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Abstract
In real-world binary class datasets, the total number of samples may not be the same in both the classes, i.e. size of the

majority class is much larger than minority class which is called as imbalance problem. In various classification problems,

the main interest is to correctly classify the samples belonging to the minority class. Since support vector machine (SVM)

and twin support vector machine (TWSVM) obtain the resultant classifier by giving same importance to all the training

samples, it results in a biased classifier towards the majority class in imbalanced datasets. In this paper, by considering the

fuzzy membership value for each sample, we have proposed an efficient approach, entropy-based fuzzy twin support vector

machine for class imbalanced datasets (EFTWSVM-CIL) where fuzzy membership values are assigned based on the

entropy values of samples. Here, we give more importance to the minority class by assigning relatively larger fuzzy

memberships to the minority class samples. Further, it solves a pair of smaller-size quadratic programming problems

(QPPs) rather than a large one as in the case of SVM. Experiments are performed on various real-world imbalanced

datasets, and results of our proposed EFTWSVM-CIL are compared with twin support vector machine (TWSVM), fuzzy

twin support vector machine (FTWSVM) and entropy-based fuzzy SVM (EFSVM) for imbalanced datasets.

Keywords Information entropy � Imbalanced dataset � Fuzzy membership � K-nearest neighbour (K-NN) �
Twin support vector machine (TWSVM)

1 Introduction

In recent years, many machine learning and data mining

techniques have been introduced to solve the classification

and regression problems. If a particular dataset is having

equal number of samples of each class, then it is called a

balanced dataset; otherwise, it is an imbalanced dataset. It

is not easy to solve the imbalance problem for classifica-

tion. Support vector machine (SVM) is one of the most

popular machines learning approach which is based on

structural risk minimization (SRM) principle [1–3]. It

solves a quadratic programming problem and always pro-

vides a globally optimal, relatively robust and sparse

solution, whereas techniques like artificial neural network

(ANN) is based on empirical risk minimization (ERM)

principle and has local minima problem. SVM has been

used in applications such as face recognition [4–6], pattern

recognition [7, 8], speaker verification [9], intrusion

detection [10] and various other classification problems

[11–14].

SVM finds the resultant classifier by maximizing the

margin between the support vectors and decision boundary,

meanwhile improving the generalization ability. One can

notice that SVM provides better generalization perfor-

mance, but the training cost of SVM is very high i.e. Oðm3Þ
where m is the total number of training samples [15].

Recently, an efficient approach twin support vector

machine (TWSVM) is proposed by Jayadeva et al. [15] to

decrease the training cost of SVM. In TWSVM, two

quadratic programming problems of smaller size are solved
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to find the solution rather than a single large problem as in

SVM.

SVM is a supervised machine learning algorithms which

constructs a model depending on the available number of

samples of each class. Due to some imbalance in the

dataset, samples belonging to the minority class get mis-

classified since they cannot contribute much in the training

phase of the method. Thus, the classifier becomes biased

towards the majority class. Here, the class of interest is the

minority class; therefore, giving more weights to the data

points of minority class resolves this problem to some

extent. In applications such as fault detection and disease

detection, more emphasis is on correctly identifying the

faults in machinery and abnormalities in the patients data

which are present in very few samples.

To address this problem, Lin et al. [16] proposed a

support vector machine based on fuzzy membership values

(FSVM). Similar to SVM, FSVM also suffers from the

problem of class imbalance. Batuwita and Palade [17] have

presented a new model as FSVMs for class imbalance

learning (FSVM-CIL) to handle the problem of class

imbalance which is less sensitive to outliers and noise.

Here, the smaller fuzzy membership values are assigned to

support vectors to reduce the effect of support vectors on

the resultant decision surface based on class centres. In a

similar manner, a new efficient approach fuzzy support

vector machine for non-equilibrium data is proposed [18]

to reduce the misclassification accuracy of minority class in

FSVM. A new approach, Bilateral-weighted FSVM (B-

FSVM) is proposed [19] where membership of each sample

is calculated by considering the samples as belonging to

minority and majority class with different membership

values. To solve bankruptcy prediction problem, a new

fuzzy SVM is proposed by Chaudhuri and De [20]. In order

to reduce the complexity of TWSVM for large-scale data,

Shao et al. [21] proposed a weighted linear loss twin sup-

port vector machine for imbalanced probelm (WLTSVM)

where linear equations are solved and lesser weights are

given to the points having high loss values. A fuzzy-based

Lagrangian twin parametric-margin support vector

machine (FLTPMSVM) is proposed by Gupta et al. [22] to

deal with noisy data. Tomar et al. [12] assigned weights to

the data points on the basis of number of samples in each

class and proposed a weighted least squares twin support

vector machine (WLSTVM). In this, all the samples of

each class are assigned the same weight. For more efficient

classification methods, reader may see [23, 24].

Recently, Fan et al. [25] proposed an entropy-based

fuzzy support vector machine (EFSVM) for class imbal-

ance problem in which fuzzy membership is computed

based on the class certainty of samples. Motivated by the

work of Fan et al. [25] and Jayadeva et al. [15], we propose

a new approach termed as entropy-based fuzzy twin

support vector machine (EFTWSVM-CIL) to solve the

class imbalance problem. One can notice that EFTWSVM-

CIL solves a pair of smaller-size QPPs to find the resultant

decision surface rather than solving a single large one in

case of SVM. Hence, EFTWSVM-CIL improves the gen-

eralization of the decision surface for minority class sam-

ples based on class certainty and also takes less training

time.

In this paper, all vectors are considered as column

vectors. Suppose x and z are the vector in n� dimensional

real space Rn then the inner product of two vectors is

denoted as: xtz where xt is the transpose of x. jjxjj and jjQjj
will be the 2-norm of a vector x and a matrix Q, respec-

tively. The identity matrix of appropriate size and the

vector of dimension m are denoted by I and e, respectively.

The paper is organized as follows: Sect. 2 is to give a

review on the work related to Support Vector Machine

discussing Twin Support Vector Machine (TWSVM),

Fuzzy Twin Support Vector Machine (FTWSVM) and

Entropy Fuzzy Support Vector Machine (EFSVM). The

proposed method is discussed in Sect. 3. Several numerical

experiments have been performed on well-known real-

world dataset for the discussed and proposed variant of

SVM in Sect. 4. In Sect. 5, we conclude the paper with

future work.

