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Abstract
Our purpose in this paper is to construct three types of single-hidden layer feed-forward neural networks (FNNs) with

optimized piecewise linear activation functions and fixed weights and to present the ideal upper and lower bound esti-

mations on the approximation accuracy of the FNNs, for continuous function defined on bounded intervals. We also prove

these three types of single-hidden layer FNNs can interpolate any bounded and measurable functions. Our approach

compared with existing methods does not require training. Our conclusions not only uncover the inherent properties of

approximation of the FNNs, but also reveal the latent relationship among the precision of approximation, the number of

hidden units and the smoothness of the target function. Finally, we demonstrate some numerical results that show good

agreement with theory.

Keywords FNN � Approximation � Upper bound � Lower bound

1 Introduction

Since it is wide and latent learning and expression capa-

bilities, neural networks have been widely used in the real

world. It includes almost all fields of natural science and

part of social science [1–6]. It is well known that the most

widely used neural networks is the feed-forward neural

networks (FNNs). Many practical problems related to

FNNs application, such as in pattern recognition, infor-

mation processing, engineering technology, computer sci-

ence, and systems control, can be converted into the ones

of learning (or approximating) multivariate functions by

the FNNs with optimized activation functions, for which an

extensive study on approximation by FNNs has been car-

ried out in a huge topic [7–14].

In recent years, interpolation (approximation with zero

error, namely, exact approximation) by FNNs has been a

hot spot of research in theory and application of FNNs and

its generalization, attracting the attention of scholars all

over the world [15–22].

The most widely used and studied neural networks are

maybe the FNNs with one hidden layer. The fundamental

element of a neural network is known as a ‘‘neuron’’ or a

‘‘unit.’’ Neurons are arranged in layers. A FNN with one

hidden layer consists of three layers: input layer, hidden

layer and output layer. A sketch map of a FNN is exhibited

in Fig. 1.

A three-layer FNN with d input units, m hidden units

and one output unit is mathematically represented as the

following form

NðxÞ :¼
Xm

i¼1

cir
Xd

j¼1

wijxj þ hi

 !
; x ¼ ðx1; x2; . . .; xdÞ 2 Rd; d� 1;

ð1:1Þ

where wi ¼ ðwi1;wi2; . . .;widÞT 2 Rd are connection

weights of the unit i in the hidden layer with the input units,

ci 2 R are the connection strengths of unit i with the output

unit, hi 2 R are the thresholds and r is the activation

function. The activation function be usually considered as

sigmoid style, namely, it satisfies limx!þ1 rðxÞ ¼ 1 and
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limx!�1 rðxÞ ¼ 0: Equation (1.1) can be further shown in

vector pattern as

NðxÞ :¼
Xm

i¼1

cirðwi � xþ hiÞ; x 2 Rd; d� 1:

We will study the following set of functions

Nd
nþ1ð/Þ :¼ NðxÞ ¼

Xn

j¼0

cj/ðwj � xþ bjÞ;wj 2 Rd; cj; bj 2 R

( )
;

where wj � x expresses the ordinary dot product of Rd and /
is a function of R to itself. We call three-layer FNNs with

one hidden layer to be the elements of Nd
nþ1ð/Þ, and also

call unit to each summand of NðxÞ.
Function approximation by FNNs (1.1) has been

extensively studied in the past years with a variety of

important results involving density or complexity (see, e.g.,

[1–14]). The density problem is to determine the require-

ments under which any function can be approximated by a

three-layer FNN with arbitrary precision. The complexity

problem is to ascertain the relationship between the

smoothness of the approximated function and the lost

necessary to attain an approximation with a desired accu-

racy, which is nearly equivalent to the problem of the

metric of approximation [10]. In essence, the problem of

density is qualitative research, while the complexity is a

quantitative study. Up to now, all kinds of density and

complexity outcomes on approximation of the functions by

the FNNs (1.1) in the set Nd
nþ1ð/Þ were given by using

different approaches for more or less general situations (

for instance [10, 23–30] and references therein). However,

in previous papers [1–30, 30–41], the weights and thresh-

olds in FNNs vary such that the results are very difficult to

be applied in reality.

Let S ¼ fx0; x1; . . .; xng � Rd be a set of mutually dif-

ferent vectors, fyi; i ¼ 0; 1; . . .; ng be a set of real numbers

and ðx0; y0Þ; ðx1; y1Þ; . . .; ðxn; ynÞ; be a group of ordered

pairs. We know that the FNNs (1) N : Rd ! R is an

interpolation of these ordered pairs if

NðxiÞ ¼ yi; i ¼ 0; 1; . . .; n.

As we know, three-layer FNNs with at most nþ 1

summands (components of Nd
nþ1;u) can learn nþ 1 dif-

ferent samples ðxi; yiÞ with zero error (exact approxima-

tion), and the weights wj and thresholds bj can be selected

‘‘almost’’ arbitrarily. Two main types of proofs of this

conclusion have been provided. One is analysis mode,

which can be founded in [3, 4, 16, 17, 30, 31]. Another is

algebraic form, which has constructive features as given in

[4, 6, 18–21, 31–33, 42]. Other direct methods of finding

one weight are more difficult and burdensome [4, 18].

From the process of the proof in these references, we can

see that it is basically invalid, since almost all the algebraic

methods and other direct approaches need to solve a ðnþ
1Þ � ðnþ 1Þ matrix or its inverse matrix. Particularly,

when the number of units is large.

2 Description of problems

The problems considered in this paper are as follows: In

previous studies ([1–30, 30–41] about the density or

complexity of approximation, interpolation), the weights

and thresholds in FNNs vary and so the theoretical results

are very difficult to be applied in approximate calculation

and other aspects. In order to make them easy in applica-

tion, Ismailov [43] studied function approximation by

FNNs with weights varying on a finite set of directions.

Nageswara [44] considered learning a function f by using

feed-forward sigmoid networks with a single hidden layer

and bounded weights. For any continuous function on a

compact subset of R, Chui and Li [11] established a density

result by FNNs with a sigmoidal function having integer

weights and thresholds. Ito [12] proved that the FNNs with

sigmoidal functions having unit weights can approximate

any continuous function to arbitrary precision on a compact

subset of R.

