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Abstract
The application of fiber-reinforced polymer (FRP) strips or rods in the form of near-surface-mounted (NSM) reinforcement

has become an attractive solution to strengthen the existing buildings and bridges. It is of interest to engineers to have an

accurate estimate of the bond capacity of this technique. In this paper, fuzzy logic approach is utilized to propose an

alternative method of determining the pullout strength of NSM FRP strips/rods which are bonded to the concrete block.

Two types of fuzzy logic models, namely Mamdani and Takagi–Sugeno, are developed. With the aim of enhancing the

interpretability of the fuzzy model, the rule base of Mamdani model is extracted from the classification decision tree, and

the membership functions corresponding to the linguistic concepts are built by uniform partitioning the range of variables.

On the other hand, in order to arrive at closed-form equations for pullout capacity, the subtractive clustering algorithm is

employed to deduce the rule base and membership functions of Takagi–Sugeno model (first order), and its consequent part

is tuned by the least square optimization using training dataset. Several fuzzy logic models of both types with different

numbers of rules are developed and compared in terms of different error measures. To train and validate the fuzzy models,

a large database of 384 direct pullout tests on NSM FRP bonded to concrete is assembled from the literature. The results

reveal that both of the proposed Mamdani and Takagi–Sugeno models demonstrate good accuracy against the experimental

data and outperform the published models. A parametric study indicates that the proposed fuzzy models can predict the

maximum effective bond length, and thus, they are able to capture the underlying mechanics of the problem.
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1 Introduction

Retrofit of the existing concrete buildings and bridges is an

urgent need worldwide. The retrofit is conducted to

improve the seismic resistance to meet newly developed

design codes or to upgrade the load carrying capacity

against the increased gravity load. Fiber-reinforced poly-

mer (FRP) composites have been extensively applied in

retrofitting of structures and are known as a superior

technique comparing other traditional strengthening

methods due to their lightweight, high strength, easy

installation, and excellent durability. In order to enhance

flexural or shear strength of reinforced concrete beams and

slabs by means of FRP, there are two methods of appli-

cation as follows. First, the FRP sheets/plates are bonded to

the external surface of the concrete, that is, called the

externally bonded reinforcement (EBR) [1]. Second, FRP

rods/strips are mounted into the groove cut near the surface

of the concrete and filled with the resin. The latter is briefly

called as near-surface-mounted (NSM) FRP reinforcement

[2], and its geometric properties are illustrated in Fig. 1.

The NSM technique is newer than EBR method and is less

investigated. The advantages of NSM over EBR are con-

sidered as follows: the protection of FRP bars against

vandalism or environmental effects as a result of its

embedment in the concrete cover [3] and the removal of

need for preparation of concrete surface prior to FRP

installation [4]. The bond capacity and failure mode of

NSM FRP are affected by variety of factors including

mechanical properties of FRP, epoxy, and concrete; surface
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treatment and dimensions of FRP rod/strip; and groove

depth and width [5].

It is of importance to engineers to accurately estimate

the bond capacity of NSM FRP so as to take full advantage

of materials and to avoid debonding failure. The bond

capacity here refers to the pullout strength of NSM FRP

bonded to a concrete block. Unlike the EBR method, very

few models have been reported in the literature to predict

the bond strength of NSM FRP technique. The existing

models on the pullout capacity of NSM FRP have been

developed by regression of experimental results combined

with a fracture mechanics-based approach or outcomes of

finite element models [6–8]. The available models on NSM

differ from each other in the way they incorporate a

number of parameters such as concrete strength or groove

dimensions. Besides, the mechanical properties of bonding

agent have not been accounted for in some models.

Moreover, some of the models were developed only for

FRP strips and thus are not applicable to FRP rods.

With the aim of developing an alternative and reliable

method to predict the pullout strength of NSM FRP rods

and strips, the fuzzy logic approach is employed in this

paper. The approach of fuzzy logic has not yet been applied

to the present topic. The main advantage of fuzzy logic

system stems from its interpretability [9, 10], which may

not be pronounced in other neural computing techniques.

Neuro-fuzzy methods have been applied to the field of

concrete [11, 12] and FRP-wrapped concrete [13]. The

Takagi–Sugeno fuzzy inference system has been already

employed by the author [14, 15] in other applications of

FRP in concrete structures. The Mamdani type of fuzzy

logic model has been used in the field of concrete [16] and

FRP applications [17, 18]. Also, fuzzy logic expert systems

have been utilized recently to evaluate other design issues

related to NSM FRP such as deflections and cracks of

concrete beams strengthened by NSM FRP [19, 20]. In the

present work, the two available types of fuzzy logic sys-

tems, namely Mamdani and Takagi–Sugeno (or Sugeno for

short), are investigated. Classification decision tree is used

to develop Mamdani model, whereas subtractive clustering

is employed to derive Takagi–Sugeno model. Both fuzzy

models are inferred from 384 experimental data on the

direct pullout tests of NSM FRP, which have been col-

lected from the open literature. Detailed procedures to

develop each of the fuzzy models are explained, and the

outcomes of the proposed fuzzy models are compared with

the predictive equations published in the literature.

Fig. 1 Details and geometrical

characteristics of NSM FRP

technique
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2 Experimental database

The experimental data, which are employed in this paper to

develop fuzzy models, contain 384 direct pullout tests on

NSM FRP rods or strips bonded to concrete blocks. The

test data were assembled from several experimental cam-

paigns reported in the open literature and were conducted

by different researchers [3–7, 21–39]. Since all experi-

mental data used here are extracted from papers published

in the well-known journals, it is believed that the data are

reliable and the instruments are accurate enough.

As shown in Fig. 1, the pullout test contains a prismatic

concrete block in which a groove is cut. The FRP strip/rod

is inserted in the groove which is later filled with the resin.

After the resin hardens, the FRP rod/strip is subjected to the

tensile force exerted by a jack, while the concrete block is

restrained by appropriate supports at a face perpendicular

to the direction of the applied force. The concrete block

may be placed horizontally, or alternatively, vertically in

the test setup during the loading test. The main character-

istics of the pullout test (as illustrated in Fig. 1) are com-

mon among the experimental campaigns employed here.

Thus, the testing conditions for determining the pullout

capacity are similar among the studies considered herein.

The detailed information on the experimental data

including the geometrical/mechanical properties of FRP

bars/strips, groove, epoxy, and concrete as well as other

testing conditions such as the experimental pullout capacity

and bonded length is presented in ‘‘Appendix 3.’’ The FRP

reinforcements used in the specimens were different in

cross-sectional shape (round bar, and square or narrow

strip), surface treatment (smooth, sand coated, or spirally

wound), and type of the fiber (carbon, glass, or basalt). The

majority of NSM FRP in the test samples was of CFRP

type. In the case that some samples were duplicated, only

one test sample with the minimum pullout capacity among

the replica samples was taken into account. By putting

aside the duplicate samples, the whole database decreased

from the original 384 experiments to 222 test specimens.

Besides, 78 specimens out of 222 samples were FRP strips,

and the rest were rounded bars (i.e., rods). The statistics of

properties for the experimental database are listed in

Table 1.

3 Selection of input variables for fuzzy logic
models

Selection of input parameters is a major stage in develop-

ing a fuzzy logic model. According to the NSM FRP bond

models currently available in the literature [7, 8], the

parameters assumed to have an influence on the bond

capacity are as follows: the bonded length (L), concrete

compressive strength (fc
0), the axial rigidity of FRP rod or

strip (Af Ef), and the groove depth-to-width ratio (Dg/Wg).

In the case of NSM strips, another parameter representing

the length of debonding failure plane, which is defined as

summation of three side lengths of the groove [8] or sum of

twofold of strip width and its thickness plus 4 mm [7], is

also considered in some models. Besides, the FRP tensile

strength, though not affecting the bond capacity, is used in

certain models to separate the FRP rupture failure from the

bond failure mode. Furthermore, the rod/strip surface

treatment has been considered as a test variable in exper-

imental papers [24, 33]. However, the surface treatment,

due to its qualitative characteristics, is not included in the

mathematical expressions of the existing bond models.

Another important factor is related to the mechanical

properties of the adhesive used between NSM FRP and

concrete. Among different properties of adhesive, its ten-

sile strength (fe) has been reported in majority of the

experimental campaigns.

It is also noted that some of the existing NSM bond

models have been developed only for FRP strips and not

for rods, whereas the present paper is aimed at proposing a

model which is applicable to both cases of strip and rod. In

order to distinguish between strip and rod, a quantitative

term is introduced herein as the ratio of the normalized

perimeter to the normalized cross-sectional area of the

NSM reinforcement, denoted as Pnorm/Anorm, in which the

Table 1 Statistics of the experimental data

Parameter L (mm) AfEf (kN) fc
0 (MPa) fe (MPa) Pnorm/Anorm Dg/Wg Dg (mm) fu (MPa) Pf (kN)

Minimum 30 1300 15 6 0.90 1 10 749 7.17

Maximum 508 16,966 64.8 90.7 5.45 6.89 40 3100 100

Mean 206.9 7409.6 34.9 39.6 1.93 1.77 18.4 1954 46.1

Median 228 7647.4 30 30 1.46 1 17.1 2068 46.8

Coefficient of variation (%) 49.4 55.6 38.5 60 67.8 81.9 31.2 29.5 45.3

Dg is groove depth, Wg is groove width, Pnorm is normalized perimeter of rod/strip, Anorm is normalized sectional area of rod/strip, fe is epoxy

tensile strength, fc
0 is concrete compressive strength, AfEf is the FRP axial rigidity, L is bond length, and Pf is bond capacity
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perimeter and cross-sectional area are divided by their own

maximum values. In the experimental database used in the

present paper, the maximum value for the rod/strip

perimeter and area is 45.5 mm and 132.7 mm2, respec-

tively. It is obvious that the value of Pnorm/Anorm for the rod

shape is smaller than that for the strip shape.

Regarding the above-mentioned explanations, six inde-

pendent variables are selected as inputs for the proposed

fuzzy models, as follows: the bond length (L), concrete

compressive strength (fc
0), the axial rigidity of FRP rod/

strip (Af Ef), the groove depth-to-width ratio (Dg/Wg),

tensile strength of epoxy (fe), and the ratio of Pnorm/Anorm.

The statistical descriptors of these variables for the

experimental database employed in the current paper are

listed in Table 1.

4 Overview of fuzzy logic-based models

In order to derive a relationship between the input variables

(namely, L, fc
0, Af Ef, Dg/Wg, fe, and Pnorm/Anorm) and the

output (i.e., the pullout capacity, Pf), fuzzy logic approach

is utilized in this paper. The objective is to develop fuzzy

logic models inferred from the available experimental data

to predict the pullout capacity of NSM FRP rod/strip

bonded to concrete. A fuzzy logic model consists of several

rules; each has an antecedent together with a consequent

part. The antecedent is composed of some membership

functions; each assigned to an input variable and are

interconnected by use of logical operators such as AND or

OR [40]. The role of membership function is to map the

value of an input variable to a number in the range of 0–1,

expressing the fuzzy nature of the model. Depending on the

format of the consequent part, there are two types of fuzzy

models, namely Takagi–Sugeno fuzzy models [41] and

Mamdani fuzzy models [42].

In the present paper, both Mamdani and Takagi–Sugeno

(or Sugeno for short) fuzzy models are applied to the

problem in hand. The merit of Sugeno model, as developed

herein, lies in its closed-form presentation of the pullout

capacity. On the other hand, Mamdani model is proposed

here with the aim of providing highly interpretable rules. In

order to develop models and run the related codes,

MATLAB is used in the present paper. The different steps

in building both fuzzy models are explained in the

followings.

4.1 Development of Mamdani fuzzy model
based on decision tree

In the current paper, the main purpose from developing a

Mamdani-type model is to enhance the interpretability of

the fuzzy logic system. Interpretability is known as the

advantage of fuzzy modeling as compared to other soft

computing techniques such as neural network [9, 10].

