record, the destination IP

(91.220.0.52) is added to the graph and flow attributes are

attached to this created edge. After processing all network

records, the communication graph is obtained as illustrated

in Fig. 3.

One remark to note here is that the periodicity feature,

which is the interarrival time, is calculated by subtracting

the value of Starttime of the consecutive network flow and

for the first entry of the communication, the periodicity

value is set to 0. Following the creation of the communi-

cation graph, the features are easily computed by iterating

all edges in the graph. Although numerical features are

calculated by statistical functions, state features are

appended into an array.

As shown in Table 1, the majority of the features are

computed statistically over the array of network connection

between two nodes (source address and destination

address). Statistical derivation of feature gives standard

deviation of the array of number, and each array constitutes

at least 3 entries. Therefore, in our experiment, we only

take into account the nodes that communicate at least 3

times over the same protocol, which is TCP, UDP or

ICMP.

The feature called ‘‘connection states’’ is a string type,

and it indicates the basic state of the communication in a

flow record. Different states depend on the status of the

transaction and the protocol type. For example, CON state

indicates that the transaction is active. The state URP

means ‘‘unreachable port,’’ and this state denotes a par-

ticular behavior of the ICMP protocol. The communication

states and their values are obtained by argus network flow

extractor [1]. After feature extraction from network flow

data, we transform connection states into the word

embedding to capture sequential relations while con-

structing the deep learning architecture. However, for

conventional machine learning (ML) methods the connec-

tion states are transformed into one-hot vector

V ¼ 1; 0; 1; 0; :::, in which 1 indicates that the related

connection state is active, whereas 0 indicates related

connection is not active. These types of transformation are

also used in natural language processing to model text-

based features. If two nodes do not communicate over TCP

protocol, then, all features are assigned by 0.

In summary, by following the extracted features from

flow data using TCP protocol in Table 1 and the commu-

nication graph illustrated in Fig. 3, the role of the nor-

malized graph features is to statistically model network

flows. In addition, the role of the sequence of connection

state is to reveal the intricate communication semantic. The

sequence of connection state captures the behavioral

Fig. 2 Overview of the proposed botnet detection methodology

8026 Neural Computing and Applications (2019) 31:8021–8033

123

communication patterns. For example, when performing

SYN flood, the connection states include numerous SYN

flag set flows or when exfiltrating data through ICMP

protocol, there is a long sequence of connection state

composed of URFIL. In consequence, we leverage the

sequence of the connection state between two endpoints as

a feature to discriminate botnet and normal traffic.

4.2 Architecture of deep neural network

The proposed deep network consists of four major parts:

embedding, convolution, LSTM and fully connected net-

works. The overview of deep learning architecture is

plotted in Fig. 4. From the sequence of connection states

toward the output of the deep learning architecture, the first

block is the embedding function, and it maps and associ-

ates a numeric vector with every connection state, which

belongs to the connection array between two nodes.

Embedding leverages the distance function calculating

between any two vectors to capture the relationship

between the two correlated connection states. The matrix

formed by these vectors is called embedding whose size is

25 � 1000. The convolutional part includes one-dimen-

sional convolution layer and max-pooling layer. On the one

hand, the convolutional part extracts hidden features from

network state’s sequence represented by an embedding

vector. On the other hand, convolution filter block extracts

147.32.84.165

Protocol

TCP

TCP

TCP

TCP

TCP

TCP

Duration

3.38

3.31

0.34

3.35

0.40

8.95

Bytes

1198

1069

1007

1189

1007

186

Packets

11

11

10

13

10

3

Periodicity

0.0

3.37

33.19

30.24

33.41

30.24

State

 FSPA_FSPA

 FSPA_FSPA

 FSPA_FSPA

 FSRPA_FSPA

 FSPA_FSPA

 S_

Protocol

UDP

UDP

UDP

UDP

Duration

0.00

0.00

0.05

0.55

Bytes

203

590

226

212

Packets

2

2

2

2

Periodicity

0.0

2.26

49.11

5.31

State

 CON

CON

CON

CON

Protocol

ICMP

ICMP

ICMP

ICMP

Duration

0.00

0.00

0.00

1.16

Bytes

90

70

70

210

Packets

1

1

1

3

Periodicity

0.0

111.13

96.35

696.18

State

 TXD

URFIL

URFIL

URP

110.34.38.106

91.220.0.52

147.32.80.9

Fig. 3 The constructed communication graph for Example 1

Table 1 Description of the feature set used in our study

Feature Type Number of feature Short description

tcp_duration Float 5 Mean, standard deviation, median, maximum and minimum values of TCP duration