What if the weights and thresholds in FNNs are fixed?

Are these kinds of FNNs possible to approximate arbitrary

continuous functions in this case? For all we know, this

question was first solved by Hahm and Hong [45]. They

showed that a FNNs with a sigmoidal activation function

and fixed weights can approximate any function to arbi-

trary precision in C0 on R. Unfortunately, the findings

mentioned above almost are qualitative in feature [45].

Actually, from the application point of view, however, the

quantitative study of FNNs approximation is more useful.

The so-called quantitative research is the upper and

lower bounds estimations of the neural network approxi-

mation ability. (If the upper and lower bounds estimations

Fig. 1 The architecture of a single hidden layer FNN with n input

neurons, m hidden neurons and p output neurons
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have the same order, then we call the order of the bounds as

the essential order of approximation [46]). In the past ten

years, Xu has led the team to create a precedent in the field

of this research, and has made a series of important theo-

retical results, which lays some key foundations for further

research on the complexity of the neural network approx-

imation [46–53]. Certainly, these important results are

more inclined to theoretical research and are not easy to

practice in reality, because the inner universal functions are

highly non-smooth or incomputable [47, 52], or infinite

differentiability [46, 47, 51, 53], or the number of hidden

neurons is exceedingly large [46, 50, 52], or the weights

and thresholds in FNNs are variable [51–53].

Based on the above systematical analysis, the following

problems arise naturally:

Problem 2.1 Can we fix the weights and thresholds in

FNNs and provide the quantitative study of their approxi-

mation ability to make them easy in theory or application?

Problem 2.2 How the approximation capability of a FNN

with the fixed weights and thresholds is related to the

topology of the network? Loosely speaking, how many

hidden units are required in order for this network to reach

a predetermined approximation precision?

Problem 2.3 Is there a way to get the weights and the

thresholds of an exact FNN approximation without train-

ing? In other words, is there an effective method to find the

fixed weights and thresholds in FNN to satisfy the inter-

polation conditions?

The purpose of this paper is to solve all problems

mentioned above by constructing three types of FNNs with

optimized activation functions and fixed weights and

thresholds and establishing the quantitative approximation

theorems. In the following, optimized activation functions

and three types of FNNs are defined and then, in Sect. 4,

some approximation and interpolation results are obtained.

In Sect. 5, applying the theoretical results obtained in this

paper, we demonstrate some numerical approximation and

interpolation results that show good agreement with theo-

retical results. Finally, we summarize the paper and foresee

problems for the further study.

3 Optimized activation function
and constructed FNNs

In this section, we wish to study the activation function

usually used in the literature. In fact, a neuron cannot stay

excited or inhibited indefinitely. Therefore, in this work,

we appoint there exist excitement and inhibition. Based on

this hypothesis, we define triangular and trapezoidal units.

By using these neurons, we can provide many activation

functions, which indicate naturally why the neural network

has the ability of uniform approximation. In what follows,

we appoint that C[a, b] is the set of all continuous func-

tions f : ½a; b� ! R defined on the bounded interval [a, b].

Let r : R ! ½0; c� be the ramp function defined by

rðxÞ :¼

0; x� � l0;

c; x� l0;
xþ l0
2l0

c; � l0\x\l0;

8
>><

>>:
c 2 Rþ; 0\l0 �

1

2
:

ð3:1Þ

Figure 2 exhibits the ramp function that defined by

Eq. (3.1).

Remark 3.1 The ramp transfer function defined above is

an example of sigmoidal activation function when c ¼ 1. If

c ¼ 1, and l0 ¼ 1=2, it is the same as in [22].

We are now trying to construct a new function u1 by

using the ramp functions. We define

u1ðxÞ : ¼ rðxþ l0Þ � rðx� l0Þ

¼
0; jxj � 2l0;

1� 1

2l0
jxj

� �
c; jxj\2l0;

8
<

: c 2 Rþ; 0\l0 �
1

2
:

ð3:2Þ

Thus, Eq. (3.2) illustrates the triangle function (see Fig. 3).

Figures 2 and 3 exhibit the activation functions with

unbounded excitement or unbounded inhibition. In fact,

from a biological point of view, excitement and inhibition

Fig. 2 Ramp activation function

Fig. 3 Triangle activation function
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should not happen abruptly. There should have balance

(buffer) zones for both excitement and inhibition. For that

reason, we can define a more reasonable and nonnegative

activation function as follows:

u2ðxÞ : ¼ rðxþ 2l0Þ � rðx� 2l0Þ

¼

0; jxj � 2l0;

1� 1

l0
jxj

� �
c; l0\jxj\2l0;

c; jxj � l0;

8
>>><

>>>:
c 2 Rþ; 0\l0 �

1

2
;

ð3:3Þ

which optimizes the ramp activation function and the tri-

angle activation function. We now see that Eq. (3.3) shows

a trapezoidal activation function, which is illustrated in

Fig. 4.

Remark 3.2 The ramp activation functions, triangle acti-

vation functions and trapezoidal activation functions are all

piecewise linear activation functions.

The triangle functions u1ðxÞ and the trapezoidal func-

tions u2ðxÞ have the following helpful properties:

P1 : Both u1ðxÞ and u2ðxÞ are even functions;

P2 : Both u1ðxÞ and u2ðxÞ are non-decreasing for x\0

and non-increasing for x[ 0;

P3 : SuppðujÞ 	 ½� c; c�; j ¼ 1; 2.

We now consider the uniform space nodes

xk ¼ aþ kh; k ¼ 0; 1; . . .; n, on the interval [a, d], where

h ¼ d�a
n

¼ 2ðb�aÞ
n

; b ¼ dþa
n
.

Now, we are able to construct three types of FNNs based

on piecewise line activation functions u1ðxÞ and u2ðxÞ
above defined.

