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Abstract
It is obvious from wider spectrum of successful applications that metaheuristic algorithms are potential solutions to hard

optimization problems. Among such algorithms are swarm-based methods like particle swarm optimization and ant colony

optimization which are increasingly attracting new researchers. Despite popularity, the core questions on performance

issues are still partially answered due to limited insightful analyses. Mere investigation and comparison of end results may

not reveal the reasons behind poor or better performance. This study, therefore, performed in-depth empirical analysis by

quantitatively analyzing exploration and exploitation of five swarm-based metaheuristic algorithms. The analysis unearthed

explanations the way algorithms performed on numerical problems as well as on real-world application of classification

using adaptive neuro-fuzzy inference system (ANFIS) trained by selected metaheuristics. The outcome of empirical study

suggested that coherence and consistency in the swarm individuals throughout iterations is the key to success in swarm-

based metaheuristic algorithms. The analytical approach adopted in this study may be employed to perform component-

wise diversity analysis so that the contribution of each component on performance may be determined for devising efficient

search strategies.
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1 Introduction

Despite complexity, nonlinearity and high-level dimen-

sions of real-world optimization problems, contrary to

deterministic and statistical methods, metaheuristic algo-

rithms reach near optimal solutions with reasonable time

and resources. Additionally, ease of implementation and

efficiency has led to wider spectrum applications in science

and engineering optimization problems (see for sample

[1–4], and [5]). Such successful interventions of meta-

heuristic algorithms in solving hard optimization problems

motivated researchers to develop more and more of such

algorithms, inspired from natural as well as man-made

processes. Moreover, metaheuristic algorithms based on

swarm intelligence are gaining more popularity among

researchers as compared to other population-based coun-

terparts [1, 6]. Thanks to landmark particle swarm opti-

mization (PSO) [7] and ant colony optimization (ACO) [8]

which derived the addition of adequately increasing num-

ber of swarm-based metaheuristic algorithms—not neces-

sarily are all efficient methods hence not achieved generous

acceptance in metaheuristic community. According to a

limited survey of publications related to swarm-based

metaheuristics between 1995 and 2016, there exist more

than fifty swarm-based metaheuristic algorithms, out of

which top ten are listed in Fig. 1.

As it is depicted from the bar chart in Fig. 1, the land-

mark PSO beats rest of the algorithms in number of pub-

lications due to simplicity and ease of implementation. The

rest of the algorithms are artificial bee colony (ABC) [9],

ant colony optimization (ACO) [8], cuckoo search (CS)

[10], firefly algorithm (FA) [11], fireworks algorithm

(FWA) [12], bat algorithm (BA) [13], teaching-learning
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based optimization (TLBO) [14], biogeography-based

optimization (BBO) [15], bacterial foraging algorithm

(BFOA) [16]. Yudong et al. in a survey [17] also found

these algorithms popular in literature. Moreover, according

to comprehensive surveys [17–22] found in recent litera-

ture, the top five swarm-based algorithms (PSO, ABC,

ACO, CS, and FA) have successfully solved hard opti-

mization problems due to efficient search ability, ease of

implementation, and robustness of results. The applications

of these algorithms cover wider range of domains including

science, engineering, medical, business, data science, etc.

Apart from wider acceptance due to efficient results, it is

still relatively unknown how and why these algorithms

perform better than one or the other algorithm on one or the

other optimization problem. This leads to a remarkable

research to be performed on open questions raised by

critics, such as [23–25]. These concerns are beyond the

justification often provided based on ‘‘no-free lunch’’ the-

orem; even though it is true due to stochastic nature of

algorithms [26], more theoretical and practical explana-

tions are required. However, the questions on convergence

and performance analyses are repeatedly answered, in the

literature, with the help of convergence graphs and statis-

tics (mean, best, worst, and standard deviation, etc.)

obtained over a certain number of runs. This may reveal

‘what happened,’ but ‘how and why it happened’ is related

to more in-depth analyses of how efficiently the swarm

individuals explore a search space. Hence, this study took

top five (Fig. 1) swarm-based metaheuristic algorithm to

examine the behavior of swarm individuals in terms of

diversity. Through diversity measurement, we gauged

explorative and exploitative abilities of the algorithms.

Moreover, this paper provides extensive in-depth analysis

and discussion on components effecting exploration and

exploitation of the swarm-based metaheuristics. For

examining the efficiency, five commonly used benchmark

numerical problems were utilized. To further investigate

performances on real-world applications, the algorithms

were employed on training the parameters of adaptive

neuro-fuzzy inference system (ANFIS) for solving the

problem of classifying Small Medium Enterprises (SMEs)

based on strength.

Overall, the contribution of this study is to propose an

approach to measure and quantitatively analyze the level of

exploration and exploitation in a metaheuristic algorithm

while solving certain optimization problem. The approach

may help maintain trade-off balance between exploration

and exploitation ratios in a metaheuristic algorithm. The

measurement of exploration and exploitation also helps

understand why certain metaheuristic algorithm performed

poor or better on an optimization problem.

