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Abstract
Frequent and intense forest fires have posed severe challenges to forest management in many countries worldwide. Since

human experts may overlook important signals, the development of reliable prediction models with various types of data

generated by automatic tools is crucial for establishing rigorous and effective forest firefighting plans. This study applied

recently emerged ensemble learning methods to predict the burned area of forest fires and the occurrence of large-scale

forest fires using the forest fire dataset from the University of California, Irvine machine learning repository collected from

the northeastern region of Portugal. The results showed that the tuned random forest approach performed better than other

regression models did with regard to the prediction accuracy of the burned area. In addition, extreme gradient boosting

outperformed other classification models in terms of its predictive accuracy of large-scale fire occurrences. The findings

showed that ensemble learning methods not only have great potential for broader application in forest fire automatic

precaution and prevention systems but also provide important techniques for forest firefighting decision making in terms of

fire resource allocation and strategies, which can ultimately improve the efficiency of forest fire management worldwide.

Keywords Ensemble learning � Random forests � Extreme gradient boosting � Large-scale forest fires

1 Introduction

Forests, which account for more than 31% of the world’s

land surface [1], contribute to the continuity of ecological

balance and play a paramount role in environmental sus-

tainability. As one of the major threats to forest preserva-

tion, forest fires have created immeasurable economic and

ecological damages and have resulted in enormous human

suffering. Each year, millions of hectares of forests are

destroyed from various fires, thus consuming a large frac-

tion of firefighting expenses around the world. However,

these increasing expenses do not guarantee success in

controlling this threat. According to the data collected by

World Fire [2], an average of 3.8 million fire incidents

occurred per year from 1993 to 2014, and more than 0.9

million human inhabitants died because of wildfires during

this period. Forest fires can be caused by a variety of fac-

tors, such as lightning, human negligence, rockfall sparks,

spontaneous combustion and volcanic eruptions [3–5]. In

addition, the causes of forest fires vary throughout the

world. The severe impacts of fires on forests have made it

imperative for decision makers to identify efficient ways to

contain this threat.

Consequently, understanding the factors that influence

the occurrence of forest fires is crucial and necessary for

the resource allocation of fire prevention, fire suppression

and forest management. In addition, the ability to predict

fire progression and burned areas is of great importance to

mitigate the disastrous consequences of forest fires. A wide

range of automatic detection and prediction techniques has

been developed to serve this purpose [6]. Given that tra-

ditional human surveillance is expensive and may be sub-

ject to cognitive limitations, automatic tools, such as

satellite-based tools, infrared/smoke scanners and local

meteorological sensors, have been developed to monitor

and fight forest fires [7, 8]. Over the past decade, classical

statistical analysis has given way to several data mining
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techniques in the domain of fire prevention and precaution

due to the better accessibility of various types of data, as

facilitated by automatic tools [9]. Since human experts are

limited in number and may ignore important signals,

interest in machine learning has grown since such methods

can be used to determine the driving factors and the

occurrence probability of forest fires that are triggered by

multiple causes; these methods are also expected to

improve the accuracy and efficiency of decision making

with respect to fire management and preventions [6, 9–15].

Increasingly sophisticated data mining techniques have

helped decision makers accommodate large amounts of

data in a timelier manner.

Indeed, previous studies have proposed multiple data

mining techniques to forecast the spatial distribution of

wildfire occurrences or ignitions, including regression trees

(RTs) [16], artificial neural networks (ANNs) [7, 17, 18],

support vector machines (SVMs) [6, 19] and random for-

ests (RFs) [20]. Driven by advancements in the field of

statistics, ensemble learning and deep learning (DL)

methods have become major tools in machine learning and

have gained tremendous achievements [21]. However, the

full potential of ensemble learning methods has yet to be

explored, particularly in many fields of decision making,

such as natural resource management and wildfire occur-

rences [22].

Therefore, our objective with this study is to explore and

evaluate the potential of ensemble learning methods in

greater depth to allow accurate forecasting of the burned

area of forest fires and the occurrences of large-scale forest

fires by comparing newly developed methods to other

stochastic and deterministic data mining techniques and

assessing their applications in forest fire forecasting.