2 Related Work

In this section, we briefly describe the formulations of twin

support vector machine (TWSVM), fuzzy twin support

vector machine (FTWSVM) and entropy support vector

machine (EFSVM).

2.1 Twin Support Vector Machine (TWSVM)

Mangasarian and Wild [26] extended the idea of proximal

SVM (PSVM) [27] to a new approach termed as multi-

surface proximal SVM via generalized eigenvalues

(GEPSVM) for binary classification. In order to improve

the learning efficiency, Jayadeva et al. [15] suggested a

novel approach as Twin Support Vector Machine

(TWSVM) in the light of GEPSVM. In TWSVM, two non-

parallel hyperplanes are obtained instead of one hyperplane

such that each of them is nearer to one of the class and as

far as possible from the other class. Here, two optimization

problems of smaller size are solved in form of QPPs

instead of solving a large QPP as in the case of standard

SVM. The running time of TWSVM is given as

2� m
2

� �3¼ m3

4

n o
which is a reduction of four times as

compared to standard SVM.
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Let us consider the input matrices X1 and X2 of size

p� n and q� n where p is the total number of data point

belonging to ‘Class 1’ and q are the total number of data

points belonging to ‘Class 2’ such that total number of data

samples m ¼ pþ q and n is the dimension of each data

points. In nonlinear case, twin support vector machine finds

a pair of non-parallel hyperplanes f1ðxÞ ¼ Kðxt;DtÞw1 þ
b1 ¼ 0 and f2ðxÞ ¼ Kðxt;DtÞw2 þ b2 ¼ 0 from the solution

of the following QPPs as

min
1

2
jjK(X1;D

t)w1 þ e1b1jj2 þ C1e
t
2n

subject to

�(K(X2;D
t)w1 þ e2b1)þ n� e2; n� 0

min
1

2
jjK(X2;D

t)w2 þ e2b2jj2 þ C2e
t
1g

ð1Þ

subject to

(K(X1;D
t)w2 þ e1b2)þ g� e1; g� 0 ð2Þ

where n,g represent slack variables; C1, C2 are penalty

parameters; D ¼ ½X1;X2�; e1,e2 are vectors of suitable di-

mension having all values as 1’s; and Kðxt;DtÞ ¼
ðkðx; x1Þ; . . .; kðx; xmÞÞ is a row vector in Rm.

The Lagrangian of problems (1) and (2) is written as

L1 ¼
1

2
jjKðX1;D

tÞw1 þ e1b1jj2 þ C1e
t
2n

þ at1ððKðX2;D
tÞw1 þ e2b1Þ � nþ e2Þ � bt1n ð3Þ

L2 ¼
1

2
jjKðX2,D

tÞw2 þ e2b2jj2 þ C2e
t
1g

þ at2ðð�KðX1,D
tÞw2 � e1b2Þ � gþ e1Þ � bt2g ð4Þ

where a1 ¼ ða11; . . .; a1qÞt; b1 ¼ ðb11; . . .; b1qÞt; a2 ¼
ða21; . . .; a2pÞt; and b2 ¼ ðb21; . . .; b2pÞt are the vectors of

Lagrange multipliers. The Wolfe dual of Eqs. (3) and (4) is

written by applying the Karush–Kuhn–Tucker (K.K.T)

necessary and sufficient conditions [28] as

max et2a1 �
1

2
at1TðStSÞ

�1
Tta1 ð5Þ

subject to

0� a1 �C1

max et1a2 �
1

2
at2SðTtTÞ�1

Sta2 ð6Þ

subject to

0� a2 �C2

where S ¼ ½KðX1;D
tÞ e1� and T ¼ ½KðX2;D

tÞ e2�.
We compute the nonlinear hyperplanes Kðxt;DtÞw1 þ

b1 ¼ 0 and Kðxt;DtÞw2 þ b2 ¼ 0 by computing the value

of w1,w2, b1 and b2 using Eqs. (7) and (8)

w1

b1

" #

¼ �ðStSþ dIÞ�1
Tta1 ð7Þ

w2

b2

" #

¼ ðTtT þ dIÞ�1
Sta2 ð8Þ

Each new data point x 2 Rn is assigned to a given class
0i0 by using the following formula depending on which

plane is closest to that data point.

class i ¼ minjKðxt;DtÞwi þ bij for i ¼ 1; 2: ð9Þ

2.2 Fuzzy twin support vector machine
(FTWSVM)

In the case of FTWSVM, a weighting parameter is used

based on fuzzy membership values. For comparison, we

choose the fuzzy membership for each data points based on

its distance from the centroid [17]. The membership values

are used for giving weights to the error tolerance, i.e. C for

every data point in FTWSVM.

The fuzzy membership function is given as

mem ¼ 1� dcen

maxðdcenÞ þ d

where dcen is the Euclidean distance of each data point

from the centroid of its class and d is a small positive

integer for making the denominator non-zero.The formu-

lation of FTWSVM in primal is written as

min
1

2
jjKðX1;D

tÞw1 þ e1b1jj2 þ C1s
t
2n

subject to

�ðKðX2;D
tÞw1 þ e2b1Þ þ n� e2; n� 0

min
1

2
jjKðX2;D

tÞw2 þ e2b2jj2 þ C2s
t
1g

ð10Þ

subject to

ðKðX1;D
tÞw2 þ e1b2Þ þ g� e1; g� 0 ð11Þ

where n, g represent slack variables; C1, C2 are penalty

parameters; Kð; Þ is the kernel function, s1,s2 are vectors

having the membership values of the data samples in the

constraints.