The remainder of the paper is structured as follows. The

subsequent section (Sect. 2) gives brief introduction of

swarm-based metaheuristic algorithms of this study. Sec-

tion 3 explains the method to measure exploration and

exploitation based on diversity in swarm. This section also

briefs about numerical optimization problems and SME

classification problem. Section 4 reports experimental

results, followed by discussion and in-depth analyses in

Sect. 5. Lastly, conclusions and future works are provided

toward the end in Sect. 6.

2 Swarm intelligence

The exceptional features of collective intelligence of var-

ious swarm behaviors in nature have been adopted to

design a range of optimization algorithms. Such features

are mainly related to how swarm individuals communicate

in order to reach the best food source with collective

decision. These decentralized individuals perform search

based on their own personal cognition or experience, as

well as, information available globally among all the

individuals. The source of information exchange is pher-

omone in case of ants, sound waves in bats, waggle dance

in bees, etc. Apart from essential communication behaviors

in nature, researchers also implanted other intelligence

mechanism to develop better and better optimization

algorithms with explorative and exploitative capabilities.

This study considered top five swarm-based metaheuristics

according to Fig. 1. Following is given a short introduction

of each of these algorithms, while the reader is encouraged

to refer to the cited literature for extended details, as the

focus of this study is purely on performance analyses.
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0

50

100

150

200

250

300

Swarm−based metaheuristic algorithms

N
um

be
r o

f p
ub

lic
at

io
ns

Fig. 1 Popular swarm-based metaheuristic algorithms based on

number of publications

7666 Neural Computing and Applications (2019) 31:7665–7683

123



2.1 Particle swarm optimization (PSO)

PSO [7] uses particles, representing a flock of birds or

school of fish, to observe the search environment based on

cognitive and social intelligence for searching the best food

location. Particles in PSO have velocity and position. The

next move is decided based on current position and new

velocity calculated with respect to personal best position

and the globally best particle’s position, see (1) and (2).

vtþ1
i ¼ xvti þ c1R1ðpbesti � xtiÞ þ c2R2ðxgbest � xtiÞ ð1Þ

xtþ1
i ¼ xti þ vtþ1

i ð2Þ

In Eq. (1), vtþ1
i is velocity vector for next iteration t þ 1;x

is inertia weight which controls velocity and allows swarm

to converge in later iterations. vti and pbesti are the current

velocity and position of ith particle. xgbest is the best

position the whole swarm found so far. c1 and c2 are

cognitive and social factors to control the added random-

ness to the velocity for next move at position xtþ1
i , whereas

R1 and R2 are the two different random vectors. For the

balanced exploration and exploitation, inertia weight is

crucial among other parameters of PSO algorithm. In (2),

the next position xtþ1
i of ith particle is computed using

current position xti and the velocity vector vtþ1
i generated in

(1). Here, vector xi represents a solution and vector vi
represents momentum of a particle.

2.2 Artificial bee colony (ABC)

ABC [9] is inspired from the swarm behavior of honey

bees that fly in search of the location, with best flower

patch, where they can maximize the collection of nectar

from. The swarm in this algorithm is divided into three

types of individuals: employed bees, onlooker bees, and

scout bees. Employed bees are the first to sightsee and

discover food sources, followed by onlooker bees which

pursue the potential locations shared by employed bees.

This is based on probability (qi) of selection of employed

bees calculated as (3):

qi ¼
fiti

PSN
n¼1 fitn

ð3Þ

where fiti is nectar amount (objective function value) col-

lected from ith food source and SN is the total number of

food sources. Roulette wheel selection method is used on

employed bees’ probability values. The new location of

onlooker bee is calculated using (4):

xnewi ¼ xi þ Riðxi � xjÞ ð4Þ

where xi is the employed bee’s current location, xj is ran-

domly chosen bee j other than i, and Ri is the randomness

added to the new location xnewi . After certain number of

attempts (defined by parameter Limit), when some of the

bees are unable to find any improved food source, scout

bees invoke and replace them to try random places using

(5):

xk ¼ lbþ Rkðub� lbÞ ð5Þ

where xk is the kth scout bee, ub and ub are the upper and

lower bounds of the problem domain, and Rk is random

ð�1; 1Þ number generated for kth bee. After each iteration,

employed bees search neighborhoods of the previously

found potential locations using (4), but in this case, xi is the

previous food source, xj is randomly selected food source

other than xi from previous iteration.