Definition 3.1 If n 2 Nþ and f : ½a; d� ! R is a bounded

and measurable function, then we construct the FNNs with

optimized piecewise line activation functions u1ðxÞ and

u2ðxÞ as follows:

Nn;jðf ; xÞ :¼
Pn

k¼0 f ðxkÞuj
n

2ðb�aÞ x� n
2ðb�aÞ xk

� �

Pn
k¼0 uj

n
2ðb�aÞ x� n

2ðb�aÞ xk

� � ;

x 2 ½a; d�; j ¼ 1; 2:

ð3:4Þ

Remark 3.3 Actually, in [22], such similar neural net-

work, are called ‘‘interpolation neural network operators’’

and have been introduced and studied in case of u1ðxÞ only
with parameter c ¼ 1, i.e., when r is a sigmoidal function,

and with the parameter l0 ¼ 1=2, the step h ¼ b�a
n
.

Certainly, the FNNs can be established by using other

types of sigmoidal functions as activation function.

Denoted by

MsðxÞ :¼
1

ðs� 1Þ!
Xs

i¼0

ð� 1Þi s

i

� �
ðl0sþ x� iÞs�1

þ ; x 2 R;

the well-known B-splines of order s 2 Nþ [54]. Here and

hereafter, the function ðxÞþ :¼ maxfx; 0g represents the

positive past of x. The functions Ms have compact support

with suppðMsÞ 	 ½� s=2; s=2� for arbitrary s 2 Nþ. Only if

l0 ¼ 1=2, the MsðxÞ are the well-known central B-splines.

We recall the definition of other kinds of sigmoidal func-

tions rMs
ðxÞ, firstly introduced in [34].

rMs
ðxÞ :¼

Z x

�1
MsðtÞdt; x 2 R:

We can easily find that rM1
ðxÞ accords exactly with the

piecewise linear function rðxÞ. Now, we can define the

following nonnegative activation functions:

usðxÞ :¼ rMs
ðxþ l0Þ � rMs

ðx� l0Þ; x 2 R; ð3:5Þ

for any s 2 Nþ. Similarly to the case of the piecewise

linear functions u1 and u2, the function usðxÞ possesses the
following properties:

P4: usðxÞ is an even function;

P5: usðxÞ is non-decreasing for x\0 and non-increasing

for x� 0;

P6: suppðusÞ 	 ½�Ks;Ks� :¼ ½� l0ðsþ 1Þ; l0ðsþ 1Þ�,
and us

Ks

2

� �
¼ us

l0ðsþ1Þ
2

� �
[ 0.

Definition 3.2 For any bounded and measurable function

f : ½a; d� ! R, the approximator: FNNs with activation

function us are defined by

Nn;sðf ; xÞ :¼
Pn

k¼0 f ðxkÞus Ks
nðx�xkÞ
2ðb�aÞ

� �

Pn
k¼0 us Ks

nðx�xkÞ
2ðb�aÞ

� � ; x 2 ½a; d�:

ð3:6Þ

Remark 3.4 In fact, when s ¼ 1, the FNNs defined in (3.6)

degenerate to those recalled in (3.4). Also the neuralFig. 4 Trapezoidal activation function
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networks Nn;sðf ; xÞ have been originally defined and stud-

ied in [22] in case of l0 ¼ 1=2, and the step h ¼ b�a
n
.

4 Theoretical results

In the current note, the following quantitative approxima-

tion results for the family of FNNs Nn;j; j ¼ 1; 2 and

Nn;s; s 2 Nþ can be proved. For every r 2 Nþ, d[ 0, and

any function f 2 C½a; d�, we now recall the well-known

definition of rth order modulus of smoothness, and the

Lipschitzian function class of f as follows [55]:

xrðf ; dÞ :¼ sup
a� x;xþrt� b;jtj � d

jDr
t f ðxÞj;

where Dr
t f ðxÞ :¼ D1

t D
r�1
t f ðxÞ, and D1

t f ðxÞ :¼ f ðxþ tÞ�
f ðxÞ. Note that, when r ¼ 1, we have x1ðf ; dÞ ¼ xðf ; dÞ.
Namely, the first order modulus of smoothness of f is the

same as modulus of continuity of f.

Lipðf; aÞ2 :¼ fjx2ðf; dÞ�Mda; a 2 ð0; 2�;f
M is a positive constantg:

The rth order modulus of smoothness possesses the fol-

lowing helpful properties:

1. xrðf ; dÞ is a monotonically increasing continuous

function about d, and xrðf ; 0Þ ¼ 0 ;

2. If 0� s\r; then xrðf ; dÞ� 2r�sxsðf ; dÞ;
3. If 0\d\g; then 0\xrðf ; gÞ � xrðf ; dÞ�

2rrxðf ; g� dÞ, and g�rxrðf ; gÞ� 2rd�rxrðf ; g� dÞ;
4. xrðf ; pdÞ� prxrðf ; dÞ for any p 2 Nþ;

5. xrðf ; qdÞ�xrðf ; ½qþ 1�dÞ� ðqþ 1Þrxsðf ; dÞ for arbi-

trary non-natural number q[ 0;

6. If f has rth order continuous derivatives, then

xrðf ; dÞ� drjjf ðrÞjjC, and xrþsðf ; dÞ� drxsðf ðrÞ; dÞ.

4.1 Upper bound of approximation

For any continuous functions defined on [a, d], the fol-

lowing upper bound estimations theorem about the quan-

titative research on the approximation of FNNs can be

proved.

we now give the main results of this subsection.

Theorem 4.1 Let f 2 C½a; d� be fixed. Then

jjNn;1ðf ; xÞ � f ðxÞjj1 � 4x2 f ;
b� a

n

� �
; 8n 2 Nþ;

ð4:1Þ

jjNn;2ðf ; xÞ � f ðxÞjj1 � 4x2 f ;
b� a

n

� �
; 8n 2 Nþ;

ð4:2Þ

jjNn;sðf ; xÞ � f ðxÞjj1 � 2

usðKs

2
Þ
x2 f ;

b� a

n

� �
; 8n; s 2 Nþ:

ð4:3Þ

Remark 4.1 The Theorem 4.1 is the positive theorem of

approximation of the three kinds of FNNs. These approx-

imation upper bounds are inspired to the results originally

in [22], in case of u1ðxÞ, with c ¼ 1, l0 ¼ 1=2, and the step

h ¼ b�a
n
, and for u2ðxÞ with l0 ¼ 1=2, the step h ¼ b�a

n
.