Specifically, two experiments using ensemble learning

methods and other modeling methods were conducted, and

their results were compared and calculated to evaluate their

performance. The first and second experiments tested the

predictive performance in forecasting the burned area and

the predictive accuracy in forecasting the occurrence of

large-scales forest fires, respectively. Each method was

applied to the widely used forest fire dataset (FFDS) from

the UCI machine learning repository collected from the

northeastern region of Portugal, and the results were

compared to assess the prediction accuracy and perfor-

mance. By evaluating various regression and classification

methods, this study determined whether recently emerged

ensemble learning methods could provide better forest fire

predictions. We expect these findings to be particularly

useful in fire management decision making and resource

planning.

This paper is organized as follows. Section 2 reviews

several machine learning approaches in forest fire man-

agement, and Sect. 3 introduces the ensemble learning

methods, including RFs and extreme gradient boosting

(EGB). Section 4 describes the study area and study data,

and Sect. 5 presents the results of the two experiments.

Finally, conclusions are drawn in Sect. 6.

2 Machine learning approaches in forest fire
management

Using a series of meteorological indicators, traditional

approaches were conducted based on linear or logistic

regressions to rate wildfire risks in a relatively short period.

However, due to the variances of terrain features, the

impacts of various factors on forest fires are not always

identical, and the frequencies of wildfire are not signifi-

cantly related to local temperature, thus resulting in low

accuracy when forecasting wildfires. In recent years, forest

fire modeling has attracted broad attention, and the several

models available now include a series of anthropogenic and

meteorological components in their assessments [23, 24].

Machine learning models have demonstrated their accuracy

in data mining and other approaches. Thus, a plethora of

machine learning algorithms exists to model the spatial

distribution of forest fire occurrences or ignitions, includ-

ing RTs, ANNs, SVMs and RFs.

The RT is an approach used in wildfire risk assessment.

In a study of fire-prone areas in Southeast Italy, Amatulli

et al. [16] developed the CART analysis to highlight the

hierarchical relationships among the predictor variables, in

which the improved interpretability of the regression rules

represented a tool that was possibly useful for the assess-

ment and representation of fire risks. However, this

machine learning approach is not entirely robust because

each division involves a set of variables with similar dis-

criminatory power [25]. Therefore, small changes in the

data may produce different models. To solve these prob-

lems, scholars in the field of data mining have developed

ensemble learning methods that generate multiple classi-

fiers and enable the grouping of the results in a final

classification that includes boosting and bagging.

The SVM has been the most commonly used method in

the detection and prediction of forest fires. For the detec-

tion of wildfires, the threshold should be defined, and

specific parameters such as temperature and relative

humidity should be well predefined. If the threshold value

does not correspond with the sensor reading, alarms are

triggered. The SVM can be applied at the base station with

the polynomial kernel function, and the SVM algorithm

can make forest fire predictions even at the risk of gener-

ating some mistakes. The SVM attempts to find the optimal

hyperplane of separation between classes. The examples

located on this hyperplane are called support vectors,

which are the most challenging to classify for their lower
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separability. In the simplest cases, the optimal hyperplane

is defined using a straight line, and the data are linearly

separable. In the study of North American forests, an SVM

that is fed satellite images can obtain 75% accuracy at

finding smoke at the 1.1-km pixel level [19]. Using an

SVM and four distinct attribute selection setups, Cortez

and Morais confirmed that the SVM was better able to

predict small fires, which account for the majority of fire

occurrences, than were four other data mining techniques

[6]. However, even though the SVM may yield an AUC

value higher than that from the logistic regression in the

studies, Rodrigues considered this method inadequate for

classifying wildfire occurrences since its calibration is

extremely time-consuming [25].

Other machine learning methods have also been used to

detect wildfires. For instance, Arrue et al. [7] reduced fire

false alarms with 90% accuracy in combination with

infrared scanners and a neural network (NN). Based on

spatial clustering using FASTCiD, Hsu et al. [26] detected

forest fire spots in satellite images. Using satellite-based

and meteorological data, Stojanova et al. [14] confirmed

that a bagging decision tree (DT) demonstrated a high

prediction accuracy (with an overall 80% accuracy) of fire

occurrences in Slovenian forests.

3 Ensemble learning methods

Ensemble learning is a machine learning paradigm in

which multiple learners, such as classifiers or regressions,

are strategically assembled to solve a particular statistical

problem with the aim of improving classification and

regression results [22, 27]. An ensemble includes a number

of base learners [28], and the overall generalization ability

of an ensemble is typically much stronger than that of

individual base learners. Thus, the technique of ensemble

learning can increase the accuracy of predictions for the

weak learners. RFs and EGB, two of the most popular

ensemble learning methods, were adopted in the present

study to construct the classification and regression models.

