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Abstract
The mechanism of the local scour around bridge pier is so complicated that it is hard to predict the scour accurately using a

traditional method frequently by considering all the governing variables and boundary conditions. The present study aims

to investigate the application of different hybrid soft computing algorithms, such as particle swarm optimization (PSO)-

tuned support vector machine (SVM) and a hybrid artificial neural network-based fuzzy inference system to predict the

scour depth around different shapes of the pier using experimental data. The important independent input parameters used

in developing the soft computing models are sediment particle size, a velocity of the flow and the time taken in the

prediction of the scour depth around the bridge pier. Different pier shapes used in the present study are circular, round-

nosed, rectangular and sharp-nosed piers. The accuracy and efficiency of the two hybrid models are analyzed and compared

with reference to experimental results using model performance indices (MPI) such as correlation coefficient (CC),

normalized root-mean-squared error (NRMSE), normalized mean bias (NMB) and Nash–Sutcliffe efficiency (NSE). The

ANFIS model with Gbell membership and the PSO–SVM model with polynomial kernel function yield good results in

terms of MPI. The performance of PSO–SVM with polynomial kernel function with CC of 0.949, NRMSE of 7.47, NMB

of - 0.009 and NSE of 0.90 reveals that the hybrid ANFIS model with Gbell membership function yields slightly better

than that of the PSO–SVM model with CC of 0.950, NRMSE of 6.92, NMB of - 0.002 and NSE of 0.91 for the optimum

bridge pier with circular shape, whereas the performance of PSO–SVM model is better than that of ANFIS model for

optimum bridge piers with rectangular and sharp nose shape. The PSO–SVM model can be adopted as accurate and

efficient alternative approach in predicting scour depth of the pier.

Keywords Bridge pier � Scour depth � PSO–SVM � ANFIS

1 Introduction

Bridges play an essential role in the society since they

enable quick access across a river or any water body.

Bridges facilitate transportation of goods and people and

hence play a leading role in the development of a province.

The failure of bridges is a severe problem because of the

high investment costs, safety problems in the event of a

failure and adverse effects on the economy of the region.

The scour related to bridge hydraulics, its relation to flood

hydrology and hydraulic processes received much attention

in the past decade.

‘‘Men who overlook water under the bridge will find

bridge under water’’ to the provisions in the existing codes

of practice for determination of design scour depth require

immediate review [1]. This situation highlights the

important effect of flowing water on the stability of the

bridge and in particular, its impact on a bridge pier. The

mechanism of flow around a pier structure is so compli-

cated to the point that it is hard to set up a general obser-

vational model to give exact estimates for scouring. The

bridge scour is the removal of sediments such as sand and

rocks from around bridge abutments or piers. During the

flow of water through an opening of a bridge with
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acceptable velocity, in general, the elevation will be

changed. The significance of this change in elevation is

more important near the abutments and piers.

The scour means lowering of the riverbed level by

erosion, such that there is a tendency to expose the foun-

dations of a bridge. There are three main types of scouring

effects on the performance of safety of bridges, namely

general scour, contraction scour and local scour. However,

all types mentioned above of scouring generate from dif-

ferent causes, it is essential to determine the scour due to

each cause individually and they should be linearly added

to their contribution in predicting the maximum scour

depth for bridge pier design. Among them, the local scour

is the most critical one in scour-related safety issues of

bridges. The typical local scour mechanism is shown in

Fig. 1. There are two types of scour conditions such as

clear-water and live-bed scour. The clear-water scour

occurs when there is no movement of bed material in the

flow upstream of the crossing. This condition of scour is

just because of the obstructions (piers, abutments) in the

flow. The rate of sediment supply to the scour hole is equal

to zero for clear-water scour condition and the depth of

scour hole continues to grow until the equilibrium scour

depth is reached.

Defining interdependency among variables which are

influencing the depth of pier scour in recent years is

understood using laboratory research as a primary tool.

Various studies have been performed in the laboratory tests

to study the scour phenomenon around a bridge pier. Those

experimental data were further used for numerical model-

ing and soft computing applications. Recently, researchers

have studied on applications of soft computing techniques

in considering the scouring phenomenon as their focal

point. The different soft computing techniques such as an

artificial neural network (ANN), fuzzy logic, linear

regression, genetic programming (GP), group method of

data handling (GMDH), model tree approach have been

used to predict the scour depth around the bridge pier.

ANN model was developed by Bateni et al. [3], Lee

et al. [4] and Kaya [5] to predict the scour depth around the

bridge pier by using experimental data. Flow depth, mean

velocity, critical flow velocity, median grain diameter and

pier diameter are used as input parameters. They applied

backpropagation and Bayesian neural network in their

study and concluded that the ANN models give good

correlation with experimental results. Uyamuz et al. [6] and

Wang et al. [7] used the fuzzy logic model and fuzzy group

decision-making approach to study the scour at the

downstream of vertical gate and bridge risk assessment.

Guven et al. [8] presented the linear genetic programming

(LGP), which was an extension of GP, as an alternative

tool in the prediction of scour depth around a circular pile

due to waves in medium dense silt and sand bed. Group

method of data handling (GMDH) network used by

Najafzadeh et al. [9] to predict abutments scour depth of

bridges which have been embedded in two types of

montmorillonite and kaolinite clay soils. The GMDH net-

work has been developed using backpropagation technique

to the modeling of abutment scour depth. Pal et al. [10]

investigated the potential of M5 model tree, a tree-based

regression approach to predict the local scour around

bridge piers using field data set and results are compared

with the empirical equations.