Interpretability of fuzzy model means that an expert can

easily understand the rule base of the model and modify or

extend it if needed. It is particularly important when the

model is inferred from data to ensure that the reasoning is

understandable to the user, as opposed to the case that the

automatic rule induction through supervised learning may

result in the models containing meaningless coefficients

obtained only on the basis of minimizing error between

experimental output and model prediction. The inter-

pretability can be achieved at two levels: membership

function and rule induction technique, which will be dis-

cussed as follows.

4.1.1 Selection of membership functions by uniform
partitioning the input/output space

A simple approach to reach an interpretable membership

function is to divide the practical range of the variable into

several equal partitions. The number of partitions is the

same as the number of membership functions whose

coordinates are determined based on the length of each

partition, as will be discussed later. The practical range of

each variable is presented in Table 1 according to the

available experimental database. In here, the range of all

input variables is divided into five equal intervals except

for the variable Dg/Wg, which is partitioned into three equal

intervals. The number of partitions can be decided by

looking at the histograms for distribution of experimental

data, as demonstrated in Fig. 2 for Dg/Wg and fc
0 as

examples of input parameters. For instance, according to

Fig. 2, there are gaps in the experimental data points in the

range of Dg/Wg, suggesting that three divisions would be

sufficient to cover the whole range of this input variable,

whereas for fc
0, five partitions are considered due to a rel-

atively uniform distribution of data points within the range

of fc
0. It goes without saying that increasing the number of

partitions may result in a more complex model. In the next

step, membership functions, which correspond to different

linguistic concepts, are constructed. In the case of three

partitions for Dg/Wg, the linguistic classes of low (L),

medium (M), and high (H) are considered as illustrated in

Fig. 3. Also shown in Fig. 3, for fc
0 with five partitions, the

linguistic classes of very low (VL), low (L), medium (M),

high (H), and very high (VH) are defined. As for the shape

of membership functions, trapezoids are assigned to the

first and last classes, while triangles are allocated to the

intermediate classes (see Fig. 3). Triangular and trape-

zoidal shapes are the most common membership functions

reported in the literature [9, 10, 17]. It is also noted that the

right corner and top and left corner of a triangular mem-

bership function lie in the midpoint of three consecutive
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partitions, respectively, resulting in overlapping parts

between two successive membership functions. As for the

trapezoidal functions, the top base spans between the

midpoint of the first (or last) partition and the minimum (or

maximum) value in the range of the considered input

variable. In order to build the membership functions for the

model output (i.e., Pf), a similar procedure is employed

except that six intervals are considered in order to achieve

a higher accuracy in prediction of the bond capacity. The

linguistic terms for Pf are designated as very low (VL), low

(L), almost low (AL), almost high (AH), high (H), and very

high (VH), as demonstrated in Fig. 3. The coordinates of

each membership function are presented in Tables 2 and 3

for the inputs and output, respectively. The membership

functions, as described above, are constructed only by use

of the given range of each variable without any need for

optimization or other a priori assumptions, leading to

enhance the interpretability of the model.

4.1.2 Rule induction by classification decision tree and its
application to the present problem

Another aspect of interpretability of fuzzy model is related

to the rule induction method. As a technique to induce

fuzzy rules, the classification decision tree has been sug-

gested by several researchers [10, 43]. In this paper, the

rule base of the proposed fuzzy model is extracted from the

binary decision tree, which is employed for classification of

the experimental observations in terms of the linguistic

labels considered for the variables. First, each variable

should be converted to a linguistic label, i.e., the so-called

fuzzification process. Given a value for an input or output

variable, the linguistic label corresponding to that is

determined based on its value falling in which partition of

the variable range. It is recalled that the range of each

variable is partitioned into a number of equal intervals. For

instance, if a given value of fc
0 is within the third partition

out of five partitions of the experimental range of fc
0, then

the linguistic label of medium (M) is assigned. In other

words, among the considered membership functions for fc
0,

the one denoted by medium (M) yields the largest degree of

membership for the given fc
0.

The experimental database used in this study contains

222 numerical data points, as mentioned earlier. However,

if these data are expressed in terms of the relevant lin-

guistic labels, 165 unique data remain, while the rest are

duplicate. Next, the algorithm of decision tree [44] is

applied to the 165 labeled experimental data. It is also

noticed that the membership labels (and not the numeric

values) of the experimental data are employed in devel-

oping the decision tree and that no parameter is tuned

during the model development. The idea is to select an

input variable and choose one of its linguistic labels as a

splitting level, which divides the database into two parts:

One is larger or equal than the splitting level, and the other

is less than that. The criterion for selection of the best

variable and its splitting level is to maximize the infor-

mation gain (IG) in a node, defined as follows:

IG nodeð Þ ¼ G nodeð Þ�GL � wL�GR � wR ð1Þ

where a node refers schematically to a point in the decision

tree which shows the selected input variable with its

splitting level and G stands for Gini index and is calculated

for either a node [i.e., G (node)] or the left/right branch of

the considered node (i.e., GL or GR) with the following

formula:

G nodeð Þ ¼ 1�
X6
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Fig. 2 The statistical distributions of Dg/Wg (top) and fc
0 (bottom) in

the experimental database
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where ni is the number of experimental observations whose

outputs’ level is the ith linguistic label. In the current

paper, i = 1, 2, …, 6, which refer to the linguistic labels of

VL, L, AL, AH, H, and VH, respectively. Also, n is the

total number of the observations in the node, that is,

¼
P6

i¼1 ni. The Gini index [45] is a measure of impurity of

classification in a node, meaning that a node, in which all

observations belong to only one class of output, will have a

Gini index of equal to zero, that is, a pure node. In Eq. (1),

wL (or wR) refers to the ratio of the number of observations

in the left (or right) branch to that in the original node

(wL ? wR = 1).

The algorithm of the classification decision tree starts by

sorting the experimental observations based on the

Fig. 3 The membership

functions and linguistic labels

for Dg/Wg, fc
0, and Pf

Table 2 The coordinates of membership functions for the input variables

Input variables Linguistic labels for the input variables

Very low [VL] Low [L] Medium [M] High [H] Very high [VH]

L (mm) [30 30 78 173] [78 173 268] [173 268 363] [268 363 459] [363 459 508 508]

AfEf (kN) [1300 1300 2870 6000] [2870 6000 9130] [6000 9130 12,270] [9130 12,270 15,400] [12,270 15,400 17,000 17,000]

fc
0 (MPa) [15 15 20 30] [20 30 40] [30 40 50] [40 50 60] [50 60 65 65]

fe (MPa) [6 6 15 32] [15 32 49] [32 49 66] [49 66 83] [66 83 91 91]

Pnorm/Anorm [0.9 0.9 1.4 2.3] [1.4 2.3 3.2] [2.3 3.2 4.1] [3.2 4.1 5] [4.1 5 5.5 5.5]

Dg/Wg – [1 1 2 4] [2 4 6] [4 6 7 7] –

VL and VH (L and H for Dg/Wg) are trapezoidal membership functions, and L, M and H (M for Dg/Wg) are triangular ones

The numbers inside each bracket refer to the abscissas of the trapezoid/triangle clockwise
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ascending order of the linguistic labels of each input

variable. For example, the linguistic labels of fc
0 in the

ascending order are as follows: VL, L, M, H, and VH.

Then, any linguistic label is examined as a potential

splitting point. Thereby, IG from Eq. (1) is calculated for

each sorted input variable and each linguistic label as a

potential splitting point. The final decision on selection of

the best input as well as the best linguistic label for the

splitting level is made on the basis of the maximum value

of IG which is obtained. Once an optimum input with the

corresponding splitting label (such as, fc
0 as an input and

[M] as the splitting level) is selected, the database is

divided into two parts designated by the left and right

branches. As an example, a branch designated by fc-
\ [M] refers to the values of fc

0 belonging to linguistic

labels of either [VL] or [L], whereas the branch on opposite

side is allocated to fc
0 C [M], referring to the linguistic

labels of either [M], [H], or [VH]. Then, the above algo-

rithm is repeated for the experimental observations

belonging to the left (or right) branch. Again, in each

branch, an optimum input variable with the best splitting

label is determined by maximizing the value of IG. By

proceeding the algorithm, the number of branches and

eventually depth of the tree increase. The procedure con-

tinues till one of the following thresholds is met: (a) The

number of observations related to a node shall be greater

than 5 and that related to the left or right branch shall be at

least 1; (b) the algorithm can no longer improve the value

of IG.

The decision tree derived for classification of the

experimental database of the current paper is illustrated in

Fig. 4. The uppermost node in the decision tree of Fig. 4 is

called as the root node, whereas the lowest nodes are

known as leaves which correspond to the linguistic labels

of the output variable (i.e., Pf). For instance, a leaf showing

the class of [H] means that the majority of experimental

observations falling in this particular branch possess the

linguistic label of HIGH for Pf. By following consecutive

branches starting from the root node down to a leaf, a fuzzy

rule is established. The rule coming from a decision tree is

not necessarily complete, meaning that its antecedent may

not include all the input variables. Finally, the classification

decision tree shown in Fig. 4 is equivalent to a Mamdani-

type fuzzy logic model, in which the number of fuzzy rules

is equal to the number of leaves in the decision tree, that is,

35 rules. The rules derived from a decision tree are clear

and easy to understand, leading to enhance the inter-

pretability of the fuzzy model.

In order to assess the misclassification error of a node,

denoted as E (node), the following relation is used:

E nodeð Þ ¼ 1� nj

n
ð3Þ

where the index j refers to the output class label whose

number of experimental observations (i.e., nj) is the largest

one among the observations of different classes existing in

the considered node. The total number of observations in a

node is denoted by n. As an example, if the majority of

observations in a node or a leaf have an output belonging to

the label of almost high (i.e., AH), the value of j becomes 4

since [AH] is the fourth linguistic label of Pf. Furthermore,

if the number of observations related to [AH] is 20 out of

the total observations of 50, then nj = 20 and n = 50, and

the error of the node is E = 0.6 according to Eq. (3). It is

recalled that in a leaf, the final class of the output is

decided based on the value of nj, meaning that the class of a

leaf is the linguistic label with the largest occurrences in

the experimental observations. If the error in a leaf node,

evaluated by Eq. (3), exceeds a user-specified threshold,

then that leaf can be eliminated by merging the leaves in

that level with a node located just in one level higher than

it. Repeating the process of merging nodes of lower level

with the node of higher level (i.e., the so-called pruning

procedure) can help decrease the depth of a decision tree

and eventually reduce the number of the corresponding

fuzzy rules.

By pruning the decision tree of Fig. 4 at several con-

secutive levels, the simpler tree shown in Fig. 5 is

obtained, which is finally chosen as the basis to generate

the Mamdani model with 17 fuzzy rules. The formats of all

rules derived from the decision tree of Fig. 5 are listed in

‘‘Appendix 1.’’ An example of one rule is as follows: IF

L is Low or Medium, and Af Ef is not Very Low, and fc
0 is

Medium or High or Very High, and fe is Medium or High

or Very High, and Pnorm/Anorm is Very Low, THEN Pf is

Almost Low. It is observed that a rule may contain a set of

Table 3 The coordinates of membership functions for the output variable

Output variable Linguistic labels for the output variable

Very low [VL] Low [L] Almost low [AL] Almost high [AH] High [H] Very high [VH]

Pf (kN) [7 7 15 30] [15 30 46] [30 46 62] [46 62 78] [62 78 93] [78 93 100 100]

VL and VH are trapezoidal membership functions, and L, AL, AH, and H are triangular ones

The numbers inside each bracket refer to the abscissas of the trapezoid/triangle clockwise
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Fig. 4 The original classification decision tree (35 rules)

Fig. 5 The pruned decision tree (17 rules)
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membership functions (i.e., linguistic variables) intercon-

nected by Boolean operators of OR and NOT, which are

defined as the minimum and complement, respectively. For

example, the membership function for not Very Low can

be constructed as complement of that for Very Low.

Similarly, the membership function for the combined

variable of Medium or High is built by taking into account

the minimum of both membership functions for Medium

as well as High. The schematic graphs for the combined

membership functions are illustrated in Fig. 6.