Their accuracies were tested against various other linear or

DL classification and regression models.

3.1 Random forests

The RF is an ensemble learning method for classification

and regression that operates by constructing numerous DTs

and producing the best result of classification or prediction

(regression) based on the combination of individual trees.

Random decision forests can modify the habits of DTs

regarding the over-fitting to their training set [29–31]. RFs

have a high prediction accuracy and can tolerate outliers

and noise [30]. In addition, RFs can select important

variables and identify the relative importance of each

independent variable automatically [29, 32]. Due to the

strengths of RFs, an increasing number of studies regarding

fire occurrences have employed this method to make pre-

dictions [33, 34].

The general techniques of bootstrap aggregation or

bagging are applied in the training procedure for RFs. The

following is the description of RFs that is executed in the

Python sklearn classification method.

1. Given a training set X = {x1,…, xn} with their

responses Y = {y1,…, yn}, random samples are

selected (B times) with replacement from the training

set and are used to train DTs.

For b = 1,…, B:

(a) Sample B training examples from {X, Y} with

replacement, call these {Xb, Yb}, and

(b) Train an RT fb on {Xb, Yb}.

2. After training, the prediction for the unseen sample x’

can be made by averaging the predictions from all the

trained individual RTs on x’ as

f̂ ¼ 1

B

XB

b¼1

fb x0ð Þ

or by taking the majority vote in the case of DTs.

The RF is a nonparametric modeling method that can

reduce variance and bias. The averaging process over

multiple trees can notably reduce instability. Since at least

several opportunities exist for a predictor of an individual

tree to be the predictor that defines a split, the gains from

averaging over a large number of trees (variance reduction)

can be significant.

3.2 Extreme gradient boosting

Recently, considerable attention has been paid to the EGB

algorithm. Gradient boosting produces a prediction model

in the form of an ensemble of weak prediction models,

which are typically DTs, for regression and classification

problems [35]. By optimizing an arbitrary differentiable

loss function on a suitable cost function [31], EGB forms a

tree ensemble model constructed by a set of classification

and RTs that attempt to define and optimize an objective

function. The most important features, such as the gain,

cover and frequency, are ordered in the EGB algorithm.

The gain provides an indication of how important a feature

is in making a purer branch of a DT. The cover measures

the relative quantity of observations that are concerned by a

feature. The frequency counts the number of times a fea-

ture is used in all the generated trees [36]. The present

study uses the gradient boosting regression tree (GBRT),

Neural Computing and Applications (2019) 31:4541–4550 4543

123



which considers the additive models and is described as

follows:

F xð Þ ¼
XM

m¼1

cmhm xð Þ

where hm xð Þ are the basis functions that are typically called

weak learners in the context of boosting. The GBRT uses

DTs of fixed size as weak learners. DTs have a number of

abilities that make them valuable for boosting—specifi-

cally, the ability to accommodate data of mixed types and

to model complex functions.

Similar to other boosting algorithms, the GBRT builds

the additive model in a forward fashion as follows:

Fm xð Þ ¼ Fm�1 xð Þ þ cmhm xð Þ

At each stage, the DT hm xð Þ is chosen to minimize the

loss function L based on the current model Fm�1 and its fit

Fm�1 xið Þ.

Fm xð Þ ¼ Fm�1 xð Þ þmin
h

Xn

i¼1

L yi;Fm�1 xið Þ � h xð Þð Þ

The initial model F0 is problem specific. For example,

one typically chooses the mean of the target values for the

least-squares regression.

Gradient boosting attempts to solve this minimization

problem numerically via the steepest descent, of which the

steepest direction is the negative gradient of the loss

function evaluated at the current model Fm�1. This function

can be calculated for any differentiable loss function as

Fm xð Þ ¼ Fm�1 xð Þ þ cm
Xn

i¼1

rFL yi;Fm�1 xið Þð Þ

where the step length cm is chosen using the line search

below.

cm ¼ argmin
h

Xn

i¼1

L yi;Fm�1 xið Þ � c
oL yi;Fm�1 xið Þð Þ

oFm�1 xið Þ

� �

4 Location and data

4.1 Study area

This study uses forest fire data from Montesinho Natural

Park located in the municipalities of Vinhais and Bragança

in the Trás-os-Montes region of Portugal (Fig. 1). The

park, which is part of the biosphere reserve of the Iberian

plateau with a smooth and rounded landscape embossment,

occupies an area of approximately 74,229 hectares on the

border with Spain. The altitude ranges between 438 and

1482 m, with valleys that are separated by rivers.

