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Abstract
This paper focuses on the exponential synchronization of memristor-based recurrent neural networks with multi-propor-

tional delays. Act as a vital mathematical model, the system with proportional delays has been widely popular in several

scientific fields, such as biology, physics systems as well as control theory. In the sense of Filippov solutions, we receive a

novel sufficient condition based on the theories of set-valued maps and differential inclusions, by constructing a proper

Lyapunov functional and taking advantage of inequality techniques. Here, the condition is easy to be verified by algebraic

methods. A couple of numerical examples and their simulations are given to illustrate the correctness and effectiveness of

the obtained results.

Keywords Memristor-based neural networks � Proportional delay � Exponential synchronization � Feedback control �
Lyapunov functional � Filippov solution

1 Introduction

For the sake of depicting the relationship between electric

charge and magnetic flux, Chua [1] in 1971 originally

envisaged the existence of the fourth basal circuit element

which described as memristor (an abbreviation for memory

and resistor). The other three essential circuit components

are resistor, inductor and capacitor, respectively. Unfortu-

nately, as the fourth fundamental passive circuit element,

memristor was rarely valued by several researchers until

the actual memristor device was triumphantly contrived by

scientists at Hewlett-Packard Laboratories [2]. Thanks to

memristor’s distinctive properties, such as nanometer scale

dimensions, nonvolatile memory characteristics, lower

power consumption, a alterable resistance known as

memristance, and so on [3–5], a growing number of

researchers have shown solicitude for memristor. Going

one step further, scientists have explored memristor’s a

number of prospective applications in neuromorphic sys-

tems [6], programmable analog circuits [7] and so on. It has

been expounded at length that memristor is in a position to

regard as synaptic connection weights in artificial neural

networks [8], so a great deal of researchers took advantage

of memristor to devise a novel model called memristor-

based neural networks for the purpose of emulating the

human brain. We are convinced that memristor-based

neural networks can be widely used in many fields, when

their dynamical characteristics are adequately exploited

and utilized.

It is generally known that recurrent neural networks

have blossomed into very significant nonlinear circuit

systems in virtue of their extensive application value and

prospect in solving Sylvester equation, computing the

Drazin inverse, resolving real-time price problem, dealing

with convex optimization problem and so on [9–11].

Taking fully into account the wide range of practical

applications, numerous scholars were really quite inter-

ested in researching memristor-based recurrent neural

networks (MRNNs) and have acquired many meaningful

results. In reality, MRNNs with time delays have captured

considerable attention of more and more scholars and a

great deal of valuable achievements have been reported in

[12–15]. The true cause lies in the fact that time delays are

universal phenomena in nature as a result of the limited

switching speed of amplifiers. In addition, time delays
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invariably have a marked impact on the dynamic behaviors

of neural networks, and even cause various unstable phe-

nomena, such as periodic oscillation, periodic instability,

bifurcation and so on. In recent years, scholars have

devoted a great deal of effort to investigating the delay-

dependent exponential passivity and exponential stability

of MRNNs with time-varying delays [12, 13]. Besides that,

by constructing appropriate Lyapunov functionals and

applying inequality techniques, a lot of sufficient condi-

tions were obtained to ensure the passivity of the MRNNs

with discrete and distributed delays in [14]. And Chan-

drasekar et al. [15] considered the l-stability of MRNNs

with leakage time-varying delays by establishing proper

Lyapunov-Krasovskii functionals, appropriate inequalities

and linear matrix inequalities (LMIs).

As early as 1990, Pecora and Carroll [16] reported that

chaotic systems can be synchronized by linking them with

identical signals. After the ground-breaking research, a

growing number of scholars from diverse scientific

domains have extensively studied the synchronization

owing to its several latent applications in security [17],

image encryption [18], public traffic networks [19], private

communications [20], inferring network topologies [21]

and so on. Wang et al. [22] analyzed the synchronization

conditions of coupled harmonic oscillators utilizing sam-

pled data. And researchers have discussed the synchro-

nization of many networks, containing complex networks,

directed complex networks, duplex networks and so on. For

example, see [23–25] and references therein. In [23],

scholars expounded profoundly the synchronization phe-

nomena when oscillating elements are confined to interact

in the sophisticated network topology, and its applications

from complex networks to diverse disciplines. The lower

bounds for the coupling strengths of oscillators in the

directed complex networks were given to guarantee the

global synchronization in [24]. Li et al. [25] revealed

several rules about synchronizability of the duplex net-

works comprised of two networks. In existent researching

files, a lot of synchronization problems have been

demonstrated, covering adaptive lag synchronization [26],

impulsive synchronization [27], complex function projec-

tive synchronization [28], exponential synchronization [29]

and so on. Numerous control techniques have been utilized

to investigate the synchronization of discussed systems,

which contain adaptive control, periodically intermittent

control, delayed feedback control and so on. For example,

see [30–33] and references therein. In recent years, the

synchronization of MRNNs has aroused widespread con-

cern due to its important significance in theory and prac-

tice. Taking into account the impact of time delays,

researchers focused on the synchronization of MRNNs

with time delays and have reported numerous significant

achievements. Exponential synchronization and anti-

synchronization, non-fragile H1 synchronization of

MRNNs with time-varying delays were studied in [34, 35],

respectively. In [36], Bao received some sufficient condi-

tions to ensure the adaptive synchronization of fractional-

order memristor-based neural networks with time delay, by

utilizing the linear delay feedback control, adaptive control

as well as a fractional-order inequality. By designing

suitable controllers, several sufficient conditions were

contained to ensure the finite-time synchronization and

fixed-time synchronization of delayed MRNNs in [37, 38],

respectively. The exponential synchronization of coupled

stochastic memristor-based neural networks with proba-

bilistic time-varying delay coupling and time-varying

impulsive delay was investigated in [39]. In view of non-

smooth analysis and a feedback controller, numerous suf-

ficient conditions were achieved to guarantee the expo-

nential synchronization of MRNNs with time-varying

delays in [40].

In the late years, a new type of unbounded time-varying

delay which differs from distributed delay, known as pro-

portional delay, has stimulated scholars’ research interests

owing to its important position of many areas, such as

electrodynamics [41], dynamics [42], Web quality of ser-

vice (QoS) routing decision [43] and so on. On the basis of

the topological structures and inner parameters of consid-

ered neural networks, we lead into the proportional delays,

which can make the process of performance analysis more

complicated and interesting [44, 45]. It should be pointed

out that the QoS routing algorithms in view of neural

networks with proportional delays are regarded as the most

appropriate algorithms. At the same time, the proportional

delay function sðtÞ ¼ ð1� qÞt ! þ1 as q 6¼ 1; t ! þ1,

where q is a constant and meets 0\q\1, so it is

remarkably facilitate to dominate the operation time in the

light of the time delays of discussed neural networks.