Some researchers used other soft computing techniques

such as adaptive network-based fuzzy inference system

(ANFIS) and support vector machine (SVM) to solve the

scour-related problems. Goel et al. [11] used the SVM

model to predict the maximum depth of scour on grade-

Fig. 1 Mechanism of scour at a

circular pier Source [2]
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control structures like sluice gates, weirs and check dams.

Keshavarzi et al. [12] used ANFIS to model the local

scouring depth and pattern scouring around concave and

convex arch-shaped circular bed sills. The laboratory data

were used to develop and validate the model, and the

ANFIS models produced good performances with experi-

mental results. Azamathulla et al. [13] described the use of

ANFIS to estimate the scour depth at culvert outlets.

In the present days, the researchers are focusing on the

hybridization by combining individual’s models with other

optimization techniques to improve the prediction accu-

racy. There are numbers of optimization techniques such

as, particle swarm optimization (PSO), ant colony opti-

mization (ACO), honey bee search, from the literature; it

was found that swarm intelligence-based algorithms which

are today’s one of the powerful tools of optimization

techniques. Basser et al. [14] proposed a new approach

ANFIS-PSO to determine optimal parameters of a protec-

tive spur dike to mitigate scouring depth amount around

existing main spur dikes. Najafzadeh et al. [15] introduced

a new application of GMDH in the prediction of scour

depth around a vertical pier. Two models of the GMDH

network were developed using genetic programming and a

back propagation algorithm. Hasanipanah et al. [16] pre-

sented a new hybrid model of artificial neural network

(ANN) optimized by particle swarm optimization (PSO)

for the prediction of maximum surface settlement. Cus

et al. [17] presented a hybrid multi-objective optimization

technique, based on ant colony optimization algorithm

(ACO), to optimize the machining parameters in turning

processes.

The main novelty of the present study is considering

PSO–SVM as an evolutionary hybrid technique, where

SVM is tuned by PSO to achieve the improved perfor-

mance efficiency and accuracy of the SVM model. Based

on the literature study, it is observed that there are hardly

any applications of hybrid SVM models to study the pre-

diction of the scour depth for the different shape piers.

Hence, in the present paper, the performance of PSO–SVM

technique in predicting scour depths is investigated. Here,

swarm intelligence part, i.e., PSO is used for optimization

of SVM and kernel parameters. Performance of PSO–SVM

models is compared with that of SVM and ANFIS models.

2 Data analysis

The experimental study on scour depth around bridge piers

was carried out by Goswami Pankaj [18]. The laboratory

data sets are collected in a 1000 mm wide, 1300 mm depth

and 19.25 m length of flume dimensions. The bed material

used in the study is sand gravel of d50 = 4.2 mm and

uniformly graded sand of d50 = 0.42 mm. The model was

run for clear-water scour condition with velocities of 0.215,

0.278, 0.226 m/s for sand gravel and 0.184, 0.278,

0.351 m/s for uniformly graded sand. The data are col-

lected from 0 to 6 h with 1 h interval. The pier of circular,

rectangular, round-nosed and sharp-nosed shapes is used in

the experiment.

Three input parameters, namely sediment size (d50),

velocity (U) and time (t) are used to predict the scour

depth. The experimental data were collected for different

pier shapes such as circular, rectangular, round-nosed and

sharp-nosed pier. The whole data set is divided randomly

into training data (50%) and testing data (50%). The sta-

tistical parameters such as most extreme (maximum), least

(minimum), mean, standard deviation and kurtosis for

every one of the factors for different pier shapes are listed

in Table 1. The negative value for kurtosis indicates that

the distribution of data has lighter tails and flatter peaks.

The training and testing data are applied to the models, and

the predicted scour values are compared to the measured

values.

3 Methodology

3.1 Adaptive network-based fuzzy inference
system (ANFIS)

The principle involved behind ANFIS technique says that it

is an artificial intelligence (AI) tool which has a set of

networks for adaption presented by Jang and Sun [19] and

a benefit of the tool is exploited to support in forecasting

and to predict desired outputs. This AI tool can be viewed

as a structure with the system of neural network induced

feedforward, in which every layer is a taken as neuro-fuzzy

structure (NFS) element. It imitates the fuzzy rule of

Sugeno and part by part of the rule is a direct fusion of

given input and a constant. Finally, end prediction of the

method is the weighted average of each rule’s outcome.

ANFIS is also known as neuro-adaptive learning tech-

nique because of the synthesis of Neural Network with

fuzzy inference system (FIS), developed by Jang [20]. It

maps inputs and outputs with respective membership

functions (MF) and related parameters of both input, and

output and then it can be used to interpret the inputs/output

mapping.

The concept of a hybrid technique is adopted here

because FIS alone lacks learning capability from the

examples. The ANN can overcome this. ANFIS uses the

gradient descent method (GDM) and least square method

(LSM) and then combined with feedforward backpropa-

gation (FFBP) technique. In which, FIS is used to measure

the input and output parameters, and ANN is used to define

and measure the error regarding the sum squared
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differences between actual and desired outputs. The ANN

can learn the problem and complexity involved in the

relationship between the inputs and output and performs

the nonlinear and uncertainty modeling without any prior

knowledge. Hence, FFBP with TS-based FIS system used

to estimate the depth of the scour. To skip the deficiency of

a training algorithm all along the process, ANN used in

combination with FIS with the introduction of FFBP. The

disadvantages of ANN are overcome by training the FIS

structure and associated parameters. ANFIS is considered

to be the transparent technique [21]. If the size/amount of

the available data is confined, then FIS is regarded as an

efficient tool compared to ANN alone [22]. Therefore, it is

believed that ANFIS is a very reliable and robust tool to

estimate scour depth from around bridge piers [23].