Dominated by a supra-Mediterranean climate, the average

annual temperature ranges from 8 to 12 �C. The park

contains a high degree of flora and fauna diversity that

arises from a great variety of climatic, topographic, envi-

ronmental and geomorphological conditions and human

activities that have shaped those landscapes for millennia.

These conditions have facilitated certain species to spread;

highlights include heather bushes, rockroses and brooms,

natural meadows, chestnut groves, holm oak groves,

riverside ecosystems, ultrabasic vegetation and oak woods.

Therefore, the complexity of the geographical conditions

and the diversity of biophysical conditions play a deter-

mining role and are particularly important when modeling

the forest fire occurrences since these conditions can

strengthen the findings for improved generalization in our

study.

4.2 Data

The FFDS provided by the well-known UCI machine

learning repository was employed in the experiments. This

repository contains 517 wildfires in Montesinho Natural

Park in the Trás-os-Montes region of Portugal (Fig. 1) from

January 2000 to December 2004. For each wildfire, 12

attributes were registered on a daily basis in the dataset.

The dataset, which is publicly available for research [6],

provides reliable and valuable data for comparing the

forecasting accuracy among various regression and classi-

fication methods. The dataset was incorporated using two

database resources. The first database records the fire

occurrences in this region that were detected by the

inspectors. The second dataset includes several meteoro-

logical variables that were collected by the metrological

station at the center of Montesinho Natural Park. To

improve prediction accuracy, all the variables provided by

the second dataset were used. Table 1 describes all the

variables from the dataset employed in the experiments.

For each forest fire, several attributes, such as the time,

date, spatial location, four components of the FWI system,

the total burned area and other meteorological information,

were registered on a daily basis. In this dataset, spatial

locations within a 9 9 9 grid were specified, and the X-

and Y-axes indicate one of the 81 sub-areas obtained from

the division of the study area. Temporal variables were also

measured as the months of the year and days of the week

since the average weather conditions can vary substantially

among the 12 months and the days of the week can involve

a variety of human activities that have different impacts on

the occurrence of forest fires. Also included were the four

components of the FWI system that are affected directly by

weather conditions, namely the fine fuel moisture code

(FFMC), Duff moisture code (DMC), drought code (DC)

and initial spread index (ISI). Regarding the meteorological
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attributes, four attributes used by the FWI system were

selected in the dataset: the temperature, relative humidity,

wind speed and precipitation. The values of the first three

attributes denote instant records that were obtained by the

station’s sensors when the fire was detected. The value of

the precipitation was measured as the accumulated pre-

cipitation within the previous 30 min. The area variable

denotes the burned area of the forest (in ha). Figure 2 plots

the correlation among the input variables used in the

analysis, where the DMC is positively and linearly corre-

lated with the DC and the temperature is negatively and

linearly correlated with the relative humidity (in percentage

format). The scatter plots suggest the high reliability of the

data of the input variables that characterize the weather

conditions of the FWI system and the meteorological

attributes.

Fig. 1 Map of the Montesinho Natural Park, Portugal

Table 1 Description of input

variables and the prediction

variable (burned area)

Variables Description

X X-axis spatial coordinate (from 1 to 9)

Y Y-axis spatial coordinate (from 1 to 9)

Month Month of the year (from ‘‘January’’ to ‘‘December’’)

Day Day of the week (from ‘‘Monday’’ to ‘‘Sunday’’)

FFMC FFMC code from the FWI system (from 18.7 to 96.20)

DMC DMC code from the FWI system (from 1.1 to 291.3)

DC DC code from the FWI system (from 7.9 to 860.6)

ISI ISI code from the FWI system (from 0 to 56.10)

Temp Temperature in degrees Celsius (from 2.2 to 33.30)

RH Relative humidity in percentage (from 15.0 to 100)

Wind Wind speed in km/h (from 0.40 to 9.40)

Rain Outside rain in mm/m2 (from 0.0 to 6.40)

Area Total burned area of the forest (in ha) (from 0.00 to 1090.84)

Neural Computing and Applications (2019) 31:4541–4550 4545

123



5 Results

5.1 Experiment one: regression models
predicting the burned area

All the experiments reported in the paper were imple-

mented using H2O,1 the world’s leading open-source DL

platform, which facilitates the use of various data mining

techniques in regression and classification tasks. To

investigate the impact of the input variables, twelve distinct

attribute (except ‘‘area’’) selection configurations, as listed

in Table 1, were tested for each data mining algorithm.