tcp_bytes Float 5 Mean, standard deviation, median, maximum and minimum values of TCP bytes

tcp_packets Float 5 Mean, standard deviation, median, maximum and minimum values of TCP packets

tcp_periodicity Float 5 Mean, standard deviation, median, maximum and minimum values of TCP periodicity

tcp_states String Number of states TCP communication states

tcp_repeated_count Integer 1 Total count of TCP communication between two nodes

Table 2 Sample of network flow records for Example 1

Start time Duration Protocol Source

address

Source

port

Destination

address

Destination

port

State Total

packets

Total

bytes

Source

bytes

16:52:50.94 0.00 udp 147.32.84.165 1025 147.32.80.9 53 CON 2 203 64

16:52:53.20 0.00 udp 147.32.84.165 1025 147.32.80.9 53 CON 2 590 87

16:53:42.31 0.05 udp 147.32.84.165 1025 147.32.80.9 53 CON 2 226 71

16:53:47.62 0.55 udp 147.32.84.165 1025 147.32.80.9 53 CON 2 212 77

16:55:44.17 3.38 tcp 147.32.84.165 1165 91.220.0.52 80 FSPA_FSPA 11 1198 736

16:55:47.54 3.31 tcp 147.32.84.165 1268 91.220.0.52 80 FSPA_FSPA 11 1069 607

16:56:20.73 0.34 tcp 147.32.84.165 1275 91.220.0.52 80 FSPA_FSPA 10 1007 545

16:56:50.97 3.35 tcp 147.32.84.165 1280 91.220.0.52 80 FSPA_FSPA 13 1189 667

16:56:58.13 0.00 icmp 110.34.38.106 - 147.32.84.165 TXD 1 90 90

16:57:24.38 0.40 tcp 147.32.84.165 1286 91.220.0.52 80 FSPA_FSPA 10 1007 545

16:57:54.62 8.95 tcp 147.32.84.165 1292 91.220.0.52 80 S_ 3 186 186

16:58:49.26 0.00 icmp 110.34.38.106 - 147.32.84.165 URFIL 1 70 70

17:00:25.61 0.00 icmp 110.34.38.106 - 147.32.84.165 URFIL 1 70 70

17:04:01.79 1.16 icmp 110.34.38.106 - 147.32.84.165 - URP 3 210 210

Neural Computing and Applications (2019) 31:8021–8033 8027

123

the relationship between input vectors and generates orig-

inal features. We use convolution filter of size 3 � 64.

After the convolutional layer, max-pooling is used to

reduce the dimensionality of data. The outputs of the max-

pooling layer are forwarded as an input to the LSTM block,

which is a particular type of the RNN architecture. Then,

we apply LSTM layers with 32 units to extract and model

the network states’ sequence. The LSTM layer explicitly

enables capture of the sequential constraints. Then, the

normalized statistical graph features and the output of the

LSTM layer are merged and connected to the fully con-

nected layers. We use three fully connected layers, and

each consists of 64 units. Finally, the output layer predicts

the label, e.g., it generates the probability of being whether

botnet or normal by utilizing softmax activation function.

While building the model, we use dropout in all layers

except embedding layer to avoid overfitting problem.

Concerning the weight update procedure in a hidden layer,

dropout randomly selects hidden units in the layer and

neglects them, and the probabilistic approach is enforced.

Before feeding the continuous numeric data into the deep

network, we scale the input vector and normalize the input

vector into range (- 1, 1). Hence, both training and testing

time of the deep network converge faster.

5 Evaluation

We first describe the datasets, namely CTU-13 and ISOT,

which are benchmarked by security researchers to test and

evaluate their methods. Then, we define classification

metrics such as recall, precision, F-measure and overall

accuracy metrics to measure the effectiveness of our pre-

sented method. Finally, to empirically reach at the highest

level in metric values, we combine the stand-alone network

architectures and compare the classification results.

5.1 Dataset overview

The CTU-13 is a well-known public benchmark dataset for

botnet research provided by the Czech Technical Univer-

sity. The dataset, which includes both botnet and normal

traffic, consists of 13 different network traces belonging 7

botnet families. The brief description of the dataset

including the capture duration, label of the capture, dis-

tribution of normal and botnet traffic for each capture is

given in Table 3.