The first-order Takagi–Sugeno method of a fuzzy model

with multi-input and single output (MISO) system is pre-

sented in Fig. 2. ANFIS uses linguistic rules for estimation

and formulates if–then rules from its knowledge to ensure

the proper prediction of scour depth.

The procedure followed by the model for predicting the

scour depth is expressed by the six layers displayed below:

(1) composes of inputs, (2) in layer 2, models are built

based on multiple input variables (3 inputs), (3) suit-

able degree of membership function is selected and, (4)

(3)3 = 27 fuzzy rules are generated for the inference

operation, (5) training and validation, and (6) prediction of

scour depth. In this method, three independent variables are

chosen as inputs and one dependent variable (scour depth)

as output.

The rules are generated during inference system opera-

tion and are represented in the form of equation as, Ru: if

(x1 is A
1
u) ((x2 is A

2
u) and (x3 is A

3
u) then, f = Cu

1x1 þ
Cu
2x2 þ Cu

3x3 þ Cu
4 where u = 1,2,3……27 the number of

rules.

3.2 Support vector machines (SVM)

In the high-dimensional feature space, simpler and linear

hyperplane classifiers that have a maximal margin between

Table 1 Statistical parameters

Data set Statistical parameters Variables

Sediment size, d50 (mm) Velocity (m/s) Time (h) Scour depth (mm)

Circular Rectangular Round nosed Sharp nosed

Training Max 4.2 0.351 6 118 122 113 120

Min 0.42 0.184 0 55 55 53 53

Mean 2.31 0.261 3 84.26 87.89 82.512 84.77

SD 1.89 0.0515 2 14.17 14.99 13.06 13.8

Kurtosis - 2.049 - 0.547 - 1.253 - 0.139 - 0.222 0.064 0.472

Testing Max 4.2 0.351 6 115 121 111 120

Min 0.42 0.184 0 54 55 54 55

Mean 2.31 0.261 3 84.512 88.345 83.32 84.14

SD 1.89 0.0515 2 14.206 14.58 13.23 13.33

Kurtosis - 2.049 - 0.547 - 1.253 - 0.155 - 0.225 - 0.143 0.633

Fig. 2 ANFIS architecture used

in the study
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the classes are obtained. SVM is a machine learning

approach which provides maximized predictive accuracy

automatically either by avoiding/minimizing or overwrit-

ing of data. SVM depends on a SRM (structural risk

minimization) principle and convex optimization algorithm

wherein which the empirical risk and the confidence

interval of the learning machine are simultaneously mini-

mized by maximizing the geometric margin. SVM can

efficiently perform nonlinear regression by utilizing kernel

trick. The computation is critically dependent upon the

number of training patterns and selection of hyper-param-

eters and finding out their optimal values while modeling

any time series.

A learning tool is derived from the past statistical

learning algorithms, which is named as support vector

machine (SVM) by Vapnik [24]. SVM acts as training

algorithm and regression tool for linear and nonlinear

classification. In case of nonlinear data, the SVM has the

ability to map the data points of input space to the feature

space of D-dimension by using different kernels, which is

known as ‘‘Kernel trick,’’ i.e., the dot product of the data

points,

Given as: Kðxi; xj) = (xi; xj)(xi; xj),

It can also be written as: f xð Þ ¼
Pn

i¼1 ayiK xi; xð Þ þ b)

Each data points of input space are mapped into a D-

dimensional space via kernel function, i.e., ‘‘Kernel trick,’’

Kðxi; xj) = /(xi; �x)(xj; �x) dot product in the feature space.

As the kernel functions can convert nonlinear data points

them into linear ones. In this context, RBF (radial basis

function) kernel gives the significant results compared to

other kernels, which uses the Gaussian distribution. The

SVM develops a different hyperplane margin between the

points in the feature space and amplifies edge between two

informational indexes of two input points. It makes an

effort of constructing a fit curve with a kernel function and

used on entire data points such that data points should lie

between two largest marginal hyperplanes to minimize the

error of regression [25]. The predictive capacity and clas-

sification error is dealt with learning some basic concept.

Firstly, the hyperplane is separated, and then the process

involves the selection of proper kernel function and SVM

between hard and soft margin. The SVM model architec-

ture is shown in Fig. 3.

3.3 Development of ANFIS model

In this study, the ANFIS model is developed and tested to

predict scour depth with respect to different pier shapes

using various input parameters. Sediment size, the velocity

of flow and time are the input parameters. The ANFIS

model is carried out in MATLAB software with Gbell

membership functions. Three membership functions with

27 fuzzy rules are adopted for the GbellMF. The details of

the ANFIS model developed are listed in Table 2.