Several regression models were tested to produce predic-

tions, including the methods of default random forests

(RFd), tuned random forests (RFt), default gradient

boosting machines (RFd), tuned gradient boosting machi-

nes (GBMt), default generalized linear models (GLMd),

tuned generalized linear models (GLMt) and DL. Tenfold

cross-validation was applied to each model in the experi-

ment, in which the dataset was randomly divided into

k subsets, and each model was trained and tested 10 times.

To compare the overall performance of the regression

models, the root-mean-square error (RMSE) and the mean

absolute error (MAE) were computed to measure how close

the forecasts or predictions were to the eventual outcomes.

The RMSE can be computed as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

Xobs;i � Xmodel;i

� �2
s

where Xobs is the observed burned area, and Xmodel is the

predicted value of the burned area at time/place i.

The MAE is given by

MAE ¼ 1

n

Xn

i¼1

jyi � tij ¼
1

n

Xn

i¼1

eij j

where yi is the predicted values of the burned area at

time/place i (output of the generated model that is evalu-

ated on the training set), and ti is the corresponding target

value of the burned area.

In both metrics, lower values correspond to better pre-

dictive performance. RMSE is commonly used and offers

an excellent general purpose error metric for predictions.

However, relative to the similar MAE, RMSE is more

sensitive to large errors. The RMSE and MAE of all the

Fig. 2 Scatter plot showing the

forest fire data of the UCI

(Montesinho Natural Park)

1 http://www.h2o.ai/.
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methods are reported in Table 2, and the histograms for the

RMSE and the MAE for the respective model are also

provided (Fig. 3).

Under the RMSE and MAE criteria, given the same

attribute selection, the RFt2 (RMSE = 8.3708 and

MAE = 2.9343), as an ensemble learning technique, out-

performed other regressions and was likely to make the

best prediction of the burned area relative to other tradi-

tional GLM models. In addition, under the same criteria,

the RMSE and MAE of the RF models (RFt and RFd) were

lower than those of models used in the previous study by

the UCI machine learning laboratory [6, 9]. The lowest

MAE value of the SVM model in the previous study

obtained using the same data was 12.71, and the lowest

RMSE of the benchmark model was 63.7. The RFt model

based on twelve distinct attribute selection setups demon-

strated a better predictive ability in forecasting the burned

area due to its distinct features. In the RFt model, each

randomized tree is built from a sample drawn with

replacement from the training set based on the given

parameters. This experiment verified the variance decrea-

ses and the overall better prediction model that was

generated due to the averaging of the independent and

tuned trees.

In the RF model, each tree is constructed from a sample

drawn with replacement. During the generation of the tree,

the chosen split chosen is the best among a random sub-

group of the features (Fig. 4). Because of the randomness,

the variance decreases due to the averaging and typically

outweighs the increase in bias, which generally leads to

improved predictive accuracy [37–39].

5.2 Experiment two: classification models
for predicting large-scale fires

Firefighting departments must make reliable decisions

regarding resource allocation for fire prevention and sup-

pression if the types of fires with meteorological data can

be accurately and automatically classified. In addition, the

automatic and accurate classification are expected to be of

great benefit to the prevention of the spread of fires and the

mitigation of damages to the environment, properties,

human lives and livestock. In this regard, large-scale forest

fires were arbitrarily recoded as ‘‘1’’ (burned area of[ 5

ha) within the dataset. The instances of large-scale forest

fires account for almost 30% of the total instances of forest

fires in the data used in the study. Then, several machine

learning methods, including DTs, RFs, SVMs, NNs, EGB

and DL, were implemented with tenfold cross-validation

Fig. 3 Histograms for the RMSE and MAE for the various models

Table 2 Comparison of the

RMSE and the MAE among all

the regression models

RFd RFt GBMd GBMt GLMd GLMt DL

RMSE 30.5031 8.3708 39.8354 42.0884 62.4157 61.7381 63.6423

MAE 8.7392 2.9343 13.5360 14.6881 19.4700 17.9117 16.3923

2 The best RFt model setting was ‘‘max_depth = 40, ntrees = 200,

sample_rate = 0.9, mtries = 4, col_sample_rate_per_tree = 0.9, and

score_tree_interval = 10’’.
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on each classifier to measure the model’s prediction

accuracy. For benchmarking purposes, logit regression

(LR) was added for comparison with other models. Table 3

lists the values of the correct prediction rate for all the

classification models.

