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Abstract
In this paper, a new image encryption algorithm based on the two-dimensional spatiotemporal chaotic system is pro-

posed.This system mixes linear neighborhood coupling and the nonlinear chaotic map coupling of lattices, and it has more

cryptographic features in dynamics than the system of coupled map lattices does. The two-dimensional coupled map

lattices (2DCML) system is only a special case in this chaotic system. In addition, bit-level permutation is employed to

strengthen security of the cryptosystem. Simulations have been carried out, and the results demonstrate that the proposed

algorithm has properties of large key space, high sensitivity to key, strong resisting attack. So, it is more secure and

effective algorithm for encryption of digital images.
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1 Introduction

In recent years, a variety of chaos-based digital image

encryption algorithms have been investigated

[1–27, 29–31, 35, 37–40]. Spatiotemporal chaotic system is

gradually regarded with better properties suitable for image

encryption than one-dimensional chaotic system, such as

larger parameter space, better randomness and more

chaotic sequences [10–27, 35, 37–40]. Then, many

researches [13–27, 34, 35] are based on the system of

coupled map lattices (CML) [26, 27], which enhances the

security of the encryption algorithms. Seyedzadeh et al.

[13] proposed a novel image encryption algorithm based on

the two-dimensional logistic map and the quantum chaotic

map, which are independently coupled with nearest-

neighboring coupled map lattices. Wang et al. [14] pro-

posed an encryption algorithm for images using CML and

DNA sequence operations. However, the CML system is

coupled by adjacent lattices, and the parameter l still has

periodic windows in the bifurcation diagram of some lat-

tice. Due to the adjacent coupling between lattices,

parameters l 2 ð3:87; 3:925Þ and e ¼ 0:1 can only generate

local chaotic behavior of the CML system [27], which

implies some of the lattices are not in chaotic behavior. The

lattice should be selected carefully for image encryption

because such space regular coupling of the adjacent cou-

pling in the CML system is a linear coupling in space.

Many studies [15–18] concentrated on dynamically

random links for coupling. Sinha [15] proposed the random

coupling of spatiotemporal system which initiated the

study of the non-neighborhood coupling in coupled map

lattices. Mondal et al. [16] presented the enhancement

spatiotemporal regularity by rapidly switched random

links. Nag et al. [18] presented the synchronization

behavior of delay-coupled chaotic smooth unmoral maps

with stochastic switching of links at every time step.

However, the chaotic sequences in such systems of
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randomness-based coupling cannot be reproduced at the

second time in the same parameters, which are not suit-

able for applying in cryptography.

The NCML and MLNCML systems [19, 20] presented

nonlinear chaotic map coupling method to achieve the non-

neighborhood coupling based on one-dimensional CML.

However, a two-dimensional coupled map lattice allows a

more precise description of the real nature phenomena than

the one-dimensional case. To the best of our knowledge,

very little work was done to adapt this coupling to evaluate

two-dimensional coupled map lattices. In this paper, we

discover the new features of spatiotemporal chaotic sys-

tems in spatial mixed coupling with the two-dimensional

CML. Furthermore, this system is also evaluated for the

feasibility of the image encryption application for its

superior features in dynamics.

A variety of image encryption algorithms using bit-level

permutation have been investigated, which can change the

position and value of a pixel simultaneously

[28–33, 35, 36]. In [32], Praveenkumar et al. proposed a

novel image encryption approach with chaotic sequences

which are generated for each bit plane. All pixels of an

image are separated into groups of bits by information of

different bit planes in Zhu’s scheme [29]. However, the bits

in one-bit plane cannot be permuted into other bit planes in

these algorithms. Therefore, the statistical information in

each bit plane remains unmodified.

In this paper, we employ the two-dimensional spa-

tiotemporal chaotic system which mixed linear–nonlinear

coupled map lattices for the diffusion in the image

encryption. The two-dimensional mixed system employing

the spatial nonlinear coupling can generate better pseudo-

random sequences than that employing adjacent coupling.