Therefore it’s of important theory and actual meanings to

deal with the dynamic behaviors of neural networks with

proportional delays. For example, see [46–51] and refer-

ences therein. On the basis of matrix theories and proper

Lyapunov functionals, global exponential stability and

asymptotic stability of the equilibrium point of cellular

neural networks with multi-proportional delays were

studied in [46, 47], respectively. In addition to this, several

sufficient conditions ensuring the global exponential peri-

odicity and stability, exponential synchronization of

recurrent neural networks with multi-proportional delays

were reported in [48, 49], respectively. Nevertheless, it is a

significant challenge to establish suitable Lyapunov func-

tionals occasionally, researches try to deal with the prob-

lems by some other methods, for instance, by constructing

novel delay differential inequalities. By means of con-

structing proper delay differential inequalities, Zhou

[50, 51] investigated the exponential stability of hybrid
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BAM neural networks and competitive neural networks

with proportional delays, respectively. Moreover, in the

process of transferring the digital signals, security will be

enhanced by means of utilizing synchronization to com-

munication. Up to date, there has never been any results

discussing the exponential synchronization of MRNNs

with multi-proportional delays in the literature, and this

question is challenging and meaningful.

Inspired by the above discussions, this paper researches

the exponential synchronization of MRNNs with multi-

proportional delays. In the sense of Filippov solutions, we

manage to obtain a novel sufficient condition to ensure the

exponential synchronization of considered systems via a

feedback control, theories of set-valued maps and differ-

ential inclusions, proper Lyapunov functional method and

inequality techniques. Moreover, two numerical examples

and their simulations are given to clarify the improvement

and advantages of the derived theoretical results in com-

parison with some existing results.

The rest of this paper is proposed as follows. Models and

preliminaries are presented in Sect. 2. A sufficient condi-

tion is obtained in Sect. 3 for the exponential synchro-

nization of MRNNs with multi-proportional delays.

Section 4 presents two numerical examples and their sim-

ulations. Conclusions are exhibited in Sect. 5.

2 Model description and preliminaries

Consider the following class of MRNNs with multi-pro-

portional delays:

_xiðtÞ ¼ �di xiðtÞð ÞxiðtÞ þ
Xn

j¼1

aij xjðtÞ
� �

fj xjðtÞ
� �

þ
Xn

j¼1

bij xj pjt
� �� �

gj xj pjt
� �� �

þ
Xn

j¼1

cij xj qjt
� �� �

hj xj qjt
� �� �

þ Ii; t� 1;

xiðtÞ ¼ uiðtÞ; t 2 ½q; 1�;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð1Þ

for i ¼ 1; 2; . . .; n. where n� 2 represents the number of

neurons. xiðtÞ is the voltage of the capacitor Ci. diðxiðtÞÞ is
the ith neuron self-inhibitions at time

t. aijðxjðtÞÞ; bijðxjðpjtÞÞ and cijðxjðqjtÞÞ are memristor-based

connection weights. fj; gj and hj : R ! R denote the non-

linear activation functions. Ii is an external constant input.

pj and qj; j ¼ 1; 2; . . .; n are proportional delay factors and

satisfy 0\pj; qj � 1; q ¼ min1� j� nfpj; qjg, and

pjt ¼ t � ð1� pjÞt; qjt ¼ t � ð1� qjÞt, where ð1� pjÞt and
ð1� qjÞt are the transmission delay functions, and ð1�
pjÞt ! þ1; ð1� qjÞt ! þ1 as pj; qj 6¼ 1; t ! þ1.

uiðtÞ; t 2 ½q; 1�; i ¼ 1; 2; . . .; n are the initial values of sys-

tem (1), U ¼ ðu1ðtÞ;u2ðtÞ; . . .;unðtÞÞT 2 Cð½q; 1�;RnÞ, and

di xiðtÞð Þ ¼ 1

Ci

Xn

j¼1

Mij þ Nij þWij

� �
� dij þ �Ri

" #
;

aij xjðtÞ
� �

¼ Mij

Ci

� dij;

bij xj pjt
� �� �

¼Nij

Ci

� dij; cij xj qjt
� �� �

¼ Wij

Ci

� dij;

in which

dij ¼
1; i 6¼ j;

�1; i ¼ j;

�

Ri and Ci are the resistor and capacitor,
�Ri ¼ 1

Ri
; i 2 N;N ¼ 1; 2; . . .; n. Mij;Nij and Wij denote the

memductances of memristors R�
ij;R

��
ij and R���

ij , respec-

tively. Furthermore, R�
ij denotes the memristor between the

neuron activation function fjðxjðtÞÞ and xiðtÞ. R��
ij stands for

the memristor between the neuron activation function

gjðxjðpjtÞÞ and xiðtÞ. R���
ij represents the memristor between

the neuron activation function hjðxjðqjtÞÞ and xiðtÞ.
According to the properties of memristor and the previous

works, here we take the threshold voltage is zero, then

diðxiðtÞÞ; aijðxjðtÞÞ; bijðxjðpjtÞÞ and cijðxjðqjtÞÞ satisfy the

following conditions:

di xiðtÞð Þ

¼
d�i ; xiðtÞ� 0;

d��i ; xiðtÞ[ 0;

�
aij xjðtÞ
� �

¼
a�ij; xjðtÞ� 0;

a��ij ; xjðtÞ[ 0;

(

bij xj pjt
� �� �

¼
b�ij; xj pjt

� �
� 0;

b��ij ; xj pjt
� �

[ 0;

(
cij xj qjt

� �� �
¼

c�ij; xj qjt
� �

� 0;

c��ij ; xj qjt
� �

[ 0;

(

where d�i [ 0; d��i [ 0; i 2 N. For i; j 2
N; a�ij; a

��
ij ; b

�
ij; b

��
ij ; c

�
ij and c��ij are all constants. Before going

any further, we bring forward the following condition for

the neuron activation functions fjð�Þ; gjð�Þ and hjð�Þ:

r�j � fjðs1Þ � fjðs2Þ
s1 � s2

� rþj ; c�j � gjðs1Þ � gjðs2Þ
s1 � s2

� cþj ;

d�j � hjðs1Þ � hjðs2Þ
s1 � s2

� dþj ; s1 6¼ s2; fjð0Þ ¼ gjð0Þ ¼ hjð0Þ ¼ 0;

9
>>=

>>;

ð2Þ

in which j ¼ 1; 2; . . .; n; r�j ; r
þ
j ; c

�
j ; c

þ
j ; d

�
j and dþj are

constants, fjð�Þ; gjð�Þ and hjð�Þ don’t be asked to be differ-

ential, monotonic and nondecreasing throughout this paper.