For evaluation purposes, we use another public botnet

dataset called ISOT. The ISOT dataset combines several

existing malicious and non-malicious datasets. It contains

two different types of botnet: Zeus and Waledac. To nor-

malize botnet traffic, non-malicious everyday network

traffic such as web surfing, popular gaming and file sharing

is incorporated into botnet traffic. The key information

about botnet types in the benchmarking datasets is outlined

as follows:

– Neris [31] botnet uses an HTTP-based C&C channel.

The main activities are to send SPAM e-mails and to

perform some click-fraud activities.

– Rbot [27] is IRC-based botnet. Rbot sample connects

to the IRC channel to get information from botmaster.

– Virut [28] uses an HTTP communication channel. The

main activities are to download executable files, to send

SPAM e-mails and to intercept user inputs.

– Menti [46] is IRC-based botnet. The main activities are

to employ a custom unencrypted protocol to connect to

C&C server and to scan SMTP servers (i.e., TCP port

25)

– Sogou [13] connects to an unencrypted HTTP C&C

channel, downloads some binary and compresses files.

– Murlo [12] is IRC-based botnet. The main activities

are to download some executable files and to scan the

local network ports.

Fig. 4 The deep learning architecture for botnet detection

8028 Neural Computing and Applications (2019) 31:8021–8033

123

– NSIS.ay [50] is P2P-based botnet. The activities are to

access to several websites and to download some

executable files.

– Waledac [24, 49] (also known as Storm) uses P2P

communication channel. Waledac botnet is deployed to

make money by sending spam e-mail, to download and

to install malicious applications.

– Zeus [4] uses HTTP protocol to communicate between

bot and C&C server. To evade payload inspection,

payload data are encrypted by RC4 (Rivest Cipher 4)

algorithm. Zeus botnet is mainly deployed to steal

banking information.

The underlying communication parameters such as con-

tents of the command, IP, port or host address used by

botnets are presented in [17].

In our experimental study, we use connections based

on TCP, UDP and ICMP protocols. The CTU-13 dataset

is highly imbalanced in terms of number of connections.

In other words, the volume of normal traffic exceeds the

volume of botnet traffic, which represents the ground

truth traffic on the Internet, and we can confirm that the

dataset simulates the real-world botnet infection. In gen-

eral, botnet traffic constitutes a small fraction of the entire

network communication flows because botnet infection

rarely occurs in a network. In this study, botnet traffic

refers to the connection established between bot and

C&C, in which data packets are sent and received,

whereas normal traffic refers to all legal network traffic

except botnet traffic.

5.2 Performance metrics

We evaluate the proposed method subject to 4 different

metrics that are overall accuracy, precision, recall and

F-measure. Reaching at the highest accuracy does not

necessarily mean that the classifier correctly predicts with

high reliability. Therefore, we use other measures to assess

the reliability of the proposed system results. The perfor-

mance metrics are defined based on the following

definitions:

– TP refers to the correctly predicted botnet flow.

– TN is the number of the correctly predicted normal

traffic flow.

– FP refers to the incorrectly classified botnet flow.

– FN refers to the number of incorrectly classified normal

traffic flow.

In our study, botnet traffic refers to the positive label and

normal traffic refers to the negative label. The precision is

the proportion of true positives versus the sum of positive

instances, more clearly, it is the probability for a positive

sample to be classified correctly. The recall is the propor-

tion of instances that are predicted positive and actually

positive (i.e., TP). The F1-score, also known as F-measure

or F-score, is the weighted harmonic mean of the precision

and recall. F1-score is reached at its best value at 1 and its

lowest value at 0. In the binary classification problem, the

precision and recall contribute equally to F1-score. How-

ever, in multi-class evaluation studies, F1-score is calcu-

lated by taking the weighted mean of F1-score of each

class. And, the overall accuracy is the proportion of total

Table 3 Overview of the dataset

Dataset name Scenario ID Duration (in min) Botnet flows Normal flows Botnet name # of bots Communication channel

CTU-13 1 369 39,933 2,784,703 Neris 1 HTTP

2 253 18,839 1,789,283 Neris 1 HTTP

3 4010 26,759 4,683,879 Rbot 1 IRC

4 253 1719 1,119,357 Rbot 1 IRC

5 698 695 129,137 Virut 1 HTTP

6 131 4431 554,488 Menti 1 IRC

7 23 37 114,040 Sogou 1 HTTP

8 1170 5052 2,949,178 Murlo 1 IRC

9 311 179,880 2,574,004 Neris 10 HTTP

10 285 106,315 1,203,476 Rbot 10 IRC

11 16 8161 99,090 Rbot 3 IRC

12 73 2143 323,328 NSIS.ay 3 P2P

13 982 38,791 1,886,358 Virut 1 HTTP

ISOT 14 NA 78,754 2,743,258 Waledac 3 P2P

Zeus 1 HTTP

Neural Computing and Applications (2019) 31:8021–8033 8029

123

number of correctly predicted instances over total number

of instances.