Moreover, Eqs. (4.1) and (4.3) obviously deepen the results

proved in [22] ( For instance, if gðxÞ ¼ xn; n 2 N is a

polynomial, then xðg; tÞ ¼ 
ðtÞ, while x2ðg; tÞ ¼ 
ðt2Þ.),
and Eq. (4.2) represents a completely new result.

Proof In fact, we find that for each x 2 ½a; d�, by using P1,

and then, we obtain

Xn

k¼0

uj

nðx� xkÞ
2ðb� aÞ

� �
¼
Xn

k¼0

uj

njx� xkj
2ðb� aÞ

� �
�uj

njx� xij
2ðb� aÞ

� �
;

j ¼ 1; 2;

ð4:4Þ

where i 2 f0; 1; . . .; ng satisfies jx� xij � l0h. Thus,

njx� xij
2ðb� aÞ �

nl0h
2ðb� aÞ ¼ l0; ð4:5Þ

By Eqs. (4.4), (4.5) and P2, we have

Xn

k¼0

uj

nðx� xkÞ
2ðb� aÞ

� �
�uj

njx� xij
2ðb� aÞ

� �
�ujðl0Þ

¼
1

2
c; j ¼ 1;

c; j ¼ 2:

8
<

:

ð4:6Þ

In addition, for any bounded and measurable function

f : ½a; d� ! R, we obtain

jNn;jðf ; xÞj � jjf jj1

Pn
k¼0 uj

nðx�xkÞ
2ðb�aÞ

� �

Pn
k¼0 uj

nðx�xkÞ
2ðb�aÞ

� � ¼ jjf jj1\þ1; j ¼ 1; 2;

for each x 2 ½a; d�, where jjf jj1 :¼ supx2½a;d� jf ðxÞj.
For each x 2 ½a; d� and by (4.6), we know that

��Nn;1ðf ; xÞ � f ðxÞ
��

¼

Pn
k¼0 f ðxkÞu1

nðx�xkÞ
2ðb�aÞ

� �
� f ðxÞ

Pn
k¼0 u1

nðx�xkÞ
2ðb�aÞ

� ����
���

Pn
k¼0 u1

nðx�xkÞ
2ðb�aÞ

� �

� 2

c

Xn

k¼0

f ðxkÞu1

nðx� xkÞ
2ðb� aÞ

� �
� f ðxÞ

Xn

k¼0

u1

nðx� xkÞ
2ðb� aÞ

� ������

�����

� 2

c

Xn

k¼0

f ðxkÞ � f ðxÞj ju1

nðx� xkÞ
2ðb� aÞ

� �
;
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for every fixed n 2 Nþ. We now choose i 2 f0; 1; . . .; n�
1g such that xi � x� xiþ1, then

Nn;1ðf ; xÞ � f ðxÞ
�� ��� 2

c

Xn

k¼0;k 6¼i;iþ1

jf ðxkÞ � f ðxÞju1

nðx� xkÞ
2ðb� aÞ

� �"

þ jf ðxiÞ � f ðxÞju1

nðx� xiÞ
2ðb� aÞ

� �

þ jf ðxiþ1Þ � f ðxÞju1

nðx� xiþ1Þ
2ðb� aÞ

� �	

¼:
2

c
½I1 þ I2 þ I3�:

Obviously, for k 6¼ i; iþ 1, we obtain
njx�xkj
2ðb�aÞ � nh

2ðb�aÞ ¼ 1,

then by the properties P1, P2 and P3, we have

0�u1

nðx� xkÞ
2ðb� aÞ

� �
¼ u1

njx� xkj
2ðb� aÞ

� �
�u1

nh

2ðb� aÞ

� �

¼ u1ð1Þ ¼ 0;

which implies, I1 ¼ 0. Since jxi � xj � h and jxiþ1 � xj � h,

we can find

jf ðxiÞ � f ðxÞj�x2

�
f ;
b� a

n

�
:

Similarly,

jf ðxiþ1Þ � f ðxÞj �x2 f ;
b� a

n

� �
:

Finally, we obtain

I1 þ I2 þ I3 ¼ I2 þ I3 � 2cx2 f ;
b� a

n

� �
:

With this, the proof of (4.1) in Theorem 4.1 is completed.

Applying the same method used in proof of (4.1) in

Theorem 4.1, we can prove (4.2) in Theorem 4.1. We

omit the details. Next, we will prove (4.3) in

Theorem 4.1.

Employing the technique similar to that adopted in

Eqs. (4.4)–(4.6), it is easily to prove that the above FNNs

(3.6) are well defined for arbitrary n 2 Nþ and

Xn

k¼0

us Ks

nðx� xkÞ
2ðb� aÞ

� �
�us

Ks

2

� �
[ 0:

Now, for each x 2 ½a; d�, and f 2 C½a; d�, there exists i 2
f0; 1; 2; . . .; n� 1g such that xi � x� xiþ1, and then we

have

Nn;sðf ; xÞ � f ðxÞ
�� ��

¼
Pn

k¼0 f ðxkÞus Ks
nðx�xkÞ
2ðb�aÞ

� �
� f ðxÞ

Pn
k¼0 us Ks

nðx�xkÞ
2ðb�aÞ

� ����
���

Pn
k¼0 us Ks

nðx�xkÞ
2ðb�aÞ

� �

� 1

usðKs=2Þ
Xn

k¼0

f ðxkÞus Ks

nðx� xkÞ
2ðb� aÞ

� ������

� f ðxÞ
Xn

k¼0

us Ks

nðx� xkÞ
2ðb� aÞ

� ������

� 1

usðKs=2Þ
Xn

k¼0

jf ðxkÞ � f ðxÞjus Ks

nðx� xkÞ
2ðb� aÞ

� �

¼ 1

usðKs=2Þ
Xn

k¼0;k 6¼i;iþ1

jf ðxkÞ � f ðxÞjus Ks

nðx� xkÞ
2ðb� aÞ

� �"

þ jf ðxiÞ � f ðxÞjus Ks

nðx� xiÞ
2ðb� aÞ

� �

þ jf ðxiþ1Þ � f ðxÞjus Ks

nðx� xiþ1Þ
2ðb� aÞ

� �	

¼:
1

usðKs=2Þ
½J1 þ J2 þ J3�:

The addends J1; J2 and J3 can be handled as made in the

proof of (4.1) in Theorem 4.1, and then, (4.3) in Theorem 1

follows immediately. This completes the proof of the

Theorem 4.1.