4.2 Development of Sugeno fuzzy model based
on subtractive clustering

The only difference between the rule base of a Sugeno

fuzzy model and that of a Mamdani-type fuzzy model lies

in the consequent part. In Sugeno model, the consequent

part is either a constant value (i.e., the so-called zeroth

order) or a linear combination of all input variables plus a

constant term (i.e., the so-called first order). The unknown

coefficients of the consequent part in Sugeno fuzzy model

are commonly determined following an optimization pro-

cedure through training against the known experimental

data points. However, this is considered as a drawback in

the sense that optimization reduces the interpretability of

the fuzzy model. Another issue is the definition of mem-

bership functions for the input variables and the induction

of rules in Sugeno model. In the current paper, a well-

known procedure called as subtractive clustering [46] is

employed to generate the rule base of the fuzzy model. The

application of subtractive clustering-based Sugeno model

to the field of FRP composites has been already reported by

the author [14, 15]. Another widely used technique for

clustering of numerical data is grid partitioning. The dis-

advantage of grid partitioning is that the number of gen-

erated rules may increase a lot when the number of input

variables increases. For instance, in the case of the current

problem, where there are six input variables, if only two

membership functions are assigned to each input, then the

number of generated rules becomes 64 (i.e., 2 to the power

of 6). Increased numbers of rules yield more complex

models with larger number of parameters to be tuned,

which in turn reduce the model generalization ability. On

the other hand, if subtractive clustering is utilized, then the

number of rules, the number of clusters, and the number of

membership functions would be all the same. For instance,

by considering three membership functions for each input

variable, the number of rules still remains as low as three.

This is the main reason that subtractive clustering method

is employed in this paper so that the simpler models with

less number of rules can be created. In the following, a

brief overview of the method of subtractive clustering is

explained.

4.2.1 Overview of subtractive clustering algorithm

The subtractive clustering algorithm is a technique to

extract cluster centers from an assembly of numerical data

points (i.e., the experimental database) such that wherever

more numbers of the data are concentrated, a cluster center

is found. To do so, a potential of being a cluster center,

denoted by Pi, is assigned to each of the data (i.e., the ith

experimental datum), as follows:

[VL] or [L]

[M] or [H]  or [VH]

[H] or [VH]

[L] or [M]  or [H]

[L] or [M]

not [VL]

Fig. 6 Membership functions combined by logical operators OR and

NOT (VL, L, M, H, VH stand for linguistic variables of very low,

low, medium, high, and very high, respectively)
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Pi ¼
Xn

j¼1

exp
�4

r2a
� x̂i � x̂j
�� ��2

� �
ð4Þ

where k k stands for the Euclidean distance between two of

data points, which are expressed as vectors whose coordi-

nates contain input and output values, n is the total number

of data points, and ra is a user-specified value (in the range

of 0–1) for the radius of a cluster. In the problem in hand,

xi = [L, AfEf, fc
0, fe, Pnorm/Anorm, Dg/Wg, Pf]i, and x̂i is

normalized with respect to the range of each coordinate.

The datum with the maximum potential value is selected as

the first cluster center. In order to find the next cluster

centers, an amount of P�
k � exp �4

r2
b

� x̂i � x̂�k
�� ��2

� �
is sub-

tracted from the potentials of all data points, where Pk* and

x̂�k are the potential and the vector of normalized coordi-

nates for the kth cluster center and rb is a multiplier of ra.

Thereafter, the point with the highest remaining potential is

the next cluster center. The procedure ends if P�
k\eP�

1,

where e is a user-defined value, and the current cluster

center (i.e., the kth center) is not accepted. Besides, if

eP�
1\P�

k\�eP�
1, where �e is another user-defined value, then

the following condition is evaluated: When dmin

ra
þ P�

k

P�
1

� 1,

where dmin is the shortest of the distances between the kth

cluster center and all of the other cluster centers, then the

current data point is accepted as the kth cluster center and

the procedure continues; otherwise, the current cluster

center is rejected and Pk* is set to 0, and the data point with

the largest remaining potential is chosen as the new kth

cluster center, and the above process is repeated. In the

above-mentioned algorithm, there are several user-defined

parameters including ra, rb, e, and �e; which affect the

number and coordinates of the generated cluster centers. In

this paper, varying effects of each of them are examined,

and the best values are selected based on the minimum

error between the model output and experimental results.

4.2.2 Membership function selection and rule induction
by subtractive clustering and its application
to the present problem

Each of the identified cluster centers forms a fuzzy rule

as follows: ‘‘IF an input variable is close to the cluster

center THEN its output is close to the cluster center’s

output.’’ The level of truth for this rule depends on

Euclidean distance between the given variable and the

cluster center, meaning that the degree of truth increases

as the distance decreases. The following relation is used

to determine the level of truth (or weight), wi, of the ith

fuzzy rule:

wi ¼ exp
�4

r2a

L� L�i
Lmax � Lmin

� �2

þ
AfEf � AfEf

� ��
i

Af Ef

� �
max

� AfEf

� �
min

 !2
2

4

8
<

:

þ f 0c � f 0�ci
f 0c;max � f 0c;min

 !2

þ fe � f �ei
fe;max � fe;min

� �2

þ
Pnorm

Anorm
� Pnorm

Anorm

� ��
i

Pnorm

Anorm

� �

max
� Pnorm

Anorm

� �

min

0

B@

1

CA

2

þ
Dg

Wg
� Dg

Wg

� ��
i

Dg

Wg

� �

max
� Dg

Wg

� �

min

0

B@

1

CA

23

75

9
>=

>;

ð5Þ

where the denominators are the range of input variables in

the experimental database, and in the numerators, the

variables without star refer to the input coordinates of a

given variable, and those with a star refer to the input

coordinates of the ith cluster center. The index i varies

between 1 and c, where c is the number of rules that is

equal to the number of cluster centers. Equation (5) implies

an antecedent with Gaussian membership functions inter-

connected by AND operators defined as multiplication. The

consequent part of the ith rule in Sugeno fuzzy model (first

order) is as follows:

Pf ;i ¼ aiLþ biðAfEf Þ þ cif
0
c þ dife þ ei

Pnorm

Anorm

� �
þ fi

Dg

Wg

� �

þ gi

ð6Þ

The final output (i.e., the pullout capacity Pf) of the

fuzzy model is calculated as:

Pf ¼
Xc

i¼1

wiPc
j¼1 wj

Pf ;i ð7Þ

where ai, bi, ci, di, ei, fi, and gi (i = 1,…, c) are unknown

coefficients to be determined by minimizing the error

between the model output and experimental value for Pf.

As mentioned earlier, in the developed Sugeno model,

which is based on subtractive clustering algorithm, the

membership function is of Gaussian type (i.e., exponential)

as proposed by Chiu [46]. The reason for selecting the

Gaussian membership function stems from the method of

subtractive clustering, in which the membership value of a

data point in a cluster is determined based on an expo-

nential function of the Euclidean distance between the

given point and the center of the cluster under study, as

presented in Eq. (5). In fact, each input coordinate of each

cluster center forms a Gaussian membership function,

where the mean is the cluster center coordinate and the

standard deviation is proportional to the range of the values

of the given input variable. The membership functions

considered for Sugeno models are illustrated in Fig. 7

(bottom part). The controlling parameters of the member-

ship function are the same as the parameters affect the
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Pf = 30.2 kNDg/Wg = 3.77Pnorm/Anorm = 5.28fe = 16 MPa′ = 52.8 MPaAfEf = 2053 kNL = 200 mm

Pf = 30.5 kNDg/Wg = 3.77Pnorm/Anorm = 5.28fe = 16 MPa′ = 52.8 MPaAfEf = 2053 kNL = 200 mm

Fig. 7 The diagram of fuzzy rules for the proposed Mamdani model (top) with 17 rules and Sugeno model (bottom) with 3 rules (the

experimental value = 30.46 kN)
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subtractive clustering algorithm, namely ra, rb, e, and �e.
The effects of varying values of these parameters are dis-

cussed in the following parts of the paper.

The first step to derive a fuzzy model is to decide the

values for the clustering parameters (i.e., ra, rb, e, and �e)
which result in identifying the cluster centers within the

domain of the experimental database. Then, the IF-part of

the rule base is materialized by use of the cluster centers

(see Eq. 5), while the THEN-part is formed after opti-

mizing the coefficients of Eq. (6) in terms of the model

error evaluated on experimental datasets.

For developing soft computing models which are

inferred from experimental data, it is required to use only a

portion of data for training process, whereas the rest should

be employed to check or validate the generalization ability

of the developed model. In this regard, the total database of

experiments is divided randomly into two equal portions

called as training and checking datasets. The training

dataset is used for tuning the parameters, whereas the

checking dataset is employed to assess the model gener-

alization on an unfamiliar data to avoid overfitting. Thus,

the checking dataset is not used in the training process. For

division of data into training and checking datasets, the

data points which are assigned to a certain cluster are

divided randomly into two equal portions. It is noted that

the cluster center which is the closest to a data point is

considered as the cluster assigned to that data point.

Table 4 presents several error measures obtained on

training, checking, and total experimental datasets for

several Takagi–Sugeno fuzzy models derived using some

selected values of ra, rb, e, and �e: The error measures

considered here include: coefficient of variation (CoV) and

mean of experiment-to-prediction ratio, as well as the mean

absolute percentage error (MAPE) between the experiment

and model prediction. Employment of checking dataset,

which is here generated randomly, is essential to prove that

the developed models are insensitive to the used training

dataset considering that one of the criteria to select the

proposed models in this study is to assure that the error on

training dataset is similar to that on checking dataset (see

Table 4) so as to avoid overfitting. As a result of this, the

proposed models are indeed the best models which can be

extracted from the current database.

Each set of values for the clustering parameters (i.e., ra,

rb, e, and �e) results in a particular Sugeno fuzzy model. In

order to examine the effect of varied values of these user-

defined parameters and to select the best values, each of the

clustering parameters is varied with a small increment

within its possible range so that it is assured that all pos-

sible values for each clustering parameter are generated.

Then, all possible combinations of the values for the

clustering parameters are considered, and as a result,

numerous sets of values for ra, rb, e, and �e are obtained. In

the next step, each set of the parameters is used to build a

Sugeno fuzzy model by subtractive clustering algorithm.

Finally, the best fuzzy model is considered the one whose

errors on both training and checking datasets are similar to

each other (to ensure the generalization ability of the

model) and also are minimum among the other prospective

models. Besides, under the same performance in terms of

errors, a simpler model with less number of rules is pre-

ferred. The above-mentioned procedure is implemented in

a MATLAB code. For instance, as seen in Table 4, five

different Sugeno models with the same number of rules

(i.e., four rules) are built by varying the values of clustering

parameters. The models presented in Table 4 serve as just

demonstration and are chosen from many models built in

this study by varying the clustering parameters. The finally

selected set of parameter values for the case of fuzzy model

containing four rules is listed in Table 5, which is decided

based on the minimum error between the model output and

experimental results while developing a high ability of

generalization, as explained above. By following this pro-

cedure, the most accurate fuzzy models with different

numbers of rules are chosen and listed in Table 5, which

also reports the associated clustering parameters, the

Table 4 The effects of varying values of clustering parameters on the generated Sugeno fuzzy models

Clustering parameters No. of rules Training dataset Checking dataset Total dataset

ra �e e rb
ra

Mean CoV (%) MAPE (%) Mean CoV (%) MAPE (%) Mean CoV (%) MAPE (%)

0.695 1.15 0.6 0.25 4 1.00 19.2 15.7 1.06 54.6 32.6 1.03 39.6 23.4

0.703 1.15 0.6 0.25 4 1.00 22.9 20.9 1.07 52.5 21.8 1.03 39.3 21.3

0.706 1.15 0.6 0.25 4 1.01 23.9 18.1 0.98 26.0 29.9 0.99 24.9 23.6

0.7095 1.15 0.6 0.25 4 1.00 20.3 16.1 0.97 25.8 22.7 0.99 23.0 22.4

0.7095 1.15 0.3 0.25 4 1.01 24.4 17.7 0.98 25.9 29.5 0.99 25.1 23.2

0.7095 1.15 0.3 0.15 8 1.00 19.1 13.1 0.96 77.2 35.3 0.98 54.4 23.4

0.7095 1.17 0.3 0.15 8 1.01 19.5 13.3 1.01 83.9 35.1 1.01 58.9 23.4

Mean values are calculated for the ratios of the experimental values to the predicted values
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coordinates of the cluster centers, and the constants of

consequent part.