Every node in layer 1 is identified as fuzzification layer,

and each node represents a fuzzifiers/membership value to

a linguistic variable. Along these lines, two GaussMF can

be allotted to every given input. Premise/Introducing

parameters are parameters present within the layer 1. About

layer 2, every point of node executes a fuzzy T-norm

operation [19]. The rule firing strength is the outcome of

the second layer. In layer 3, findings of layer 2 are nor-

malized. After the fusion of the input variables in layer 4

linearly, estimated depth of live-bed scour obtained in layer

5 through weighted average. NFS premise parameters

expressed above have to be optimized, this is the main

point of the learning stage. Hybrid (ANN ? FIS) learning

algorithms are provided primarily the fusion of the gradient

descent (GD) and least squares method (LSM). Indeed, the

performance of the tool is demonstrated that such an

approach lowers the complexity and uncertainty of the

algorithm with the increase in capacity and efficiency of

learning [26].

The ANFIS model is trained and tested to predict scour

depth concerning different pier shapes using Sediment

quantity in the flow, the velocity of flow and time as the

input parameters. MATLAB is the platform used to

develop the ANFIS model with all triangular, trapezoidal,

Gbell and Gauss membership functions. Among all MF’s,

Gaussian MF with gradient discrete and least square error

principle showed good correlation between measured and

predicted scour depths. Because of those principles, ANFIS

with Gauss MF model shows better results as illustrated in

the present work. While developing ANFIS model 27 fuzzy

rules for 3 input parameters and 1 output parameter are

generated. The details of the test condition of the ANFIS

model for predictions are presented in Table 2. The esti-

mated simulations obtained from the ANFIS models are

compared with experimental values for validation of soft

computing models.

In a word, input selection, number, and type of mem-

bership functions, learning algorithm are responsible for

the effectiveness of the tool in estimating the scour depth.

The ANFIS model proposed here uses three membership

functions for every given input. This consumes more time

and ruins transparency of the fundamentals of the tool.

However, better results can be obtained without increasing

the complexity of the tool, and this will be expressed and

the purpose will be achieved.
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3.4 Development of radial basis function-
support vector machine (RBF-SVM)
algorithm

In this paper, the SVM model is also adopted to predict the

scour depth with respect to different pier shape using

sediment size, velocity and time as input variables. The

SVM models are developed using MATLAB software for

linear, polynomial, sigmoid, quadratic and radial basis

(RBF) kernel functions. The RBF kernel showed good

correlation between observed and predicted scour depths

among other kernel functions. The RBF is the favorite

choice of the kernel type used in SVM. The ‘‘c’’ is an

adjustable parameter of the RBF kernel function. This is

for, mainly because of RBF’s localized and finite

responses/confined and limited responses across the range

of the original X-axis. The simulations of the SVM model

with RBF kernel function are discussed in the present

paper. The performance and estimation accuracy of the

SVM with different kernels depending on the model

parameters, namely SVM parameter (C), kernel width

parameter-Gamma (c), and epsilon parameter (e). The four
K-fold cross-validation search is used to identify and

finalize optimal parameters. Optimal parameters (c, c, and
e) are chosen for a number of trials with various

combinations of C (ranges from 1 to 1000), c (ranges 1 to

10) and e (ranges 0.001–10) for the radial basis kernel

function. The obtained optimal SVM parameters for RBF

kernel functions are shown in Table 3. The predicted val-

ues from the models are compared with the measured

values.

3.5 Particle swarm optimization-tuned support
vector machine (PSO–SVM) and its
development

PSO was first proposed by Kennedy and Eberhart [27]. In

PSO, every particle (swarm) makes utilization of its indi-

vidual memory and learning picked up by the swarm

overall to locate the best arrangement. Every one of the

particles has a best alternation solution, which is assessed

by good capacity to be enhanced and has speeds which

coordinate the development of the particles. The best

position of every particle is achieved on its own and

neighboring particle involvement during the time spent in

the movement of the particles. For each epoch, every

particle is updated with the following two ‘‘best’’ values

called pbest and gbest.

Keeping in mind the merits of swarm intelligence, PSO

is used to avoid over-fitting or underfitting of the SVM

model due to the improper selection of SVM and kernel

parameters, PSO is used to select suitable parameters of

SVM. PSO is an optimization method, which not only has a

strong global search capability but also is very easy to

implement. So, it is very suitable for parameters selection

of SVM. The number of support vectors used in PSO–SVM

models is same for all kernel functions (87); this indicates

that every training data set is utilized as support vector.

This clearly proves that there is no noise in the training

data set. It is noticed that the performance of these models

depends on the best selection of SVM and kernel param-

eters. By interfacing PSO with SVM, generalization

Fig. 3 SVM architecture

Table 2 Details of ANFIS model

ANFIS architecture

Number of membership functions 2–3

Algorithm selected Hybrid

Number of epoch runs given 400–500

Generated fuzzy inference system Partition of grids

Membership function (MF) type Constant

Number of fuzzy rules generated 27

Type of membership function (MF) used Gbell
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performance of the PSO–SVM models shows improvement

that of SVM models Ghasemi et al. [28], Harish et al. [29].

A PSO–SVM algorithm is used in different problems

Harish et al. [29]. Because of the various advantages of

PSO mentioned such as, easy to implement compared other

algorithm such as genetic algorithm where a cross mutation

have to be made. The error globalization capacity of PSO–

SVM is better compared to SVM and neural network and

fuzzy inference system. Therefore, SVM is tuned using

PSO and ANN and FIS is hybridized to improve the per-

formance of SVM and ANN by enhancing the error gen-

eralization capacity of the individual models.

The steps followed in the evolutionary algorithm PSO–

SVM is given below.