4.2 Lower bound of approximation

Until now, many results about density and upper bound

estimations on approximation of the functions by the FNNs

(1.1) in the set Nd
nþ1ð/Þ were given by many researchers

[2, 9, 23, 24, 26–33, 54–65]. In fact, because the estab-

lished upper bound estimations can only control one side of

the approximation error, the estimation results might be too

loose to perfectly reflect the approximation capability of

the FNNs. Naturally, in order to characterize the approxi-

mation ability of FNNs more precisely, besides upper

bound estimation, a lower bound estimation that reflects the

worst approximation precision of the network is still a

question that is worth studying. Therefore, we emphasize

that the results of this subsection are completely new.

We now give the main results of this subsection.

Theorem 4.2 Let f 2 C½a; d� be fixed. Then

x2 f ;
b� a

n

� �
� C

n

Xn

i¼1

jjNi;jðf ; xÞ � f ðxÞjj1; j ¼ 1; 2; n 2 Nþ;

ð4:7Þ

x2 f ;
b� a

n

� �
� C

n

Xn

i¼1

jjNi;sðf ; xÞ � f ðxÞjj1; 8s 2 Nþ:

ð4:8Þ
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Here and hereafter, C that appears in different situations

may be different but all are positive constants independent

of n and f.

Remark 4.2 We emphasize that the results of this sub-

section are completely new. The Theorem 4.2 is the con-

verse theorem of approximation of the three kinds of

FNNs. These conclusions reveal three lower bound esti-

mations on approximation precision of these FNNs, which

means that the average of these FNNs over the number of

hidden neurons is lower controlled by the second order

modulus of smoothness of function f.

In order to prove Theorem 4.2, we will use the famous

Bernstein polynomial and the extended Bernstein polyno-

mial as two basic tools. Let f 2 C½0; 1�, the sequence of

Bernstein polynomials for f(x) is defined by [66]

Bnðf ; xÞ :¼
Xn

k¼0

f
k

n

� �
n

k

� �
xkð1� xÞn�k; x 2 ½0; 1�:

Similarly, if f 2 C½a; d�, then we define the extended

Bernstein polynomials for f(x) as follows

EBnðf ; xÞ :¼
Xn

k¼0

f aþ k

n
ðd � aÞ

� �
n

k

� � x� a

d � a

� �k
1� x� a

d � a

� �n�k

;

x 2 ½a; d�:

For nearly half a century, the Bernstein polynomial and its

improvement have attracted much interest, and a great

number of interesting results to the classical Bernstein

polynomial have been obtained [66–69].

The following fundamental result on classical Bernstein

polynomial is well known [55]. In order to facilitate

readers, we give the lemmas as follows:

Lemma 4.1 ([55]) Let f 2 C½0; 1�. Then there is positive

constant C such that

w2 f ;
1

n

� �
� C

n

Xn

k¼1

jjBkðf ; xÞ � f ðxÞjj1:

According to the Lemma 4.1, we can easily get the fol-

lowing Lemma 4.2.

Lemma 4.2 If f 2 C½a; d�. Then there is positive constant

C such that

w2 f ;
b� a

n

� �
�w2 f ;

d � a

n

� �
� C

n

Xn

k¼1

jjEBkðf ; xÞ � f ðxÞjj1:

Lemma 4.3 ([45]) Let f 2 C½a; d�. If r is a bounded

measurable sigmoidal function on R. Then, for any �[ 0,

there is a neural network NnðxÞ of the form (1.1), such that

jNnðxÞ � f ðxÞj\�;

where NðxÞ ¼
Pn

i¼1 cirðwixþ hÞ; ci;wi; h 2 R.

We now are to prove Theorem 4.2. First, we demand an

equivalent description of the extended Bernstein operator.

where di;k ¼ ð�1Þif ðaþ k
n
ðd � aÞÞ n

k

� � ðn�kÞ!
i!ðn�k�iÞ!.

Second, let r be a fixed integer and PrðxÞ ¼ arx
r; x 2

½a; d� be a univariate polynomial of degree r. By

Lemma 4.3, we know that there is a FNN of the form (1.1)

the number of whose hidden units is not less than ðr þ 1Þ
such that

EBnðf ; xÞ ¼
Xn

k¼0

f aþ k

n
ðd � aÞ

� �
n

k

� � x� a

d � a

� �k
1� x� a

d � a

� �n�k

¼
Xn

k¼0

f aþ k

n
ðd � aÞ

� �
n

k

� � x� a

d � a

� �k

� 1þ C1
n�k � x� a

d � a

� �
þ � � � þ Ci

n�k � x� a

d � a

� �i
þ � � � þ � x� a

d � a

� �n�k
� �

¼
Xn

k¼0

f aþ k

n
ðd � aÞ

� �
n

k

� �Xn�k

i¼0

ð� 1Þi ðn� kÞ!
i!ðn� k � iÞ!

x� a

d � a

� �iþk

¼
Xn

k¼0

Xn�k

i¼0

f aþ k

n
ðd � aÞ

� �
n

k

� �
ð� 1Þi ðn� kÞ!

i!ðn� k � iÞ!
x� a

d � a

� �iþk

¼
Xn

k¼0

Xn�k

i¼0

di;k
x� a

d � a

� �iþk

; x 2 ½a; d�;

ð4:9Þ
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jNnðxÞ � PrðxÞj\�:

We find that in (4.9) each term is a univariate polynomial

of x with order iþ kðiþ k� nÞ; therefore, it can be

approximated arbitrarily well by a FNN of the form

Niþkþ1ðxÞ ¼
XKiþk

l¼1

cl;iþkrðwl;iþkxþ hÞ; Kiþkþ1 � iþ k þ 1:

ð4:10Þ

Because Bnðf ; xÞ and EBnðf ; xÞ can approximate f, the

following FNNs

Xn

k¼0

Xn�k

i¼0

di;k
XKiþk

l¼1

cl;iþkrðwl;iþkxþ hÞ; cl;iþk;wl;iþk 2 R;

Kiþk � iþ k þ 1

can approximate f to any accuracy. In consequence, the

networks (4.10) will be the FNN models we propose to use

in this subsection.