System (1) is deemed as the drive system, corresponding

response system is defined as:
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_ziðtÞ ¼ �di ziðtÞð ÞziðtÞ þ
Xn

j¼1

aij zjðtÞ
� �

fj zjðtÞ
� �

þ
Xn

j¼1

bij zj pjt
� �� �

gj zj pjt
� �� �

þ
Xn

j¼1

cij zj qjt
� �� �

hj zj qjt
� �� �

þ Ii þ uiðtÞ; t� 1;

ziðtÞ ¼ wiðtÞ; t 2 ½q; 1�;

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð3Þ

where

di ziðtÞð Þ

¼
d�i ; ziðtÞ� 0;

d��i ; ziðtÞ[ 0;

�
aij zjðtÞ
� �

¼
a�ij; zjðtÞ� 0;

a��ij ; zjðtÞ[ 0;

(

bij zj pjt
� �� �

¼
b�ij; zj pjt

� �
� 0;

b��ij ; zj pjt
� �

[ 0;

(
cij zj qjt

� �� �
¼

c�ij; zj qjt
� �

� 0;

c��ij ; zj qjt
� �

[ 0;

(

and uiðtÞ is the state-feedback controller. wiðtÞ; t 2
½q; 1�; i ¼ 1; 2; . . .; n are the initial values of response sys-

tem (3), W ¼ ðw1ðtÞ;w2ðtÞ; . . .;wnðtÞÞ
T 2 Cð½q; 1�;RnÞ.

Through appropriate transformations: yiðtÞ ¼
xiðetÞ; viðtÞ ¼ ziðetÞ (see [46]), drive-response systems (1)

and (3) are equivalently transformed into the following

drive-response systems with multi-constant delays and

time-varying coefficients:

_yiðtÞ ¼ et �di yiðtÞð ÞyiðtÞ þ
Xn

j¼1

aij yjðtÞ
� �

fj yjðtÞ
� �

(

þ
Xn

j¼1

bij yj t � sj
� �� �

gj yj t � sj
� �� �

þ
Xn

j¼1

cij yj t � 1j
� �� �

hj yj t � 1j
� �� �

þ Ii

)
; t� 0;

yiðtÞ ¼ �uiðtÞ; t 2 ½�g; 0�;

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð4Þ

and

_viðtÞ ¼ et �di viðtÞð ÞviðtÞ þ
Xn

j¼1

aij vjðtÞ
� �

fj vjðtÞ
� �

(

þ
Xn

j¼1

bij vj t � sj
� �� �

gj vj t � sj
� �� �

þ
Xn

j¼1

cij vj t � 1j
� �� �

hj vj t � 1j
� �� �

þ Ii þ UiðtÞ
)
; t� 0;

viðtÞ ¼ �wiðtÞ; t 2 ½�g; 0�;

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð5Þ

for i ¼ 1; 2; . . .; n. Where sj ¼ � log pj � 0; 1j ¼ � log qj

� 0, we let s ¼ max1� j� nfsjg; 1 ¼ max1� j� nf1jg; g
¼ maxfs; 1g. �uiðtÞ ¼ uiðetÞ; �wiðtÞ ¼ wiðetÞ; �U ¼ ð �u1ðtÞ;
�u2ðtÞ; . . .; �unðtÞÞT 2 Cð½�g; 0�; RnÞ; �W ¼ ð �w1ðtÞ;
�w2ðtÞ; . . .; �wnðtÞÞ

T 2 Cð½�g; 0�;RnÞ;UiðtÞ ¼ uiðetÞ, here

UiðtÞ is an feedback controller and defined as

UiðtÞ ¼ qi viðtÞ � yiðtÞð Þ; ð6Þ

where qi is a constant for all i 2 N, which represents the

control gain.

Remark 1 Drive-response systems (1) and (3) are equiv-

alent to drive-response systems (4) and (5). Accordingly,

for the sake of researching the exponential synchronization

of drive-response systems (1) and (3), we can research the

exponential synchronization of drive-response systems (4)

and (5).

From the view of mathematics, memristor-based dif-

ferential equations obey Bernoulli’s nonlinear differential

equations (see [33]), and drive-response systems (4) and

(5) are discontinuous systems. In this case, the solutions of

(4) and (5) are considered in Filippov’s sense, we recom-

mend several definitions and lemmas.

Definition 1 [14] Let E 	 Rn, then v 7!GðvÞ is called a

set-valued map from E,!Rn, if there is a nonempty set

GðvÞ 	 Rn for each point v of a set E 	 Rn. A set-valued

map G with nonempty values is described as upper-semi-

continuous at v0 2 E 	 Rn, if for any open set N contain-

ing Gðv0Þ, there exists a neighborhood M of v0 such that

GðMÞ 	 N. GðvÞ is said to have a closed (convex, com-

pact) image if to each v 2 E;GðvÞ is closed (convex,

compact).

Definition 2 [52] For the following differential system

_vðtÞ ¼ gðt; vÞ, in which gðt; vÞ is discontinuous at v 2 Rn.

The set-valued map is described as

Gðt; vÞ ¼
\

.[ 0

\

lðNÞ¼0

co g t;B v; .ð ÞnNð Þ½ �;

where co½�� denotes the closure of the convex hull. Bðv; .Þ
is the ball of center v and radius .. lðNÞ is Lebesgue

measure of set N. A vector-value function vðtÞ which

defined on a non-degenerate interval I 
 R is addressed as

a Filippov solution of this system, if vðtÞ is an absolutely

continuous function on any subinterval ½t1; t2� of I, and for

almost all t 2 I; vðtÞ fulfills the differential inclusion

_vðtÞ 2 Gðt; vÞ.