3.6 Performance analysis

The performance of ANFIS and SVM models are evaluated

by adopting statistical measures as followed.

1. Normalized root-mean-square error (NRMSE)

NRMSE ¼ RMSE

Xmax � Xmin

� �

� 100 where

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 Xi � Yið Þ2

N

 !v
u
u
t

2. Normalized mean bias (NMB)

Table 3 Optimal SVM

parameters for different pier

shapes

Optimal SVR parameters Circular Rectangular Round nosed Sharp nosed

C 388 800 60 221

Gamma (c) 2 1 3 2

Epsilon (e) 0.1 0.1 0.1 0.1

Train (CC) 0.9195 0.883 0.8745 0.8697

Test (CC) 0.913 0.813 0.8508 0.844

Initialize PSO parameters particle positions and velocities

Assess the objective function (Maximize the efficiency) values using initial particle positions and velocities

Update the optimum particle positions and global optimum particle position using fitness function

Update the position of each particle using its previous position and update the velocity vector using Eqs. (1)
and (2);

The PSO approach is defined by the direction and movement of each particle through the search space, by
updating its velocity and position:

(1)
(2)

where is the current position of the particle i with subscript j representing iteration count, 1 is the search 
velocity of the ℎ particle, 1and 2 are the cognitive and social scaling parameters, 1and 2 are the 
random numbers with interval [0,1] applied to the ℎ particle, is the particle inertia, is the best position 
found by the ℎ particle (personal best) and is the global best position found among all the particles in 
swarm. The particle inertia controls the balance of global and local search abilities, where a larger facilitates a 
global search. Particle i flutter toward a new position using Eqs. (1) And (2), which allow all particles in the swarm 
to update their and .

Repeat steps 2–4 until the target is achieved (target= NRMSE).
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NMB ¼
XN

i¼1

Yi � Xi

Xi

� �

¼
�Yi
�Xi

� 1

� �

3. Nash–Sutcliffe coefficient (NSE)

NSE ¼ 1�
PN

i¼1 ðXi � YiÞ2
PN

i¼1 ðXi � �XÞ2

 !

4. Correlation coefficient (CC)

CC ¼
PN

i¼1 Xi � �Xð Þ � Yi � �Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 Xi � �Xð Þ2�
PN

i¼1 Yi � �Yð Þ2
q

where X is the observed/measured values; Y is the pre-

dicted values; �X is the mean of actual data; nX is no. of data

set points whose ARE value is less than x% N is no. of total

data set points.

4 Results and discussion

4.1 Prediction of scour depth for circular pier

In the first test case, a circular-shaped pier of 51 mm

diameter is considered in the prediction of scour depth. The

ANFIS and SVM models are applied to the data and the

results obtained from the models are shown in Fig. 4. To

evaluate the performance of the ANFIS and SVM models,

Fig. 4 Scatter and box plot of measured versus predicted scour depth of SVM, ANFIS and PSO–SVM models in testing phase for circular pier
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the measured scour depth values are plotted against the

predicted values. Figure 4 illustrates the results and the

performance between predicted and measured values of

testing data set. The performance analysis of the models is

also compared in Table 4, i.e., NRMSE value of Gbell =

6.921, trapezoidal = 9.48, RBF = 9.82 and NSE of

Gbell = 0.83, trapezoidal = 0.752, RBF = 0.65 and it can

be observed that NRMSE is less and NSE is more in Gbell.

Hence, Gbell MF is giving good performance compared to

other models. It is noticed from the analysis that ANFIS—

GbellMF showed a good performance in comparison with

ANFIS-trapezoidal MF and SVM—RBF kernel function.

Therefore, to avoid underfitting of SVM and optimization

technique, PSO is used to tune the SVM and kernel

parameters. From Fig. 4c and Table 4, it is noticed that

PSO–SVM (polynomial) showed improved efficiency and

accuracy than RBF-SVM in terms of all the model per-

formance indices. PSO–SVM (polynomial) indicates

almost similar accuracy and efficiency as ANFIS in terms

of CC but showed less efficient and reduced error gener-

alization capacity with NSE of 0.90, NMB of - 0.009 and

NRMSE of 7.47. During regression analysis, results of all

models in the classical model values or experimental val-

ues are represented by coefficient determination (R2).

Among all three models the PSO–SVM model with poly-

nomial kernel function gives high accuracy compared to an

SVM model with an R2 of 0.91 and almost the same

accuracy as of ANFIS (GbellMF) model with an R2 of 0.90

to predict scour depth in case of pier with a circular shape.

Therefore, ANFIS with GbellMF and PSO–SVM could be

taken as best hybrid models to predict scour depth in case

for circular pier. The above results are illustrated in the

form of innovative Box–Whisker plot. The plot represents

the spread of the predicted values, and a skeletal type of

box-and-whisker plot is used in the study. The standard

error is considered to evaluate the performance of the

models, and it is shown in Fig. 4d that the standard error is

less in Gbell membership function as compared to other

models.