The Lagrangian of the problems (10) and (11) is written

as

L1 ¼
1

2
jjKðX1;D

tÞw1 þ e1b1jj2 þ C1s
t
2n

þ at1ððKðX2;D
tÞw1 þ e2b1Þ � nþ e2Þ � bt1n ð12Þ
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L2 ¼
1

2
jjKðX2;D

tÞw2 þ e2b2jj2 þ C2s
t
1g

þ at2ðð�KðX1;D
tÞw2 � e1b2Þ � gþ e1Þ � bt2g ð13Þ

where a1 ¼ ða11; . . .; a1qÞt; b1 ¼ ðb11; . . .; b1qÞt; a2 ¼
ða21; . . .; a2pÞt and b2 ¼ ðb21; . . .; b2pÞt are the vectors of

Lagrange multipliers. Now, we apply the Karush–Kuhn–

Tucker (K.K.T) necessary and sufficient conditions [28] to

find the Wolfe dual of Eqs. (12) and (13) as

min
1

2
at1TðStSÞ

�1
Tta1 � et2a1

subject to

0� a1 � s2C1

min
1

2
at2SðTtTÞ�1

Sta2 � et1a2
ð14Þ

subject to

0� a2 � s1C2 ð15Þ

where S ¼ ½KðX1;D
tÞ e1� and T ¼ ½KðX2;D

tÞ e2�.
We compute the nonlinear hyperplanes Kðxt;DtÞw1 þ

b1 ¼ 0 and Kðxt;DtÞw2 þ b2 ¼ 0 by computing the values

of w1,w2, b1 and b2 by using Eq. (16) as

w1

b1

" #

¼ �ðStSþ dIÞ�1
Tta1 and

w2

b2

" #

¼ ðTtT þ dIÞ�1
Sta2

ð16Þ

Similarly, the resultant classifier is obtained by using

Eq. (9).

3 Proposed Entropy-based Fuzzy Twin
Support Vector Machine for class
imbalance learning (EFTWSVM-CIL)

Recently, Fan et al. [25] proposed a novel fuzzy mem-

bership evaluation to improve the effectiveness and gen-

eralization ability of fuzzy support vector machine where

memberships of the samples are computed based on class

certainty. In information theory, entropy is a measure of the

information carried by a sample. Chen et al. [29] used

information entropy to find the uncertainty measure of a

neighbourhood system. In case of class imbalance problem,

most of the noisy data points of the majority class lie at the

boundary of the two classes. So, for the majority class, the

information of every data point is calculated based on its

probability of belonging to any of the classes. This infor-

mation is higher for the noisy samples as compared to rest

of the samples in that class. The probability of a sample

belonging to a particular class is based on class certainty.

To find the class certainty, we can use entropy which is one

of the effective-measuring approaches. Hence, one can

assign the fuzzy membership to the data points by using the

information entropy as the weighted parameter. Thus, the

noisy samples of the majority class get lesser weights as

compared to the other samples of the class. The traditional

approach of giving weights [16] does not take into account

the noise at the boundary of the two classes and do not

incorporate the information about the probability distribu-

tion. Moreover, in most of the weighting strategies used for

class imbalance problems, measures like distance from the

centroid are used which do not give any information about

the data points at the boundary of the two classes. In the

proposed approach, to enhance the participation of the

minority class in the decision classifier, the samples of

majority class with lower entropy get larger fuzzy mem-

bership values. The entropy of any sample xi is calculated

as:

Ei ¼ �Ppos xi � lnðppos xiÞ � pneg xi � lnðpneg xiÞ

where Ppos xi and Pneg xi are the probability of minority

class and majority class of sample xi, respectively. Further,

we calculate the K nearest neighbours of sample xi and

assign the values to Ppos xi and Pneg xi based on count of

total minority and majority class neighbours.

Further, the data points of the majority class are divided

into n subsets based on increasing order of entropy. The

fuzzy membership of samples in each subset are calculated

as

Fq ¼ 1:0� b � ðq� 1Þ; q ¼ 1; 2; . . .; n

where Fq is the fuzzy membership for samples distributed

in qth subset with fuzzy membership parameter b 2
0; 1

n�1

� �
which controls the scale of the fuzzy values of

samples. The fuzzy membership function is written as

si ¼
1� b � ðq� 1Þ; if yi ¼ �1& xi 2 qth subset

1; if yi ¼ 1

�

Fan et al. [25] considered this approach to find the fuzzy

membership of the sample and proposed a new approach

termed as entropy-based fuzzy support vector machine for

imbalance datasets. Motivated by the work of Fan et al.

[25] and Jayadeva et al. [15], in this paper, we propose a

new fuzzy twin support vector machine based on infor-

mation entropy for class imbalance learning where infor-

mation entropy is used for the fuzzy membership. The data

points which have highest entropy are those present on the

boundary between the classes. So, the data points of the

majority class get their membership value based on their

entropy and all the minority class samples get full mem-

bership value equal to 1. EFTWSVM-CIL finds two non-

parallel hyperplanes such that each one is closer to the two
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classes and as far as possible from the other, whereas

EFSVM finds separating hyperplanes that maximizes the

margin between two classes. Due to this approach, the

proposed EFTWSVM-CIL gives better generalization

performance in comparison with EFSVM. Further, one can

notice that we consider a pair of QPP of smaller size to find

the decision surface of our proposed EFTWSVM-CIL,

instead of solving a single large QPP as in the case of

EFSVM. This makes our proposed EFTWSVM-CIL faster

than EFSVM in terms of training time. Thus, it is very well

suited for training on large imbalanced data. Now, we

discuss the linear and nonlinear formulations of our

EFTWSVM-CIL.

3.1 Linear EFTWSVM-CIL

In linear case, the EFTWSVM-CIL finds the resultant

classifier by solving the following pair of QPPs

min
1

2
jjX1w1 þ e1b1jj2 þ C1s

t
2n

subject to

�ðX2w1 þ e2b1Þ þ n� e2; n� 0

min
1

2
jjX2w2 þ e2b2jj2 þ C2s

t
1g

ð17Þ

subject to

ðX1w2 þ e1b2Þ þ g� e1; g� 0 ð18Þ

where n, g represent slack variables, C1;C2 [ 0 are penalty

parameters and s1,s2 are vectors containing the entropy-

based fuzzy membership values of minority as well as

majority class, respectively. The Lagrangian of problems

(17) and (18) in primal is written as

L1 ¼
1

2
jjX1w1 þ e1b1jj2 þ C1s

t
2nþ at1ððX2w1 þ e2b1Þ � n

þ e2Þ � bt1n

ð19Þ

L2 ¼
1

2
jjX2w2 þ e2b2jj2 þ C2s

t
1gþ at2ðð�X1w2 � e1b2Þ � g

þ e1Þ � bt2g

ð20Þ

where a1 ¼ ða11; . . .; a1qÞt; b1 ¼ ðb11; . . .; b1qÞt; a2 ¼
ða21; . . .; a2pÞt and b2 ¼ ðb21; . . .; b2pÞt are the vectors of

Lagrange multipliers. Applying the KKT conditions to

(19), we get

oL

ow1

¼ 0 ) Xt
1 X1w1 þ e1b1ð Þ þ Xt

2a1 ¼ 0 ð21Þ

oL

ob1
¼ 0 ) et1 X1w1 þ e1b1ð Þ þ et2a1 ¼ 0

oL

on
¼ 0 ) C1s2 � b1 � a1 ¼ 0

�ðX2w1 þ e2b1Þ þ n� e2; n� 0

at1ð�ðX2w1 þ e2b1Þ þ n� e2Þ ¼ 0

bt1n ¼ 0; a1 � 0; b1 � 0

ð22Þ

Combining (21) and (22), we get

Xt
1

et1

" #

X1 e1½ �
w1

b1

" #

þ
Xt
2

et2

" #

a ¼ 0 ð23Þ

One can rewrite (23) as

u1 ¼ �ðAtAÞ�1
Bta1

where A ¼ X1 e1½ �, B ¼ X2 e2½ � and the augmented

vector u1 ¼
w1

b1

" #

.