According to Definitions 1 and 2, drive-response sys-

tems (4) and (5) can be written as:
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_yiðtÞ 2 et �co di yiðtÞð Þ½ �yiðtÞ þ
Xn

j¼1

co aij yjðtÞ
� �� �

fj yjðtÞ
� �

(

þ
Xn

j¼1

co bij yj t � sj
� �� �� �

gj yj t � sj
� �� �

þ
Xn

j¼1

co cij yj t � 1j
� �� �� �

hj yj t � 1j
� �� �

þ Ii

)
; t� 0;

ð7Þ

and

_viðtÞ 2 et �co di viðtÞð Þ½ �viðtÞ þ
Xn

j¼1

co aij vjðtÞ
� �� �

fj vjðtÞ
� �

(

þ
Xn

j¼1

co bij vj t � sj
� �� �� �

gj vj t � sj
� �� �

þ
Xn

j¼1

co cij vj t � 1j
� �� �� �

hj vj t � 1j
� �� �

þ Ii þ UiðtÞ
)
; t� 0;

ð8Þ

where

co di yiðtÞð Þ½ �¼

d�i ; yiðtÞ\0;

co d�i ;d
��
i

� �
; yiðtÞ¼0;

d��i ; yiðtÞ[0;

8
>><

>>:
co di viðtÞð Þ½ �¼

d�i ; viðtÞ\0;

co d�i ;d
��
i

� �
; viðtÞ¼0;

d��i ; viðtÞ[0;

8
>><

>>:

co aij yjðtÞ
� �� �

¼

a�ij; yjðtÞ\0;

co a�ij;a
��
ij

n o
; yjðtÞ¼0;

a��ij ; yjðtÞ[0;

8
>>><

>>>:
co aij vjðtÞ

� �� �
¼

a�ij; vjðtÞ\0;

co a�ij;a
��
ij

n o
; vjðtÞ¼0;

a��ij ; vjðtÞ[0;

8
>>><

>>>:

co bij yj t�sj
� �� �� �

¼

b�ij; yjðt�sjÞ\0;

co b�ij;b
��
ij

n o
; yj t�sj

� �
¼0;

b��ij ; yjðt�sjÞ[0;

8
>>><

>>>:

co bij vj t�sj
� �� �� �

¼

b�ij; vj t�sj
� �

\0;

co b�ij;b
��
ij

n o
; vj t�sj

� �
¼0;

b��ij ; vj t�sj
� �

[0;

8
>>><

>>>:

co cij yj t�1j
� �� �� �

¼

c�ij; yj t�1j
� �

\0;

co c�ij;c
��
ij

n o
; yj t�1j

� �
¼0;

c��ij ; yj t�1j
� �

[0;

8
>>><

>>>:

co cij vj t�1j
� �� �� �

¼

c�ij; vj t�1j
� �

\0;

co c�ij;c
��
ij

n o
; vj t�1j

� �
¼0;

c��ij ; vj t�1j
� �

[0:

8
>>><

>>>:

Then, we give the definition of the synchronization error

wðtÞ :wðtÞ¼ðw1ðtÞ;w2ðtÞ; . . .;wnðtÞÞT, where wiðtÞ¼ viðtÞ
�yiðtÞ. By using Definitions 1 and 2, from drive-response

systems (4) and (5), we can obtain the following syn-

chronization error system:

_wiðtÞ 2 et � co di viðtÞð Þ½ �viðtÞ � co di yiðtÞð Þ½ �yiðtÞ½ �f

þ
Xn

j¼1

co aij vjðtÞ
� �� �

fj vjðtÞ
� ��

�co aij yjðtÞ
� �� �

fj yjðtÞ
� ��

þ
Xn

j¼1

co bij vj t � sj
� �� �� �

gj vj t � sj
� �� ��

�co bij yj t � sj
� �� �� �

gj yj t � sj
� �� ��

þ
Xn

j¼1

co cij vj t � 1j
� �� �� �

hj vj t � 1j
� �� ��

�co cij yj t � 1j
� �� �� �

hj yj t � 1j
� �� ��

þ UiðtÞ
�
; t� 0:

ð9Þ

Definition 3 [14] A vector-value function yðtÞ ¼
ðy1ðtÞ; y2ðtÞ; . . .; ynðtÞÞT is a solution of drive system (4)

with the initial condition �U ¼ ð �u1ðtÞ; �u2ðtÞ; . . .; �unðtÞÞT
2 Cð½�g; 0�;RnÞ, if y(t) is an absolutely continuous func-

tion and satisfies Definition 2.

Lemma 1 [14] If condition (2) holds, then the solution

y(t) of drive system (4) with initial condition �U ¼
ð �u1ðtÞ; �u2ðtÞ; . . .; �unðtÞÞT 2 Cð½�g; 0�;RnÞ exists and it can

be extended to the interval ½0;þ1Þ.

Lemma 2 [40] If condition (2) holds, then the following

inequalities

(i)
co½diðviðtÞÞ�viðtÞ � co½diðyiðtÞÞ�yiðtÞf g
sgn wiðtÞð Þ�DijwiðtÞj;

(ii)
co½aijðvjðtÞÞ�fjðvjðtÞÞ � co½aijðyjðtÞÞ�fjðyjðtÞÞ
		 		

�AijrjjwjðtÞj;

(iii)
co½bijðvjðt � sjÞÞ�gjðvj
		

ðt � sjÞÞ � co½bijðyjðt � sjÞÞ�gjðyjðt � sjÞÞj
�Bijcjjwjðt � sjÞj;

(iv)
co½cijðvjðt � 1jÞÞ�hjðvjðt � 1jÞÞ
		

� co½cijðyjðt � 1jÞÞ�hjðyjðt � 1jÞÞj
�Cijdjjwjðt � 1jÞj

hold. Where rj ¼ maxfjr�j j; jrþj jg; cj ¼ maxfjc�j j; jcþj jg;
dj ¼ maxfjd�j j; jdþj jg; i; j 2 N.

Definition 4 [40] For 8 t� 0, drive-response systems (4)

and (5) are said to be exponentially synchronized if there

exist constants M[ 1 and j[ 0 such that

Xn

i¼1

jviðtÞ � yiðtÞjp
" #1

p

�Me�jt �W� �U
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holds, in which j is described as degree of exponential

synchronization.

Notations Solutions of all the considered systems are

intended in Filippov’s sense in the whole paper. Rn and

Rn�m denote the n-dimensional Euclidean space and the

space of n� m real matrices, respectively. Cð½q; 1�;RnÞ and
Cð½�g; 0�;RnÞ denote the set of all functions u : ½q; 1� !
Rn and w : ½�g; 0� ! Rn such that u and w are continu-

ously differential and bounded, respectively. Let K ¼
ðkijÞn�n 2 Rn�n stands for real square matrix. For any

h ¼ ðh1; h2; . . .; hnÞ 2 Rn, the norm is defined by

khk ¼ ð
Pn

i¼1 jhij
pÞ

1
p, where p� 1 is a positive integer. We

define k �Uk ¼ sup�g� t� 0½
Pn

i¼1 j �uiðtÞjp�
1
p, for 8 �U ¼ ð �u1ðtÞ;

�u2ðtÞ; . . .; �unðtÞÞT 2 Cð½�g; 0�;RnÞ. cofn
i
; �nig represents

the convex hull of fn
i
; �nig. For a continuous function pðtÞ :

R ! R;DþpðtÞ is called to be the upper right dini

derivative and defined as DþpðtÞ ¼ limh!0þ
1
h
ðpðt þ hÞ�

pðtÞÞ. Let Di ¼ minfd�i ; d��i g;Aij ¼ maxfja�ijj; ja��ij jg;Bij ¼
maxfjb�ijj; jb��ij jg;Cij ¼ maxfjc�ijj; jc��ij jg.