4.2 Prediction of scour depth for rectangular
pier

In the second case, the prediction of scour depth is made

for the rectangular-shaped pier. The pier of 36 mm wide

and 44 mm length is used in the study. The ANFIS model

with Gbell and trapezoidal MF and SVM model with RBF

kernel functions is applied to predict scour depth. Plots of

the measured values versus predicted values are shown in

Fig. 5. From Table 4, NRMSE of Gbell = 9.156, trape-

zoidal = 11.004, RBF = 13.04 and NSE of Gbell = 0.828,

trapezoidal = 0.752, RBF = 0.65. It is shown that Gbell

MF is giving good performances in the prediction of scour

depth because of less NRMSE and more NSE. Similarly, in

case of rectangular pier to avoid the underfitting of SVM

and optimization technique PSO is used to tune the SVM

and kernel parameters. From Fig. 5c and Table 4, it is

noticed that PSO–SVM (polynomial) showed improved

Table 4 Statistical outcomes of

SVM, ANFIS and PSO–SVM

models

Pier shapes Statistical indices Soft computing models

SVM ANFIS PSO–SVM

Train Test Train Test Train Test

Circular CC 0.919 0.913 0.96 0.95 0.953 0.949

NRMSE 9.13 9.82 6.05 6.92 6.85 7.47

NMB - 0.014 - 0.017 0.0 - 0.003 - 0.002 - 0.009

NSE 0.83 0.82 0.927 0.91 0.91 0.90

Rectangular CC 0.88 0.81 0.93 0.91 0.92 0.915

NRMSE 10.60 13.04 8.15 6.04 8.95 9.01

NMB - 0.008 - 0.01 0.0 - 0.005 0.007 0.002

NSE 0.78 0.65 0.86 0.83 0.84 0.83

Round nosed CC 0.87 0.85 0.95 0.95 0.945 0.95

NRMSE 12.17 13.62 6.52 7.32 7.14 7.31

NMB 0.005 - 0.004 0.0 - 0.01 0.004 - 0.01

NSE 0.69 0.66 0.91 0.90 0.89 0.9

Sharp nosed CC 0.87 0.84 0.93 0.91 0.9 0.92

NRMSE 10.48 11.07 7.53 8.59 9.03 8.08

NMB - 0.017 - 0.01 0.0 0.008 - 0.014 0.007

NSE 0.74 0.71 0.87 0.82 0.81 0.84
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efficiency and accuracy than RBF-SVM regarding all the

model performance indices. PSO–SVM (polynomial)

shows less accuracy and efficiency compared to ANFIS in

terms of all the model performance indices given in the

present study as CC of 0.91, NSE of 0.83, NMB of 0.002

and NRMSE of 9.01. During regression analysis, results of

all models in the classical model values or experimental

values are represented by coefficient determination (R2).

Among all three models the PSO–SVM model with poly-

nomial kernel function gives high accuracy compared to

the SVM model with an R2 of 0.836 and almost the same

accuracy as of ANFIS (GbellMF) model with an R2 of

0.829 in case of pier with a rectangular shape. Therefore,

PSO–SVM with polynomial kernel function is taken as best

hybrid model to predict scour depth in case of rectangular

pier shape. The plot represents the spread of the predicted

values, and a skeletal type of box-and-whisker plot is used

in the study. Also, from box plot in Fig. 5d, it is clear that

the standard error is less in Gbell MF in comparison with

trapezoidal MF and RBF-SVM and PSO–SVM

(polynomial).

4.3 Prediction of scour depth for round-nosed
pier

In the next stage, the round-nosed pier of 36 mm wide and

60 mm length is considered. The ANFIS and SVM models

are run to predict scour depth around round-nosed pier. The

Fig. 5 Scatter and box plot of measured versus predicted scour depth of SVM, ANFIS and PSO–SVM models in testing phase for rectangular

pier
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predicted values are plotted against the measured values as

shown in Fig. 6. The statistical parameters for the models

(Table 4) are obtained as NRMSE for Gbell = 7.33,

trapezoidal = 9.28, RBF = 13.63 and NSE for Gbell = 0.9,

trapezoidal = 0.84, RBF = 0.67. Therefore, to avoid the

underfitting of SVM and optimization technique, PSO is

used to tune the SVM and kernel parameters. From Fig. 9c

and Table 4, it is noticed that PSO–SVM (polynomial)

showed improved efficiency and accuracy than RBF-SVM

regarding all the model performance indices. PSO–SVM

(polynomial) shows almost similar accuracy and efficiency

as that of ANFIS in terms of CC of 0.95 with NSE of 0.90,

NMB of - 0.01 and NRMSE at 7.31. Therefore, ANFIS

with GbellMF and PSO–SVM (polynomial) is taken as the

best hybrid models to predict scour depth for round-nosed

pier. During regression analysis, results of all models in the

classical model values or experimental values are repre-

sented by coefficient determination (R2). Among all three

models the PSO–SVM model with polynomial kernel

function gives high accuracy compared to the SVM model

with an R2 of 0.904 and almost the same accuracy as that of

the ANFIS (GbellMF) model with an R2 of 0.903 in case of

pier with round nose shape. The above results are illus-

trated in the form of innovative Box–Whisker. Plot repre-

sents the spread of the predicted values, and a skeletal type

of box-and-whisker plot is used in the study. From the

performance analysis, it can be observed that Gbell MF

performs well in the prediction of scour depth in

Fig. 6 Scatter and box plot of measured versus predicted scour depth of SVM, ANFIS and PSO–SVM models in testing phase for round-nosed

pier
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comparison with that trapezoidal MF and RBF–SVM ker-

nel function and almost equal to PSO–SVM (polynomial)

in predicting scour depth in case of pier with round nose

shape. It is also observed from the box plot (Fig. 6d), the

standard error in Gbell MF is less as compared to other two

models.