5 Results and discussion

5.1 Comparison of predictions by fuzzy logic
models and experiments

The performances of different fuzzy logic models devel-

oped in this paper are evaluated in Table 6 in terms of

various error measures in comparison with the experi-

mental data. There are three Mamdani-type fuzzy logic

models developed here including the one with 17 rules in

addition to two others containing 13 and 21 rules. All these

Mamdani models are derived from the same classification

decision tree having 35 leaves, as explained earlier (see

Fig. 4), but by pruning at different levels. As for Sugeno-

type fuzzy logic models, five models with 1 up to 5 rules

are built herein, as appeared in Table 5 with their charac-

teristics. According to Table 6, the Mamdani model with

17 rules develops definitely less errors in terms of CoV,

MAPE, RMSE, and MAE, which are evaluated on the total

experimental database, as compared to Mamdani models

with 13 or 21 rules. Thus, the Mamdani model with 17

rules is finally chosen. As for Sugeno models reported in

Table 6, the difference in one error type among the models

with 3, 4, and 5 rules is hardly noticeable. Thereby, all

these models may be considered as a candidate for the final

selection. However, selection of the best model is a trade-

off between the reduced error measures and the simplicity

of the model. In other words, if a model with less numbers

of rules demonstrates error measures being more or less

similar to another model which contains more numbers of

rules, the model with less numbers of rules is of more

interest since it is simpler. As a result, the Mamdani model

with 17 rules and the Sugeno model with 3 rules are finally

selected.

The schematic diagrams of the rule base and member-

ship functions for Mamdani model (17 rules) and Sugeno

model (3 rules) are illustrated in Fig. 7. As a numerical

example, also shown in Fig. 7, for an input variable with

L = 200 mm, Af Ef = 2053 kN, fc
0 = 52.8 MPa, fe-

= 16 MPa, Pnorm/Anorm = 5.28, and Dg/Wg = 3.77, the

value of Pf is equal to 30.2 kN in Mamdani model and

30.5 kN in Sugeno model as compared to its experimental

value of 30.46 kN. In this specific work, the accuracies

offered by both Mamdani and Sugeno models are almost

similar. However, a general comparison of these two types

of fuzzy logic models is beyond the scope of the current

paper. It should be mentioned that although the number of

rules in the proposed Sugeno model is much less than that

in Mamdani model, the number of parameters need to be

tuned in Sugeno model with 3 rules is equal to 21

unknowns in the consequent part (i.e., 7 constants per each

rule). As stated earlier, tuning these parameters against

experimental data needs an optimization procedure, which

in turn reduces the interpretability of the fuzzy logic model.

On contrary, in development of Mamdani model based on

the classification decision tree, there is no need to opti-

mization, resulting in a highly interpretable model. Fur-

thermore, with reference to Fig. 7, it is observed that for

the proposed Sugeno model, the membership functions,

which are obtained by subtractive clustering, have no lin-

guistic or qualitative meaning as opposed to the case of the

proposed Mamdani model, where the membership func-

tions are essentially attributed to the linguistic concepts.

This aspect also contributes to the interpretability of the

Table 6 Error measures of several fuzzy models with different numbers of rules and comparison with the existing models

Models Error measures

Total database (222 specimens) Strip FRP dataset (78 specimens)

Mean CoV (%) MAPE (%) RMSE (kN) MAE (kN) Mean CoV (%) MAPE (%) RMSE (kN) MAE (kN)

Mamdani (13 rules) 0.99 34.0 33.7 15.2 11.72 1.08 33.8 32.8 18.2 14.85

Mamdani (17 rules) 1.04 26.6 21.5 11.9 9.15 1.09 22.9 17.4 12.8 9.14

Mamdani (21 rules) 0.94 27.2 28.8 12.2 9.19 1.07 21.6 16.1 11.6 8.20

Sugeno (1 rule) 1.01 29.4 28.20 12.79 9.96 1.09 24.6 19.2 13.1 10.08

Sugeno (2 rules) 1.01 24.5 22.71 11.02 8.29 1.07 22.0 16.3 11.0 8.61

Sugeno (3 rules) 1.00 23.1 21.90 10.66 7.88 1.04 20.3 15.9 10.5 8.03

Sugeno (4 rules) 0.99 23.0 22.42 10.48 7.77 1.02 19.9 16.5 10.7 8.25

Sugeno (5 rules) 0.99 22.9 22.14 10.22 7.57 1.02 20.0 15.6 10.4 7.93

Zhang et al. [8] 1.05 36.4 33.86 16.27 12.11 0.96 30.2 29.5 16.4 12.74

Seracino et al. [7] – – – – – 1.54 39.3 33.0 22.3 18.05

Mean values are calculated for ratios of the experimental values to the predicted values
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proposed Mamdani model. As mentioned previously,

interpretability is an important feature of fuzzy logic-based

modeling when compared to the other soft computing

paradigms. The rule base of the proposed Mamdani model

is presented in ‘‘Appendix 1.’’ On the other hand, the

Sugeno model, in the format developed herein by use of

subtractive clustering approach, can be presented as closed-

form relations, making it of particular interest to practicing

engineers. The closed-form equations of the proposed

Sugeno model appear in ‘‘Appendix 2.’’

5.2 Comparison between the proposed fuzzy
models and existing equations for pullout
strength of NSM FRP bonded to concrete

In the literature, there are two models developed by Sera-

cino et al. [7] and Zhang et al. [8] to predict the pullout

capacity of NSM FRP bonded to concrete blocks. The

equations for both models are presented in Table 7. It is

noted that Seracino’s model is applicable only for NSM

strips (i.e., not including NSM rods). The error measures of

both models are evaluated on the experimental database,

and the results are reported in Table 6. The data on NSM

strips consist of 78 specimens out of 222 experiments of

the total database and are employed in Table 6 so as to

compare Seracino’s model with the other considered

models. According to Table 6, both of the proposed fuzzy

logic models (i.e., Mamdani type and Sugeno type)

demonstrate superior performance compared to Seracino’s

and Zhang’s models. For instance, the CoVs for the ratios

of the experimental value to model prediction for the

proposed Mamdani model (17 rules) and Sugeno model (3

rules) are equal to 22.9 and 20.3% on the strip database,

respectively, as compared to CoVs for Zhang’s and Sera-

cino’s models, which are equal to 30.2 and 39.3%,

respectively. Also, other error measures such as MAPE and

RMSE decrease for the proposed fuzzy models comparing

with the existing equations. Besides, the bond capacity

predictions by selected fuzzy models and Zhang’s model

versus 222 experimental results are depicted in Fig. 8,

which shows that dispersion of the results by Zhang’s

model is larger than that by the fuzzy logic models.

As a result, the performance of the proposed fuzzy

models in terms of errors reported in Table 6 and Fig. 8 is

better than the other existing models in the literature.

Meanwhile, it is worth emphasizing that this paper seeks

not only reducing the errors but also enhancing the inter-

pretability of the proposed fuzzy models. In many cases,

very low errors may be achieved but at the cost of reducing

the interpretability issues. For instance, the adaptive net-

work-based fuzzy inference system (ANFIS) is expected to

provide higher accuracy since the parameters of the

membership functions are iteratively adjusted by the

training algorithm. On contrary, in both of the fuzzy

models used here (namely subtractive clustering-based

Sugeno model and classification decision tree-based

Mamdani model), the membership functions of input

variables are set fixed in the beginning and not altered

during training. This feature, itself, enhances the inter-

pretability of the model but may not yield the results as

accurate as ANFIS does. Another point which should be

noticed is that increasing the number of parameters to be

tuned requires a larger database so as to assure that over-

fitting can be avoided.

Table 7 The expressions of the existing models for bond capacity of NSM FRP

Models

Zhang’s model [8] Seracino’s model [7]

Pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gf Af Ef Lper

p
�Af fuf L� Le Pf ¼ 0:85baPu0:25

f f 00:33c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LperAf Ef

p

Pf ¼ L
Le

2:08� 1:08 L
Le

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gf Af Ef Lper

p
�Af fuf L\Le

b ¼ L
Le

� 1

Le ¼ 1:66
g Le ¼ p

2 0:802þ0:078ufð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:976u0:526

f
Af Ef

f 00:6c Lper

r

g2 ¼ s2maxLper
2Gf Af Ef

uf ¼
hfþ1 mmð Þ
tfþ2 mmð Þ

Gf ¼ 0:4 Dg=Wg

� �0:422
f 00:619c

Lper ¼ hf þ tf þ 4mm

smax ¼ 1:15 Dg=Wg

� �0:138
f 00:613c aP ¼ 1 for mean

0:85 for lower 95% confidence limit




Lper ¼ 2Dg þWg

Pf is bond capacity, Gf is interfacial fracture energy, Af is FRP bar cross-sectional area, Ef is FRP elasticity modulus, Lper is cross-sectional

contour of the failure surface, fuf is FRP tensile strength, L is bond length, Le is effective bond length, smax is maximum bond stress of local

stress–slip curve, Dg is groove depth,Wg is groove width, fc
0 is concrete compressive strength, uf is height-to-width ratio of failure contour, and tf

and hf are FRP strip thickness and height
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Although the fuzzy models proposed here (see ‘‘Ap-

pendices 1, 2’’) are more accurate than the existing

regression-based models reported in the literature, they

appear to be more complex than Zhang’s or Seracino’s

models (see Table 7). However, this is a common issue for

most of soft computing models as compared to regression-

based models in the sense that a regression-based formula

is so simple to be applied. On the other hand, a fuzzy
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Fig. 8 Predictions by different fuzzy models and Zhang’s model [8] for bond (i.e., pullout) capacity of NSM FRP versus experimental data
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model, though looks more complex, is not a black box and

its advantage lies on its rule base which makes an expert

easily understand the reasoning behind the model, and

extend or modify it when needed. This is apparently

opposed to a regression-based formula containing some

coefficients suffering from lack of sound meaning.

5.3 Parametric study on the bond length of NSM
FRP

In order to assess whether the proposed fuzzy models are

able to capture the underlying mechanics of the problem in

hand, the varying effects of the bond length L on the bond

capacity Pf are examined in Fig. 9, where the other input

variables are kept unchanged and equal to their mean

values. According to the literature [8], there exists an

effective bond length, beyond which the bond capacity no

longer increases. As seen in Fig. 9, the proposed Mamdani

model (with 17 rules) and Sugeno model (with 3 rules) are

able to develop the concept of the effective bond length,

meaning that after a certain amount of the bond length of

NSM FRP, the pullout capacity remains constant. It is also

observed from Fig. 9 that the amount of the effective bond

length identified by the proposed Mamdani model is almost

the same as that by the proposed Sugeno model. The other

fuzzy models illustrated in Fig. 9 can predict, to some

extent, the existence of an effective bond length except for

the one-rule Sugeno model due to the fact that just one rule

is most likely to be insufficient to describe the full behavior

of the problem.

The simultaneous variations of both bond length, L, and

concrete compressive strength, fc
0, across their own ranges,

and their effects on the pullout capacity, Pf, are shown in

three-dimensional diagrams of Fig. 10 for the proposed

Mamdani and Sugeno models. The other input variables are

kept unchanged. According to Fig. 10, the general trend of

variation in the proposed Mamdani model is similar to that

in the proposed Sugeno model. This conclusion is impor-

tant in the sense that the rule bases of the two proposed

fuzzy models are initiated from two different sources: The

former comes from classification decision tree, whereas the

latter stems from subtractive clustering algorithm. More

specifically, it is revealed from Fig. 10 that the proposed

Sugeno model endorses the Mamdani model’s rules, which

are extracted from the decision tree of Fig. 5, such as: (1)

Given very low values of L, the value of Pf remains very

low or low, and (2) if L and fc
0 are not very low, while Af Ef

is not very low as it is the case in Fig. 10, then Pf is not in

very low and low ranges.