2.3 Ant colony optimization (ACO)

ACO [8] metaphorizes the foraging behavior of social ants

that use pheromone as a tool of communication. When

returning from food source, ants deposit certain amount of

pheromone along the path indicating the suitability of the

food source just visited. The most suitable path for other

ants to follow is the shortest one with maximum pher-

omone representing optimum food source. The concentra-

tion of the pheromone is time dependent, as it evaporates

gradually. Initially, m ants search food source randomly

(using same equation as (5)) and while returning deposit

pheromone (objective function value) along the path which

is, later on, gauged and reinforced by other ants through

further dumping pheromone, see (6) below:

sijðtÞ ¼ qsijðt � 1Þ þ Dsij; it ¼ 1; 2; . . .;MaxItr ð6Þ

where sijðitrÞ; q;MaxItr, and Dsij are revised pheromone

concentration, pheromone evaporation rate, maximum

number of iterations, and change in pheromone concen-

tration, respectively. The change in pheromone is calcu-

lated using (7):

Dsij ¼
Xm

k¼1

R=fitk if lij is chosen by ant k

0 otherwise;

�

ð7Þ

where R and fitk are pheromone reward factor and objective

function value of kth ant. As the iterations proceed, the

pheromone deposited along the path evaporates, which

allows ants to avoid premature convergence. Once the

pheromone value is updated with each path, next iteration

changes path of the ants moving in succeeding iteration

using (8):

Pijðk; tÞ ¼
½sijðtÞ�a � ½gij�

b

P
lij
½sijðtÞ�a � ½gij�b

ð8Þ

where Pijðk; tÞ is the path chosen by kth ant for iteration

t; sijðtÞ denotes pheromone concentration level at the
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chosen path, gij is heuristic value assigned solution indi-

cating feasibility for kth ant to select. Parameters a and b
influence pheromone concentration and heuristic informa-

tion. Since ACO is mainly designed for combinatorial

optimization problems, we chose the suitable variant

ACOR [27] for solving continuous optimization problems

in this work.

2.4 Cuckoo search (CS)

CS [10] algorithm follows the way Cuckoo birds manipu-

late hosts by resembling eggs with the ones in the host’s

nest. The eggs with maximum survival rate hatch suc-

cessfully and carry to next generation, whereas the poor

eggs are destroyed by the host bird. The algorithm starts

with initial random solutions in terms host nests where

cuckoos lay eggs. Each habitat has fitness value repre-

senting suitability of eggs to survive. CS defines eggs

laying radius (ELR) by (9):

ELR ¼ a� Ceggs

Neggs

� ðub� lbÞ ð9Þ

where a;Ceggs;Neggs; ub, and lb are constant that controls

radius, number of cuckoo’s eggs, total eggs, upper bound,

and lower bound respectively. After laying new eggs in

randomly chosen host nests in the predefined radius, certain

percentage of eggs with worst fitness value are destroyed.

CS uses lévy flight random walk to decide for the next

move, using (10):

x
ðtþ1Þ
i ¼ xti þ a� L�evyðkÞ ð10Þ

where a is step size, 1\k\ ¼ 3, and � is entry-wise

multiplication. There is only one parameter which is dis-

covery rate q of poor eggs to be destroyed and replaced

with new ones.

2.5 Firefly algorithm (FA)

FA [11] mimics the flashing pattern of fireflies to com-

municate and attract other fireflies. The brighter the better

is the firefly to attract others, as light intensity represents

fitness value. The light intensity increases and decreases

with respect to distance from other fireflies. The algorithm

starts with initial random population generated by (5) and

light intensity calculated using (11):

I ¼ I0e
�cr2 ; b ¼ b0e

�cr2 ð11Þ

where I0; r, and c are the original light intensity, distance,

rand absorption parameter. With light intensity calculated,

FA calculates attractiveness feature using (11), where b0 is
the initial attractiveness. The new location xnewi generated

by movement of firefly xi to firefly xj is calculated using

(12), where Ri is random number and a is step size.

xnewi ¼ xiþ b0e
�cr2ðxj � xiÞ þ aRi ð12Þ

Since the fundamental understanding has been established

about the algorithms, the subsequent section explains the

methodology adopted in this work for measuring explo-

ration and exploitation of the swarm-based metaheuristic

algorithms.

3 Methodology

A hard optimization problem poses substantial amount

of available solutions. Finding the optimum (nearly best)

solution demands a swarm-based metaheuristic algorithm

to drive swarm individuals so efficiently to draw effective

search of the environment. This requires diversified and

dynamic moves to the promising regions without waste-

fully consuming time and resources. To determine effec-

tiveness of the selected algorithms, this study measured the

two performance cornerstones, exploration and exploita-

tion, on numerical optimization problems and a real-world

application. For numerical problems, commonly used

benchmark test functions with different modalities were

employed, and for the later, we solved SME classification

problem using adaptive neuro-fuzzy inference system

(ANFIS) trained by selected metaheuristic algorithms. This

section explains, in detail, the three empirical components

of this study: exploration and exploitation measurement,

simulations on test functions, and application on SME

classification problem.

3.1 Exploration and exploitation measurement

A swarm individual, say xi; i 2 f1; 2; 3; . . .; ng; n = swarm

size, is a D dimensional vector that represents parameter

values to be optimized for the optimization problem in

hand (for example Sphere, Ackley, etc.). As depicted via

Fig. 2, the difference between dimensions of individuals

infers if the swarm is diverging or clustering in a concen-

trated space. When the algorithm is diverging, the differ-

ence between the values of dimension d within swarm

individuals enlarges, meaning that swarm individuals are

scattered in the search environment. This is referred to as

exploration or diversification in metaheuristic research. On

the other hand, when the swarm is converging, the differ-

ence minimizes and swarm individuals gather to a con-

densed area. This is called exploitation or intensification.