5.3 Evaluation results

To evaluate the performance of the proposed method, we

implement deep learning models by using Keras [9] Python

library with the TensorFlow backend deep learning engine

[11]. TensorFlow is an open-source framework available

for mathematical computation using abstract data flow

graphs. TensorFlow is developed by Google Corp. and

mainly introduced for deployment of deep neural network.

TensorFlow can be run on either a CPU or a GPU. Due to

parallel processing capability, GPU drastically reduces

processing time cost for training deep neural network.

We run our experiments on a workstation configured

with 16 Intel Xeon E5 2600 v4 processor, 1TB hard disk,

64G RAM and two GPUs, namely GeForce 960 and the

NVIDIA TITAN X GPU. We use tenfold cross-validation

approach to validate the effectiveness of the proposed deep

learning approach for botnet detection. Since benchmark

datasets are imbalanced in terms of sample number in

normal and botnet class, we adapt stratified K-Folds

method in our evaluation study. Basically, stratified

K-Folds validator splits the data into training and testing

sets by preserving the percentage of samples for both

classes.

We conduct extensive experiments with various neural

architecture, including LSTM, CNN and fully connected

networks in order to identify botnet traffic. By combining a

LSTM, RNN and fully connected layers, we are able to

obtain the best classification result as shown in Table 4. We

also compare the proposed approach with standard

machine learning algorithms (MLAs) used for botnet

detection in the literature. These algorithms are random

forest [6], support vector machine (SVM) [54], logistic

regression [42, 55] and K-nearest neighbor algorithms [14].

We employ Scikit-learn ML toolkit [34, 44]. All these

conventional ML approaches are executed on a CPU. And,

we execute all deep learning tasks on the GPU and also on

the CPU to compare run time cost. Furthermore, we ana-

lyze the performance of the stand-alone architecture of

LSTM, CNN and dense layer constituting the proposed

approach.

For different neural network architectures and standard

ML classifiers, the classification results and the execution

times are compared in Table 4. When these results are

compared, the deep neural network, which constitutes by

the combination of RNN, LSTM and fully connected layers

(e.g., dense layer), is reached at 98.8 and 99.1% F1-score

for ISOT and CTU-13 dataset, respectively. F1-score of

this network is higher than any stand-alone deep network

architecture. The stand-alone LSTM layer has more impact

on the classification result improvement. Among standard

MLAs, random forest classifier is reached at the highest

F1-measure at 93.2 and 84.0% in 2.18 and 46.24 s for ISOT

and CTU-13 dataset, respectively. When compared to the

run time performance of each classifier, the deep learning

methods cost less. As shown in Table 4, processing time is

increased when the size and structure of the neural network

are increased because we run them on the GPU to converge

faster. When deep learning architecture is processed on the

CPU, the execution time costs almost 14 times grater than

the GPU average time. SVM and KNN algorithm conver-

gence time is longer since these algorithms cannot handle

large-scale data.

To interpret the representation learned by the combina-

tion of CNN and LSTM layers on the sequence of con-

nection state feature, we use t-distributed stochastic

neighbor embedding (t-SNE) [29, 52] to visualize the

activation values of LSTM layer and last dense layer. t-SNE

reduces high-dimensional vector to a lower-dimension

vector representation. And we apply t-SNE to the sequence

of connection state vector with the dimension of 32 to

project to a two-dimensional vector space. The graph

illustrating the activation values of LSTM layer is plotted in

Fig. 5, which visualizes that CNN and LSTM learn partially

meaningful and distinguishing feature from the connection

Table 4 Classification results with respect to different neural network model parameters