6 Conclusions

As an alternative method of determining the pullout

capacity of NSM FRP rods or strips bonded to the concrete

block, two fuzzy logic models are proposed in the current

paper. The first fuzzy model is of Mamdani type, in which

the rule base is deduced from a classification decision tree.

The second one is of Sugeno type (first order), which is

developed by the subtractive clustering algorithm. Several

fuzzy logic models of each type with different numbers of

rules are built. Among them, a Mamdani model with 17

rules and a Sugeno model with 3 rules are finally selected

as they demonstrate the least errors on model predictions.

The conclusions are as follows:

1. The decision tree-based Mamdani fuzzy model of the

pullout strength, which contains the membership

functions corresponding to linguistic labels, provides

a highly interpretable rule base as listed in ‘‘Appendix

1.’’ The proposed Sugeno model based on subtractive

clustering serves as closed-form formulations for the

pullout capacity of NSM FRP, as presented in ‘‘Ap-

pendix 2.’’ With reference to the mentioned Appen-

dices, the researchers and engineers can employ the

fuzzy logic models proposed in this study.

2. Comparison with a large experimental database

including 386 direct pullout tests on NSM FRP, which

are collated from the open literature, indicates that the

predictions by the proposed fuzzy models are in good

agreement with the experimental results. The predic-

tion accuracies of both of the proposed fuzzy models

are similar in this particular study. However, a general

comparison of Mamdani versus Sugeno fuzzy models

is beyond the scope of this paper.

3. The proposed fuzzy models outperform the existing

models reported in the literature. Unlike some of the
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Fig. 9 Parametric study on the effective bond length using different

fuzzy models (common details: AfEf = 7115.5 kN, fc
0 = 36.4 MPa,

fe = 39.7 MPa, Pnorm/Anorm = 2.14, Dg/Wg = 2.01)
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published models which have been developed only for

FRP strips, the proposed fuzzy models are applicable

to both rods and strips. The coefficient of variation

(CoV) for the ratio of the experiment to prediction in

the proposed fuzzy models is almost 10% lower than

that in Zhang’s model on the total data and about 16%

lower than that in Seracino’s model on the strip data.

4. By conducting a parametric study on the bonded length

of NSM FRP, it is revealed that the proposed fuzzy

models are able to capture the underlying mechanics of

the problem in hand since they can develop the concept

of the effective bond length, that is, a bond length

beyond which the bond capacity no longer increases.

The results obtained in the present work endorse the effi-

ciency of fuzzy logic approach in predicting the pullout

strength of NSM FRP bonded to concrete. It is, however,

noted that the fuzzy model predictions are valid within the

Fig. 10 Prediction of Pf with

respect to simultaneous

variations of L and fc
0 by the

proposed Mamdani fuzzy model

(top figure) and Sugeno model

(bottom figure); (common

details: Af Ef = 9533 kN,

fe = 35 MPa, Pnorm/

Anorm = 1.55, Dg/Wg = 1)
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considered range of input variables. Future work may deal

with applications of the fuzzy logic approach to other

design aspects of NSM FRP reinforcement such as flexural

or shear strengthening of the concrete beams.
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Appendix 1: List of fuzzy rules
in the proposed Mamdani model
for the pullout capacity of NSM FRP

IF THEN

1. L = [VL]
V

fc
0 = [VL] Pf = [VL]

2. L = [VL]
V

fc
0
= [VL] Pf = [L]

3. L = [VL]
V

AfEf = [VL]
V

Dg/Wg = [H]
V

Pnorm/

Anorm = [VL]

Pf = [AL]

4. L = [VL]
V

AfEf = [VL]
V

Dg/Wg = [H]
V

Pnorm/

Anorm = [L]

Pf = [L]

5. L = [VL]
V

AfEf = [VL]
V

Dg/Wg = [H]
V

Pnorm/

Anorm = [M]

Pf = [AH]

6. L = [VL]
V

AfEf = [VL]
V

Dg/Wg = [H]
V

Pnorm/

Anorm = ([H] m [VH])

Pf = [L]

7. L = [VL]
V

AfEf = [VL]
V

Dg/Wg = [H] Pf = [AH]

8. L = [VL]
V

AfEf = ([L] m
[M] m [H])

V
fc
0 = ([VL] m [L])

V
fe = [VL]

Pf = [AL]

9. L = [VL]
V

AfEf = [VH]
V

fc
0 = ([VL] m

[L])
V

fe = [VL]

Pf = [L]

10. L = [VL]
V

AfEf = [VL]
V

fc
0 = [VL]

V

fe = [VL]

Pf = [AL]

11. L = [VL]
V

AfEf = ([L] m [M] m
[H])

V
fc
0 = [L]

V
fe = [VL]

Pf = [AL]

12. L = [VL]
V

AfEf = [VH]
V

fc
0 = [L]

V
fe = [VL] Pf = [AH]

13. L = ([L] m [M])
V

AfEf = [VL]
V

fc
0 = ([M] m

[H] m [VH])
V

fe = ([VL] m [L])
V

Pnorm/

Anorm = [VL]

Pf = [H]

14. L = ([L] m [M])
V

AfEf = [VL]
V

fc
0 = ([M] m

[H] m [VH])
V

fe = ([M] m [H] m [VH])
V

Pnorm/Anorm = [VL]

Pf = [AL]

15. L = ([L] m [M])
V

AfEf = [VL]
V

fc
0 = ([M] m

[H] m [VH])
V

Pnorm/Anorm = [VL]

Pf = [AL]

16. L = ([H] m [VH])
V

AfEf = [VL]
V

fc
0 = [M] Pf = [VH]

17. L = ([H] m [VH])
V

AfEf = [VL]
V

fc
0 = ([H]

m [VH])

Pf = [H]

[L], [M], [H], [VL], [VH], [AL], and [AH] stand for low, medium,

high, very low, very high, almost low, and almost high, respectively

(see Fig. 4)

Appendix 2: Closed-form relations
for the proposed Sugeno model (with three
rules) for the pullout capacity of NSM FRP

w1 ¼ exp
�4

0:99352
L� 250

508� 30

� �2

þ AfEf � 5740:3

16966� 1300

� �2

þ f 0c � 28:5

64:8� 15

� �2
"(

þ fe � 35:2

90:7� 6

� �2

þ
Pnorm

Anorm
� 1:5557

5:45� 0:9

 !2

þ
Dg

Wg
� 1

6:89� 1

 !2
3
5

9
=

;

w2 ¼ exp
�4

0:99352



L� 200

508� 30

� �2

þ AfEf � 2114:5

16966� 1300

� �2

þ f 0c � 41:8

64:8� 15

� �2
"

þ fe � 16

90:7� 6

� �2

þ
Pnorm

Anorm
� 5:1607

5:45� 0:9

 !2

þ
Dg

Wg
� 3:7584

6:89� 1

 !2
3
5

9
=

;

w3 ¼ exp
�4

0:99352



L� 36

508� 30

� �2

þ AfEf � 14017

16966� 1300

� �2

þ f 0c � 30:8

64:8� 15

� �2
"

þ fe � 30

90:7� 6

� �2

þ
Pnorm

Anorm
� 0:9723

5:45� 0:9

 !2

þ
Dg

Wg
� 1

6:89� 1

 !2
3
5

9
=

;

Pf1 ¼ �0:0188Lþ 0:0030Af Ef þ 0:6019f
0

c � 0:3151fe

� 15:9532
Pnorm

Anorm

þ 19:1137
Dg

Wg

þ 42:5840

Pf2 ¼ 0:0757Lþ 0:0209AfEf þ 0:3489f
0

c � 0:1097fe

þ 17:2851
Pnorm

Anorm

þ 0:9352
Dg

Wg

� 139:2611

Pf3 ¼ 0:1041Lþ 0:0030AfEf þ 0:1635f 0c þ 0:1917fe

� 5:6615
Pnorm

Anorm

þ 2:6405
Dg

Wg

� 53:1304

Pf ¼
w1Pf1 þ w2Pf2 þ w3Pf3

w1 þ w2 þ w3

Example An experimental data point with L = 200 mm,

AfEf = 2053 kN, fc
0 = 52.8 MPa, fe = 16 MPa, Pnorm/

Anorm = 5.28, and Dg/Wg = 3.77 is considered. The details

of calculations are as follows: Pf1 = 59.5475 kN, Pf2-

= 30.2443 kN, Pf3 = - 34.3894 kN, w1 = 0.0064,

w2 = 0.8182, and w3 = 0.0003. Thereby, the proposed

Sugeno fuzzy model yields Pf = 30.54 kN, which agrees

with the experimental value of 30.45 kN (see Fig. 7).

Appendix 3: The detailed information
on experimental data

This appendix includes a table listing the geometrical/

mechanical properties of FRP bars/strips, groove, epoxy,

and concrete as well as other testing conditions such as the

experimental pullout capacity and bonded length. The

table is as follows:
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References No. L (mm) FRP bar or strip Groove fe
(MPa)

fc
0

(MPa)

Pf

(kN)
Ef

(GPa)

fu
(MPa)

Db

(mm)

tf
(mm)

wf

(mm)

Dg

(mm)

Wg

(mm)