The mixed system also contains the new features such as

less periodic windows in bifurcations and larger range of

parameters in chaotic dynamics. For the permutation phase,

we employ the Arnold cat map for bit-level permutation.

Furthermore, the wide range of choices for the initial

conditions and control parameters lead to a large key space.

The experimental results show the effectiveness of the

proposed image encryption algorithm.

The remainder of this paper is organized as follows. In

Sect. 2, the proposed spatiotemporal chaotic system based on

two-dimensional CML is presented. The proposed image

encryption scheme is described in Sect. 3. Simulation results

and performance analyses are reported in Sect. 4.

2 The proposed spatiotemporal chaotic
system

The proposed spatiotemporal chaotic system based on two-

dimensional CML can be represented by

xðnþ1Þði; jÞ ¼ ð1 � eÞf ½xnði; jÞ� þ ð1 � gÞ e
4
ff ½xnði� 1; jÞ�

þ f ½xnðiþ 1; jÞ� þ f ½xnði; j� 1Þ� þ f ½xnði; jþ 1Þ�g

þ g
e
4
ff ½xnða; jÞ� þ f ½xnðb; jÞ� þ f ½xnði; cÞ� þ f ½xnði; dÞ�g;

ð1Þ

where i, j, a, b, c, d are the lattices ð1� i; j; a; b; c; d� LÞ, e
is the coupling parameter ð0� e� 1Þ, g is the coupling

parameter ð0� g� 1Þ, n is the time index ðn ¼ 1; 2; 3:::Þ
and f ðxÞ ¼ lxð1 � xÞ, l 2 ð0; 4�. The relations of i, j, a, b,

c, d are defined by the Arnold cat map described by

a

b

� �
¼

1 p

q pqþ 1

� �
iþ 1

i� 1

� �
ðmod LÞ; ð2Þ

c

d

� �
¼

1 p

q pqþ 1

� �
jþ 1

j� 1

� �
ðmod LÞ; ð3Þ

where p and q are the parameters of Arnold cat map.

The parameters p, q and g make the proposed system

into diverse dynamics systems. When selecting g ¼ 0,

Eq. (1) can be degenerated as the 2DCML system [26] as

xðnþ1Þði; jÞ ¼ ð1 � eÞf ½xnði; jÞ� þ
e
4
ff ½xnði� 1; jÞ�

þ f ½xnðiþ 1; jÞ� þ f ½xnði; j� 1Þ� þ f ½xnði; jþ 1Þ�g:
ð4Þ

The bifurcation diagram without periodic windows in the

proposed system is the new feature for cryptography. The

CML system is regarded as a suitable spatiotemporal

chaotic system for cryptography partially because of its

less periodic windows than low-dimension chaotic map.

Thus, the proposed system is more suitable for cryptogra-

phy for the same reason. The parameter as a secret key has

a larger key space than logistic map or the CML system.

Besides, the parameter can be designed as one of the secret

keys.

Without loss of generality, the proposed system assigns

the same L ¼ 100 as the CML system does [26]. Fig-

ure 1b–e indicates that the periodic windows are reduced

compared with the 2DCML system in Fig. 1a when

increasing the parameter g. When increasing the value of g,

the number of bifurcation points is varying larger and the

gaps between bifurcation points are varying closer. Due to

the nonlinear coupling leading to the instability of the

possible periods of orbits, the times of period doubling

bifurcations is misled and unobvious. Therefore, periodic

windows are reduced and when increasing the value of the

parameter g, the nonlinear coupling is strengthened and

periodic windows are vanished eventually. The nonlinear

coupling decreases the times of period doubling bifurca-

tions, and the proposed system becomes chaotic after a

point.
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Any system holding chaotic behavior presented at least

one positive Lyapunov exponent. The proposed system can

be considered as L dimensions dynamics; the Kolmogorov-

Sinai entropy density h of the L dimensions dynamics is

average of positive Lyapunov exponents [34]. When

g ¼ 0:3, Fig. 2b shows that there are only two valleys at

3:6\l\3:8 and e ¼ 0:1, 3:6\l\3:8 and e ¼ 0:2 in the

proposed system while the 2DCML system has three val-

leys at 3:6\l\3:8 and e ¼ 0:1, 3:6\l\3:8 and e ¼ 0:2,

3:6\l\3:8 and e ¼ 0:6, which are shown in Fig. 2a.