4.4 Prediction of scour depth for sharp nose pier

In this case, a sharp nose-shaped pier of 36 mm wide and

65 mm length is considered. Gbell and trapezoidal MF are

used in ANFIS and RBF kernel functions are used in SVM

models to predict scour depth. For the performance

analysis of the model, the predicted values are plotted

against measured values as shown in Fig. 7. The statistical

parameters are calculated from the models are tabulated in

Table 4. NRMSE for Gbell = 0.858, trapezoidal = 9.85,

RBF = 11.07 and NSE of Gbell = 0.83, trapezoidal = 0.77,

RBF = 0.71 is obtained from the model. Gbell MF is

having less NRMSE and more NSE. Hence, it is showing

better performance in the prediction of scour depth for a

sharp-nosed pier in comparison with the other two models.

And also to avoid the underfitting of SVM and optimiza-

tion technique PSO is used to tune the SVM and kernel

parameters. From Fig. 7c and Table 4, it is noticed that

PSO–SVM (polynomial) showed improved efficiency and

Fig. 7 Scatter and box plot of measured versus predicted scour depth of SVM, ANFIS and PSO–SVM models in testing phase for sharp-nosed

pier
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accuracy than RBF-SVM regarding all the model perfor-

mance indices. PSO–SVM (polynomial) showed almost

similar accuracy and efficiency as that of ANFIS in terms

of CC of 0.92 but showed a marginal increase in efficiency

and reduced error generalization capacity with NSE of

0.84, NMB of 0.007 and NRMSE of 8.08. Therefore, PSO–

SVM (polynomial) and ANFIS with GbellMF are taken as

best hybrid models and best soft computing technique to

predict scour depth. During regression analysis, results of

all models in the classical model values or experimental

values are represented by coefficient determination (R2).

Among all three models the PSO–SVM model with poly-

nomial kernel function gives high accuracy compared to

ANFIS and SVM models with an R2 of 0.850 to predict

scour depth in case of pier with the sharp nose shape. The

above results are illustrated in the form of innovative Box–

Whisker. The plot represents the spread of the predicted

values, and a skeletal type of box-and-whisker plot is used

in the study. From box plot in Fig. 7d, it can also be

observed that the standard error is less even though the

variance is more in Gbell MF.

4.5 Comparative analysis

To select the most accurate model, ANFIS-Gbell, ANFIS-

trapezoidal and SVM-RBF kernel function and PSO–SVM

Fig. 8 NRMSE of SVM,

ANFIS and PSO–SVM models

for different pier shapes

Fig. 9 NSE of SVM, ANFIS

and PSO–SVM models for

different pier shapes
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(polynomial) approaches are applied for given experi-

mental data set for different pier shapes. The results

obtained from both train and test conditions for all the

performance indices by all three models are shown in

Table 4. The performance of the models is evaluated using

the different model performance indices such as, correla-

tion coefficient (CC), normalized root-mean-square error

(NRMSE), normalized mean bias (NMB) and Nash–Sut-

cliffe coefficient error (NSE).

It is common to see that all models performed better in

training stage rather than testing stage. In Figs. 8 and 9,

Gbell MF shows reliable results compared to other models

based on CC, NRMSE, NMB and NSE. Similarly, Fig. 10

indicates that SVM results for both training and testing are

under-predicted compared to ANFIS and PSO–SVM

models. Hence, it is clear from the above results that

ANFIS-GbellMF outperformed the SVM, and PSO–SVM

with polynomial kernel function in the prediction of scour

depth for pier with different shapes considered in the pre-

sent discussion is the best model in terms of model per-

formance indices and Box–Whisker plot representation.

Later, the PSO–SVM model with polynomial kernel

function is considered as best hybrid model to predict scour

depth around pier with all shapes in terms of coefficient of

determination (R2).

From overall results and discussions in the present study

implies that the PSO–SVM model with polynomial kernel

function is considered as best, efficient and accurate

alternate algorithm to predict scour depth around the pier

with circular, rectangular, round nose and sharp nose

shapes. With respect to the results obtained, the pier with

circular shape is considered as the best shape both by

classical/experimental model, and with reference to those

experimental values the PSO–SVM model values consid-

ered in the present study.

5 Conclusions

The ANFIS, SVM and PSO–SVM models are developed to

predict scour depth around the pier with different shapes

are analyzed and compared with experimental values and

with each other. From the study, the following conclusions

are drawn.

1. The application of ANFIS-Gbell MF, ANFIS-trape-

zoidal MF and SVM-RBF and PSO–SVM with

polynomial kernel functions in the prediction of scour

depth for different pier shapes are discussed in this

study. From the above results and discussions, the

PSO–SVM model with polynomial kernel function is

considered as efficient and accurate evolutionary

approach to predict scour depth around the pier with

different shapes.

2. PSO–SVM with polynomial kernel function takes the

advantages of overcoming the local minima problem

of ANFIS and minimum structural risk minimization

of SVM and the best of quick and fast global

optimizing capacity and the ability of PSO.

3. The PSO–SVM model approach fulfills the purpose of

the present study to predict scour depth around the pier

with different shapes by reducing the error of gener-

alization to the least or minimized by optimizing the

performance of the SVM model.

4. The results obtained in terms of all model performance

indices and coefficient of determination show that

Fig. 10 NMB of SVM, ANFIS

and PSO–SVM models for

different pier shapes
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PSO–SVM with polynomial kernel function gives a

better prediction in terms of accuracy even though the

results of the ANFIS model with GbellMF are

marginally close to the PSO–SVM model.