[6] N150-1 150 160 2800 – 3.6 16 20 7.1 28 24 88.26

N200-1 200 160 2800 – 3.6 16 20 7.1 28 24 90.21

N150-1-1S 150 160 2800 – 3.6 16 20 7.1 28 24 90.22

N150-1-2S 150 160 2800 – 3.6 16 20 7.1 28 24 90.22

[21] L1612AC1-1 192 170 2350 8 – – 16 12 18.85 23.5 36.8

L1612AC1-2 192 170 2350 8 – – 16 12 18.85 23.5 36.65

L1616AC1-1 192 170 2350 8 – – 16 16 18.85 23.5 40.12

L1616AC1-2 192 170 2350 8 – – 16 16 18.85 23.5 39.82

L1515AC2-1 192 134 2010 9 – – 15 15 18.85 23.5 44.91

L1515AC2-2 192 134 2010 9 – – 15 15 18.85 23.5 44.65

L1616BC1-1 192 170 2350 8 – – 16 16 22.95 23.5 48.99

L1616BC1-2 192 170 2350 8 – – 16 16 22.95 23.5 47.31

T1616BC1-1 240 170 2350 8 – – 16 16 22.95 23.5 54.79

T1616BC1-2 240 170 2350 8 – – 16 16 22.95 23.5 58.09

L1612AG1-1 192 64 1350 8 – – 16 12 18.85 23.5 31.43

L1612AG1-2 192 64 1350 8 – – 16 12 18.85 23.5 35.63

L1616AG1-1 192 64 1350 8 – – 16 16 18.85 23.5 36.23

L1616AG1-2 192 64 1350 8 – – 16 16 18.85 23.5 38.92

L1916AG1U-1 192 64 1350 8 – – 16 16 18.85 23.5 35.8

L1916AG1U-2 192 64 1350 8 – – 16 16 18.85 23.5 36.33

L1616AG1I-1 192 64 1350 8 – – 19 16 18.85 23.5 35.28

L1616AG1I-2 192 64 1350 8 – – 16 16 18.85 23.5 33.33

L1818AG2-1 192 64 1350 12 – – 16 16 18.85 23.5 59.97

L1818AG2-2 192 64 1350 12 – – 18 18 18.85 23.5 57.53

L1616BG1-1 192 64 1350 8 – – 18 18 22.95 23.5 56.67

L1616BG1-2 192 64 1350 8 – – 16 16 22.95 23.5 44.56

L1616BG1-3 192 64 1350 8 – – 16 16 22.95 23.5 48.06

L1616CG1-1 192 64 1350 8 – – 16 16 22.34 23.5 56.34

L1616CG1-2 192 64 1350 8 – – 16 16 22.34 23.5 45.36

L1616CG1-3 192 64 1350 8 – – 16 16 22.34 23.5 52.34

L1616DG1-1 192 64 1350 8 – – 16 16 21 23.5 52.1

L1616DG1-2 192 64 1350 8 – – 16 16 21 23.5 57.79

[22] SW/k1.25/104 30 174.71 2214 8 – – 16 16 28 22 9.46

SW/k1.50/104 30 174.71 2214 8 – – 10 10 28 22 11.79

SW/k2.00/104 30 174.71 2214 8 – – 12 12 28 22 12.07

SW/k2.50/104 30 174.71 2214 8 – – 16 16 28 22 13.39

SW/k1.25/112 90 174.71 2214 8 – – 20 20 28 22 25.71

SW/k1.50/112 90 174.71 2214 8 – – 10 10 28 22 26.34

SW/k2.00/112 90 174.71 2214 8 – – 12 12 28 22 23.2

SW/k2.50/112 90 174.71 2214 8 – – 16 16 28 22 32.16

SW/k1.25/124 180 174.71 2214 8 – – 20 20 28 22 46.02

SW/k1.50/124 180 174.71 2214 8 – – 10 10 28 22 49.7

SW/k2.00/124 180 174.71 2214 8 – – 12 12 28 22 49.68

SW/k2.50/124 180 174.71 2214 8 – – 16 16 28 22 58.62

CR3/k1.24/104 38 109.27 2014 11.3 – – 20 20 28 22 12.64

CR3/k1.59/104 38 109.27 2014 11.3 – – 14 14 28 22 12.83

CR3/k2.12/104 38 109.27 2014 11.3 – – 18 18 28 22 16.63

GR3/k1.27/104 38 37.17 873 11 – – 24 24 28 22 11.22

GR3/k1.64/104 38 37.17 873 11 – – 14 14 28 22 11.41

GR3/k2.18/104 38 37.17 873 11 – – 18 18 28 22 13.07
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References No. L (mm) FRP bar or strip Groove fe
(MPa)

fc
0

(MPa)

Pf

(kN)
Ef

(GPa)

fu
(MPa)

Db

(mm)

tf
(mm)

wf

(mm)

Dg

(mm)

Wg

(mm)

[23] G4D6a 78 41.3 799 13 – – 24 24 13.8 27.6 24.69

G4D12a 156 41.3 799 13 – – 15.87 15.87 13.8 27.6 34.61

G4D12b 156 41.3 799 13 – – 19.05 19.05 13.8 27.6 36.97

G4D12c 156 41.3 799 13 – – 25.4 25.4 13.8 27.6 42.84

G4D18a 234 41.3 799 13 – – 15.87 15.87 13.8 27.6 42.55

G4D24c 312 41.3 799 13 – – 25.4 25.4 13.8 27.6 61.93

C3D6a 57 164.7 1550 9.5 – – 12.7 12.7 13.8 27.6 15.68

C3D12a 114 164.7 1550 9.5 – – 12.7 12.7 13.8 27.6 26.73

C3D12b 114 164.7 1550 9.5 – – 19.05 19.05 13.8 27.6 30.62

C3D12c 114 164.7 1550 9.5 – – 25.4 25.4 13.8 27.6 28.8

C3D18a 171 164.7 1550 9.5 – – 12.7 12.7 13.8 27.6 42.06

C3D24b 228 164.7 1550 9.5 – – 19.05 19.05 13.8 27.6 43.97

C3S6a 57 164.7 1550 9.5 – – 12.7 12.7 13.8 27.6 13.19

C3S12a 114 164.7 1550 9.5 – – 12.7 12.7 13.8 27.6 17.47

C3S12b 114 164.7 1550 9.5 – – 19.05 19.05 13.8 27.6 15.4

C3S12c 114 164.7 1550 9.5 – – 25.4 25.4 13.8 27.6 17.49

C3S18a 171 164.7 1550 9.5 – – 12.7 12.7 13.8 27.6 24.92

C3S24a 228 164.7 1550 9.5 – – 12.7 12.7 13.8 27.6 22.36

C4S6 78 104.8 1875 13 – – 15.87 15.87 13.8 27.6 22.61

C4S12 156 104.8 1875 13 – – 15.87 15.87 13.8 27.6 25.98

C4S18 234 104.8 1875 13 – – 15.87 15.87 13.8 27.6 29.52

C4S24 312 104.8 1875 13 – – 15.87 15.87 13.8 27.6 35.3

[24] C-r-S-1.5-A6 250 149 1650 9.5 – – 14.25 14.25 48 28.5 8.72

C-r-S-2-A6 250 149 1650 9.5 – – 19 19 48 28.5 9.44

C-r-S-2.5-A6 250 149 1650 9.5 – – 23.75 23.75 48 28.5 8.93

C-r-SWSC-1.5-
A6

250 130 2300 10 – – 15 15 48 28.5 70.94

C-r-SWSC-2-A6 250 130 2300 10 – – 20 20 48 28.5 66.19

C-r-SWSC-2.5-
A6

250 130 2300 10 – – 25 25 48 28.5 71.64

C-r-SC-1.5-A6 250 130 2300 7.5 – – 11.25 11.25 48 28.5 48.26

C-r-SC-2-A6 250 130 2300 7.5 – – 15 15 48 28.5 54.47

C-r-SC-2.5-A6 250 130 2300 7.5 – – 18.75 18.75 48 28.5 56.19

C-r-Ri-1.5-A6 250 143 2328 9 – – 13.5 13.5 48 28.5 57.53

C-r-Ri-2-A6 250 143 2328 9 – – 18 18 48 28.5 62.2

C-r-Ri-2.5-A6 250 143 2328 9 – – 22.5 22.5 48 28.5 72.95

C-r-Ro-1.5-A6 250 117 1617 9 – – 13.5 13.5 48 28.5 59.63

C-r-Ro-2-A6 250 117 1617 9 – – 18 18 48 28.5 52.28

C-r-Ro-2.5-A6 250 117 1617 9 – – 22.5 22.5 48 28.5 59.51

C-st-Ro-1.5-A6 250 125 1676 – 4.5 16 24 13.5 48 28.5 72.06

C-st-Ro-2-A6 250 125 1676 – 4.5 16 32 15.75 48 28.5 74.11

C-st-Ro-2.5-A6 250 125 1676 – 4.5 16 40 18 48 28.5 73.54

C-sq-Ro-1.5-A6 250 150 1506 – 10 10 15 15 48 28.5 71.19

C-sq-Ro-2-A6 250 150 1506 – 10 10 20 20 48 28.5 75.02

C-sq-Ro-2.5-A6 250 150 1506 – 10 10 25 25 48 28.5 71.91

G-r-SWSCI-1.5-
A6

250 41 760 10 – – 15 15 48 28.5 70.74

G-r-SWSCI-2-A6 250 41 760 10 – – 20 20 48 28.5 74.58

G-r-SWSCI-2.5-
A6

250 41 760 10 – – 25 25 48 28.5 71.46
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G-r-Gr-1.5-A6 250 55 1150 10 – – 15 15 48 28.5 80.51

G-r-Gr-2-A6 250 55 1150 10 – – 20 20 48 28.5 85.26

G-r-Gr-2.5-A6 250 55 1150 10 – – 25 25 48 28.5 92.69

G-r-Ri-1.5-A6 250 47 1080 9 – – 13.5 13.5 48 28.5 49.88

G-r-Ri-2-A6 250 47 1080 9 – – 18 18 48 28.5 54.95

G-r-Ri-2.5-A6 250 47 1080 9 – – 22.5 22.5 48 28.5 63.32

C-r-Ro-1.5-A6 250 117 1617 9 – – 13.5 13.5 48 28.5 60.08

C-r-Ro-1.5-A7 250 117 1617 9 – – 13.5 13.5 61.4 28.5 47.38

[25] B-8-SC-2 300 46 1272 8 – – 14 14 28 19 33.1

B-8-SC-3 300 46 1272 8 – – 14 14 28 19 30.2

B-6-SC-1 300 46 1282 6 – – 10.02 10.02 28 19 33.9

B-6-SC-2 300 46 1282 6 – – 10.02 10.02 28 19 28.8

C-8-S-1 300 155 2495 8 – – 14 14 28 19 48.5

C-8-S-2 300 155 2495 8 – – 14 14 28 19 55.3

C-8-S-3 300 155 2495 8 – – 14 14 28 19 45.2

G-8-RB-2 300 59 1333 8 – – 14 14 28 19 45.3

G-8-RB-3 300 59 1333 8 – – 14 14 28 19 50.9

C-2.5*15-S-1 300 182 2863 – 2.5 15 25.02 8 28 19 53

C-2.5*15-S-2 300 182 2863 – 2.5 15 25.02 8 28 19 56

C-2.5*15-S-3 300 182 2863 – 2.5 15 25.02 8 28 19 46.3

[3] C12/60/S/1.6P 60.39 141 2300 12 – – 16 16 90 60 27.7

C12/60/S/3.2P 120.58 141 2300 12 – – 16 16 90 60 39.7

C12/60/S/6.4P 241.15 141 2300 12 – – 16 16 90 60 51.5

C12/60/S/
12.7P

478.54 141 2300 12 – – 16 16 90 60 73.1

A9/60/L/1.6P 45.22 120 2070 9 – – 18 18 90 60 19.1

A9/60/L/3.2P 90.34 120 2070 9 – – 18 18 90 60 34.9

A9/60/L/6.4P 180.86 120 2070 9 – – 18 18 90 60 58.2

A9/60/L/12.7P 358.9 120 2070 9 – – 18 18 90 60 79

A12/60/S/1.6P 60.39 127 2070 12 – – 16 16 90 60 26.1

A12/60/S/3.2P 120.58 127 2070 12 – – 16 16 90 60 46.9

A12/60/S/6.4P 241.15 127 2070 12 – – 16 16 90 60 70.5

A12/60/S/
12.7P

478.54 127 2070 12 – – 16 16 90 60 76

A9/60/S/1.6P 45.22 120 2070 9 – – 13 13 90 60 21.6

A9/60/S/3.2P 90.43 120 2070 9 – – 13 13 90 60 33.1

A9/60/S/6.4P 180.86 120 2070 9 – – 13 13 90 60 52.9

A9/60/S/12.7P 358.9 120 2070 9 – – 13 13 90 60 68.4

C12/30/S/1.6P 60.39 141 2300 12 – – 16 16 90 30 28.6

C12/30/S/3.2P 120.58 141 2300 12 – – 16 16 90 30 37.3

C12/30/S/6.4P 241.15 141 2300 12 – – 16 16 90 30 66.2

C12/30/S/
12.7P

478.54 141 2300 12 – – 16 16 90 30 69

A9/30/S/1.6P 45.22 120 2070 9 – – 13 13 90 30 20.1

A9/30/S/3.2P 90.43 120 2070 9 – – 13 13 90 30 27.6

A9/30/S/6.4P 180.86 120 2070 9 – – 13 13 90 30 44.8

A9/30/S/12.7P 358.9 120 2070 9 – – 13 13 90 30 50.7

R/60/S/1.6P 57.6 123 2040 – 2 16 20 6 90 60 28.1

R/60/S/3.2P 115.2 123 2040 – 2 16 20 6 90 60 34.3

R/60/S/6.4P 230.4 123 2040 – 2 16 20 6 90 60 50.8

R/60/S/12.7P 457.2 123 2040 – 2 16 20 6 90 60 57.1

R/60/L/1.6P 57.6 123 2040 – 2 16 24 10 90 60 26.2
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R/60/L/3.2P 115.2 123 2040 – 2 16 24 10 90 60 43.4