Here, we introduce the regularization term d I where

d[ 0 and I is the identity matrix of appropriate size to

handle the ill-conditioning of AtA in finding the inverse.

Thus, we get,

u1 ¼ �ðAtAþ dIÞ�1
Bta1 ð24Þ

Using the above KKT conditions and (19), the dual of

the optimization problem in (17) can be written in the form

of following QPP

min
1

2
at1B AtAð Þ�1

Bta1 � et2a1

subject to

0� a1 � s2C1 ð25Þ

In similar manner, one can find the dual of (18) as

min
1

2
at2A BtBð Þ�1

Ata2 � et1a2

subject to

0� a2 � s1C2 ð26Þ

The values of w2 and b2 are calculated as

u2 ¼ ðBtBþ dIÞ�1
Ata2 ð27Þ

where u2 ¼
w2

b2

" #

.

After calculating the value of u1 and u2, we find the non-

parallel hyperplanes f1ðxÞ ¼ wt
1xþ b1 and f2ðxÞ ¼ wt

2xþ
b2. Every new data point x 2 Rn is assigned to a given class
0i0 by using the following formula depending on the dis-

tance from the two planes.

class i ¼ minjxtwi þ bij for i ¼ 1; 2: ð28Þ
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3.2 Nonlinear EFTWSVM-CIL

For classifying nonlinear separable data points, we used

kernel function to transform the data points in the higher-

dimensional feature space [30]. The nonlinear TWSVM is

formulated in the primal form as

min
1

2
jjKðX1;D

tÞw1 þ e1b1jj2 þ C1s
t
2n

subject to

�ðKðX2;D
tÞw1 þ e2b1Þ þ n� e2; n� 0

min
1

2
jjKðX2;D

tÞw2 þ e2b2jj2 þ C2s
t
1g

ð29Þ

subject to

ðKðX1;D
tÞw2 þ e1b2Þ þ g� e1; g� 0 ð30Þ

where n,g represent slack variables, C1, C2 are penalty

parameters, D ¼ ½X1;X2�, and s1,s2 are vectors containing

the entropy-based fuzzy membership values. The Lagran-

gian function of the problems (29) and (30) is written as

L1 ¼
1

2
jjKðX1;D

tÞw1 þ e1b1jj2 þ C1s
t
2nþ at1ððKðX2;D

tÞw1

þ e2b1Þ � nþ e2Þ � bt1n

ð31Þ

L2 ¼
1

2
jjKðX2;D

tÞw2 þ e2b2jj2 þ C2s
t
1g

þ at2ðð�KðX1;D
tÞw2 � e1b2Þ � gþ e1Þ � bt2g ð32Þ

where a1 ¼ ða11; . . .; a1qÞt; b1 ¼ ðb11; . . .; b1qÞ
t; a2 ¼

ða21; . . .; a2pÞt and b2 ¼ ðb21; . . .; b2pÞt are the vectors

containing the Lagrange multipliers.

Following the same procedure as in the linear case, we

compute the nonlinear hyperplanes Kðxt;DtÞw1 þ b1 ¼ 0

and Kðxt;DtÞw2 þ b2 ¼ 0 by computing the value of

w1,w2, b1 and b2 using Eqs. (33) and (34)

u1 ¼
w1

b1

" #

¼ �ðPtPþ dIÞ�1
Qta1 ð33Þ

u2 ¼
w2

b2

" #

¼ ðQtQþ dIÞ�1
Pta2 ð34Þ

where P ¼ ½KðX1;D
tÞ e1�,Q ¼ ½KðX2;D

tÞ e2�.
For each new data point x 2 Rn, it is assigned to a given

class 0i0 by using the following formula depending on

which of the planes is closest to that point.

class i ¼ minjKðxt;DtÞwi þ bij for i ¼ 1; 2: ð35Þ

4 Numerical Experiments

In this section, to check the effectiveness of the proposed

EFTWSVM-CIL with TWSVM, FTWSVM and EFSVM,

we performed experiments on several imbalanced datasets

from KEEL imbalanced datasets [31] and UCI repository

[32] for binary classification. All computations were car-

ried out on a PC running on Windows 7 OS with 64 bit,

3.20 GHz Intel� coreTM i5-2400 processor having 2 GB of

RAM under MATLAB R2008b environment. We used

MOSEK optimization toolbox to solve the SVM formula-

tions which is taken from http://www.mosek.com. For

selecting the optimum parameters, we used fivefold cross-

validation technique. To construct nonlinear classifier, we

have used Gaussian kernel kða; bÞ ¼ expð�r a� bk k2Þ
where vector a; b 2 Rm.

We have taken the value of the parameter C ¼ C1 ¼ C2

from the set f2�5; . . .; 25g for all the cases. For FTWSVM,

d is taken as 0.5. For EFTWSVM and EFSVM the value of

K for k-NN is chosen from {5, 10} and b is taken as 0.05.

The value of r is calculated as per the following formula

[33] in all methods,

r ¼ 1

N2

XN

i;j¼1

jjxi � xjjj2

All the results for TWSVM, FTWSVM, EFSVM and

proposed method EFTWSVM-CIL are shown in terms of

prediction accuracy, i.e. the area under the ROC curve

(AUC) [34] and training time for both linear and nonlinear

cases in Tables 1 and 3. One can observe from Tables 1

and 3 that EFTWSVM-CIL is much superior to TWSVM,

FTWSVM, and EFSVM in terms of better generalization

performance. Our proposed EFTWSVM-CIL takes very

less training time in comparison with EFSVM because

EFTWSVM-CIL solves a pair of smaller-size QPPs instead

of solving a large one as in the case of EFSVM.