5. The performance of PSO–SVM with polynomial

kernel function with high accuracy and efficiency for

predicting scour depth around the circular pier com-

pare to rectangular, round-nosed and sharp-nosed piers

and it could serve a better alternate for scour depth

prediction.
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6. Uyumaz A, Altunkaynak A, Özger M (2006) Fuzzy logic model

for equilibrium scour downstream of a dam’s vertical gate.

J Hydraul Eng 132(10):1069–1075

7. Wang YM, Elhag TM (2007) A fuzzy group decision making

approach for bridge risk assessment. Comput Ind Eng

53(1):137–148

8. Guven A, Azamathulla HM, Zakaria NA (2009) Linear genetic

programming for prediction of circular pile scour. Ocean Eng

36(12):985–991

9. Najafzadeh M, Barani GA, Kermani MRH (2013) GMDH based

back propagation algorithm to predict abutment scour in cohesive

soils. Ocean Eng 59:100–106

10. Pal M, Singh NK, Tiwari NK (2012) M5 model tree for pier scour

prediction using field dataset. KSCE J Civil Eng

16(6):1079–1084

11. Goel A, Pal M (2009) Application of support vector machines in

scour prediction on grade-control structures. Eng Appl Artif Intell

22(2):216–223

12. Keshavarzi A, Gazni R, Homayoon SR (2012) Prediction of

scouring around an arch-shaped bed sill using neuro-fuzzy model.

Appl Soft Comput 12(1):486–493

13. Azamathulla HM (2012) Gene expression programming for pre-

diction of scour depth downstream of sills. J Hydrol 460:156–159

14. Basser H, Karami H, Shamshirband S, Akib S, Amirmojahedi M,

Ahmad R, Javidnia H (2015) Hybrid ANFIS–PSO approach for

predicting optimum parameters of a protective spur dike. Appl

Soft Comput 30:642–649

15. Najafzadeh M, Barani GA (2011) Comparison of group method

of data handling based genetic programming and back propaga-

tion systems to predict scour depth around bridge piers. Sci Iran

18(6):1207–1213

16. Hasanipanah M, Noorian-Bidgoli M, Armaghani DJ, Khamesi H

(2016) Feasibility of PSO–ANN model for predicting surface

settlement caused by tunneling. Eng Comput 32(4):705–715

17. Cus F, Balic J, Zuperl U (2009) Hybrid ANFIS-ants system based

optimisation of turning parameters. J Achiev Mater Manuf Eng

36(1):79–86

18. Pankaj Goswami (2013) Evaluation of scour depth around bridge

piers. Guwahati University, Guwahati

19. Jang JS, Sun CT (1995) Neuro-fuzzy modeling and control. Proc

IEEE 83(3):378–406

20. Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference

system. IEEE Trans Syst Man Cybern 23(3):665–685

21. Catto JW, Linkens DA, Abbod MF, Chen M, Burton JL, Feeley

KM, Hamdy FC (2003) Artificial intelligence in predicting

bladder cancer outcome. Clin Cancer Res 9(11):4172–4177

22. Mahabir C, Hicks F, Fayek AR (2006) Neuro-fuzzy river ice

breakup forecasting system. Cold Reg Sci Technol

46(2):100–112

23. Wang YM, Elhag TM (2008) An adaptive neuro-fuzzy inference

system for bridge risk assessment. Expert Syst Appl

34(4):3099–3106

24. Vapnik VN (1999) An overview of statistical learning theory.

IEEE Trans Neural Netw 10(5):988–999

25. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

26. Cheng KH, Hsu CF, Lin CM, Lee TT, Li C (2007) Fuzzy–neural

sliding-mode control for DC–DC converters using asymmetric

Gaussian membership functions. IEEE Trans Industr Electron

54(3):1528–1536

27. Kennedy J, Eberhart R (1995) Particle swarm optimization. 1995

IEEE Int Conf Neural Netw ICNN 95(4):1942–1948. https://doi.

org/10.1109/icnn.1995.488968

28. Ghasemi H, Kolahdoozan M, Pena E, Ferreras J, Figuero A

(2017) A new hybrid ANN model for evaluating the efficiency of

p-type floating breakwater. Coast Eng Proc 1(35):25

29. Harish N, Mandal S, Rao S, Patil SG (2015) Particle Swarm

Optimization based support vector machine for damage level

prediction of non-reshaped berm breakwater. Appl Soft Comput

27:313–321

Neural Computing and Applications (2019) 31:7335–7349 7349

123

https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1109/icnn.1995.488968

	Application of an evolutionary technique (PSO--SVM) and ANFIS in clear-water scour depth prediction around bridge piers
	Abstract
	Introduction
	Data analysis
	Methodology
	Adaptive network-based fuzzy inference system (ANFIS)
	Support vector machines (SVM)
	Development of ANFIS model
	Development of radial basis function-support vector machine (RBF-SVM) algorithm
	Particle swarm optimization-tuned support vector machine (PSO--SVM) and its development
	Performance analysis

	Results and discussion
	Prediction of scour depth for circular pier
	Prediction of scour depth for rectangular pier
	Prediction of scour depth for round-nosed pier
	Prediction of scour depth for sharp nose pier
	Comparative analysis

	Conclusions
	Acknowledgements
	References




