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Abstract
In this paper, we have discussed the application of the artificial neural networks in wind speed prediction. They will be used

to predict the average monthly wind speed at three wind gauging stations in Gujarat, India. The wind speed data on an

hourly basis are collected by NIWE (National Institute of Wind Energy) and located in the coastal areas of Western India,

primarily Gujarat. The short-term and long-term data consisting of wind speeds have been considered for the period from

2015 to 2017. An artificial neural network is utilized for wind speed prediction using data measured from these stations for

training and testing the given information. The data were studied using the nonlinear autoregressive models, NAR and

NARX and the chaotic time series prediction models. The model is predicted using the historical data of the same station.

The data are measured at a height of 100 m. The mean absolute percentage error (MAPE) and mean average error (MAE)

concerning the predicted and measured wind speed were found to be 5.09 9 10-3, 5.33 9 10-3 and 2.9 9 10-3,

respectively. The results of the ANN technique were compared with the Mackey–Glass equation-based time series pre-

diction. Additionally, studies have been done on calculating the production and supply capacity of wind energy.
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1 Introduction

Due to increasing demand for energy nowadays in different

parts of the country India, the search is on for adding new

and renewable resources to the mainstream. Wind energy is

rapidly developing as a major supplier of energy generation

as it is a very clean source of energy, and the wind plant

functioning costs are very low [1]. As the technology is

advancing at a rapid rate, the wind energy is fast catching

up to the current energy generation technologies and is also

sometimes comparable in case of investment cost [2]. The

renewable sector has seen an increase in penetration of

solar and wind energy nowadays primarily in India where

there is a hiatus between the supply and demand [3]. India

was ranked fourth in the third week of December 2016 in

the Global Wind Power Installed Capacity Index among

the global nations in its collectively installed wind gener-

ation capacity of 25,088 MW behind the USA, Germany

and China which shows an improvement in its prior

ranking. The cumulative installed wind power generation

capacity of India was 25,088 MW [4]. The aggregate wind

generation capacity of China was at the peak of

168,690 MW, while the capacity for USA and Germany

was 82,183 MW and 50,019 MW for the year 2016. In

2016, globally more than 54 GW of wind power plants

were instated among whom nine power plants have a

capacity exceeding 10 GW and rest 29 countries have

spanned the 1 GW target. The cumulative capacity of these

plants escalated by 12.6% reaching to 490 GW [4]. The

current demand for global wind energy is approximately

equal to 5%. The wind power of Asia as compared to

various continents like Europe lies in proximity and soon it

will overtake the installed capacity of Europe in 2015 and

soon becoming the highest capacity continent [4]. The

wind progression is high in the case of Eastern Europe and

Latin America especially countries like Chile. The share of

China in wind installations among the world was seen as
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43%, while that of Denmark was seen as 38% in 2016

where it is forecasted to get 100% power from wind energy

by 2050 [4]. The total number of wind turbines which are

expected to be around at the end of 2017 is approximately

350,000 conferring to a report by global wind energy

council [4]. The world is set to develop new renewable

sources by the end of 2022 which would then force Indian

energy industry to assimilate more energy from wind tur-

bines approximately double and approximately 15 times

the solar energy need to be increased from the levels pre-

sent in 2016.

In 2017, India has reached the installed capacity of

32 GW and is targeted to reach 60 GW until 2022 [5].

India has managed to reach an all-round capacity of

340 GW, with approximately 60 GW of which would

come from renewables as on July 2017. The wind con-

tributed at approximately 61% while solar comparatively

contributed a lesser percentage, i.e., 19%. The small

hydroprojects capacity summed up to 45 GW as on Feb

2017 [6]. The installed renewable capacity statistics are

shown in Fig. 1.

The targets that have been set by MNRE is to upscale

the renewables to approximately 174 GW by the end of

2022 including 105 GW solar, 60 GW wind, 10 GW bio-

gas and 6 GW from small hydroplants [7]. Till the end of

Feb 2017, the installed capacity was set as 29 GW which

includes states like Maharashtra, Tamil Nadu, Gujarat,

Rajasthan, Karnataka, Andhra Pradesh and Madhya Pra-

desh where the wind power contributes to 14% of the

installed capacity and is forecasted to produce 60 GW from

wind by 2022 [8]. One such installation is shown in Fig. 2.

According to Ministry of New and Renewable Energy

(MNRE), of about 50,018 MW of installed renewable

power in India, over 55% is wind power, exceeding its

4000 MW target and the wind tariff dropped to Rs 3.46

kWh [8].

Hence to overcome this surplus demand, wind turbines

have been installed in various parts of the country primarily

Gujarat which is a state witnessing a marked increase in

wind energy penetration. Gujarat has been characterized by

a long coastline which leads to an approximately wind

potential of 35,000 MW [8]. It has recently seen high

echelons in wind power generation owing to the high wind

speeds on its coastal area and increasing generation as

depicted in Fig. 3. Recently in June 2017, the wind gen-

eration capacity reached a record of 3460 MW [9].