At the third stage, according to Lemma 4.3, the poly-

nomial xiþkðiþ k� nÞ can be approximated by a network

having the following form

NKiþk
¼
XKiþk

l¼1

cl;iþkrðwl;iþkxþ hÞ; cl;iþk;wl;iþk 2 R;

Kiþk � iþ k þ 1;

ð4:11Þ

with approximation error

jNKiþk
� xiþkj\�: ð4:12Þ

Equations (4.11) and (4.12) imply

jjNmðf ; xÞ � EBmðf ; xÞjj1

¼
Xm

k¼0

Xm�k

i¼0

di;k xiþk �
XKiþk

l¼1

cl;iþkrðxl;iþkxþ hÞ
( )�����

�����

�����

�����
1

¼
Xm

k¼0

Xm�k

i¼0

jdi;kj max
x2½a;b�

xiþk � NKiþk

�� ��

� �
Xm

k¼0

Xm�k

i¼0

jdi;kj:

Next, taking f ðxkÞ ¼
Pm�k

i¼0

PKiþk

l¼1 di;kcl;iþk, uj ¼ r,
n

2ðb�aÞ ¼ xl;iþk, and h ¼ n
2ðb�aÞ xk in (3.4), and by (4.6), we

have

Finally, for the constructed FNN

Xn

k¼0

Xn�k

i¼0

di;k
XKiþk

l¼1

cl;iþkrðwl;iþkxþ hÞcl;iþk;wl;iþk 2 R;

Kiþk � iþ k þ 1;

we obtain the lower bound estimation of jjNn;j � f jj1; j ¼
1; 2 as follows:

x2 f ;
b� a

n

� �
� C

n

Xn

k¼1

jjEBkðf ; xÞ � f ðxÞjj1

� C

n

Xn

k¼1

jjEBkðf ; xÞ � Nk;jðf ; xÞjj1 þ jjNk;jðf ; xÞ � f ðxÞjj1

 �

� C

n

Xn

k¼1

jjNk;jðf ; xÞ � f ðxÞjj1 þ C�

n

Xn

k¼0

Xn�k

i¼0

XKiþk

l¼1

jdi;kj:

Letting � tend to zero, it then follows that

Nm;jðf ; xÞ � EBmðf ; xÞ
�� ���� ��

1¼
Pm

k¼0 f ðxkÞuj
nðx�xkÞ
2ðb�aÞ

� �

Pm
k¼0 uj

nðx�xkÞ
2ðb�aÞ

� � � EBmf ðxÞ

������

������

������

������
1

� 2

c

Xm

k¼0

f ðxkÞuj

nðx� xkÞ
2ðb� aÞ

� �
� EBmðf ; xÞ

�����

�����

�����

�����
1

�C
Xm

k¼0

f ðxkÞuj

nðx� xkÞ
2ðb� aÞ

� �
� EBmðf ; xÞ

�����

�����

�����

�����
1

¼C
Xm

k¼0

Xm�k

i¼0

di;k
XKiþk

l¼1

cl;iþkrðwl;iþkxþ hÞ � EBmðf ; xÞ
�����

�����

�����

�����
1

¼CjjNmðf ; xÞ � EBmðf ; xÞjj1

�C�
Xm

k¼0

Xm�k

i¼0

jdi;kj:
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x2 f ;
b� a

n

� �
� C

n

Xn

k¼1

jjNk;jðf ; xÞ � f ðxÞjj1; j ¼ 1; 2:

Thus the first part of the Theorem 4.2 is proved. The sec-

ond part of the Theorem 4.2 follows immediately by the

same arguments used in the proof process of the first part of

the Theorem 4.2. In order not to repeat, we omit the details.

4.3 Essential order of approximation

If the arithmetic means on the right sides of in Eqs. (4.1),

(4.2), (4.7) and (4.3), (4.8) can be substituted by

jjNn;jðf ; �Þ � f ð�Þjj1; j ¼ 1; 2 and jjNn;sðf ; �Þ � f ð�Þjj1;

respectively, then by Theorems 4.1 and 4.2, we obtain that

the upper and lower bound estimations of approximation

by the FNNs, Nn;jðf Þ; j ¼ 1; 2 and Fn;sðf Þ, become identical

as the second order modulus of smoothness of approxi-

mated function f. Namely,

x2 f ;
b� a

n

� �
� jjNn;jðf ; �Þ � f ð�Þjj1; j ¼ 1; 2;

and

x2 f ;
b� a

n

� �
� jjNn;sðf ; �Þ � f ð�Þjj1; s 2 Nþ:

Unfortunately, up to now, we cannot answer these prob-

lems for arbitrary function classes. Happily, we can solve

them when the approximated function f belonging to the

class of second order Lipschitz að0\a� 2Þ. From this

point of view, the following Theorem 4.3 can be drawn

directly by combining the Theorem 4.1 with the

Theorem 4.2.

Theorem 4.3 Let f 2 C½a; d� be fixed. Then

jjNn;jðf ; xÞ � f ðxÞjj1 ¼ 
ðn�aÞ , f 2 LipðaÞ2; for j ¼ 1; 2:

jjNn;sðf ; xÞ � f ðxÞjj1 ¼ 
ðn�aÞ , f 2 LipðaÞ2; for s 2 Nþ:

Remark 4.3 We emphasize that the results of this sub-

section are completely new. The Theorem 4.3 points out

that the inherent approximation order of these three

kinds of FNNs is Oðn�aÞ. Thus, the approximation

capability of the three kinds of FNNs is thoroughly

decided by the smoothness of approximated functions.