Therefore, the proposed system characterizes stronger

chaotic behaviors at the range of 3:6\l\3:8 and e ¼ 0:6

than the 2DCML system. During increasing the value of g,

Fig. 2b–e indicates that the proposed system has higher

Kolmogorov-Sinai entropy density than the 2DCML sys-

tem [26] and the MLNCML system [19] do, which is

shown in Fig. 2a, f.

Without loss of generality, we focus on the proposed

system by assuming a grid of L ¼ 64, L� L ¼ 4096 as the

2DCML system [26] assigned the same value. When the

value of g increases, nonlinear coupling strengthens the

diffusions between lattices harder than neighborhood cou-

pling does. The local inhomogeneous trend becomes

stronger, and the reactions dominate the system behavior.

At the same time, the orderly trend of diffusion is

obviously weakened because most of lattices are in chaos

and turbulence. Figure 3a indicates that the same parame-

ters l and e which lead the proposed system in fully tur-

bulence can only lead the 2DCML system in defect

turbulence pattern shown in Fig. 3b. Therefore, compared

with the 2DCML system, the proposed system contains

larger range of parameters for this pattern. Figure 4a, b

indicates that the proposed system is chaos fully compared

with the 2DCML.

3 The proposed image encryption algorithm

Firstly, the image is permuted by the Arnold cat map for

bit-level permutation and then diffused by the chaotic

sequences of the proposed system. The permutation and

diffusion phases can be encrypted in many rounds for

higher security.

3.1 Secret key formulation

The proposed algorithm process utilizes a more than 4000

bit-long secret key. The secret key is composed of: K,

lðl 2 ½3:87; 4�Þ, eðe 2 ½0:1; 1�Þ, gðg 2 ½0:5; 1�Þ. The secret

key K includes 100 components denoted as K ¼ fKð1; 1Þ,

Fig. 1 Bifurcation diagrams when l 2 ½3:5; 4:0�. a The 2DCML system, b The proposed system ðg ¼ 0:3Þ, c The proposed system ðg ¼ 0:5Þ, d
The proposed system ðg ¼ 0:7Þ, e The proposed system ðg ¼ 0:9Þ

Neural Computing and Applications (2020) 32:247–260 249

123



0
0.2 0.4 0.6 0.8

1

3
3.2

3.4
3.6

3.8
4
0

0.2

0.4

0.6

0.8

µ

h

(a)
0

0.2 0.4 0.6 0.8
1

3
3.2

3.4
3.6

3.8
4
0

0.2

0.4

0.6

0.8

µ

h

(b)
0

0.2 0.4 0.6 0.8
1

3
3.2

3.4
3.6

3.8
4
0

0.2

0.4

0.6

0.8

µ

h

(c)

0
0.2 0.4 0.6 0.8

1

3
3.2

3.4
3.6

3.8
4
0

0.2

0.4

0.6

0.8

µ

h

(d)
0

0.2 0.4 0.6 0.8
1

3
3.2

3.4
3.6

3.8
4
0

0.2

0.4

0.6

0.8

µ

h

(e)
0

0.2 0.4 0.6 0.8
1

3
3.2

3.4
3.6

3.8
4
0

0.2

0.4

0.6

0.8

µ

h

(f)

Fig. 2 Kolmogorov-Sinai entropy density for different parameters. a The 2DCML system, b The proposed system ðg ¼ 0:3Þ, c The proposed

system ðg ¼ 0:5Þ, d The proposed system ðg ¼ 0:7Þ, e The proposed system ðg ¼ 0:9Þ, f The MLNCML system

Fig. 3 Snapshot patterns for the

proposed system and 2DCML

when times ¼ 1000. a The

proposed system ðl ¼ 3:93, g ¼
0:3 and e ¼ 0:1Þ, b The 2DCML

system ðl ¼ 3:93 and e ¼ 0:1Þ

Fig. 4 Regular behaviors when

l ¼ 3:93. a The proposed

system zoomed ðl ¼ 3:93, g ¼
0:3 and e ¼ 0:1Þ, b The 2DCML

system zoomed ðl ¼ 3:93 and

e ¼ 0:1Þ
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K(1, 2), Kð1; 3Þ. . ., Kð10; 10Þg where each component of

K(i, j) is a 40-bit-long unit. The secret keys l, e and g refer

to the parameters l, e and g in Eq. (1).