Wind-monitoring stations have been installed in wind

turbines present at these sites which will give the moni-

tored data to the operator. This monitored data can be used

for several aspects of research.

In [10], the status of wind energy in India and neigh-

boring countries, China and Pakistan, was discussed. It was

seen that China is having advantages over India due to the

presence of renewable laws, India with 17% renewable

participation needs to rival with China in wind generation

Fig. 1 Renewable currently installed capacity vs target 2022

Fig. 2 Wind farm installation in Gujarat (Source—Ministry of New

and Renewable Energy, India)

Fig. 3 Wind energy potential in Gujarat state (Source—National

Renewable Energy Laboratory (NREL), Colorado)
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portfolio, while Pakistan is still seen as lagging behind in

wind energy participation.

In [11], the site assessment parameter for wind turbines

in Gujarat was discussed. A diagnostic outline was estab-

lished using GIS in this article with fuzzy logic to assess

the appropriate spot for turbines for optimal energy pro-

duction. It gives the idea that the wind turbines are suit-

able for development along the western coastline of

Gujarat. Hence, the future choice of site for the wind tur-

bine can be assessed to be of use to energy engineers.

In [12], the study of wind energy potential for selected

six locations present in the state of Gujarat utilizing

19 year past data from 1995 to 2013 which has been

exposed to Weibull distribution was conducted.

The results showed that at locations Okha and Moti-

sindh, the yearly wind speed possess an average of 7.1 m/s

with maximum power density as 280 W/m2, while Sanodar

has a lowest yearly wind speed of 3.8 m/s with 54 W/m2

maximum power density.

2 Wind speed prediction

As the energy harvesting from a wind turbine is witnessing

an increase recently, the need for prediction of wind speed

is also arising due to the sporadic nature of the wind.

Hence, datasets from around the world are analyzed to get

a better study.

Rasit Ata [13] analyzed the several types of usage of

artificial neural networks for feasibility in wind energy

systems mainly for prediction. He analyzed in detail the

different prediction methodologies for wind speed predic-

tion on the very short-term, short-term and long-term basis

along with other applications. It was found from the review

that the most commonly used neural model was multilayer

perceptron network (MLP). The best training algorithm

was found to be Levendberg–Marquardt and the best

optimization algorithms were particle swarm optimization

(PSO) and genetic algorithms (GA).

Ramasamy et al. [14] prepared an artificial neural net-

work (ANN) model for wind speed prediction in the

mountainous regions of Hamirpur, Himachal Pradesh in

India. He utilized temperature, solar radiation, air pressure

and wind speed as inputs to the neural network for training,

and the model was validated by testing on a different

location. It can be concluded that the neural model was

successful in capturing the variability of the location;

however, additional techniques to improve the efficiency of

the model could be utilized.

Meng et al. [15] utilized a hybrid model of wavelet

packet decomposition, crisscross optimization algorithm

and artificial neural networks (WPD-CSO-NN) for wind

speed prediction at a wind observation station of

Rotterdam, Netherlands. The results compared the pro-

posed model to two other hybrid combinations with dif-

ferent optimization algorithms like Particle Swarm

optimization and backpropagation where the WPD-CSO-

NN model outperformed the other two hybrid models;

however, the processing becomes slow.

Wang et al. [16] proposed a hybrid model of an

ensemble empirical mode decomposition (EEMD) of wind

speed data and a neural network composed of a combina-

tion of backpropagation (BP) and genetic algorithm (GA)

setup. A case study was performed for a wind farm in Inner

Mongolia, China. The results showed its superiority over

the traditional approach of GA–BP and are suitable for the

ultra-short-term and short-term forecasting; however, the

combination increases the computational time.

Mishra and Dash [17] proposed a pseudo-inverse

Legendre neural network (PILNNR) along with a radial

basis function (RBF) embedded in the hidden layer for

short-term wind power prediction. Weight optimization

was carried out by a metaheuristic firefly (FF) algorithm,

and the model was compared with two other hybrid pre-

diction models, i.e., pseudo-inverse radial basis function

(PIRBFNN-FF) and tanh function (PILNNT-FF) where the

algorithm proposed outperformed. A case study was per-

formed for the wind farms of Wyoming and California,

USA, and Sotavento, Spain. The model was successful in

performing short-term prediction of wind speeds in dif-

ferent seasons; however, the accuracy of the system pro-

posed was compromised which needs to be further

improved.

Mert et al. [18] proposed an ANN-based stepwise multi-

linear regression (SMLR) technique to evaluate the power

profile of a wind turbine directly. From each parameter of

daily sub-data, SMLR was implemented to determine the

appropriate input for ANN and corresponding outputs were

computed adapted to changing conditions like daily mean

air temperature, pressure, wind speed, and direction,

however, the functioning of ANN model for seasonal data

still needs to be reviewed.

Fazelpour et al. [19] proposed several techniques of

predicting wind speed for short durations based on four

neural network models namely ANN-RBF, adaptive neuro-

fuzzy inference system (ANFIS) and hybrids of ANN with

optimization algorithms GA and PSO at a location selected

in Tehran, Iran. The results indicated that the ANN-GA

model was found to be having greater efficiency in cap-

turing the fluctuation in wind profile; however, this method

resulted in a slow convergence of the simulation setup

which can be improved by using other hybrid

combinations.