It is observable from Table 1 that our proposed method

EFTWSVM-CIL has not performed better in case of all the

datasets for linear kernel. Further, we analyse the com-

parative performance of EFTWSVM-CIL with TWSVM,

FTWSVM, and EFSVM based on the average ranks of all

the methods which are presented in Table 2 for the linear

case. One can clearly observe form Table 2 that the aver-

age rank of proposed EFTWSVM-CIL is lowest among all

the methods. We perform the Friedman test with the cor-

responding post hoc test [35] in the case of linear kernel for

statistical comparison on the performance of the 4 algo-

rithms using 24 datasets. We assume all the methods are

equivalent under null hypothesis, and the Friedman statistic

is computed from Table 2 as
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Table 1 Performance comparison of EFTWSVM-CIL with TWSVM, FTWSVM and EFSVM using linear kernel for classification on imbalance

datasets

Dataset (train size, test size) Imbalance

ratio

TWSVM ðCÞ time FTWSVM ðCÞ
time

EFSVM ðCÞ time EFTWSVM-CIL

ðCÞ time

Vehicle2 (400 9 19, 446 9 19) 2.88 97.086 (2^1)

0.04562

94.9503 (2^4)

0.11147

92.6208 (2^5)

3.589

97.2317 (2^2)

0.66708

Pima (300 9 9, 468 9 9) 1.87 74.9586 (2^- 2)

0.01878

74.94 (2^- 1)

0.02499

66.4364 (2^2)

1.98326

76.2822 (2^- 2)

0.36165

Ripley (600 9 3, 650 9 3) 1 89.0905 (2^3)

0.09075

89.5369 (2^4)

0.09528

84.5788 (2^5)

7.97929

89.644 (2^3) 1.4067

Ecoli-0-2-3-4_vs_5 (100 9 8, 102 9 8) 9.1 96.8421 (2^- 1)

0.00926

97.3684 (2^- 1)

0.01176

91.2782 (2^4)

0.22948

97.3684 (2^- 1)

0.05114

Ecoli-0-4-6_vs_5 (100 9 7, 103 9 7) 9.15 88.37 (2^- 4)

0.00928

91.1172 (2^0)

0.01212

83.3333 (2^3)

0.22982

91.1172 (2^- 2)

0.10835

Led7digit-0-2-4-5-6-7-8-9_vs_1

(220 9 8, 223 9 8)

10.97 88.0081 (2^- 1)

0.02177

87.7642 (2^0)

0.02808

89.9593 (2^- 1)

1.07733

88.9837 (2^0)

0.21258

Yeast-0-5-6-7-9_vs_4 (250 9 9,

278 9 9)

9.35 75.5413 (2^- 2)

0.03031

77.1161 (2^- 1)

0.03492

68.3563 (2^4)

1.37908

77.313 (2^- 1)

0.26397

Yeast-2_vs_4 (250 9 9, 264 9 9) 9.08 85.4895 (2^- 2)

0.02832

87.2803 (2^- 2)

0.03222

79.7908 (2^5)

1.38427

85.4895 (2^- 2)

0.27136

Ecoli-0-1-4-6_vs_5 (150 9 7, 130 9 7) 13 98.3871 (2^- 4)

0.01378

98.3871 (2^- 3)

0.01608

82.9301 (2^4)

0.50532

98.3871 (2^- 3)

0.10047

Transfusion (350 9 5, 398 9 5) 3.2 50 (2^0) 0.02644 50 (2^0) 0.03757 50 (2^- 5)

2.71225

51.2761 (2^0)

0.48061

Ecoli2 (150 9 8, 186 9 8) 5.46 87.7574 (2^0)

0.02669

87.1691 (2^0)

0.01462

73.5294 (2^1)

0.50558

87.4632 (2^0)

0.10691

Vowel (500 9 11, 488 9 11) 9.98 90.2744 (2^2)

0.13623

89.138 (2^2)

0.15027

81.7056 (2^5)

5.59896

90.2744 (2^1)

1.06284

Wisconsin (300 9 10, 383 9 10) 1.86 96.1125 (2^- 3)

0.01996

97.1226 (2^1)

0.02818

98.0634 (2^- 5)

2.01953

96.6176 (2^- 3)

0.36869

Vehicle 1 (400 9 19, 446 9 19) 2.9 79.9439 (2^- 4)

0.04893

81.2462 (2^- 4)

0.05378

64.1104 (2^5)

3.57224

80.6877 (2^- 4)

0.65652

Shuttle-c0-vs-c4 (900 9 10, 929 9 10) 13.87 100 (2^- 5)

0.91874

100 (2^- 5)

0.91797

99.1803 (2^- 3)

18.3282

100 (2^- 5)

3.80893

Ecoli-0-1_vs_2-3-5 (120 9 8, 124 9 8) 9.17 85.2679 (2^- 2)

0.05941

85.2679 (2^- 1)

0.08346

66.6667 (2^1)

0.39566

85.2679 (2^- 1)

0.13547

New-thyroid1 (100 9 6, 115 9 6) 5.14 97.0588 (2^- 5)

0.00818

98.0392 (2^- 4)

0.01866

95.6637 (2^5)

0.23029

98.0392 (2^- 4)

0.06304

Ecoli0137vs26 (180 9 8, 131 9 8) 39.14 93.1818 (2^- 3)

0.01421

90.9091 (2^- 3)

0.02264

84.0909 (2^5)

0.71967

93.1818 (2^- 3)

0.13426

Yeast5 (500 9 9, 984 9 9) 32.73 94.5178 (2^- 2)

0.19316

97.0126 (2^- 2)

0.20238

60 (2^5) 5.57902 97.0126 (2^- 2)

1.10171

Cleve (150 9 14, 147 9 14) 1.18 82.4026 (2^- 3)

0.00975

82.4026 (2^- 1)

0.0126

78.961 (2^3)

0.51493

83.1818 (2^- 3)

0.09639

Wpbc (100 9 34, 94 9 34) 3.22 64.8649 (2^- 3)

0.00846

62.8378 (2^- 2)

0.01052

70.2703 (2^4)

0.23212

66.4865 (2^- 3)

0.0498

Votes (200 9 17, 235 9 17) 1.59 95.6311 (2^- 1)

0.01406

95.6311 (2^0)

0.01797

95.6311 (2^- 2)

0.90898

95.6311 (2^- 1)