Algorithm Processing time Precision Recall F-score Accuracy

ISOT CTU-13 ISOT CTU-13 ISOT CTU-13 ISOT CTU-13 ISOT CTU-13

SVM 141.17 3980.69 0.871 0.842 0.83 0.782 0.850 0.811 0.867 0.801

KNN 62.06 2598.22 0.914 0.862 0.935 0.812 0.924 0.836 0.943 0.862

Random forest 2.18 46.24 0.922 0.864 0.942 0.817 0.932 0.840 0.952 0.872

Logistic regression 0.81 14.73 0.898 0.853 0.902 0.807 0.900 0.829 0.931 0.842

Stand-alone CNN layer 14.67 197.24 0.962 0.981 0.961 0.982 0.961 0.981 0.980 0.984

Stand-alone LSTM 18.93 251.12 0.971 0.988 0.969 0.984 0.970 0.986 0.984 0.986

Stand-alone dense 13.92 183.92 0.932 0.972 0.955 0.976 0.943 0.974 0.967 0.974

Combined layers 28.69 390.13 0.989 0.991 0.988 0.992 0.988 0.991 0.995 0.993

8030 Neural Computing and Applications (2019) 31:8021–8033

123

state and differentiate normal and botnet traffic. To further

investigate the performance of the overall deep learning

architecture and the learned hidden features, we apply

t-SNE to visualize the activation values of the last dense

layer, (Fig. 6). Visualizations in Figs. 5 and 6 demonstrate

that the proposed architecture better learns features and

separates botnet and normal traffic more precisely.

The impact of each individual feature type on the deep

learning performance is evaluated and tested. When the

normalized graph feature is exploited only, detection

accuracy and F-measure are reached at 92.2 and 91.3%,

respectively. And, when connection state features are only

used in the learning architecture, 71.4% accuracy and

70.2% F-measure are achieved. Thus, we can deduce the

normalized graph features derived from flow statistics

assure detection, but the connection state features do not

provide sufficient semantical information toward modeling

botnet traffic. When two types of features are fused, the

resulting latent feature representation along with the deep

network architecture leads to the highest botnet detection

performance.

5.4 Comparison with respect to existing studies

Evaluation of same ML method with different datasets may

give different results. For comparison purposes, the per-

formance of different botnet detection approaches needs to

be evaluated subject to the same dataset. Otherwise, com-

parison versus different methods is not reliable and accu-

rate. We compare our results with respect to the state-of-

the-art botnet detection methods using the CTU-13 and

ISOT dataset.

Performance comparison of the presented system with

respect to some existing studies for botnet detection is

shown in Table 5. As stated in the related work section,

Chen et al. [8] achieve 94% accuracy on CTU-13 dataset

and Wang and Paschalidis [53] achieve 0.14, 0.088, 0.21,

0.082 and 0.14 F1-score on a subset of the CTU-13 dataset.

In [2], 29 TCP features are extracted based on the con-

nection period 30 s. Two feature selection algorithms are

proposed, and 98.32% accuracy, 98.69% F-measure and

0.75% false positive rate are reached. Our proposed

method outperforms by reaching at 99% accuracy and

99.1% F1-score. The comparison results reveal that the

proposed deep learning-based approach achieves better

botnet detection accuracy with very low false positive rate.

6 Conclusion

In this paper, we present a novel botnet detection by

modeling network traffic traces between communication

endpoints by representing the whole traffic in a graph. We

extract the representative and meaningful feature set gen-

erated by flow statistics between each host for 3 different

protocols, namely TCP, UDP and ICMP. We justify our

approach by showing that P2P botnet and other botnets can

be determined via their statistical features. For instance, the

communication between each host is represented by these

protocols as a matrix of summary network information.

Therefore, any prior knowledge about botnet such as

communication protocols (for instance, HTTP, IRC, P2P)

and information about port or payload data are not

required.

Then, we design the deep neural learning architecture

toward botnet detection. Our particular focus is on the

evaluation of the performance of the LSTM and CNN. In

our evaluation study, we use two datasets publicly avail-

able for benchmarking purposes. And deep learning results

are evaluated and compared with respect to the statistical

metric results of baseline classifiers. The evaluation results

show that the presented method outperforms other related

Fig. 5 Visualization of activation values of the LSTM layer for 1000

samples with their corresponding class

Fig. 6 Visualization of activation values of the last dense layer for

1000 samples with their corresponding class

Neural Computing and Applications (2019) 31:8021–8033 8031

123

approaches and it can discover botnets reaching at 99%

level in accuracy. We assess the run time performance of

our approach. According to the run time performance test,

the method costs only a small amount of time to process

network flows and identifies their categories whether botnet

or normal traffic. Our presented method presents accept-

able training period subject to a fairly large set of botnets,

very accurate detection results and the potential for real-life

deployment by leveraging deep learning as an emerging

solution to a large variety of classification tasks.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. ARGUS-Auditing Network Activity. https://qosient.com/argus/.