3 Main results

Theorem 1 Under condition (2), if there exist constants

ai [ 0 and p[ 1; such that

� p Di � qið Þ þ
Xn

j¼1

ðp� 1Þ Aij þ Bij þ Cij

� �
þ aj
ai
Ajir

p
i

�

þ aj
ai
Bjic

p
i þ

aj
ai
Cjid

p
i

�
\0

ð10Þ

holds for i; j ¼ 1; 2; . . .; n; then drive-response systems (4)

and (5) are exponentially synchronized with control input (6).

Proof For i; j ¼ 1; 2; . . .; n, we can choose a small e[ 1
p

such that

p e� Di þ qið Þ þ
Xn

j¼1

ðp� 1Þ Aij þ Bij þ Cij

� �
þ aj
ai
Ajir

p
i

�

þ aj
ai
epesBjic

p
i þ

aj
ai
epe1Cjid

p
i

�
\0:

ð11Þ

Consider the following Lyapunov functional

VðtÞ ¼
Xn

i¼1

ai e�t wiðtÞj jpepet þ epescpj
Xn

j¼1

Bij

Z t

t�sj

wjðsÞ
		 		pepesds

2

64

þepe1dpj
Xn

j¼1

Cij

Z t

t�1j

wjðsÞ
		 		pepesds

3

75:

ð12Þ

Under condition (2), by calculating the upper right

derivation DþVðtÞ of V(t) along system (9), we obtain

DþVðtÞ

¼
Xn

i¼1

ai �e�t wiðtÞj jpepet þ pee�t wiðtÞj jpepet½

þ pe�t wiðtÞj jp�1
epet _wiðtÞ

� sgn wiðtÞð Þ þ epescpj
Xn

j¼1

Bij wjðtÞ
		 		pepet

� epescpj
Xn

j¼1

Bij wj t � sj
� �		 		pepe t�sjð Þ

þepe1dpj
Xn

j¼1

Cij wjðtÞ
		 		pepet � epe1dpj

Xn

j¼1

Cij wj t � 1j
� �		 		pepe t�1jð Þ�

� epet
Xn

i¼1

pai e wiðtÞj jpþ wiðtÞj jp�1
e�t _wiðtÞsgn wiðtÞð Þ

h i

þ epet
Xn

i¼1

Xn

j¼1

epesaic
p
j Bij wjðtÞ

		 		p�e�pesj wj t � sj
� �		 		p� �

þ epet
Xn

i¼1

Xn

j¼1

epe1aid
p
j Cij wjðtÞ

		 		p�e�pe1j wj t � 1j
� �		 		p� �

2 epet
Xn

i¼1

pai e wiðtÞj jpþ wiðtÞj jp�1
sgn wiðtÞð Þ

h

� co di viðtÞð Þ½ �viðtÞ½f �co di yiðtÞð Þ½ �yiðtÞ�

þ
Xn

j¼1

co aij vjðtÞ
� �� �

fj vjðtÞ
� ��

� co aij yjðtÞ
� �� �

fj yjðtÞ
� �

�

þ
Xn

j¼1

co bij vj t � sj
� �� �� �

gj vj t � sj
� �� ��

� co bij yj t � sj
� �� �� �

gj yj t � sj
� �� �

�

þ
Xn

j¼1

co cij vj t � 1j
� �� �� �

hj vj t � 1j
� �� ��

� co cij yj t � 1j
� �� �� �

hj yj t � 1j
� �� �

�
þUiðtÞg�

þ epet
Xn

i¼1

Xn

j¼1

epesaic
p
j Bij wjðtÞ

		 		p�e�pesj wj t � sj
� �		 		p� �

þ epet
Xn

i¼1

Xn

j¼1

epe1aid
p
j Cij wjðtÞ

		 		p�e�pe1j wj t � 1j
� �		 		p� �

:

ð13Þ
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It follows from Lemma 2 and (13) that

DþVðtÞ� epet
Xn

i¼1

pai wiðtÞj jp�1

e� Di þ qið Þ wiðtÞj j þ
Xn

j¼1

Aijrj wjðtÞ
		 		

(

þ
Xn

j¼1

Bijcj wj t � sj
� �		 		þ

Xn

j¼1

Cijdj wj t � 1j
� �		 		

)

þ epet
Xn

i¼1

Xn

j¼1

aiBij epescpj wjðtÞ
		 		p�cpj wj t � sj

� �		 		p
h i

þ epet
Xn

i¼1

Xn

j¼1

aiCij epe1dpj wjðtÞ
		 		p�dpj wj t � 1j

� �		 		p
h i

¼ epet
Xn

i¼1

pai e� Di þ qið Þ wiðtÞj jp
(

þ
Xn

j¼1

Aijpairj wjðtÞ
		 		 wiðtÞj jp�1

þ
Xn

j¼1

Bijpaicj wj t � sj
� �		 		 wiðtÞj jp�1

þ
Xn

j¼1

Cijpaidj wj t � 1j
� �		 		 wiðtÞj jp�1

)

þ epet
Xn

i¼1

Xn

j¼1

aiBij epescpj wjðtÞ
		 		p�cpj wj t � sj

� �		 		p
h i

þ epet
Xn

i¼1

Xn

j¼1

aiCij epe1dpj wjðtÞ
		 		p�dpj wj t � 1j

� �		 		p
h i

;

ð14Þ

by using Young inequality ab� 1
b1
ab1 þ 1

b2
bb2 , where

a; b[ 0; b1 [ 1; 1
b1
þ 1

b2
¼ 1, we get

rj wjðtÞ
		 		 wiðtÞj jp�1 �

rpj
p

wjðtÞ
		 		pþ p� 1

p
wiðtÞj jp;

cj wj t � sj
� �		 		 wiðtÞj jp�1 �

cpj
p

wj t � sj
� �		 		pþ p� 1

p
wiðtÞj jp;

dj wj t � 1j
� �		 		 wiðtÞj jp�1 �

dpj
p

wj t � 1j
� �		 		pþ p� 1

p
wiðtÞj jp;

which together with (11), we obtain

DþVðtÞ� epet
Xn

i¼1

pai e� Di þ qið Þ wiðtÞj jp
(

þ
Xn

j¼1

Aij

rpj
p

wjðtÞ
		 		pþ p� 1

p
wiðtÞj jp

� �

þ
Xn

j¼1

Bij

cpj
p

wj t � sj
� �		 		pþ p� 1

p
wiðtÞj jp

� �

þ
Xn

j¼1

Cij

dpj
p

wj t � 1j
� �		 		pþ p� 1

p
wiðtÞj jp

� �)