Table 3 and Fig. 5 show the correct prediction rate of

the seven classification models. Given the same attribute

selection, the LR model tended to produce the least accu-

rate prediction of large-scale forest fire occurrences (only

62.5%). Notably, the RF with the best predictive perfor-

mance in forecasting the burned fire area performed poorly

in this experiment. In contrast, the correct prediction rates

of the DT, SVM, EGB and DL exceeded 70% with the

overall prediction accuracy of the EGB reaching 72.3%,

thus enabling the model of EGB3 to outperform the other

models in terms of its prediction accuracy for large-scale

fires. These results indicate that the EGB method has great

potential for the accurate prediction of large-scale forest

fire occurrences in other regions around the world. In this

experiment, EGB converted weak learners into strong

learners by giving more weight to misclassified cases in

earlier rounds. The method also generated weighted ver-

sions of the data. The predictions were combined through a

weighted majority vote in the classification process to

increase accuracy.

The more accurate predictions generated using EGB

result from the data processing that implements a more

regularized model formalization to mitigate over-fitting

and yield better performance. For each node, the method

lists all the features; for each feature, the method ranks the

instances according to the feature’s importance (Fig. 6).

Then, the results are scanned to determine the best split and

uses the best split choice along all the features to optimize

the sparse data and to approximate a better tree learning

solution [40].

6 Conclusions

Forest fires not only threaten the environment but also

cause significant damage to property and human lives. In

the past decades, substantial effort in the academic

Fig. 4 Flowchart of data processing using the RF method

Table 3 Comparison of prediction accuracy among all the classifi-

cation models (%)

LR DT RF SVM NN EGB DL

0.625 0.704 0.669 0.709 0.688 0.723 0.712

Fig. 5 Prediction accuracy of the seven models

3 The EGB settings were as follows: xgbGrid\ - expand.-

grid(nrounds = c(1, 10), max_depth = c(1, 4), eta = c(.1, .4),

gamma = 0, colsample_bytree = .7, min_child_weight = 1, and sub-

sample = c(.8, 1)).
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literature has been devoted to the development of machine

learning methods that assist firefighting management and

decision making to conduct reliable and accurate predic-

tions. The main objective of the present study is to present

an application of recently emerged ensemble learning

methods to the design of automatic and reliable prediction

techniques of forest fires by comparing EL methods with

other data mining techniques that are commonly used in

forest fire predictions. To this end, we used forest fire data

from Montesinho Natural Park, Portugal that form a widely

used benchmark for empirical evaluation of new and

existing learning algorithms to calculate and compare the

performance of different prediction models. The results of

various regression models and classification models were

reported according to the potential practical demands.

Relative to data mining techniques, the RFt approach

performed better than the other regression models did with

regard to the prediction accuracy of the burned area in

terms of a comparatively small RMSE and MAE obtained

from the experimental results. In the method, each ran-

domized tree was built from a sample drawn with

replacement from the training set according to the given

parameters. The experiment verified the decrease in vari-

ance and the general improvement in the prediction accu-

racy due to the averaging of the independent and tuned

trees. In addition, the EGB method outperformed the other

classification models in terms of the predictive accuracy of

large-scale fire occurrences by giving more weight to

misclassified cases in earlier rounds and converting weak

learners to strong learners. In this model, the predictions

were combined through a weighted majority vote in the

classification process to produce more accurate results.

Predicting the occurrences of forest fires and burn areas

is a challenging task. More accurate prediction techniques

would be of particular significance in strong fire seasons

when simultaneous fires may occur at various locations.

The findings show that ensemble learning methods not only

have great potential for broader applications in forest fire

automatic precaution and prevention systems but also can

provide important techniques for forest firefight decision

making in terms of fire resource allocation and strategies to

build proactive responses (including fire towers, inspection

stations and fire patrols) and can ultimately improve the

efficiency of forest fire management worldwide.
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