During the course of iterations, different metaheuristic

algorithms employ different strategies to enforce diversi-

fication and intensification within the swarm individuals.
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These two concepts are omnipresent in any metaheuristic

algorithm. Through exploration, an algorithm is able to

visit unseen neighborhoods in the search environment in

order to maximize efficiency of finding the globally

optimal location. Contrarily, exploitation allows swarm

individuals to successfully converge to a potential neigh-

borhood with highly likelihood of global best solution. The

balance between the two abilities is a trade-off problem.

Algorithms with poor in both abilities fail to produce

effective results. Hence, the search philosophy of any

swarm-based algorithm is crucial to its performance.

Therefore, it is imperative to measure exploration and

exploitation of an algorithm so that the search strategies

influencing these two factors may be analyzed practically.

As mentioned earlier, studying convergence graph and

mean, best, worst, standard deviation of the solutions found

over certain number of runs does not help understand the

insights of search behavior; it is therefore, such end results

still leave open questions about the performance efficiency

of a metaheuristic algorithm. That said, for swarm-based

metaheuristic algorithms, it is significantly important to

analyze the behavior of each individual in a swarm, as well

as, swarm as a whole. This motivated the current research

to adopt dimension-wise diversity measurement proposed

by [28] with modification where mean is replaced with

median in (13); as it reflects the center of the population

more effectively.

Divj ¼
1

n

Xn

i¼1

medianðxjÞ � x
j
i ;

Div ¼ 1

D

XD

j¼1

Divj

ð13Þ

where medianðxjÞ is median of dimension j in whole

swarm, whereas x
j
i is the dimension j of swam individual i,

and n is the size of swarm. After taking dimension-wise

distance of each swarm-individual i from the median of

dimension j, we take average Divj for all the individuals.

Later on, the average of diversity of all dimensions is

computed in Div.

Once diversity of swarm has been captured for each

iteration, it is now possible to determine the percentage of

exploration and exploitation in an algorithm for each iter-

ation using (14):

Xpl% ¼ Div

Divmax

� 100;

Xpt% ¼ jDiv� Divmaxj
Divmax

� 100

ð14Þ

In (14), Div is the diversity of swarm in an iteration and

Divmax is the maximum diversity in all iterations. Xpl% and

Xpt% are exploration and exploitation percentages for an

iteration, respectively.

3.2 Numerical optimization

In numerical optimization, a mathematically expressed

problem is either minimized or maximized, with the help of

solution vector representing problem variables. This study

focused on minimization problems using commonly used

numerical optimization problems in the form of benchmark

test functions. In literature, such test functions with diverse

properties are vastly used in order to test and validate

metaheuristic performances [29]. This study used a set of

five test functions including unimodals (Sphere and Sch-

wefel 2.22) and multimodals (Ackley, Rastrigin, General-

ized Penalized 1) in nature, Table 1 lists the details. In this

table, first column represents the name of the problem,

mathematical expression of the problem is given in second

column, range specifies the domain of the search envi-

ronment, whereas the last column shows the objective

function value of the optimum solution; the metaheuristic

algorithm that generates solution closer to this value is

considered an efficient algorithm.

To better understand how the selected metaheuristic

algorithms solve these problem, consider a D-dimensional

solution vector that represents number of parameters to be

tuned to achieve best solution. Each swarm individual in

the selected metaheuristic algorithms represents the solu-

tion vector and n swarm individuals represent n number of

Fig. 2 n� D dimensional

representation of swarm
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solutions. These solutions are generated by the meta-

heuristic algorithm during each iteration and the best

solution is presented in the end of search iterations.

3.3 SME classification problem

Apart from test functions, the measurements of efficiency,

in terms of exploration and exploitation, of metaheuristic

algorithms were also performed while solving a real-world

classification problem. For this, we employed metaheuris-

tic algorithms on training the parameters of adaptive neuro-

fuzzy inference system (ANFIS) [30] for solving the

problem of classifying small medium enterprises (SME) of

Malaysia based on strength. A brief introduction of ANFIS

network is given later in this section.

Literature shows that ANFIS has produced highly

accurate models for highly nonlinear problems in several

areas of science, engineering, and economics [31, 32].

However, as the complexity of problem increases, the

training of ANFIS parameters becomes a tedious job while

using the standard gradient-based methods; hence, swarm-

based algorithms have been proposed as efficient training

methods [33]. This study also employed the selected

swarm-based algorithms on the training of premise and

consequent parameters of ANFIS model. Similar to

numerical optimization problems, each swarm individual

in a swarm-based metaheuristic algorithm represents

solution vector in classification problem as well. The

solution vector in this problem represents membership

function parameters and consequent parameter which are to

be tuned to find the best fit ANFIS model. Since, every

optimization problem has an objective function, in case of

this problem, the objective function is ANFIS model. It

takes solution vector which includes membership function

parameters and consequent parameters. These parameters

are employed on ANFIS network to produce output in

terms of root mean squared error (RMSE) which is the

minimized by the metaheuristic algorithm.