þ epet
Xn

i¼1

Xn

j¼1

aiBij epescpj wjðtÞ
		 		p�cpj wj t � sj

� �		 		p
h i

þ epet
Xn

i¼1

Xn

j¼1

aiCij epe1dpj wjðtÞ
		 		p�dpj wj t � 1j

� �		 		p
h i

¼ epet
Xn

i¼1

ai p e� Di þ qið Þ wiðtÞj jp
(

þ
Xn

j¼1

Aij rpj wjðtÞ
		 		pþðp� 1Þ wiðtÞj jp

h i
:

þ
Xn

j¼1

Bij cpj wj t � sj
� �		 		pþðp� 1Þ wiðtÞj jp

h i

þ
Xn

j¼1

Cij dpj wj t � 1j
� �		 		pþðp� 1Þ wiðtÞj jp

h i)

þ epet
Xn

i¼1

Xn

j¼1

aiBij epescpj wjðtÞ
		 		p�cpj wj t � sj

� �		 		p
h i

þ epet
Xn

i¼1

Xn

j¼1

aiCij epe1dpj wjðtÞ
		 		p�dpj wj t � 1j

� �		 		p
h i

¼ epet
Xn

i¼1

ai

p e� Di þ qið Þ wiðtÞj jpþ
Xn

j¼1

Aij rpj wjðtÞ
		 		pþðp� 1Þ wiðtÞj jp

h i(

þ
Xn

j¼1

Bijðp� 1Þ wiðtÞj jpþ
Xn

j¼1

Cijðp� 1Þ wiðtÞj jp
)

þ epet
Xn

i¼1

Xn

j¼1

aiBije
pescpj wjðtÞ

		 		p

þ epet
Xn

i¼1

Xn

j¼1

aiCije
pe1dpj wjðtÞ

		 		p¼ epet
Xn

i¼1

ai wiðtÞj jp
(
p e� Di þ qið Þ

þ
Xn

j¼1

�
ðp� 1Þ Aij þ Bij þ Cij

� �

þ aj
ai
Ajir

p
i þ

aj
ai
epesBjic

p
i þ

aj
ai
epe1Cjid

p
i

�)
\0;

ð15Þ

thus, VðtÞ�Vð0Þ. Since
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Vð0Þ ¼
Xn

i¼1

ai �wið0Þ � �uið0Þ
		 		pþepescpj

Xn

j¼1

Bij

Z0

�sj

wjðsÞ
		 		pepesds

2
64

þepe1dpj
Xn

j¼1

Cij

Z0

�1j

wjðsÞ
		 		pepesds

3
75

� max
1� i� n

faig þ cpsepes
Xn

i¼1

ai max
1� j� n

fBijg
"

þdp1epe1
Xn

i¼1

ai max
1� j� n

fCijg
#

sup
�g� t� 0

Xn

i¼1

�wiðtÞ � �uiðtÞ
		 		p;

ð16Þ

where c ¼ max1� i� nfcig; d ¼ max1� i� nfdig. And from

(12), for t� 0, we have

VðtÞ�
Xn

i¼1

aie
�t wiðtÞj jpepet � min

1� i� n
faigeðpe�1Þt

Xn

i¼1

wiðtÞj jp:

ð17Þ

It follows from (15)–(17) that

Xn

i¼1

vi t; �w
� �

� yi t; �uð Þ
		 		p

" #1
p

�Me�jt sup
�g� t� 0

Xn

i¼1

�wiðtÞ � �uiðtÞ
		 		p

" #1
p

;

where j ¼ pe�1
p

;

this is to say,

Xn

i¼1

viðtÞ � yiðtÞj jp
" #1

p

�Me�jt �W� �U


 

:

From Definition 4, we derive that drive-response systems

(4) and (5) are exponentially synchronized with control

input (6). The proof of Theorem 1 is completed. h

Now, basing on 2-norm, we present the following

Corollary.

Corollary 1 Under condition (2), if there exists constant

ai [ 0, such that

� 2ðDi � qiÞ þ
Xn

j¼1

Aij þ Bij þ Cij þ
aj
ai
Ajir

2
i þ

aj
ai
Bjic

2
i þ

aj
ai
Cjid

2
i

� �
\0

ð18Þ

holds, then drive-response systems (4) and (5) are expo-

nentially synchronized with control input (6), where

i; j ¼ 1; 2; . . .; n:

Remark 2 Drive-response systems (4) and (5) are distinct

from the drive-response systems in [40]. The coefficients in

[40] are bounding time-varying, while the coefficients in this

paper are unbound time-varying as a result of containing et,

so the exponential synchronization results in [40] cannot be

straightly applied to drive-response systems (4) and (5).

Remark 3 If pj ¼ qj ¼ 1, drive-response systems (1) and

(3) become the following drive-response systems

_xiðtÞ ¼ �di xiðtÞð ÞxiðtÞ þ
Xn

j¼1

lij xjðtÞ
� �

fj xjðtÞ
� �

þ Ii;

and

_ziðtÞ ¼ �di ziðtÞð ÞziðtÞ þ
Xn

j¼1

lij zjðtÞ
� �

fj zjðtÞ
� �

þ Ii þ uiðtÞ;

where t� 1; lijðxjðtÞÞ ¼ aijðxjðtÞÞ þ bijðxjðtÞÞ þ cijðxjðtÞÞ;
lijðzjðtÞÞ ¼ aijðzjðtÞÞ þ bijðzjðtÞÞ þ cijðzjðtÞÞ; fjðxjðtÞÞ ¼ gjðxj
ðtÞÞ ¼ hjðxjðtÞÞ; i; j ¼ 1; 2; . . .; n.

Above drive-response systems are MRNNs without

delays, the result in this paper is equally true of above

drive-response systems.

4 Numerical example

In this section, we will present two numerical examples

and their simulations to clarify that the obtained conclusion

is correct.