3.2 Permutation phase

Pixel-level confusion can only change the locations of the

original pixels. For bit-level permutation, the situation is

quite different. A pixel in a grayscale image usually con-

sists of eight bits, but these bits carry different amount of

information. For example, if the eight bits among the eight

pixels are permuted, 27=255 of the total information of

each pixel is exchanged. In other words, 50.2% of the

information of each pixel is changed if the eight bits of the

pixels are permuted. Therefore, bit-level permutation not

only modifies the pixel values but also exchanges the

information of the pixels. A plain image with 256 gray

levels can be extended to eight binary images, in which

only two values (0 and 1) exist for each pixel [28, 29].

The plain image is firstly extended to bit plane, given

by: Gðx; yÞ ¼ Pic8Pic7Pic6:::Pic1, where G(x, y) is the

value of the pixel at coordinate (x, y) and the number in

parentheses indicates the bit index from highest bit 8 to the

lowest bit 1. A bit can contain different amounts of

information depending on its position in the pixel. The

highest eighth bit carries about 50% of the total informa-

tion of the image. On the other hand, the lower three bits

(third, second and first) carry less than 3% of the image

information. In order to modify the statistical information

in each bit plane, we reorganize binary images to two

groups: P1 ¼ fPic8;Pic3;Pic2;Pic1g and P2 ¼
fPic7;Pic6;Pic5;Pic4g in which P1 carries about 13.2%

of the image information and P2 carries about 11.8% of the

total information of image. After the image is reorganized,

the information distribution of the image is more balanced,

which is more conducive to the encryption of the image.

The binary images of Lena reorganized are shown in

Fig. 5.

In permutation phase, Arnold cat map for bit-level

permutations can be chosen in P1 and P2 by

x0

y0

� �
¼ A

x

y

� �
ðmod N � 2Þ ¼

1 v

w vwþ 1

� �
x

y

� �
ðmod N � 2Þ;

ð5Þ

where (x, y) and ðx0; y0Þ are the original bit position and

permuted bit position, and v and w are calculated by

v ¼ bin2decðKð1; 1Þ � Kð1; 2Þ � Kð1; 3Þ � � � � � Kð5; 10ÞÞmod N;

ð6Þ

w ¼ bin2decðKð6; 1Þ � Kð6; 2Þ � Kð6; 3Þ � � � � � Kð10; 10ÞÞmod N:

ð7Þ

3.3 Diffusion phase

The proposed system in Eq. (1) is employed for the dif-

fusion phase. The initial values x1ði; jÞ are calculated by

x1ði; jÞ ¼ bin2decðKði; jÞÞ=240; ð8Þ

where (i, j) is lattice index, ði; jÞ 2 ½1; 10�. The system

contains 100 initial values, which contributes a large key

space of 24000 � 101200. In addition, the parameter l in the

system can guarantee the whole system in chaotic behav-

iors when it varies from 3.8 to 4 continuously. However,

the parameter l in logistic map has periodic windows and a

narrow value range for its corresponding chaotic behavior.

The value of l should be assigned very close to 4.

Therefore, the system is superior to logistic map in

cryptography.