0.17495

Ecoli-0-1_vs_5 (120 9 7, 120 9 7) 11 93.3501 (2^- 2)

0.01205

93.3501 (2^-1)

0.01828

84.6154 (2^3)

0.32806

93.3501 (2^- 2)

0.06821

Shuttle-6_vs_2-3 (100 9 10, 130 9 10) 22 100 (2^- 5)

0.00988

100 (2^- 5)

0.01197

100 (2^2) 0.22768 100 (2^- 5)

0.05254

Bold values indicate the best result
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v2F ¼ 12� 24

4� ð4þ 1Þ ð2:45832 þ 2:31252 þ 3:45832
�

þ1:77082Þ � 4� ð4þ 1Þ2

4

#

ffi 21:4051

FF ¼ ð24� 1Þ � 21:4051

24� ð4� 1Þ � 21:4051
ffi 9:7306

where FF is distribution according to the F-distribution

with ð3; 3� 23Þ ¼ ð3; 69Þ being degree of freedom with 4

methods and 24 datasets. The critical value of Fð3; 69Þ is
2:7375 for the level of significance at a ¼ 0:05. Since the

value of FF ¼ 9:7306[ 2:7375, we reject the null

hypothesis. Further, Nemenyi post hoc test is performed for

pair-wise comparison of methods and the significant dif-

ference between them is checked by computing the critical

difference (CD) at P ¼ 0:10 which should differ by at least

2:291
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ð4þ1Þ
6�24

q

 0:8539.

Since the difference between the averages ranks of

EFSVM with EFTWSVM-CIL ð3:4583� 1:7708 ¼
1:6875Þ is greater than 0:8538, we conclude that

EFTWSVM-CIL is significantly better than EFSVM. Since

the differences in the average rank of TWSVM and

FTWSVM with EFTWSVM-CIL are ð2:4583� 1:7708 ¼
0:6875Þ and ð2:3125� 1:7708 ¼ 0:5417Þ, respectively,

which are less than 0:8539, this shows that there is no

significant difference between EFTWSVM-CIL with

TWSVM and FTWSVM.

For the Gaussian kernel, the accuracy values are shown

with the training time for the proposed EFTWSVM-CIL

with TWSVM, FTWSVM and EFSVM in Table 3. One

can observe from Table 3 that EFTWSVM shows the better

or equal generalization performance in 18 cases. The

training speed of our proposed EFTWSVM-CIL is better

than EFSVM and comparable to TWSVM and FTWSVM.

The average ranks of all the methods based on accuracy

values are shown in Table 2. One can conclude that among

all the methods our proposed EFTWSVM-CIL has the

lowest average rank. It is noticeable from the table that the

proposed EFTWSVM is not always better in terms of

accuracy for all the datasets, so further Friedman statistical

test is performed with the post hoc tests.

Now, the Friedman statistic is computed for nonlinear

kernel under null hypothesis by using Table 4:

Table 2 Average ranks of

TWSVM, FTWSVM, EFSVM

and EFTWSVM-CIL for

imbalance datasets using linear

kernel for classification on

imbalance datasets

Dataset Imbalance Ratio TWSVM FTWSVM EFSVM EFTWSVM-CIL

Vehicle2 2.88 2 3 4 1

Pima 1.87 2 3 4 1

Ripley 1 3 2 4 1

Ecoli-0-2-3-4_vs_5 9.1 3 1.5 4 1.5

Ecoli-0-4-6_vs_5 9.15 3 1.5 4 1.5

Led7digit-0-2-4-5-6-7-8-9_vs_1 10.97 3 4 1 2

Yeast-0-5-6-7-9_vs_4 9.35 3 2 4 1

Yeast-2_vs_4 9.08 2.5 1 4 2.5

Ecoli-0-1-4-6_vs_5 13 2 2 4 2

Transfusion 3.2 3 3 3 1

Ecoli 2 5.46 1 3 4 2

Vowel 9.98 1.5 3 4 1.5

Wisconsin 1.86 4 2 1 3

Vehicle1 2.9 3 1 4 2

Shuttle-c0-vs-c4 13.87 2 2 4 2

Ecoli-0-1_vs_2-3-5 9.17 2 2 4 2

New-thyroid1 5.14 3 1.5 4 1.5

0137vs26 39.14 1.5 3 4 1.5

Yeast 5 32.73 3 1.5 4 1.5

Cleve 1.18 2.5 2.5 4 1

Wpbc 3.22 2 4 1 3

Votes 1.59 2.5 2.5 2.5 2.5

Ecoli-0-1_vs_5 11 2 2 4 2

Shuttle-6_vs_2-3 22 2.5 2.5 2.5 2.5

Average ranks 2.4583 2.3125 3.4583 1.7708

Bold value indicates the best result
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Table 3 Performance comparison of EFTWSVM-CIL with TWSVM, FTWSVM and EFSVM using Gaussian kernel for classification on

imbalance datasets

Dataset (train size, test size) Imbalance

ratio

TWSVM ðC;rÞ time FTWSVM ðC;rÞ time EFSVM ðC;rÞ time EFTWSVM-CIL

ðC;rÞ time

WPBC (100 9 34, 94 9 34) 3.22 65.3378 (2^- 3,

1.41946) 0.0263

65.3378 (2^- 2,

1.41946) 0.02894

62.9054 (2^3,

1.41946) 0.27326

67.1622 (2^- 2,

1.41946) 0.06876

Votes (200v17, 235 9 17) 1.59 96.6728 (2^- 2,

2.65705) 0.08304

95.9783 (2^- 3,

2.65705) 0.08706

95.6311 (2^1,

2.65705) 1.04555

96.6728 (2^- 2,

2.65705) 0.24102

Australian Credit (300 9 15,

390 9 15)

1.25 86.3194 (2^1,

1.56989) 0.17582

87.0563 (2^1,

1.56989) 0.18497

86.1177 (2^- 4,

1.56989) 2.35807

87.2902 (2^- 3,

1.56989) 0.52862

Transfusion (350 9 5,

398 9 5)

3.2 65.2657 (2^- 4,

0.43636) 0.23416

66.1324 (2^- 2,

0.43636) 0.24351

64.3031 (2^5,

0.43636) 3.16117

66.189 (2^- 4,

0.43636) 0.70044

Ecoli-0-2-3-4_vs_5

(100 9 8, 102 9 8)