Example 1 Consider two-dimensional MRNNs with mul-

ti-proportional delays:

M ¼ max1� i�nfaigþ cpsepes
Pn

i¼1 aimax1� j�nfBijgþ dp1epe1
Pn

i¼1 aimax1� j�nfCijg
min1� i�nfaig

� �1
p

�1;
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_xiðtÞ ¼ � di xiðtÞð ÞxiðtÞ þ
X2

j¼1

aij xjðtÞ
� �

fj xjðtÞ
� �

þ
X2

j¼1

bij xj pjt
� �� �

gj xj pjt
� �� �

þ
X2

j¼1

cij xj qjt
� �� �

hj xj qjt
� �� �

þ Ii; i ¼ 1; 2;

ð19Þ

where

d1ðx1ðtÞÞ ¼
1; x1ðtÞ� 0;

1:5; x1ðtÞ[ 0;

�
d2 x2ðtÞð Þ ¼

1:6; x2ðtÞ� 0;

1; x2ðtÞ[ 0;

�

a11 x1ðtÞð Þ

¼
� 1:5; x1ðtÞ� 0;

� 1; x1ðtÞ[ 0;

�
a12 x2ðtÞð Þ ¼

20; x2ðtÞ� 0;

25; x2ðtÞ[ 0;

�

b11 x1 p1tð Þð Þ

¼
� 1; x1 p1tð Þ� 0

� 0:8; x1 p1tð Þ[ 0;

�
b12 x2 p2tð Þð Þ ¼

�0:03; x2 p2tð Þ� 0;

�0:05; x2 p2tð Þ[ 0;

�

c11 x1 q1tð Þð Þ

¼
� 1:36; x1 q1tð Þ� 0;

� 1:5; x1 q1tð Þ[ 0;

�
c12 x2 q2tð Þð Þ ¼

� 0:03; x2 q2tð Þ� 0;

� 0:05; x2 q2tð Þ[ 0;

�

a21ðx1ðtÞÞ

¼
� 2; x1ðtÞ� 0;

� 1:8; x1ðtÞ[ 0;

�
a22 x2ðtÞð Þ ¼

2:7; x2ðtÞ� 0;

2:5; x2ðtÞ[ 0;

�

b21 x1 p1tð Þð Þ

¼
� 0:5; x1 p1tð Þ� 0;

� 0:1; x1 p1tð Þ[ 0;

�
b22 x2 p2tð Þð Þ ¼

� 0:7; x2 p2tð Þ� 0;

� 1; x2 p2tð Þ[ 0;

�

c21 x1 q1tð Þð Þ

¼
� 0:6; x1 q1tð Þ� 0;

� 0:1; x1 q1tð Þ[ 0;

�
c22 x2 q2tð Þð Þ ¼

� 1:1; x2 q2tð Þ� 0;

� 0:6; x2 q2tð Þ[ 0;

�

and I ¼ ð0; 0ÞT; fiðxiÞ ¼ tanhðxiÞ; giðxiÞ ¼ 1
2
tanhðxiÞ; hiðxiÞ

¼ 1
4
ðjxiþ 1j � jxi � 1jÞ; i ¼ 1; 2. The drive system (19)

satisfies condition (2) and ri ¼ 1; ci ¼ 1
2
; di ¼ 1

2
; i ¼ 1; 2.

For the sake of achieving exponential synchronization, the

responding response system is devised as

_ziðtÞ ¼ � di ziðtÞð ÞziðtÞ þ
X2

j¼1

aij zjðtÞ
� �

fj zjðtÞ
� �

þ
X2

j¼1

bij zj pjt
� �� �

gj zj pjt
� �� �

þ
X2

j¼1

cij zj qjt
� �� �

hj zj qjt
� �� �

þ Ii þ uiðtÞ; i ¼ 1; 2:

ð20Þ

The control inputs are defined as uiðtÞ ¼ qieiðtÞ, in which

eiðtÞ ¼ ziðtÞ � xiðtÞ; i ¼ 1; 2, representing the

synchronization error, here we take

q1 ¼ �16:9; q2 ¼ �10:9. Through calculating, we get

D ¼
1 0

0 1

 �
;A ¼

1:5 25

2 2:7

 �
;

B ¼
1 0:05

0:5 1

 �
;C ¼

1:5 0:05

0:6 1:1

 �
:

Furthermore, let a1 ¼ 1; a2 ¼ 2, we obtain

� 35:8þ 2A11 þ A12 þ 2A21 þ
5B11

4
þ B12 þ

B21

2
þ 5C11

4

þ C12 þ
C21

2
¼ �0:0250\0; i ¼ 1

� 23:8þ A12

2
þ A21 þ 2A22 þ

B12

8
þ B21 þ

5B22

4
þ C12

8

þ C21 þ
5C22

4
¼ �0:1625\0; i ¼ 2:

The condition of Theorem 1 and Corollary 1 is satisfied.

Thus, drive-response systems (19) and (20) are exponen-

tially synchronized, their simulations are shown in Figs. 1

and 2. Figure 1a depicts the chaotic behavior of drive

system (19) in phase space with initial value

xðtÞ ¼ ½� 20; 0:5�T. Without control input, Fig. 1b shows

the chaotic behavior of response system (20) in phase space

with initial value zðtÞ ¼ ½20; 2:5�T. Figure 1c displays the

chaotic behavior of response system (20) in phase space

with initial value zðtÞ ¼ ½20; 2:5�T. Figure 2 describes the

time response curve of synchronization error eiðtÞ between
drive-response systems (19) and (20) with initial conditions

xðtÞ ¼ ½� 20; 0:5�T and zðtÞ ¼ ½20; 2:5�T, respectively.

Example 2 Consider three-dimensional MRNNs with

multi-proportional delays:

_xiðtÞ ¼ � di xiðtÞð ÞxiðtÞ þ
X3

j¼1

aij xjðtÞ
� �

fj xjðtÞ
� �

þ
X3

j¼1

bij xj pjt
� �� �

gj xj pjt
� �� �

þ
X3

j¼1

cij xj qjt
� �� �

hj xj qjt
� �� �

þ Ii; i ¼ 1; 2; 3;

ð21Þ

where
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d1 x1ðtÞð Þ ¼
1; x1ðtÞ� 0;

1:5; x1ðtÞ[ 0;

�
d2 x2ðtÞð Þ ¼

3:5; x2ðtÞ� 0;

3; x2ðtÞ[ 0;

�

d3 x3ðtÞð Þ

¼
0:5; x3ðtÞ� 0;

0:7; x3ðtÞ[ 0;

�
a12 x2ðtÞð Þ ¼

� 2:2; x2ðtÞ� 0;

� 2; x2ðtÞ[ 0;

�

a13 x3ðtÞð Þ

¼
� 24; x3ðtÞ� 0

� 21:5; x3ðtÞ[ 0;

�
a22 x2ðtÞð Þ ¼

� 1:5; x2ðtÞ� 0;

� 0:5; x2ðtÞ[ 0;

�

a32 x2ðtÞð Þ

¼
� 7; x2ðtÞ� 0;

� 5:5; x2ðtÞ[ 0;

�
a33 x3ðtÞð Þ ¼

� 0:8; x3ðtÞ� 0;

� 0:5; x3ðtÞ[ 0;