The proposed system has better Lyapunov exponents

than the 2DCML system, which indicates that each lattice

can generate a chaotic sequence for encryptions when the

parameter l varies continuously. The 100 chaotic sequen-

ces in the corresponding lattices provide a sufficient

amount of pseudo-random series for encryptions. Thus, the

diffusion is designed by

c½m� ¼ fp½m� þ c½m� 1� þ ðxstepþmði; jÞ � 1010Þgmod 256;

ð9Þ

where m is the pixel sequence which is formed vertically

from the upper left corner to the lower right corner,

m 2 ½1;N � N�. The initial value c[0] is 0; xstepþmði; jÞ is

the chaotic sequence of the proposed system where the

lattice index is i and j. The unfixed value i and j entirely

depends on the secret key of K, which can enhance the

sensitivity of the proposed algorithm for K and its security.

The value step depends on the sum of pixels about original

image, which can resist efficiently the chosen-plaintext

attack. The values i, j and step are calculated by

i ¼1 þ vðmod 10Þ; ð10Þ

Fig. 5 Binary images reorganized. a P1, b P2
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j ¼1 þ wðmod 10Þ; ð11Þ

step ¼300 þ mod ðsumðpictureÞ; 100Þ: ð12Þ

3.4 Encryption algorithm

Input: The secret keys where K is a 4000-bit-long block,

lðl 2 ½3:87; 4�Þ, gðg 2 ½0:5; 1�Þ, c½0�ðc½0� 2 ½0; 255�Þ and

eðe 2 ½0:1; 1�Þ. The source image sp. The number of rounds

of encryption.

Output: Returns ciphered image c.

Step 1. The variables of v and w are calculated in

Eqs. (6) and (7) according to K.

Step 2. The source image sp is reorganized and arranged

into the permuted image p with Eq. (5).

Step 3. The initial values x1ði; jÞ are calculated in Eq. (8).

Step 4. The 100 chaotic sequences in the proposed

spatiotemporal chaotic system are calculated in Eq. (1).

Step 5. The permuted image p is encrypted into the

ciphered image c in Eqs. (9), (10) (11) and (12) by using

the above chaotic sequences. If the current round is not

the final round of encryption, the above steps will repeat

again. Otherwise, the encryption process completes.

3.5 Decryption algorithm

Input: The secret keys where K is a 4000-bit-long block,

lðl 2 ½3:87; 4�Þ, gðg 2 ½0:5; 1�Þ, c½0�ðc½0� 2 ½0; 255�Þ and

eðe 2 ½0:1; 1�Þ. The ciphered image c. The number of

rounds of decryption.

Output: Returns the recovery plaintext image sp.

Step 1. The initial values x1ði; jÞ are calculated in Eq. (8).

Step 2. The 100 chaotic sequences in the proposed

spatiotemporal chaotic system are calculated in Eq. (1).

Step 3. The variables of v and w are calculated in

Eqs. (6) and (7) according to K.

Step 4. The permuted image p is decrypted, and the

corresponding equation is represented by

p½m� ¼ fc½m��ðxstepþmði; jÞ�1010Þ� c½m�1�gmod 256:

ð13Þ

Step 5. The plaintext image sp is decrypted by

employing Arnold cat map. If the current round is not

the final round of decryption, the above steps will repeat

again. Otherwise, the decryption process completes.

For simulating experiments, we assign p ¼ 6, q ¼ 7,

l ¼ 3:87, e ¼ 0:5, g ¼ 0:9. Figure 6 shows the encryption

and decryption of images for one round. Figure 6u–x

shows the encryption and decryption of a color image of

Lena.

In the proposed algorithm, the bit-level permutation and

the value step depend on the sum of pixels about original

image, which can resist efficiently the chosen-plaintext

attack. These features strengthen the cryptosystem security.

4 Performance analyses

To evaluate the security of the encryption scheme, we

employ the secret key sensitivity, histogram analysis,

UACI, NPCR, correlation analysis and information entropy

in experiments.

4.1 Key space

The key space should be large enough to make brute force

attacks infeasible. Number of control parameters in secret

key: secret key K has 4000-bit-long block, l has a precision

of 10�2 and l	 3:7, e has a precision of 10�1 and g has a

precision of 10�1. The key space size is more than

24000 � 101200. It can be seen that the proposed encryption

algorithm is good at resisting brute force attack.