Accessed: 06 Oct 2017

2. Alauthaman M, Aslam N, Zhang L, Alasem R, Hossain MA

(2016) A P2P botnet detection scheme based on decision tree and

adaptive multilayer neural networks. Neural Comput Appl

29:991–1004

3. Alejandre FV, Cortés NC, Anaya EA (2017) Feature selection to

detect botnets using machine learning algorithms. In: Interna-

tional conference on electronics, communications and computers

(CONIELECOMP). IEEE, pp 1–7

4. Andriesse D, Rossow C, Stone-Gross B, Plohmann D, Bos H

(2013) Highly resilient peer-to-peer botnets are here: An analysis

of gameover zeus. In: 2013 8th international conference on

malicious and unwanted software: ‘‘the Americas’’ (MAL-

WARE). IEEE, pp 116–123

5. Bou-Harb E, Debbabi M, Assi C (2017) Big data behavioral

analytics meet graph theory: on effective botnet takedowns. IEEE

Netw 31(1):18–26

6. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

7. Catania CA, Garino CG (2012) Automatic network intrusion

detection: current techniques and open issues. Comput Electr Eng

38(5):1062–1072

8. Chen R, Niu W, Zhang X, Zhuo Z, Lv F (2017) An effective

conversation-based botnet detection method. Math Probl Eng

2017:1–9

9. Chollet F et al (2015) Keras. https://github.com/fchollet/keras

10. Chowdhury S, Khanzadeh M, Akula R, Zhang F, Zhang S, Medal

H, Marufuzzaman M, Bian L (2017) Botnet detection using

graph-based feature clustering. J Big Data 4(1):14

11. Corp G (2017) TensorFlow: an open-source software library for

machine intelligence. https://www.tensorflow.org/. Accessed 01

May 2017

12. Corp M (2017) Win32/Murlo.S. https://www.microsoft.com/en-

us/wdsi/threats/malware-encyclopedia-description?Name=Trojan

Downloader:Win32/Murlo.S. Accessed 06 Oct 2017

13. Corp M (2017) Win32/Sogou analysis. https://www.microsoft.

com/en-us/wdsi/threats/malware-encyclopedia-description?Name

=Program%3AWin32%2FSogou. Accessed 06 Oct 2017

14. Cunningham P, Delany SJ (2007) k-nearest neighbour classifiers.

Mult Classif Syst 34:1–17

15. Drašar M, Vizváry M, Vykopal J (2014) Similarity as a central

approach to flow-based anomaly detection. Int J Netw Manag

24(4):318–336

16. Emerging threats open snort ruleset (2017) http://www.emer

gingthreats.net/. Accessed 15 Apr 2017

17. Garcıa S (2014) Identifying, modeling and detecting botnet

behaviors in the network. Ph.D. thesis, Universidad Nacional del

Centro de la Provincia de Buenos Aires

18. Garcia S, Grill M, Stiborek J, Zunino A (2014) An empirical com-

parison of botnet detection methods. Comput Secur 45:100–123

19. Goebel J, Holz T (2007) Rishi: identify bot contaminated hosts by

IRC nickname evaluation. HotBots 7:8–8

20. Goodfellow I, Bengio Y, Courville A (2016) Deep learning.

Adaptive computation and machine learning series. The MIT

Press, Boston

Table 5 Comparison of our study with other methods using the same dataset

Study and year Method Features Dataset Accuracy

Chen et al. [8],

2017

Decision tree Conversation features

(sort of flow features)

CTU-13 Accuracy: 93.6% and false positive rate: 0.3

Kirubavathi

et al. [25],

2016

Naive Bayesian 4 statistical flow features ISOT Precision: 0.978 Recall: 0.961 F-score: 0.969

Accuracy: 99.14

Wang et al.

[53], 2016

Social community detection Flow-based features Subset of

CTU-13

Recall: 0.046 Precision: 0.80 F1-score: 0.088

Torres et al.