�

a11 x1ðtÞð Þ ¼ 1:4; a21 x1ðtÞð Þ ¼ �3; a23 x3ðtÞð Þ ¼ 8; a31 x1ðtÞð Þ ¼ 4;

b13 x3 p3tð Þð Þ

¼
0:5; x3 p3tð Þ� 0;

0:3; x3 p3tð Þ[ 0;

�
b21 x1 p1tð Þð Þ ¼

� 0:5; x1 p1tð Þ� 0;

� 0:3; x1 p1tð Þ[ 0;

�

b22 x2 p2tð Þð Þ

¼
0:4; x2 p2tð Þ� 0;

0:1; x2 p2tð Þ[ 0;

�
b32 x2 p2tð Þð Þ ¼

1:5; x2 p2tð Þ� 0;

1; x2 p2tð Þ[ 0;

�
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Fig. 1 The phase plots of drive-

response systems (19) and (20)
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b33 x3 p3tð Þð Þ ¼
0:2; x3 p3tð Þ� 0;

0:4; x3 p3tð Þ[ 0;

�

c11 x1 q1tð Þð Þ ¼
0:5; x1 q1tð Þ� 0;

0:3; x1 q1tð Þ[ 0;

�

b11 x1 p1tð Þð Þ ¼ 1; b12 x2 p2tð Þð Þ ¼ 0;

b23 x3 p3tð Þð Þ ¼ �0:5; b31 x1 p1tð Þð Þ ¼ 0:5;

c13 x3 q3tð Þð Þ ¼
0:4; x3 q3tð Þ� 0;

0:5; x3 q3tð Þ[ 0;

�

c21 x1 q1tð Þð Þ ¼
� 0:5; x1 q1tð Þ� 0;

� 0:3; x1 q1tð Þ[ 0;

�

c23 x3 q3tð Þð Þ ¼
� 0:3; x3 q3tð Þ� 0;

� 0:5; x3 q3tð Þ[ 0;

�

c32 x2 q2tð Þð Þ ¼
0:5; x2 q2tð Þ� 0;

0:3; x2 q2tð Þ[ 0;

�

c12 x2 q2tð Þð Þ ¼ 0; c22 x2 q2tð Þð Þ ¼ 0:4;

c31 x1 q1tð Þð Þ ¼ 0:5; c33 x3 q3tð Þð Þ ¼ 0:4;

and I ¼ ð0; 0; 0ÞT; fiðxiÞ ¼ sinðxiÞ; giðxiÞ ¼ 1
p arctanðp

2
xiÞ;

hiðxiÞ ¼ tanhð1
4
xiÞ þ 1

4
xi; i ¼ 1; 2; 3. The drive system (21)

satisfies condition (2) and ri ¼ 1; ci ¼ 1
2
; di ¼ 1

2
; i ¼ 1; 2; 3,

and the responding response system is

_ziðtÞ ¼ � di ziðtÞð ÞziðtÞ þ
X3

j¼1

aij zjðtÞ
� �

fj zjðtÞ
� �

þ
X3

j¼1

bij zj pjt
� �� �

gj zj pjt
� �� �

þ
X3

j¼1

cij zj qjt
� �� �

hj zj qjt
� �� �

þ Ii þ uiðtÞ;

i ¼ 1; 2; 3:

ð22Þ

Taking the control inputs uiðtÞ ¼ qieiðtÞ; i ¼ 1; 2; 3, in

which q1 ¼ � 18:7; q2 ¼ � 10:5; q3 ¼ � 24:1. Through

calculating, we obtain

D ¼
1 0 0

0 3 0

0 0 0:5

0
B@

1
CA; A ¼

1:4 2:2 24

3 1:5 8

4 7 0:8

0
B@

1
CA;

B ¼
1 0 0:5

0:5 0:4 0:5

0:5 1:5 0:4

0

B@

1

CA; C ¼
0:5 0 0:5

0:5 0:4 0:5

0:5 0:5 0:4

0

B@

1

CA:

In addition, let a1 ¼ a2 ¼ a3 ¼ 2, we get

� 39:4þ 2A11 þ A12 þ A13 þ A21 þ A31

þ 5B11

4
þ B12 þ B13 þ

B21

4

þ B31

4
þ 5C11

4
þ C12 þ C13 þ

C21

4

þ C31

4
¼ � 0:0250\0; i ¼ 1;

� 27þ A12 þ A21 þ 2A22 þ A23 þ A32

þ B12

4
þ B21 þ

5B22

4
þ B23

þ B32

4
þ C12

4
þ C21 þ

5C22

4
þ C23

þ C32

4
¼ � 0:3000\0; i ¼ 2;

� 49:2þ A13 þ A23 þ A31 þ A32 þ 2A33

þ B13

4
þ B23

4
þ B31 þ B32

þ 5B33

4
þ C13

4
þ C23

4
þ C31 þ C32

þ 5C33

4
¼ � 0:1000\0; i ¼ 3:

The condition of Theorem 1 and Corollary 1 is satisfied.

Obviously, drive-response systems (21) and (22) are

exponentially synchronized, their simulations are shown

in Figs. 3 and 4. Figure 3a depicts the chaotic behavior of

drive system (21) in phase space with initial value

xðtÞ ¼ ½5; 1; 1:5�T. Figure 3b shows the chaotic behavior

of response system (22) in phase space without control

input with initial value zðtÞ ¼ ½10; 0; 1:5�T. Figure 3c shows
the chaotic behavior of response system (22) in phase space

with initial value zðtÞ ¼ ½10; 0; 1:5�T. Figure 4 describes the

time response curve of synchronization error eiðtÞ between
drive-response systems (21) and (22) with initial conditions

xðtÞ ¼ ½5; 1; 1:5�T and zðtÞ ¼ ½10; 0; 1:5�T, respectively.

Remark 4 The change of memductances Mij;Nij;Wij will

lead to the change of diðxiðtÞÞ, yet the scholars only

reflected on diðxiðtÞÞ ¼ di [ 0; i 2 N in the literatures

[37, 38]. So, the conclusions in this paper are more general

than [37, 38].

5 Conclusions

The exponential synchronization of MRNNs with multi-

proportional delays is investigated via a feedback control.

The nonlinear transformations change the problem of

unbounded time delays into bounded time delays, which

can make the problem easier. However, the time-varying

coefficients are asked to be bounded in the prior literatures,

so how to research the unbounded coefficients becomes the
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key challenge. In this paper, by constructing a suit-

able Lyapunov functional and utilizing inequality analysis

techniques, a fresh sufficient condition is received for the

exponential synchronization of the drive-response systems.

We can also apply the research methods here to deal with

the stability, passivity and anti-synchronization of MRNNs

with multi-proportional delays in the future.
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