R/60/L/6.4P 230.4 123 2040 – 2 16 24 10 90 60 61.6

S/60/S/Sika/1.6P 64 137 2720 – 10 10 14 14 90 60 31.8

S/60/S/Sika/3.2P 128 137 2720 – 10 10 14 14 90 60 50.1

S/60/S/Sika/6.4P 256 137 2720 – 10 10 14 14 90 60 73.4

S/60/S/Sika/12.7P 508 137 2720 – 10 10 14 14 90 60 94.2

S/60/L/Sika/1.6P 64 137 2720 – 10 10 18 18 90 60 33.7

S/60/L/Sika/3.2P 128 137 2720 – 10 10 18 18 90 60 56.2

S/60/L/Sika/6.4P 256 137 2720 – 10 10 18 18 90 60 40.7

S/60/L/Sto/1.6P 64 137 2720 – 10 10 18 18 90.7 60 28.8

S/60/L/Sto/3.2P 128 137 2720 – 10 10 18 18 90.7 60 50.5

S/60/L/Sto/6.4P 256 137 2720 – 10 10 18 18 90.7 60 87.1

S/60/L/Sto/12.7P 508 137 2720 – 10 10 18 18 90.7 60 77.4

S/60L/Sto/12.7P-
re

508 137 2720 – 10 10 18 18 90.7 60 64.4

[5] B-6-SC-1 300 46 1282 6 – – 10 10 27.5 19 33.87

B-6-SC-2 300 46 1282 6 – – 10 10 27.5 19 28.84

B-6-SC-3 300 46 1282 6 – – 10 10 27.5 19 36.32

B-8-SC-1 300 46 1272 8 – – 14 14 27.5 19 31.57

B-8-SC-2 300 46 1272 8 – – 14 14 27.5 19 33.1

B-8-SC-3 300 46 1272 8 – – 14 14 27.5 19 30.24

G-8-SW-1 300 51 1250 8 – – 14 14 27.5 19 17.72

G-8-SW-2 300 51 1250 8 – – 14 14 27.5 19 40.8

G-8-SW-3 300 51 1250 8 – – 14 14 27.5 19 38.04

G-8-RB-1 300 59 1333 8 – – 14 14 27.5 19 46.71

G-8-RB-2 300 59 1333 8 – – 14 14 27.5 19 45.25

G-8-RB-3 300 59 1333 8 – – 14 14 27.5 19 50.86

C-8-S-1 300 155 2495 8 – – 14 14 27.5 19 48.52

C-8-S-2 300 155 2495 8 – – 14 14 27.5 19 55.3

C-8-S-3 300 155 2495 8 – – 14 14 27.5 19 45.23

C-10X10-S-1 300 159 1397 – 10 10 15 15 27.5 19 51.72

C-10X10-S-2 300 159 1397 – 10 10 15 15 27.5 19 47.89

C-10X10-S-3 300 159 1397 – 10 10 15 15 27.5 19 51.56

C-1.4X10-S-1 300 177 2221 – 1.4 10 15 5 27.5 19 31.16

C-1.4X10-S-2 300 177 2221 – 1.4 10 15 5 27.5 19 32.93

C-1.4X10-S-3 300 177 2221 – 1.4 10 15 5 27.5 19 34.73

C-2.5X15-S-1 300 182 2863 – 2.5 15 25 8 27.5 19 52.97

C-2.5X15-S-1 300 182 2863 – 2.5 15 25 8 27.5 19 56.03

C-2.5X15-S-1 300 182 2863 – 2.5 15 25 8 27.5 19 46.26

[26] C-8-SW-14X14-1 300 100 1040 8 – – 14 14 27.5 19 47.48

C-8-SW-14X14-2 300 100 1040 8 – – 14 14 27.5 19 48.22

C-8-SW-14X14-3 300 100 1040 8 – – 14 14 27.5 19 46.02

B-8-SC-20X20-1 300 46 1272 8 – – 20 20 27.5 19 44.84

B-8-SC-20X20-2 300 46 1272 8 – – 20 20 27.5 19 39.02

B-8-SC-20X20-3 300 46 1272 8 – – 20 20 27.5 19 42.8

B-10-SC-15X15-1 300 42 1204 10 – – 15 15 27.5 19 38.02

B-10-SC-15X15-2 300 42 1204 10 – – 15 15 27.5 19 40

B-10-SC-15X15-3 300 42 1204 10 – – 15 15 27.5 19 39

B-10-SC-20X20-1 300 42 1204 10 – – 20 20 27.5 19 43.46

B-10-SC-20X20-2 300 42 1204 10 – – 20 20 27.5 19 41.12

B-10-SC-20X20-3 300 42 1204 10 – – 20 20 27.5 19 38.96
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[36] Gent-C-SC-6 300 124 2068 6 – – 12 12 50 30 33

Gent-B-SC-6 300 52.5 1470 6 – – 12 12 30 30 38.4

Gent-B-SC-8 300 51 1324 8 – – 14 14 30 30 39.8

Gent-C-S-1.4X10 300 165 1850 – 1.4 10 15 5 50 30 24.6

Gent-G-RB-8 300 60 1500 8 – – 14 14 30 30 51.7

Gent-C-STR-2X16 300 165 3100 – 2 16 25 8 50 30 59.9

Gent-C-SM-8 300 155 2800 8 – – 14 14 50 30 56.9

Gent-C-STR-
10X10

300 155 2000 – 10 10 15 15 50 30 61

Gent-G-SpW-8 300 55 1290 8 – – 14 14 30 30 43.7

Minho-C-SC-6 300 124 2068 6 – – 12 12 50 32 36.7

Minho-B-SC-6 300 52.5 1470 6 – – 12 12 30 32 26.5

Minho-B-SC-8 300 51 1324 8 – – 14 14 30 32 33.5

Minho-C-S-1.4X10 300 165 1850 – 1.4 10 15 5 50 32 39.1

Minho-G-RB-8 300 60 1500 8 – – 14 14 30 32 40.3

Minho-C-STR-
2X16

300 165 3100 – 2 16 25 8 50 32 48

Minho-C-SM-8 300 155 2800 8 – – 14 14 50 32 47.4

Minho-C-STR-
10X10

300 155 2000 – 10 10 15 15 50 32 58.9

Naples-B-SC-6 300 52.5 1470 6 – – 12 12 30 23 33

Naples-B-SC-8 300 51 1324 8 – – 12 12 30 23 31.6

Naples-G-RB-8 300 60 1500 8 – – 14 14 30 23 47.6

Naples-C-STR-
2X16

300 165 3100 – 2 16 25 8 50 23 51.7

Naples-C-SM-8 300 155 2800 8 – – 14 14 50 23 49.6

Naples-C-STR-
10X10

300 155 2000 – 10 10 15 15 50 23 50.3

Naples-G-RB-80 300 55 1290 8 – – 14 14 30 23 32.2

Buda-C-SC-6 300 124 2068 6 – – 12 12 50 42 33.9

Buda-B-SC-6 300 52.5 1470 6 – – 12 12 30 42 30.6

Buda-C-S-1.4X10 300 165 1850 – 1.4 10 15 5 50 42 25.1

Buda-G-RB-8 300 60 1500 8 – – 14 14 30 42 44.7

Buda-C-STR-
2X16-1

300 165 3100 – 2 16 25 8 50 42 39.7

Buda-C-STR-
2X16-2

300 165 3100 – 2 16 25 8 50 42 40

Buda-C-STR-
2X16-3

300 165 3100 – 2 16 25 8 50 42 40.6

Buda-C-SM-8-1 300 155 2800 8 – – 14 14 50 42 41.1

Buda-C-SM-8-2 300 155 2800 8 – – 14 14 50 42 42.7

Buda-C-STR-
10X10

300 155 2000 – 10 10 15 15 50 42 58.3

[27] 30MPa-100-10 100 161.8 2643 – 1.2 10 12 3.2 16 30 13

30MPa-100-10 100 161.8 2643 – 1.2 10 12 3.2 16 30 22.6

30MPa-100-10 100 161.8 2643 – 1.22 10.02 12.02 3.22 16 30 20.4

30MPa-150-10 150 161.8 2643 – 1.23 10.33 12.33 3.23 16 30 23.2

30MPa-200-10 200 161.8 2643 – 1.22 10.48 12.48 3.22 16 30 27.9

30MPa-250-10 250 161.8 2643 – 1.22 10.29 12.29 3.22 16 30 26.6

30MPa-300-10 300 161.8 2643 – 1.22 10.38 12.38 3.22 16 30 26

30MPa-350-10 350 161.8 2643 – 1.22 10.35 12.35 3.22 16 30 23

42MPa-200-10 200 161.8 2643 – 1.27 10.29 12.29 3.27 16 41.8 30.6

48MPa-200-10 200 161.8 2643 – 1.28 10.1 12.1 3.28 16 48.2 33.7

49MPa-200-10 200 161.8 2643 – 1.26 10.56 12.56 3.26 16 49.2 33.3
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49MPa-200-20 200 162.3 2796 – 1.28 20.43 22.43 3.28 16 49.2 68.6