The classification model, based on ANFIS, consisted of

seven inputs and one output representing the class of an

SME. The inputs are Business Performance, Financial

Capability, Technical Capability, Production Capability,

Innovation, Quality System, and Management Capability.

The single output is star ranking (1–5) of an SME, which is

taken as class in this problem. For each input, two mem-

bership functions of Gaussian type with input space 0–5

were used.

3.3.1 Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS, introduced by Jang [30] in 1993, is a neural net-

work like architecture with fuzzy logic embedded in the

form of membership functions and fuzzy rules. As depictedTa
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via Fig. 3, the five-layered architecture of ANFIS contains

membership functions, second layer performs product on

the membership degrees, third layers normalizes firing

strength of a rule, fourth layer performs linear polynomial

to calculate rule out, and lastly, the fifth layer simply

performs aggregation of rules outputs to generate the

model output. Mathematically, each layer of ANFIS

architecture can be expressed as following:

Layer 1: Each node Aij in this layer computes mem-

bership degree of associated with input variable xi. The type

or shape of membership function can be any—triangular,

bell, trapezoidal, or Gaussian which can be defined as (15):

AijðxiÞ ¼ e
�
1

2

xi � c

c

� �2

ð15Þ

where c is center and c is width of the jth Gaussian

membership function. These parameters are referred to as

premise parameters which are trained by the training

algorithm.

Layer 2: Each node wk; k ¼ 1; 2; . . .;m in second layer

calculates firing strength of kth rule by performing product
Q

of membership degrees using (16):

wk ¼
Ym

i¼1

AijðxiÞ ð16Þ

Layer 3: The rule strength computed in previous layer is

normalized (17) in this layer to determine the overall

strength associated to kth rule with respect to all the fuzzy

rules.

�wk ¼
wkPm
k¼1 wk

ð17Þ

Layer 4: This layer performs linear polynomial fk on the

input variables, which is then multiplied with the normal-

ized firing strength �wk using (18):

�wkfk; fk ¼
��Xn

i¼1

xipk;i

�

þ pk;nþ1

�

ð18Þ

where �wk and fk represent normalized rule strength and the

polynomial function of kth rule, xi is ith input, pk;i is the

real number representing weight associated to ith input in

the polynomial function of kth rules, and pk;nþ1 is also a

real number representing the linear coefficient. The

parameters pk;i and pk;nþ1 are the consequent parameters

which are trained by the training algorithm.

Layer 5: The single node in this layer represents ANFIS

output by aggregating the outputs of m rules using (19):

z ¼
Xm

i¼1

�wkfk ð19Þ

ANFIS learns by two-pass learning algorithm which uses

least square estimation (LSE) to update consequent

parameters in forward pass and in backward pass it uses

gradient descend (GD) method to tune premise parameters.

In this study, metaheuristic algorithm is employed to

update both the membership function and consequent

parameters, instead of the standard gradient-based two-pass

learning algorithm. The accuracy of ANFIS model is

measured through root mean squared error (RMSE) using

(20) where Targeti and Outputi are the target output and

ANFIS generated output for the ith tuple in a dataset with N

instances.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

ðTargeti � OutputiÞ2
v
u
u
t ð20Þ

4 Experiments

4.1 Experimental settings

To analyze the two highly influential factors (exploration

and exploitation) of the metaheuristic algorithms under

consideration, five commonly used numerical optimization

problems with different modality were employed with 30

dimensions, Table 1 lists the test functions. The swarm size

was 50 for each algorithm and maximum iterations were

1500 and 200 for numerical problems and for ANFIS

training in classification problem, respectively. As men-

tioned earlier, the purpose of this study was to analyze the

said two factors; therefore, the focus was mainly on cal-

culating diversity in swarm during iterations instead of

running the algorithm over certain number of independent

runs and averaging the results. Accordingly, we executed

algorithms once, as our preliminary experiments also

Fig. 3 ANFIS architecture
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evidenced insignificant difference in results over multiple

runs.

Besides the common settings explained above, the

algorithm-specific parameter settings are presented in

Table 2. For these settings, we performed a careful survey

and took parameter values from literature solving the test

functions adopted in this study.

4.2 Results

Here, the results are reported for the experiments per-

formed to obtain exploration and exploitation measures of

top five swarm-based metaheuristics on numerical opti-

mization and classification problems. The statistics related

to numerical problems are given in Table 3, whereas

Table 4 presents results on classification problem. Along

with statistical information, this section also illustrates the

algorithm performances more comprehensively via fig-

ures and charts.