4.2 Key sensitivity

For testing the secret key sensitivity of K, without loss of

generality, only the last bit of K(10, 10) is changed. Fig-

ure 7 shows the two ciphered images of the Lena image

generated from two security keys with only the last bit of

K(10, 10) difference.

For testing the secret key sensitivity of l, without loss of

generality, we assign l ¼ 3:871. Figure 8 shows the two

ciphered images of the Lena image generated from two

security keys with only the l difference.

For testing the secret key sensitivity of g, without loss of

generality, we assign g ¼ 0:91. Figure 9 shows the two

ciphered images of the Lena image generated from two

security keys with only the g difference.

For testing the secret key sensitivity of e, without loss of

generality, we assign e ¼ 0:51. Figure 10 shows the two

cFig. 6 Encryption, decryption of images. a Original image of Lena,

b permuted image of Lena, c encrypted image of Lena, d decrypted

image of Lena, e original image of Baboon, f permuted image of

Baboon, g encrypted image of Baboon, h decrypted image of Baboon,

i original image of Barb, j permuted image of Barb, k encrypted

image of Barb, l decrypted image of Barb, m original image of Hill,

n permuted image of Hill, o encrypted image of Hill, p decrypted

image of Hill, q original image of Harbor, r permuted image of

Harbor, s encrypted image of Harbor, t decrypted image of Harbor.

u original color image of Lena, v permuted color image of Lena,

w encrypted color image of Lena, x decrypted color image of Lena
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ciphered images of the Lena image generated from two

security keys with only the e difference.

4.3 Histogram analysis

An ideal encrypted image should have a uniform and

completely different histogram against the plain image for

preventing the adversary from extracting any meaningful

information from the fluctuating histogram of the cipher

image.

Figures 11 and 12 show the histograms of the plain

images, encrypted images using the proposed algorithm

and encrypted images using 2DCML. Variances of his-

tograms are listed in Table 1. The lower value of variances

indicates the higher uniformity of ciphered images. In

Table 1, the variance value is 637992.5804 for histogram

of the plain image Lena, and the variance value is

Fig. 7 Key sensitivity of K. a Original Lena image, b ciphered Lena image using original K, c ciphered Lena image using changed K,

d difference between (b) and (c)

Fig. 8 Key sensitivity of l. a Original Lena image, b ciphered Lena image using original l, c ciphered Lena image using changed l, d difference

between (b) and (c)

Fig. 9 Key sensitivity of g. a Original Lena image, b ciphered Lena image using original g, c ciphered Lena image using changed g, d Difference

between (b) and (c)

Fig. 10 Key sensitivity of e. a Original Lena image, b ciphered Lena image using original e, c ciphered Lena image using changed e, d difference

between (b) and (c)
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1053.4431 for histogram of ciphered image Lena using

2DCML, which is greater than the variance 921.3020 for

histogram of ciphered image Lena using the proposed

algorithm. Therefore, the proposed algorithm is efficient.

4.4 Differential attack

To test the resistance of the differential attack of the

encryption scheme, we employ the UACI (unified average

changing intensity) and NPCR (number of pixels change

rate), which are defined by

UACI ¼ 1

M � N

X
ij

jc1ði; jÞ � c2ði; jÞj
255

" #
� 100%; ð14Þ

Dði; jÞ ¼
1 ¼ c1ði; jÞ 6¼ c2ði; jÞ;

0 ¼ otherwise;

8<
:

NPCR ¼
P

ij Dði; jÞ
M � N

� 100%;

8>>>>><
>>>>>:

ð15Þ

where c1 and c2 are the two ciphered images. Without loss

of generality, we select 50 groups’ images for each

experimental image, and each group includes two images:

One is the original image and the other is the image which

changed one randomly selected pixel value by adding 1 in

original image. The NPCR and UACI values with one

round of encryption are shown as Fig. 13a, b, which are

distributed near the ideal value (the horizontal line in

Fig. 13). The average values of NPCR and UACI are

NPCR = 0.996122681 and UACI = 0.334466780, which

are very close to the ideal values. The NPCR and UACI

performance compared with other algorithms is listed in

Table 2. These comparisons confirm that the proposed

algorithm is highly sensitive to a pixel change in plain

image.