That is to say, the better the properties of the approxi-

mated function is, the higher the precision of approxi-

mation is. But the maximal precision of approximation

cannot outperform Oðn�aÞ.

Remark 4.4 Theorems 4.1, 4.2 and 4.3 are three affirma-

tive answers to the Problems 2.1 and 2.2. The connection

weights and the thresholds are, respectively, equal to n
2ðb�aÞ

and �nxk
2ðb�aÞ in the FNNs Nn;1 and Nn;2. Moreover, the con-

nection weights and the thresholds in the FNNs Nn;s are

equal to Ks
n

2ðb�aÞ ¼ l0ðsþ 1Þ n
2ðb�aÞ and �Ks

nxk
2ðb�aÞ ¼

�l0ðsþ 1Þ nxk
2ðb�aÞ. Because a; b 2 R; l0 2 Rþ are all con-

stants, s 2 Nþ is the positive integer, and n 2 Nþ is the

number of hidden neurons, we can find the connection

weights and the thresholds in the FNNs to satisfy the

approximation conditions and do not need to train. It gives the

quantitative researches on approximation precision of these

FNNs and characterizes the implicit relationship among the

precision of approximation, the number of hidden neurons

and the smoothness of the approximated function.

4.4 Interpolation

In the current note, the following interpolation (exact

approximation) results for the family of FNNs Nn;j; j ¼ 1; 2

and Nn;s; s 2 Nþ can be proved.

Theorem 4.4 If f : ½a; d� ! R be a bounded and measur-

able function and n 2 Nþ, then

Nn;1ðf ; xiÞ ¼ f ðxiÞ; for every i ¼ 0; 1; . . .; n; ð4:13Þ

Nn;2ðf ; xiÞ ¼ f ðxiÞ; for every i ¼ 0; 1; . . .; n; ð4:14Þ

Nn;sðf ; xiÞ ¼ f ðxiÞ; for every i ¼ 0; 1; . . .; n; and s 2 Nþ:

ð4:15Þ

Remark 4.5 The results in Theorem 4.4 are inspired to the

results originally in [22], in case of u1ðxÞ, with c ¼ 1,

l0 ¼ 1=2, and the step h ¼ b�a
n
, and for u2ðxÞ with

l0 ¼ 1=2, and the step h ¼ b�a
n
. Moreover, Eqs. (4.13) and

(4.15) represent a slight extension of the results proved in

[22], and Eq. (4.14) represent a completely new result.

Proof Let i 2 f0; 1; . . .; ng be fixed. If k ¼ i, then we

obtain

uj

nðxi � xkÞ
2ðb� aÞ

� �
¼ ujð0Þ ¼ c; j ¼ 1; 2:

While, if k 6¼ i, then we have

njxi � xkj
2ðb� aÞ � nh

2ðb� aÞ ¼ 1:

Thus, by using 0\l0 � 1
2
and the properties P1 and P2, we

obtain that

0 ¼ ujð2l0Þ ¼ ujð1Þ�uj

njxi � xkj
2ðb� aÞ

� �

¼ uj

nðxi � xkÞ
2ðb� aÞ

� �
� 0; j ¼ 1; 2:

Therefore, we get

uj

nðxi � xkÞ
2ðb� aÞ

� �
¼

c; i ¼ k;

0; i 6¼ k;

�
j ¼ 1; 2
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for each i; k ¼ 0; 1; . . .; n, and this implies that

Nn;jðf ; xiÞ ¼
f ðxiÞuj

nðxi�xkÞ
2ðb�aÞ

� �

uj
nðxi�xkÞ
2ðb�aÞ

� � ¼ f ðxiÞ; j ¼ 1; 2;

for any i 2 f0; 1; . . .; g. Thus the first part of the Theo-

rem 4.4 is proved.

Next, we will prove the second part of the Theorem 4.4.

If i 6¼ k, i; k ¼ 0; 1; . . .; n, then we have jxi � xkj � h, and

Ks
njx�xk j
2ðb�aÞ �Ks. By the properties of us it turns out that

us Ks

nðxi � xkÞ
2ðb� aÞ

� �
¼ us Ks

njxi � xkÞj
2ðb� aÞ

� �
¼ 0:

Thus the second part of the Theorem 4.4 follows imme-

diately by the same arguments used in the first part of the

Theorem 4.4. For the sake of brevity, we omit the details.

Remark 4.6 The Theorem 4.4 shows the interpolation

results of these FNNs with the fixed weights and the

thresholds, which is the sublimation of the Theorems 4.1

and 4.2 and answers the Problem 2.3 successfully.

5 Numerical results

Because continuous functions on bounded interval are

normally considered as target functions in engineering and

other applications [1, 4–6, 14, 32], we now only focus on a

numerical approximation to a continuous function on

bounded interval. In Theorems 4.1, 4.2, 4.3 and 4.4, we

show that any continuous function on bounded interval

[a, b] can be approximated an FNNs with an optimized

piecewise line activation function and fixed weights. We

show our theoretical results using different activation

functions and illustrate the error bound of FNNs approxi-

mation. All computations are done in Matalab 7.0.

Example 5.1 We choose a continuous function f ðxÞ ¼ x3

as the target function and research the FNNs with opti-

mized piecewise linear functions and fixed weights (de-

fined by (3.4)) approximation to f(x) on the bounded

interval [a, d].