For numerical optimization problems, Table 3 presents

the best objective function values found by different

algorithms, percentage of exploration and exploitation

showing the two abilities, diversity measurement indicat-

ing variety in solutions found during iterations, and number

of function evaluations (NFEs) as each algorithm performs

different number of evaluations during an iteration. Fig-

ures 4, 5, 6, 7, 8, 9 and 10 provide visual evidence of

exploration, exploitation, and population diversity in

Table 2 Algorithm-specific

parameter settings
Algorithm Parameter settings

PSO x ¼ ½0:9� 0:4�;C1 ¼ C2 ¼ 2 [34]

ABC Limit ¼ SwarmSize � D [35]

ACOR s0 ¼ 1;q ¼ 0:5;x ¼ 0:5ðWeightFactorÞ; z ¼ 1ðDeviation� DistanceRatioÞ [27]
CS q ¼ 0:25 [36]

FA b0 ¼ 1; c ¼ 1; a ¼ 0:2 [37]

Table 3 Results of numerical optimization problems

Functions Measurements PSO ABC ACOR CS FA

Sphere Best solution 1.65E-09 1.44E-15 4.50E-37 8.13E-08 2.73E-27

Average Xpl%:Xpt% 39:61 56:44 70:30 65:35 91:09

Diversity 117.05 120.53 155.28 149.74 163.60

Schwefel 2.22 Best solution 2.80Eþ01 1.16E-08 4.01E-20 3.98E-03 1.59E-13

Average Xpl%:Xpt% 35:65 58:42 90:10 51:49 83:17

Diversity 106.32 101.32 144.40 116.92 144.56

Ackley Best solution 1.56E-05 3.95E-08 6.22E-15 0.0088 3.82E-14

Average Xpl%:Xpt% 36:67 61:39 71:29 55:45 92:08

Diversity 111.84 133.28 155.58 105.58 163.21

Rastrigin Best solution 92.6531 182.7922 177.0499 85.4237 29.8487

Average Xpl%:Xpt% 42 72 66:34 80:20 82:18

Diversity 120.78 148.31 145.78 186.73 122.35

Generalized Penalized 1 Best solution 1.28E-01 9.99E-03 2.24E-27 5.34E-01 2.68E-27

Average Xpl%:Xpt% 40:60 58:43 67:33 71:29 86:14

Diversity 124.95 132.33 156.10 163.47 162.34

NFEs 75,000 112,600 120,050 150,050 1,837,550

Table 4 Results of SME

classification problem
PSO ABC ACOR CS FA

Training RMSE 0.0560 0.0871 0.1336 0.0564 0.0560

Testing RMSE 0.0574 0.1072 0.1508 0.0583 0.0583

Average Xpl%:Xpt% 19:81 63:37 96:04 97:03 38:62

Diversity 253.11 511.04 672.10 1118.35 371.78

NFEs 10,000 15,050 16,050 20,050 245,050
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swarms of the selected swarm-based metaheuristic

algorithms.

According to Table 3, ACOR was the best performer

overall on unimodal and multimodal problems, followed by

FA which stood second best in all numerical problems.

However, Rastrigin was the problem where ACOR per-

formed the second worst and FA obtained best result, as the

said function is a highly multimodal problem. Overall, the

least performer was CS but it managed to achieve second

best objective function value in Rastrigin problem. ABC

performed third best in all functions except for Rastrigin

where it was least performer.

As per function-wise performances, ACOR and FA

achieved best results with around 70%:30% and around

90%:10% average exploration-exploitation ratios, respec-

tively. In this case, the least and second least performers

were CS and PSO with around 65%:35% and 40%:60%

average exploration-exploitation ratios, respectively. On
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Fig. 4 Exploration and exploitation of metaheuristics on Sphere function
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Schwefel 2.22, the first and second best values were

obtained by ACOR and FA with exploration above 80%

and exploitation below 20%. Likewise, the third and fourth

best performer ABC and CS maintained exploration greater

than 50% exploitation below the said percentage. The best

and second best performers on Ackley were ACOR and FA

with average exploration-exploitation 70%:30% and

90%:10%, respectively. Both the algorithms retained

diversity above 150, whereas the least performer CS kept

swarm diversity around 100, and maintained average

exploration-exploitation ratio around 50%:50%. On Rast-

rigin function which proved to be difficult optimization

problem for all the algorithms, the first and second best

performances were reported with FA and CS which

maintained the ratio of average exploration-exploitation

around 80%:20%. ABC was the least performer in this

case. ABC kept average exploration-exploitation ratio

around 70%:30%. ACOR and FA were also top performers
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Fig. 5 Exploration and exploitation of metaheuristics on Schwefel 2.22 function
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in Generalized Penalized 1 function in which the algo-

rithms performed search with 66%:34% and 86%:14%

ratios of exploration and exploitation, respectively. Gen-

erally, other than in Rastrigin problem, the top performers

ACOR and FA were more explorative than exploitative

with on average ratios of 70%:30% and 85%:15%,

respectively. On the other hand, the case was reverse in

PSO which remained more exploitative as compared to

explorative with ratio around 40%:60%. ABC and CS were

opposite in ratios to PSO.