9.1 98.4211 (2^- 3,

0.72706) 0.02564

97.8947 (2^- 5,

0.72706) 0.02821

98.9474 (2^5,

0.72706) 0.26689

98.4211 (2^- 2,

0.72706) 0.07516

Ionosphere (200 9 34,

151 9 34)

0.56 90.1355 (2^- 3,

2.17532) 0.08439

90.702 (2^- 3,

2.17532) 0.09039

80.5665 (2^4,

2.17532) 1.06399

90.702 (2^- 4,

2.17532) 0.24762

Ecoli-0-4-6_vs_5 (100 9 7,

103 9 7)

9.15 87.5 (2^- 2,

0.769994) 0.02586

87.5 (2^- 1,

0.769994) 0.02828

86.9505 (2^2,

0.769994) 0.27972

87.5 (2^- 2,

0.769994) 0.0689

CMC (700 9 10, 773 9 10) 0.75 64.7811 (2^- 5,

1.32239) 1.02449

64.2043 (2^- 5,

1.32239) 1.07252

63.1802 (2^5,

1.32239) 12.8557

64.3685 (2^- 4,

1.32239) 2.95445

Ecoli-0-1_vs_2-3-5

(120 9 8, 124 9 8)

9.17 79.1667 (2^- 4,

0.742547) 0.03562

78.7202 (2^- 3,

0.742547) 0.03845

78.2738 (2^3,

0.742547) 0.39122

78.7202 (2^- 3,

0.742547) 0.09247

Pima Indians (300 9 9,

468 9 9)

1.87 72.0924 (2^2,

0.64933) 0.17657

72.5019 (2^- 2,

0.64933) 0.18144

75.8603 (2^2,

0.64933) 2.32454

75.1489 (2^- 4,

0.64933) 0.5208

Ecoli 0137vs26 (180 9 8,

131 9 8)

4.76 97.2686 (2^- 1,

0.658638) 0.0689

94.9958 (2^1,

0.658638) 0.0709

97.2686 (2^5,

0.658638) 0.845

97.7273 (2^- 1,

0.658638) 0.19469

Ecoli 3 (150 9 8, 186 9 8) 8.6 90.5147 (2^- 2,

0.663699) 0.0508

88.4559 (2^- 4,

0.663699) 0.05444

89.0441 (2^5,

0.663699) 0.5916

89.3382 (2^- 1,

0.663699) 0.13885

Heart-statlog (130 9 14,

140 9 14)

0.8 83.3887 (2^- 2,

1.72389) 0.03757

81.9361 (2^- 1,

1.72389) 0.04085

81.822 (2^- 1,

1.72389) 0.44879

84.4677 (2^- 3,

1.72389) 0.10503

Yeast-0-2-5-6_vs_3-7-8-9

(500 9 9, 504 9 9)

9.14 70.5123 (2^- 2,

0.494682) 0.57998

73.9021 (2^- 1,

0.494682) 0.58797

71.3597 (2^2,

0.494682) 6.51619

73.9021 (2^- 1,

0.494682) 1.52481

Yeast 5 (500 9 9, 984 9 9) 32.73 69.8428 (2^- 4,

0.466753) 0.61213

71.5094 (2^- 3,

0.466753) 0.63864

60 (2^1, 0.466753)

6.51586

71.5618 (2^- 3,

0.466753) 1.57086

Ecoli-0-6-7_vs_3-5

(110 9 8, 112 9 8)

10 85.7143 (2^- 4,

0.730104) 0.03051

85.7143 (2^- 3,

0.730104) 0.03268

88.7755 (2^4,

0.730104) 0.2736

85.7143 (2^- 3,

0.730104) 0.08083

Yeast-0-5-6-7-9_vs_4

(250 9 9, 278 9 9)

9.35 70.1608 (2^- 4,

0.573935) 0.1347

69.7671 (2^- 4,

0.573935) 0.1379

73.0315 (2^3,

0.573935) 1.37647

72.8346 (2^- 2,

0.573935) 0.12798

Yeast-0-3-5-9_vs_7-8

(250 9 9, 256 9 9)

9.12 60.5605 (2^- 5,

0.583643) 0.13121

59.8968 (2^- 5,

0.583643) 0.13718

61.0029 (2^- 1,

0.583643) 1.63235

61.3422 (2^- 4,

0.583643) 0.37476

Glass4 (150 9 10, 64 9 10) 15.46 79.1525 (2^1,

0.735447) 0.05211

79.1525 (2^1,

0.735447) 0.05524

79.1525 (2^5,

0.735447) 0.58844

79.1525 (2^1,

0.735447) 0.13987

Vehicle2 (400 9 19,

446 9 19)

2.88 96.7463 (2^4,

1.17148) 0.33379

97.6209 (2^0,

1.17148) 0.34313

97.3775 (2^4,

1.17148) 4.18954

97.1836 (2^4,

1.17148) 0.95295

Ecoli-0-1-4-7_vs_5-6

(150 9 7, 182 9 7)

12.28 91.0784 (2^- 5,

0.763992) 0.05167

91.0784 (2^- 4,

0.763992) 0.05396

91.0784 (2^3,

0.763992) 0.58755

91.0784 (2^- 5,

0.763992) 0.13791

Ecoli 4 (150 9 8, 186 9 8) 15.8 91.092 (2^- 2,

0.662858) 0.05138

91.092 (2^- 2,

0.662858) 0.05429

90.5172 (2^5,

0.662858) 0.59294

91.092 (2^- 1,

0.662858) 0.14004

Ecoli-0-1_vs_5 (120 9 7,

120 9 7)

11 88.4615 (2^- 5,

0.697633) 0.03527

88.4615 (2^- 4,

0.697633) 0.03871

84.6154 (2^1,

0.697633) 0.38122

88.4615 (2^- 5,

0.697633) 0.09448

Yeast-2_vs_4 (250 9 9,

264 9 9)

9.08 82.954 (2^- 1,

0.472432) 0.13305

82.7448 (2^- 1,

0.472432) 0.13726

82.954 (2^3,

0.472432) 1.37384

84.7448 (2^- 1,

0.472432) 0.12722

Ecoli-0-6-7_vs_5 (110 9 7,

110 9 7)

10 88.3938 (2^- 5,

0.691324) 0.03014

88.3938 (2^- 5,

0.691324) 0.03254

88.3938 (2^4,

0.691324) 0.3205

88.3938 (2^- 5,

0.691324) 0.0778

Cleveland (150 9 14,

147 9 14)