4.5 Correlation analysis

The correlation between adjacent pixels in the ciphered

image should be significantly reduced, which is a good

feature of encryption schemes. To test the correlation of

plaintext image and ciphered image, the following proce-

dures are carried out. First, randomly select 2000 pairs of

two adjacent pixels from an image. Then, the correlation

coefficients of adjacent pixels in vertical, horizontal and

diagonal directions are evaluated by

rxy ¼
covðx; yÞffiffiffiffiffiffiffiffiffiffi
DðxÞ

p ffiffiffiffiffiffiffiffiffiffi
DðyÞ

p ; ð16Þ

EðxÞ ¼ 1

S

XS
i¼1

xi; ð17Þ

DðxÞ ¼ 1

S

XS
i¼1

ðxi � EðxÞÞ2; ð18Þ

covðx; yÞ ¼ 1

S

XS
i¼1

ðxi � EðxÞÞðyi � EðyÞÞ; ð19Þ

where x and y denote two adjacent pixels and S is the total

number of duplets (x, y) obtained from the image. E(x) and

D(x) are the expectation and the variance of x, respectively.

The calculated correlation coefficients of plaintext images

and the corresponding ciphered images from the proposed

encryption scheme are listed in Table 3. Comparisons of

the correlation coefficients of images are listed in Table 4.

4.6 Information entropy

We calculate the information entropy of the plain images

and the corresponding cipher images. The results are listed

in Table 5. It is obvious that the entropies of the cipher

images are all close to the ideal value 8, which means that

the probability of accidental information leakage is very

small. Meanwhile, compared with other algorithms

[5, 6, 9, 22, 38], information entropy using proposed

algorithm is higher. Thus, the proposed algorithm has the

desired property of information entropy.

4.7 Computational and complexity analysis

All the tests are implemented in Visual Studio 2010 (Visual

C??) with a Windows 7 Professional operating system,

and the computer is of an Intel Core 2.5 GHz CPU, 4 GB

RAM and 1000 GB hard disk, and some graphs are plotted

using MATLAB 2014(a). The image of Lena, the 512�512

image with 256 gray levels, is encrypted, respectively, by

the proposed algorithm, Zhang’s algorithm [35] and Lian’s

algorithm [29, 39] for ten times. The average encryption

time is 297.5 (ms), 218.4 (ms) and 336.7(ms), respectively.

For analyses of execution time in permutations, the

time-consuming part in computations is the pixel moving

operations. Both the proposed algorithm and Zhang’s

algorithm need O ðN2Þ iterations of pixel moving opera-

tions. In Lian’s algorithm, except the needed O ðN2Þ iter-

ations of pixel moving operations, another time-consuming

part in computations is O ðN2Þ iterations of calculations of

a sine function, which needs more time than the proposed

algorithm.

For analyses of execution time in diffusions, the time-

consuming part in computations is the operation of multi-

plying floating-point numbers. The proposed algorithm
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needs more time than the Zhang’s algorithm because the

proposed algorithm needs O ðL2 � N2Þ iterations of mul-

tiplying floating-point numbers, while the Zhang’s algo-

rithm needs O ðL� N2Þ iterations of multiplying floating-

point numbers. However, the proposed algorithm is more

efficient compared with Lian’s algorithm in total time.

There is a trade-off between security and processing time.

The proposed algorithm offers higher security as high-

lighted in previous sections, and if we decrease the size of

lattices L, the proposed algorithm can run faster.

bFig. 11 Histograms of the plain images and ciphered images.