49MPa-100-20 100 162.3 2796 – 1.27 20.37 22.37 3.27 16 49.2 64.1

49MPa-200-20 200 162.3 2796 – 1.28 20.22 22.22 3.28 16 49.2 75

49MPa-300-20 300 162.3 2796 – 1.24 19.79 21.79 3.24 16 49.2 68.1

30MPa-100-20 100 162.3 2796 – 1.2 20 22 3.2 16 30 51.4

30MPa-200-20 200 162.3 2796 – 1.2 20 22 3.2 16 30 57.8

30MPa-300-20 300 162.3 2796 – 1.2 20 22 3.2 16 30 66.7

65MPa-200-10 200 144.6 2634 – 2.88 10.08 12.08 4.88 16 64.8 45

53MPa-200-10 200 161.8 2643 – 1.24 10.23 12.23 3.24 16 52.8 31.9

53MPa-200-20 200 162.3 2796 – 1.26 20.47 22.47 3.26 16 52.8 77.9

53MPa-200-10 200 161.8 2643 – 1.3 10.43 12.43 3.3 16 53 34

53MPa-200-20 200 162.3 2796 – 1.27 20.1 22.1 3.27 16 53 72.5

53MPa-100-10 100 161.8 2643 – 1.26 10.37 12.37 3.26 16 53 29.5

53MPa-300-10 300 161.8 2643 – 1.27 10.3 12.3 3.27 16 53 37.9

53MPa-100-20 100 162.3 2796 – 1.25 20.23 22.23 3.25 16 53 63.8

53MPa-300-20 300 162.3 2796 – 1.25 20.15 22.15 3.25 16 53 66.3

33MPa-100-15 100 161.8 2643 – 1.26 14.93 16.93 3.26 16 33.4 31.9

33MPa-200-15 200 161.8 2643 – 1.26 15.65 17.65 3.26 16 33.4 47.5

33MPa-300-15 300 161.8 2643 – 1.26 15.31 17.31 3.26 16 33.4 51.6

65MPa-200-10 200 161.8 2643 – 2.9 9.95 11.95 4.9 16 64.8 45.1

33MPa-300-20 300 162.3 2796 – 1.24 19.85 21.85 3.24 16 33.4 67.8

33MPa-200-20 200 162.3 2796 – 1.2 20 22 3.2 16 33.4 60.7

[30] N/C-10-E-1.5-6 57 128 1546 9.5 – – 14.25 14.25 43.5 41 28.68

N/C-10-E-1.5-12 114 128 1546 9.5 – – 14.25 14.25 43.5 41 52.45

N/C-10-E-1.5-18 171 128 1546 9.5 – – 14.25 14.25 43.5 41 74.85

N/C-10-E-1.5-24 228 128 1546 9.5 – – 14.25 14.25 43.5 41 84.77

N/C-10-E-2.0-6 57 128 1546 9.5 – – 19 19 43.5 41 35.56

N/C-10-E-2.0-12 114 128 1546 9.5 – – 19 19 43.5 41 59.35

N/C-10-E-2.0-18 171 128 1546 9.5 – – 19 19 43.5 41 64.57

N/C-10-E-2.0-24 228 128 1546 9.5 – – 19 19 43.5 41 75.62

N/C-10-E-2.0-36 324 128 1546 9.5 – – 19 19 43.5 41 96.29

N/C-10-E-2.0-48 456 128 1546 9.5 – – 19 19 43.5 41 96.23

N/C-13-E-1.5-18 228.6 134 1250 12.7 – – 19.05 19.05 43.5 41 48.83

N/C-13-E-2.0-18 228.6 134 1250 12.7 – – 25.4 25.4 43.5 41 49.05

N/G-13-E-2.0-12 152.4 42 749 12.7 – – 25.4 25.4 43.5 41 52.19

N/G-13-E-2.0-18 228.6 42 749 12.7 – – 25.4 25.4 43.5 41 66.93

N/G-13-E-2.0-24 304.8 42 749 12.7 – – 25.4 25.4 43.5 41 77.74

N/G-13-E-2.0-36 457.2 42 749 12.7 – – 25.4 25.4 43.5 41 79.8

[31] 7-2/2-3D-CF 36 124 2068 12 – – 20 20 30 30.8 10.3

7-2/2-5D-CF 60 124 2068 12 – – 20 20 30 30.8 17.3

7-2/2-10D-CF 120 124 2068 12 – – 20 20 30 30.8 32.5

8-2/4-3D-CF 36 124 2068 12 – – 40 20 30 30.8 15.3

8-2/4-5D-CF 60 124 2068 12 – – 40 20 30 30.8 20.2

8-2/4-10D-CF 120 124 2068 12 – – 40 20 30 30.8 38.5

[32] Anchorfix-3-t1 152 130 2100 – 2 16 19 6.4 32.4 60.1 29.8

Anchorfix-3-t2 152 130 2100 – 2 16 19 6.4 32.4 60.1 34.2

Anchorfix-3-t3 152 130 2100 – 2 16 19 6.4 32.4 60.1 30.2

Anchorfix-3-t4 152 130 2100 – 2 16 19 6.4 32.4 60.1 26.7

Anchorfix-3-t5 152 130 2100 – 2 16 19 6.4 32.4 60.1 29.4

Anchorfix-3-t6 152 130 2100 – 2 16 19 6.4 32.4 60.1 30.2

Concresive1420-
t1

152 130 2100 – 2 16 19 6.4 27.6 60.1 42.3
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Concresive1420-t2 152 130 2100 – 2 16 19 6.4 27.6 60.1 37.8

Concresive1420-t3 152 130 2100 – 2 16 19 6.4 27.6 60.1 50.3

Concresive1420-t4 152 130 2100 – 2 16 19 6.4 27.6 60.1 42.7

Concresive1420-t5 152 130 2100 – 2 16 19 6.4 27.6 60.1 34.2

Concresive1420-t6 152 130 2100 – 2 16 19 6.4 27.6 60.1 37.8

Epofil-t1 152 130 2100 – 2 16 19 6.4 50.3 60.1 58.7

Epofil-t3 152 130 2100 – 2 16 19 6.4 50.3 60.1 52.9

Epofil-t4 152 130 2100 – 2 16 19 6.4 50.3 60.1 53.8

Epofil-t5 152 130 2100 – 2 16 19 6.4 50.3 60.1 59.2

Epofil-t6 152 130 2100 – 2 16 19 6.4 50.3 60.1 59.2

Sikadure35-t3 152 130 2100 – 2 16 19 6.4 61.4 60.1 52.5

Sikadure35-t4 152 130 2100 – 2 16 19 6.4 61.4 60.1 53.8

Sikadure35-t5 152 130 2100 – 2 16 19 6.4 61.4 60.1 49.8

Sikadure35-t6 152 130 2100 – 2 16 19 6.4 61.4 60.1 53.4

Sikadure32-t1 152 130 2100 – 2 16 19 6.4 35.2 60.1 53.4

Sikadure32-t2 152 130 2100 – 2 16 19 6.4 35.2 60.1 53.4

Sikadure32-t3 152 130 2100 – 2 16 19 6.4 35.2 60.1 55.2

Sikadure32-t5 152 130 2100 – 2 16 19 6.4 35.2 60.1 60.5

Sikadure32-t6 152 130 2100 – 2 16 19 6.4 35.2 60.1 56.5

DP460NS-t1 152 130 2100 – 2 16 19 6.4 35.2 60.1 76.1

DP460NS-t2 152 130 2100 – 2 16 19 6.4 35.2 60.1 62.7

DP460NS-t3 152 130 2100 – 2 16 19 6.4 35.2 60.1 81.4

DP460NS-t4 152 130 2100 – 2 16 19 6.4 35.2 60.1 76.1

DP460NS-t5 152 130 2100 – 2 16 19 6.4 35.2 60.1 79.6

DP460NS-t6 152 130 2100 – 2 16 19 6.4 35.2 60.1 65.4

[33] C-r-Ro-1.5-A6 250 124 2068 9 – – 13.5 13.5 35.2 28.5 60.08

C-r-Ro-1.5-A7 250 124 2068 9 – – 13.5 13.5 61.4 28.5 47.38

C-r-SC-2.0-A6 250 130 2300 7.5 – – 15 15 35.2 28.5 56.19

C-r-Ri-2.0-A6 250 150 2185 9 – – 18 18 35.2 28.5 62.2

C-r-Ro-2.0-A6 250 124 2068 9 – – 18 18 35.2 28.5 52.28

[34] C-SC-9 300 124 1896 9.5 – – 15 15 50 37.4 57.8

B-SC-6 300 55 1413 6 – – 12 12 30 37.4 28.4

B-SC-8 300 50 1285 8 – – 15 15 30 36.2 39.8

G-RB-10 300 40.8 760 10 – – 15 15 30 36.2 50.6

C-STR-2x16 300 124 2068 – 2 16 25 8 50 35 46.5

C-SM-8 300 155 2800 8 – – 15 15 50 35 56.9

[35] A-5G25 60 124 2108 12 – – 25 25 30 30 15.2

B-5G25-J 60 124 2108 12 – – 25 25 30 30 16.92

C-5G20 60 124 2108 12 – – 20 20 30 30 12.05

D-3G25 36 124 2108 12 – – 25 25 30 30 7.96

E-3G20 36 124 2108 12 – – 20 20 30 30 7.17

F-7.5G25 90 124 2108 12 – – 25 25 30 30 18.2

G-10G25 120 124 2108 12 – – 25 25 30 30 21.6

H-10G20 120 124 2108 12 – – 20 20 30 30 19.4

[37] CR3/k1.33/104-e 38 109.27 2014 9.5 – – 15 15 28 22 13.12

CR3/k1.59/104-e 38 109.27 2014 9.5 – – 18 18 28 22 17.91

CR3/k2.12/104-e 38 109.27 2014 9.5 – – 24 24 28 22 19.33

CR3/k1.24/124-e 228 109.27 2014 9.5 – – 14 14 28 22 52.16

CR3/k1.59/124-e 228 109.27 2014 9.5 – – 18 18 28 22 50.8

CR3/k2.12/124-e 228 109.27 2014 9.5 – – 24 24 28 22 66.47

GR3/k1.36/104-e 38 37.17 873 9.5 – – 15 15 28 22 10.67
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References No. L (mm) FRP bar or strip Groove fe
(MPa)

fc
0

(MPa)

Pf

(kN)
Ef

(GPa)

fu
(MPa)

Db

(mm)

tf
(mm)

wf

(mm)

Dg

(mm)

Wg

(mm)

GR3/k1.64/104-e 38 37.17 873 9.5 – – 18 18 28 22 14.68

GR3/k2.18/104-e 38 37.17 873 9.5 – – 24 24 28 22 14.57

GR3/k1.27/124-e 228 37.17 873 9.5 – – 14 14 28 22 26.45

GR3/k1.64/124-e 228 37.17 873 9.5 – – 18 18 28 22 39.55

GR3/k2.18/124-e 228 37.17 873 9.5 – – 24 24 28 22 32.04

SW/k1.50/104-e 30 174.71 2214 7.5 – – 12 12 28 22 12.75

SW/k2.00/104-e 30 174.71 2214 7.5 – – 16 16 28 22 14.67

SW/k2.50/104-e 30 174.71 2214 7.5 – – 20 20 28 22 15.5

SW/k1.50/112-e 90 174.71 2214 7.5 – – 12 12 28 22 28.86

SW/k2.00/112-e 90 174.71 2214 7.5 – – 16 16 28 22 25.62

SW/k2.50/112-e 90 174.71 2214 7.5 – – 20 20 28 22 37.27

SW/k1.50/124-e 180 174.71 2214 7.5 – – 12 12 28 22 41.32

SW/k2.00/124-e 180 174.71 2214 7.5 – – 16 16 28 22 60

SW/k2.50/124-e 180 174.71 2214 7.5 – – 20 20 28 22 67.43

[38] SD30-1.5D 304.8 60.4 1478 12.7 – – 19.05 19.05 14 37.2 64.9

SD30-2.0D 304.8 60.4 1478 12.7 – – 25.4 25.4 14 37.2 77

SD42-1.5D 304.8 60.4 1478 12.7 – – 19.05 19.05 6 37.2 60.8

SD42-2.0D 304.8 60.4 1478 12.7 – – 25.4 25.4 6 37.2 86.2

SD-42.16D 203.2 60.4 1478 12.7 – – 25.4 25.4 6 64.8 85.7

SD-31.16D 203.2 60.4 1478 12.7 – – 25.4 25.4 14 64.8 85

[39] T2.0-C15 250 131 2068 – 2 16 30 10 31.9 15 59

T2.0-C40 250 131 2068 – 2 16 30 10 31.9 40 63

T2.0-C60 250 131 2068 – 2 16 30 10 31.9 60 56

T4.5-C15 250 131 2068 – 4.5 16 30 10 31.9 15 68

T4.5-C40 250 131 2068 – 4.5 16 30 10 31.9 40 74

T4.5-C60 250 131 2068 – 4.5 16 30 10 31.9 60 88

T2.0-BL80 80 131 2068 – 2 16 30 10 31.9 40 31

T2.0-BL120 120 131 2068 – 2 16 30 10 31.9 40 41

T2.0-BL160 160 131 2068 – 2 16 30 10 31.9 40 57

T2.0-BL200 200 131 2068 – 2 16 30 10 31.9 40 55

T2.0-BL250 250 131 2068 – 2 16 30 10 31.9 40 63

T2.0-BL320 320 131 2068 – 2 16 30 10 31.9 40 63

T2.0-BL400 400 131 2068 – 2 16 30 10 31.9 40 56

T4.5-BL80 80 131 2068 – 4.5 16 30 10 31.9 40 37

T4.5-BL80 120 131 2068 – 4.5 16 30 10 31.9 40 54

T4.5-BL80 160 131 2068 – 4.5 16 30 10 31.9 40 60

T4.5-BL80 200 131 2068 – 4.5 16 30 10 31.9 40 59

T4.5-BL80 240 131 2068 – 4.5 16 30 10 31.9 40 84

T4.5-BL80 250 131 2068 – 4.5 16 30 10 31.9 40 76

T4.5-BL80 320 131 2068 – 4.5 16 30 10 31.9 40 100

T2.0-GE60 250 131 2068 – 2 16 30 10 31.9 40 62

T4.5-GE60 250 131 2068 – 4.5 16 30 10 31.9 40 73

Db is the diameter of FRP bars, whereas tf and wf are the dimensions of FRP strips

Neural Computing and Applications (2019) 31:7837–7865 7863

123



References

1. Chen JF, Teng JG (2001) Anchorage strength models for FRP and

steel plates bonded to concrete. J Struct Eng 127(7):784–791
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11. Dilmaç H, Demir F (2013) Stress–strain modeling of high-

strength concrete by the adaptive network-based fuzzy inference

system (ANFIS) approach. Neural Comput Appl 23(1):385–390

12. Cevik A, Ozturk S (2009) Neuro-fuzzy model for shear strength

of reinforced concrete beams without web reinforcement. Civ

Eng Environ Syst 26(3):263–277

13. Cevik A (2011) Modeling strength enhancement of FRP confined

concrete cylinders using soft computing. Expert Syst Appl

38(5):5662–5673

14. Nasrollahzadeh K, Basiri MM (2014) Prediction of shear strength

of FRP reinforced concrete beams using fuzzy inference system.

Expert Syst Appl 41(4):1006–1020

15. Nasrollahzadeh K, Nouhi E (2018) Fuzzy inference system to

formulate compressive strength and ultimate strain of square

concrete columns wrapped with fiber-reinforced polymer. Neural

Comput Appl 30(1):69–86
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