[51], 2016

Recurrent neural network 3 flow features: size,

duration and

periodicity

Subset of

CTU-13

Accuracy: 0.970 False Positive Rate: 0.0372

Stevanovic

et al. [48],

2014

Random forest Statistical flow features ISOT Accuracy: 95.7%

Alauthaman

et al. [2],

2016

A classification and

regression tree (entropy

impurity)

Statistical flow features ISOT and

ISCX

Accuracy: 98.32%, F-measure: 98.69% and FPR:

0.75% (subject to the same set of TCP features)

Our study,

2017

Deep neural network Statistical flow features ISOT and

CTU-13

Accuracy for ISOT, CTU-13: 0.992, 0.990, and

F-score for ISOT, CTU-13: 0.973, 0.991

8032 Neural Computing and Applications (2019) 31:8021–8033

123

https://qosient.com/argus/
https://github.com/fchollet/keras
https://www.tensorflow.org/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Murlo.S
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Murlo.S
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Murlo.S
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Program%3AWin32%2FSogou
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Program%3AWin32%2FSogou
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Program%3AWin32%2FSogou
http://www.emergingthreats.net/
http://www.emergingthreats.net/

21. Guntuku SC, Narang P, Hota C (2013) Real-time peer-to-peer

botnet detection framework based on bayesian regularized neural

network. arXiv preprint arXiv:1307.7464

22. Haddadi F, Zincir-Heywood AN (2017) Botnet behaviour anal-

ysis: how would a data analytics-based system with minimum a

priori information perform? Int J Netw Manag 27(4):E1977

23. iplists.firehol.org. All cybercrime IP feeds. http://iplists.firehol.

org/. Accessed 15 Apr 2017

24. Jang DI, Kim M, Jung HC, Noh BN (2009) Analysis of http2p

botnet: case study waledac. In: 9th Malaysia international con-

ference on communications (MICC). IEEE, pp 409–412

25. Kirubavathi G, Anitha R (2016) Botnet detection via mining of

traffic flow characteristics. Comput Electr Eng 50:91–101

26. Kudo T, Kimura T, Inoue Y, Aman H, Hirata K (2016) Behavior

analysis of self-evolving botnets. In: International conference on

computer, information and telecommunication systems (CITS).

IEEE, pp 1–5

27. Labs F-S (2017) W32/RBot description. https://www.f-secure.

com/v-descs/rbot.shtml. Accessed 06 Oct 2017

28. Labs F-S (2017) W32/Virut description. https://www.f-secure.

com/v-descs/virus_w32_virut.shtml. Accessed 06 Oct 2017

29. Maaten LVD, Hinton G (2008) Visualizing data using t-SNE.

J Mach Learn Res 9:2579–2605

30. malwaredomains.com. Malware domain blocklist. http://mal

waredomains.lehigh.edu/files/domains.zip. Accessed 15 Apr

2017

31. Micro T (2017) W32/Neris description. https://www.trendmicro.

com/vinfo/us/threat-encyclopedia/malware/worm_neeris.a. Acces-

sed 06 Oct 2017

32. Nogueira A, Salvador P, Blessa F (2010) A botnet detection

system based on neural networks. In: Fifth international confer-

ence on digital telecommunications (ICDT). IEEE, pp 57–62

33. Oujezsky V, Horvath T, Skorpil V (2017) Botnet C&C traffic and

flow lifespans using survival analysis. Int J Adv Telecommun

Electrotech Signals Syst 6(1):38–44

34. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,

Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al

(2011) Scikit-learn: machine learning in python. J Mach Learn

Res 12:2825–2830

35. Pektaş A, Acarman T (2014) A dynamic malware analyzer

against virtual machine aware malicious software. Secur Com-

mun Netw 7(12):2245–2257

36. Pektas A, Acarman T (2017) Malware classification based on api

calls and behavior analysis. IET Information Security, Oct 2017.

ISSN 1751-8709. URL http://digital-library.theiet.org/content/

journals/10.1049/iet-ifs.2017.0430

37. Pektas A, Tankut A (2017) Effective feature selection for botnet

detection based on network flow analysis. In: International con-

ference on automatics and informatics

38. Qiu Z, Miller DJ, Kesidis G (2017) Flow based botnet detection

through semi-supervised active learning. In: IEEE international

conference on acoustics, speech and signal processing (ICASSP).

IEEE, pp 2387–2391

39. Rieck K, Schwenk G, Limmer T, Holz T, Laskov P (2010)

Botzilla: detecting the phoning home of malicious software. In:

Proceedings of the 2010 ACM symposium on applied computing.