a Histogram of Lena, b histogram of ciphered Lena image using

the proposed algorithm, c histogram of ciphered Lena image using

2DCML algorithm, d histogram of Baboon, e histogram of ciphered

Baboon image using the proposed algorithm, f histogram of ciphered

Baboon image using 2DCML algorithm, g histogram of Barb,

h histogram of ciphered Barb image using the proposed algorithm,

i histogram of ciphered Barb image using 2DCML algorithm,

j histogram of Hill, k histogram of ciphered image Hill using the

proposed algorithm, l histogram of ciphered Hill image using 2DCML

algorithm, m Histogram of Harbor, n histogram of ciphered Harbor

image using the proposed algorithm, o histogram of ciphered Harbor

image using 2DCML algorithm
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Fig. 12 Histograms of the color Lena image and ciphered color Lena

image. a Histogram of R channel of color Lena, b histogram of R

channel of ciphered color Lena image using the proposed algorithm,

c histogram of R channel of ciphered color Lena image using 2DCML

algorithm, d histogram of G channel of color Lena, e histogram of G

channel of ciphered color Lena image using the proposed algorithm,

f histogram of G channel of ciphered color Lena image using 2DCML

algorithm, g histogram of B channel of color Lena, h histogram of B

channel of ciphered color Lena image using the proposed algorithm,

i histogram of B channel of ciphered color Lena image using 2DCML

algorithm
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5 Conclusions

We propose a new image encryption algorithm using two-

dimensional spatiotemporal chaos system, which mixed

linear–nonlinear coupled map lattices. The system contains

the new features such as less periodic windows in bifur-

cations and larger range of parameters in chaotic dynamics,

which is more suitable for cryptography. In addition, the

image is permuted by the Arnold cat map for bit-level

Table 1 Variances of

histograms compared the plain

images and ciphered images

Image Plain image Ciphered image using

2DCML algorithm

Ciphered image using the

proposed algorithm

Lena 637992.5804 1053.4431 921.3020

Baboon 1043803.5843 1177.5059 930

Barb 581630.0078 1048.0392 967.0196

Hill 650902.1412 1179.3961 1050.0314

Harbor 3715881.1686 1179.3960 798.8863

Color Lena(R) 844580 991.1174 962.8586

Color Lena(G) 408440 983.5174 974.3174

Color Lena(B) 1167000 1124.2 876.1292
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Fig. 13 NPCR and UACI

values. a The NPCR values,

b The UACI values

Table 2 NPCR and UACI performance compared with other

algorithms

Image Algorithm NPCR UACI

Lena Proposed algorithm 0.996247610 0.334425723

Baboon Proposed algorithm 0.996139527 0.334916632

Barb Proposed algorithm 0.996228536 0.334903837

Lena Reference [6] 0.0015 0.0012

Lena Reference [32] 0.996170 0.330354

Lena Reference [22] 0.9979 0.3339

Lena Reference [5] 0.995894869 0.334645896

Lena Reference [37] 0.9961 0.3346

Lena Reference [9] 0.9961 0.3353

Lena Reference [38] 0.996253 0.334807

Baboon Reference [32] 0.995819 0.320972

Baboon Reference [22] 0.9980 0.3337

Baboon Reference [37] 0.9962 0.3344

Barb Reference [5] 0.996078491 0.334790692

Barb Reference [37] 0.9961 0.3346

Barb Reference [38] 0.996215 0.334691

Table 3 Correlation coefficient of images

Image Horizontal Vertical Diagonal

Plain Lena 0.969679 0.987698 0.967310

Cipher Lena 0.000581 - 0.000844 - 0.002550

Plain Baboon 0.743661 0.863635 0.705826

Cipher Baboon - 0.000439 - 0.000307 0.001201

Plain Barb 0.888022 0.966931 0.852119

Cipher Barb - 0.000956 0.000636 - 0.001509

Plain Hill 0.972634 0.970486 0.949966

Cipher Hill 0.000607 0.0005254 0.001266

Plain Harbor 0.816600 0.919997 0.776223

Cipher Harbor 0.000520 - 0.0005654 0.001470
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permutation, which can change the position and value of a

pixel simultaneously. A more than 4000-bit-long secret key

has been used to generate the initial conditions and

parameters of the maps. The algorithm also includes the

sum of pixels about original image, which can resist effi-

ciently the chosen-plaintext attack. The numerical results

show that the proposed algorithm has superior security and

high efficiency for image encryption.
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