1.17 79.0909 (2^- 3,

1.75769) 0.04825

78.4416 (2^- 3,

1.75769) 0.05159

80.6494 (2^0,

1.75769) 0.59991

80.5195 (2^- 3,

1.75769) 0.13771

Neural Computing and Applications (2019) 31:7153–7164 7161

123



v2F ¼ 12� 28

4� ð4þ 1Þ ð2:55362 þ 2:71432 þ 2:82142
�

þ1:91072Þ � 4� ð4þ 1Þ2

4

#

ffi 8:3894

FF ¼ ð28� 1Þ � 8:3894

28� ð4� 1Þ � 8:3894
ffi 2:9958

The critical value of Fð3; 84Þ i.e. 2:7132 for the level of

significant a ¼ 0:05 is less than the value of FF: Thus, it

rejects the null hypothesis. Further, the Nemenyi post hoc

test is used to find the significant difference between the

pair-wise comparisons. We computed the critical differ-

ence (CD) at p ¼ 0:10 which should differ by at least

2:291
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ð4þ1Þ
6�28

q

 0:7905.

Table 3 (continued)

Dataset (train size, test size) Imbalance

ratio

TWSVM ðC;rÞ time FTWSVM ðC;rÞ time EFSVM ðC;rÞ time EFTWSVM-CIL

ðC;rÞ time

Monk2 (300 9 8, 301 9 8) 1.92 77.0989 (2^- 5,

1.54371) 0.176

78.4111 (2^- 5,

1.54371) 0.18269

73.3664 (2^5,

1.54371) 2.32977

76.7295 (2^- 5,

1.54371) 0.524

Shuttle-c0-vs-c4 (900 9 10,

929 9 10)

13.87 99.1803 (2^- 5,

0.474217) 2.18748

99.1803 (2^- 5,

0.474217) 2.23814

99.1803 (2^- 5,

0.474217) 21.6004

99.1803 (2^- 5,

0.474217) 5.28983

Bold values indicate the best result

Table 4 Average ranks of

TWSVM, FTWSVM, EFSVM

and EFTWSVM-CIL for

imbalance datasets using

Gaussian kernel for

classification of imbalance

datasets

Dataset Imbalance Ratio TWSVM FTWSVM EFSVM EFTWSVM-CIL

WBPC 3.22 2.5 2.5 4 1

Votes 1.59 1.5 3 4 1.5

Australian credit 1.25 3 2 4 1

Transfusion 3.2 3 2 4 1

Ecoli-0-2-3-4_vs_5 9.1 2.5 4 1 2.5

Ionosphere 0.56 3 1.5 4 1.5

Ecoli-0-4-6_vs_5 9.15 3 3 1 3

CMC 0.75 1 3 4 2

Ecoli-0-1_vs_2-3-5 9.17 1 2.5 4 2.5

Pima Indians 1.87 4 3 1 2

Ecoli 0137vs26 4.76 2.5 4 2.5 1

Ecoli 3 8.6 1 4 3 2

Heart-statlog 0.8 2 3 4 1

Yeast-0-2-5-6_vs_3-7-8-9 9.14 4 1.5 3 1.5

Yeast 5 32.73 3 2 4 1

Ecoli-0-6-7_vs_3-5 10 3 3 1 3

Yeast-0-5-6-7-9_vs_4 9.35 3 4 1 2

Yeast-0-3-5-9_vs_7-8 9.12 3 4 2 1

Glass4 15.46 2.5 2.5 2.5 2.5

Vehicle2 2.88 4 1 2 3

Ecoli-0-1-4-7_vs_5-6 12.28 2.5 2.5 2.5 2.5

Ecoli 4 15.8 2 2 4 2

Ecoli-0-1_vs_5 11 2 2 4 2

Yeast-2_vs_4 9.08 2.5 4 2.5 1

Ecoli-0-6-7_vs_5 10 2.5 2.5 2.5 2.5

Cleveland 1.17 3 4 1 2

Monk2 1.92 2 1 4 3

Shuttle-c0-vs-c4 13.87 2.5 2.5 2.5 2.5

Average rank 2.5536 2.7143 2.8214 1.9107

Bold value indicates the best result

7162 Neural Computing and Applications (2019) 31:7153–7164

123



The difference between the average ranks of EFTWSVM-

CIL with EFSVM and FTWSVM are ð2:8214� 1:9107 ¼
0:9107Þ and ð2:7143� 1:9107 ¼ 0:8036Þ, respectively,

which are greater than 0:7905. Hence, proposed

EFTWSVM-CIL is significantly better than EFSVM and

FTWSVM.

One can verify that the performance of our proposed

EFTWSVM-CIL is not sensitive to the values of its

parameters C and K. After extensive simulations, it is

found that EFTWSVM-CIL is not very sensitive to the

user-specified parameter K. To illustrate this result, the

performance of EFTWSVM-CIL with Gaussian RBF ker-

nel on Australian Credit, WPBC, Yeast-0-3-5-9_vs_7-8 and

Yeast-2_vs_4 datasets is shown in Fig. 1. From the figures,

one can observe that better accuracy could be achieved for

smaller values of C.

5 Conclusions and future work

In this paper, we proposed a new variant of SVM as

EFTWSVM-CIL to solve class imbalance problem in

binary class datasets where the fuzzy membership values

are calculated based on entropy values of samples. Here,

our proposed EFTWSVM-CIL solves the two smaller-size

QPPs rather than a single large one as in case of EFSVM to

find the decision surface. So, one can conclude from the

results that EFTWSVM-CIL shows better generalization

performance as compared to TWSVM, FTWSVM and

EFSVM which clearly illustrates its efficacy and applica-

bility. It has been found that EFTWSVM-CIL outperforms

in terms of learning speed in comparison with EFSVM for

both linear and nonlinear kernels. Here, the performance of

EFTWSVM-CIL also depends on the optimal parameters.

Fig. 1 Insensitivity performance of EFTWSVM-CIL for classification to the user-specified parameters ðC;KÞ on imbalance datasets using

Gaussian kernel. a Australian Credit, b WPBC, c Yeast-0-3-5-9_versus_7–8, d Yeast-2_vs_4
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So, in future the proper selection of parameters for

EFTWSVM-CIL may improve the performance of our

proposed model. Some heuristic approaches can also be

used to improve the method for parameter selection which

may result into the better performance.
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