In terms of number of function evaluations (NFEs),

Table 3 shows that the most expensive algorithm was FA

and the least was PSO, whereas ACOR was mediocre on

numerical problems.

The statistical facts reported above can be graphically

evidenced in Figs. 4, 5, 6, 7 and 8 which show exploration
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Fig. 6 Exploration and exploitation of metaheuristics on Ackley function
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and exploitation ratios during search process maintained by

different algorithms while solving numerical problems. In

these figures, it can be observed that ACOR, FA, ABC, and

CS retained exploration higher than exploitation either

throughout iterations or most part of search process.

Whereas, PSO started as explorative and later on, soon

after few iterations, converted to exploitative algorithm in

nature. This can be further observed in stacked bar charts

(Fig. 9) in terms of exploration and exploitation

percentages of the algorithms. Figure 10 illustrates the

behavior of swarm in terms of diversity measurement

during iterations.

Figure 10 shows diversity measurement during itera-

tions in an algorithm. From these figures, it can be

observed that the diversity in PSO was high initially, which

dropped gradually soon after initial part of search process.

This is consistent with Figs. 4, 5, 6, 7 and 8 where PSO was

explorative in the beginning and later terned into
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Fig. 7 Exploration and exploitation of metaheuristics on Rastrigin function
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exploitative. ACOR and FA remained consistent with

diversity in all the functions hence maintained regular

exploration and exploitation throughout experiments

(Fig. 9). ABC, on Sphere and Ackley, was consistent with

diversity measurement until 1000 iterations; afterward, the

introduction of scout bees disrupted the momentum. The

jerk after 1000 iterations on Schwefel 2.22 and Generalized

Penalized 1 also shows the appearance of scout bees in

ABC, which produced random solutions in place of aban-

doned food sources. Rastrigin was on exception for ABC as

compared to other test functions. CS was also consistent in

diversity measurement except for Ackley where it became

exploitative in later part of iterations.

Other than simulations on numerical problems, the

algorithms were further tested on a real-world application

of classification problem, Table 4 presents the results.

From the statistics, the worst performer on numerical

problems, PSO achieved best error on both training and

testing datasets with around 19%:81% average exploration-

exploitation ratio. PSO was followed by FA which
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Fig. 8 Exploration and exploitation of metaheuristics on Generalized Penalized 1 function
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produced second best errors with average exploration-ex-

ploitation ratio of around 39%:61%. Whereas, the best

performer on numerical problems, ACOR obtained worst

error rates due to high exploration and low exploitation

ratio of 96%:4%. Just like in most of the numerical prob-

lems, also in this problem, ABC maintained around

60%:40% ratio of exploration and exploitation, produced

adequately better results (see Figs. 9, 11). The proportion

of exploration and exploitation maintained by the algo-

rithm throughout iterations is depicted via Fig. 12.

According to the line graphs, it is clear the PSO and FA

were exploitative in most of the iterations, whereas ACOR

and CS remained highly explorative during iterations. This

is further evidenced from the diversity measurement pre-

sented via line graph in Fig. 13 which shows that PSO,

ABC and FA maintained lower diversity as compared to

ACOR and CS.

5 Analysis and discussion

The performance of any swam-based metaheuristic algo-

rithm strongly depends on the way swarm individuals are

manipulated, meaning that search strategy adopted by

Fig. 9 Average exploration and exploitation of metaheuristics on numerical problems
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swarm individuals reflects how the individuals coordinate

search information during the course of iterations. More

importantly, the major performing factor is balancing

exploration and exploitation by maintaining adequate

diversity in swarm individuals so that trapping in local

optimal locations as well as ignorance of potential neigh-

borhoods, because of unnecessary diversification, may be

avoided.

According to the results of numerical problems men-

tioned in previous section, ACOR outperformed the other

well-known counterpart algorithms due to consistency and

balance in explorative and exploitative capabilities. There

are reasons: (a) ants endorse positive feedback from ants

already found improved results, and (b) well distributed

swarm individuals, resulted in consistent diversity in whole

swarm. In terms of cost, ACOR consumed mediocre

NFEs—neither too low as PSO nor too high as FA. The

performance of ACOR is relevant to the evaporation

parameter, with high parameter value the ACOR becomes

more explorative; otherwise exploitative.