ACM, pp 1978–1984

40. Saad S, Traore I, Ghorbani A, Sayed B, Zhao D, Lu W, Felix J,

Hakimian P (2011) Detecting p2p botnets through network

behavior analysis and machine learning. In: Ninth annual inter-

national conference on privacy, security and trust (PST). IEEE,

pp 174–180

41. Salvador P, Nogueira A, Franca U, Valadas R (2009) Framework

for zombie detection using neural networks. In: Fourth interna-

tional conference on internet monitoring and protection. IEEE,

pp 14–20

42. Schmidt M, Le Roux N, Bach F (2013) Minimizing finite sums

with the stochastic average gradient. Math Program 162:1–30

43. Schmock U (2000) Large deviations techniques and applications.

J Am Stat Assoc 95(452):1380–1380

44. Scikit-learn: machine learning in Python. http://scikit-learn.org/

stable/index.html. Accessed 15 Jan 2017

45. Sheikhan M, Jadidi Z (2014) Flow-based anomaly detection in

high-speed links using modified gsa-optimized neural network.

Neural Comput Appl 24(3):599–611

46. Sophos. Troj/Menti analysis. https://www.sophos.com/en-us/

threat-center/threat-analyses/viruses-and-spyware/TrojMenti-A/

detailed-analysis.aspx. Accessed 06 Oct 2017

47. Stevanovic M, Pedersen JM (2013) Machine learning for iden-

tifying botnet network traffic. URL http://vbn.aau.dk/ws/files/

75720938/paper.pdf

48. Stevanovic M, Pedersen JM (2014) An efficient flow-based bot-

net detection using supervised machine learning. In: International

conference on computing, networking and communications

(ICNC). IEEE, pp 797–801

49. Tenebro G (2017) W32.Waledac threat analysis. https://www.

symantec.com/content/en/us/enterprise/media/security_response/

whitepapers/W32_Waledac.pdf. Accessed 06 Oct 2017

50. ThreatExpert. Win32.NSIS.ay report. http://www.threatexpert.com/

report.aspx?md5=eaf85db9898d3c9101fd5fcfa4ac80e4. Accessed

06 Oct 2017

51. Torres P, Catania C, Garcia S, Garino CG (2016) An analysis of

recurrent neural networks for botnet detection behavior. In:

Biennial congress of Argentina (ARGENCON). IEEE, pp 1–6

52. Van Der Maaten L (2014) Accelerating t-sne using tree-based

algorithms. J Mach Learn Res 15(1):3221–3245

53. Wang J, Paschalidis IC (2016) Botnet detection based on

anomaly and community detection. IEEE Trans Control Netw

Syst 4:392–404

54. Wu T-F, Lin C-J, Weng RC (2004) Probability estimates for

multi-class classification by pairwise coupling. J Mach Learn Res

5:975–1005

55. Yu H-F, Huang F-L, Lin C-J (2011) Dual coordinate descent

methods for logistic regression and maximum entropy models.

Mach Learn 85(1–2):41–75

Neural Computing and Applications (2019) 31:8021–8033 8033

123

http://arxiv.org/abs/1307.7464
http://iplists.firehol.org/
http://iplists.firehol.org/
https://www.f-secure.com/v-descs/rbot.shtml
https://www.f-secure.com/v-descs/rbot.shtml
https://www.f-secure.com/v-descs/virus_w32_virut.shtml
https://www.f-secure.com/v-descs/virus_w32_virut.shtml
http://malwaredomains.lehigh.edu/files/domains.zip
http://malwaredomains.lehigh.edu/files/domains.zip
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/worm_neeris.a
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/worm_neeris.a
http://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2017.0430
http://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2017.0430
http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/TrojMenti-A/detailed-analysis.aspx
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/TrojMenti-A/detailed-analysis.aspx
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/TrojMenti-A/detailed-analysis.aspx
http://vbn.aau.dk/ws/files/75720938/paper.pdf
http://vbn.aau.dk/ws/files/75720938/paper.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/W32_Waledac.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/W32_Waledac.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/W32_Waledac.pdf
http://www.threatexpert.com/report.aspx?md5=eaf85db9898d3c9101fd5fcfa4ac80e4
http://www.threatexpert.com/report.aspx?md5=eaf85db9898d3c9101fd5fcfa4ac80e4

	Deep learning to detect botnet via network flow summaries
	Abstract
	Introduction
	Related work
	Deep learning
	Proposed methodology
	Feature extraction
	Architecture of deep neural network

	Evaluation
	Dataset overview
	Performance metrics
	Evaluation results
	Comparison with respect to existing studies

	Conclusion
	References