By Eqs. (3.2) and (3.3), and letting c ¼ 1, we have

u1

nðx� xkÞ
2ðb� aÞ

� �

¼
0; jx� xkj �

4ðb� aÞ
n

l0;

1� 1

2l0

n

2ðb� aÞ ðx� aÞ � k

����

����; jx� xkj\
4ðb� aÞ

n
l0;

8
>><

>>:

and
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N20,1(f)

N40,1(f)

N80,1(f)

N160,1(f)

Fig. 5 Target function f ðxÞ ¼ x3 and FNNs: N5;1ðf Þ and N10;1ðf Þ on
the interval [� 1,1]

−1 −0.5 0 0.5 1
0

1
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7

8

x

f(x)
N5,1(f)

N10,1(f)

Fig. 6 Target function f ðxÞ ¼ x3 þ x2 � 5xþ 3 and FNNs: N5;1ðf Þ
and N10;1ðf Þ on the interval [� 1,1]

cFig. 7 Target function f ðxÞ ¼ x3 þ x2 � 5xþ 3 and FNNs: N5;1ðf Þ
and N10;1ðf Þ on the neighborhoods of the interpolation points. (Note:

Fig. 7 is obtained from Fig. 6, which has been magnified to some

extent. The interpolation points of N5;1ðf Þ and N10;1ðf Þ are respec-

tively as � 1, � 0:6, � 0:2, 0.2, 0.6, 1 and � 1, � 0:8, � 0:6, � 0:4,
� 0:2, 0, 0.2, 0.4, 0.6, 0.8 1). a The right neighborhood of the point

� 1. b The neighborhood of the point � 0:8. c The neighborhood of

the point � 0:6. d The neighborhood of the point � 0:4. e The

neighborhood of the point � 0:2. f The neighborhood of the point 0.

g The neighborhood of the point 0.2. h The neighborhood of the point

0.4. i The neighborhood of the point 0.6. j The neighborhood of the

point 0.8. k The left neighborhood of the point 1
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Then, the FNNs Nn;1 and Nn;2 are simply reduced to

and

where xk, a, b, and l0 are defined exactly the same as

before.

From Eqs. (5.1) and (5.2), we know that the connection

weights from the input layer to the hidden layer and from

the hidden layer to the output layer, and the thresholds are,

respectively, equal to n
2ðb�aÞ, f ðxkÞ and � nxk

2ðb�aÞ in the FNNs

Nn;1 and Nn;2. Because a; b 2 R; f ðxkÞ; l0 2 Rþ are all

constants, s 2 Nþ is the positive integer, and n 2 Nþ is the

number of hidden neurons, so we can find that the weights

and the thresholds in the FNNs Nn;1 and Nn;2 are all fixed

constants. Therefore, the error of approximation is

u2

nðx� xkÞ
2ðb� aÞ

� �
¼

0; jx� xkj �
4ðb� aÞ

n
l0;

1� 1

l0

n

2ðb� aÞ ðx� aÞ � k

����

����;
2ðb� aÞ

n
l0\jx� xkj\

4ðb� aÞ
n

l0;

1; jx� xkj �
2ðb� aÞ

n
l0:

8
>>>>>><

>>>>>>:

Nn;1ðf Þ ¼

0; jx� xkj �
4ðb� aÞ

n
l0;

Pn
k¼0 f ðxkÞ 1� 1

2l0

n

2ðb� aÞ ðx� aÞ � k

����

����
� �

Pn
k¼0 1� 1

2l0

n

2ðb� aÞ ðx� aÞ � k

����

����
� � ; jx� xkj\

4ðb� aÞ
n

l0;

8
>>>>>>><

>>>>>>>:

ð5:1Þ
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����

����
� �
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n
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����

����
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and

We let a ¼ �1; d ¼ 1; and l0 ¼ 1
4
in Eqs. (5.3) and (5.4).

The following Fig. 5 shows a numerical result on ½� 1; 1�
for n ¼ 5; 10; 20; 40; 80; 160.

Example 5.2 We also choose a continuous function

f ðxÞ ¼ x3 þ x2 � 5xþ 3 as the target function and research

the FNNs with optimized piecewise linear functions and

fixed weights (defined by (3.4)) approximation to f(x) on

the bounded interval [a, d].

We also let a ¼ �1; d ¼ 1; and l0 ¼ 1
4
in Eqs. (5.3) and

(5.4). The following Figs. 6 and 7 provides some numeri-

cal results on the neighborhoods of the interpolation points

for n ¼ 5; 10. (Note: Figure 7 is obtained from Fig. 6,

which has been magnified to some extent. The interpolation

points of N5;1ðf Þ and N10;1ðf Þ are respectively as - 1.0,

- 0.6, - 0.2, 0.2, 0.6, 1.0 and - 1.0, - 0.8, - 0.6, - 0.4,

- 0.2, 0, 0.2, 0.4, 0.6, 0.8, 1.0).

Example 5.3 We choose nonnegative density functions us

(defined by Eq. (3.5)) as an activation function. We can

compute the theoretical error bound like the Example 5.1.

We omit the graphs of the nonnegative density functions

neural network Nn;sðf ; xÞ since the corresponding graphs

are almost the same as Figs. 6 and 7.

6 Conclusions and prospects

We have discussed the approximation of FNNs from the

mathematical view in this paper. First, the optimized

piecewise linear activation functions representations and

structures of the three types of FNNs with fixed weights are

constructed and discussed completely. Second, the ideal

upper bound, lower bound and essential order of approxi-

mation precision of these FNNs for continuous function

defined on bounded intervals are provided. Third, the

interpolation results of these FNNs proved in this paper

show that the representation errors made by these FNNs on

the elements belonging to the training set are null. In other

words, this implies that we can obtain the weights and the

thresholds of an exact neural approximation without train.

Finally, we also demonstrate some numerical results of

examples that show the effectiveness of the method used in

this paper. Our conclusions not only further characterize

the intrinsic property of approximation of these FNNs, but

also reveal the implicit relationship among the precision of

approximation, the number of hidden units and the

smoothness of the target function.

We wrap up this paper with the following prospects:

(a) Although we give the essential approximation order

of the constructed three kinds of FNNs, this is only

for the Lipschitzian function class of approximated

f. This means that the essential approximation order

of the three FNNs for other function class of

approximated f are worth to further study.

(b) It is interesting and significant to extend the main

theories in this paper to multivariate functions.

Clearly solving these two problems is not easy, but it is

very important and valuable.
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