0 500 1000 1500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Iterations

D
iv

er
si

ty
 M

ea
su

re
m

en
t

Sphere
PSO
ABC
ACOR
CS
FA

0 500 1000 1500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Iterations

D
iv

er
si

ty
 M

ea
su

re
m

en
t

Schwefel 2.22
PSO
ABC
ACOR
CS
FA

0 500 1000 1500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Iterations

D
iv

er
si

ty
 M

ea
su

re
m

en
t

Ackley
PSO
ABC
ACOR
CS
FA

0 500 1000 1500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Iterations

D
iv

er
si

ty
 M

ea
su

re
m

en
t

Rastrigin
PSO
ABC
ACOR
CS
FA

0 500 1000 1500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Iterations

D
iv

er
si

ty
 M

ea
su

re
m

en
t

Generalized Penalized 1
PSO
ABC
ACOR
CS
FA

Fig. 10 Diversity in swarm individuals on numerical problems
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FA was inversely extreme in both the conflicting capa-

bilities, significantly high on exploration and equally low

on exploitation. This is because of the use of Lévy Flight

which helps avoid local optima through long distance

agility of the swarm individuals. Nevertheless, the algo-

rithm still managed to obtain second best results on

numerical problems, thanks to consistency in swarm indi-

viduals and swarm as a whole. Hybriding FA with any

local search method will improve performance due to

balance between exploration and exploitation gained.

ABC proved to be potential search algorithm even

though the performance was third best in the experiments

of this study. According to exploration and exploitation

measurements, ABC maintained adequate balance between

the two factors until the introduction of scout bees in the

later part of iterations—affected the consistency in swarm
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Fig. 11 Average exploration and exploitation of metaheuristics on SME classification problem
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diversity. This disturbed the rhythm of the swarm indi-

viduals which later struggled to regain the coherence. It

infers that the best solution found after the first three

quarters of iterations was replaced with a randomly pro-

duced solution by a scout bee. The better handling of scout

bees may help improve ABC performance since employed

and onlooker bees already preserve consistency of diversity

in the swarm.

PSO was opposite to ACOR in maintaining diversity in

the swarm individuals. It was low at exploration and high

at exploitation. The premature convergence proved that the

algorithm spent most of the time in locally optimal solu-

tions. The ability of global search in PSO is considerably

weak. After initial iterations, the explorative capability of

PSO dropped dramatically since the social component of

the update equation did not work as expected. Although,

inertia weight is supposed to balance exploration and

exploitation, but this approach also failed in this regard.

Hence, better explorative approach embedded into PSO

equation may help improve the results.

On numerical problems, CS proved that balancing

exploration and exploitation does not mean 50%:50%. This

algorithm performed worst because of lack of coherence in

the swarm individuals. Moreover, opposite to PSO, CS

converged to relatively potential (not globally) optimum

solutions early in the iterations, but did not manage to find

better solutions in the later part of search. Hence, both the

search strategies (local and global) need to be revised and

improved by any approach that maintain diversity in the

swarm individuals.

Apart from numerical problems, the results on real-

world application of training highly nonlinear fuzzy neural

network on classification problem suggested the nature of

optimization problem highly matters for metaheuristic

algorithms. The difficulty in real applications, instead of

simulation problems, poses variety of challenges for these

algorithms. It is therefore, the poor performer PSO out-

performed the rest of the algorithms by producing better

training and testing errors, probably by better exploitation.

The same was with FA which produced second best errors

due to low diversity. Hence, it shows that the desired

exploration and exploitation capability is problem specific.

6 Conclusion

The purpose of this study was to evaluate explorative and

exploitative capabilities of the top five commonly used

swarm-based metaheuristic algorithms, using diversity

measurement. Unlike existing literature often merely

observing convergence graph and end results for the per-

formance analysis, this study proposed an effective

approach to insightful analyses that revealed the answer to

question ‘why and how it happened’ related to meta-

heuristic performance. The measurement of exploration

and exploitation helped draw comprehensive inference on

the reasons behind poor or better results.

From the experimental results, it was obvious that

coherence among swarm individuals is the key to success

for any swarm-based algorithm. The consistency and ade-

quate diversity in the swarm are the core ingredients to

search strategy adopted. The trade-off balance between

exploration and exploitation does not mean 50:50, the

search mechanism that avoids too much of exploration and

considerably scarce exploitation may achieve efficient

results. Among the other algorithms, ACOR appropriately

maintained the trade-off balance in exploration and

exploitation for unimodal and multimodal problems. FA

and ABC also proved to be potential choices in the list of

swarm-based metaheuristics, however modification in local

search ability may improve consistency in swarm

Fig. 12 Exploration and exploitation of metaheuristics on SME

classification problem
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individuals—resulting in convergence to globally potential

neighborhoods.

Other than numerical optimization problems, the appli-

cation on real-world classification problem suggested that

merely high-level analyses of experiments on test functions

may not help conclude on algorithm robustness. Real

applications pose variety of difficulties inherent in problem

landscapes hence metaheuristic performances should also

be analyzed on actual problems in the domains of engi-

neering, business, science, etc. It was observed that, as

opposite to numerical problems, PSO performed best in

classification problem and ACOR results were the worst.

The analyses suggested that the algorithms that maintained

better exploitation ability produced better results, as com-

pared to algorithms with high exploration. The measure-

ment of exploration and exploitation not only helps

understand swarm-behavior on real-life problems but also

it reveals the level of difficulty in the problem.

In future, this study may be extended to analyze

exploration and exploitation in variety of other meta-

heuristic algorithms on wide range numerical optimization

problems, as well as, on real-life problems with varying

difficulty.
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