Cadenas et al. [20] proposed a long-term wind speed

prediction method based on a nonlinear autoregressive

exogenous (NARX) model for La Mata, Oaxaca, Mexico.
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The results showed that the NARX method was efficient

and superior to the NAR method and persistence method in

the modeling of the wind speed data and its accurate pre-

diction; however, the results were not as consistent for

short-term wind speed prediction.

Hayashi and Nag [21] proposed a Jacobian matrix

estimation method based on deterministic chaos for wind

speed prediction on wind turbine surrounding areas near

Aomori, Japan. The results showed that by investigating

the change in error rate with respect to Aomori, it is

possible to install appropriate observatories in surround-

ing areas to compute the least error rate on which the

prediction and maximum power output is attained; how-

ever, this may lead to a proliferation in expense to the

state.

As can be observed from the literature review, various

models have been utilized to forecast the wind speed in

which many models were designed utilizing the neural

networks and hybrids of neural networks with other

methods such as genetic algorithms, fuzzy logic, and other

methods. However, the prediction of wind time series in

the case of deterministic chaos still needs to be surveyed

further. The stochastic characteristic of noise is difficult to

analyze. The fuzzy logic methods when used for wind

speed prediction lack precision. The artificial neural net-

work proves as a self-adapting method, being highly effi-

cient in the prediction of wind speeds; however, it still

faces some issues which include the diversity of training

models required for their operation, slow convergence and

some over fitting issues. Hence, it deems necessary a

comparison of the neural model with other models which

could act as a precursor to the discussed method.

In the need to search for contemporary models which

can predict wind speeds, this article sets out to create step

ahead prediction models using the nonlinear autoregressive

networks (NAR) and the exogenous input neural model

(NARX). The NAR network works on the output variables

fed back to the input, while the NARX network includes an

exogenous input as atmospheric parameter addition. Chaos

theory and approaches are used to discuss the wind speed

prediction problem which is an emerging prediction tech-

nique. The comparison between the chaotic and neural

models showed the best of both the algorithms in their

prediction accuracy; however, the ANN method was seen

to supersede the former method. The accuracy of wind

power prediction is a crucial factor for assessment of the

economy and security when the grid is fed by wind power.

Improper selection of prediction method may lead to delays

in operation and large errors in the wind production

systems.

3 Methods

3.1 Artificial neural networks

Artificial neural networks (ANN) have been an emerging

field which has been now extensively used by researchers

in every field of study including engineering and medicine.

It is useful in designing systems that are adaptive and

predictive. It works on input–output interaction. A neural

network tries to achieve the given targets by modifying the

synapses/weights of the hidden layer which modifies

according to what has been learned by the network earlier

from the past interaction history of input and output

[22–25].

A neural network can be trained just like a human brain

where it learns from the previous interactions. It can be

used to solve problems that were deemed very complex to

solve analytically. A neuron forms the central element of

an ANN. It entails the input layer, hidden and an output

layer.

A distinct nerve cell can be articulated by the subse-

quent mathematical formula:

t ¼ f ðWXT þ yÞ ð1Þ

3.1.1 Nonlinear autoregressive network

A NAR (nonlinear autoregressive) model comprises an

output that is fed back to the input layer through feedback

associations consisting of one-time delay as shown in

Fig. 4. It is also denoted as an input–output recurrent

model and constitutes one-time step. The external input

represents the current state of the variable. It is a recursive

approach where the output is reused as input for the time

length of forecast [26–28].

The time series based on the NAR model is depicted by:

yt ¼ kðyt�1; yt�2; . . .; yt�pÞ þ et ð2Þ

This time series equation was modified later to form the

given below equation

ytþ1 ¼ kðyt�1; yt�2; . . .; yt�24;wtÞ þ etþ1 ð3Þ

STATIC 
FEEDFORWARD 

NETWORKINPUT OUTPUT

Fig. 4 Nonlinear autoregressive model
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3.1.2 Nonlinear autoregressive network with exogenous
input

The output is fed back as an input for this type of nonlinear

autoregressive network, but additional features are added to

the input matrix which may depict other parameters such as

other environmental features which may affect the predic-

tion quality and should be included to counter this effect.

During forward propagation, some additional factors,

such as the temperature and pressure, are included in the

study as the given measurement setup is capable of deliv-

ering these features only as shown in Fig. 5.

The hidden layer, the inner information dispensation

layer of the neural network, is intended for information

conversion, analysis and judgment [29, 30].

3.2 Mackey–Glass chaotic equation

A chaotic system denotes the fluctuations of a nonlinear

structure’s bounded output expressing a chaotic behavior

which reacts well to initial conditions. It possesses a

deterministic property where there exists a restricted cor-

relation in the system readings [31, 32]. Hence, Mackey

and Glass [33] devised a nonlinear time delay differential

equation in order to model physiological systems. The

sequence is depicted in equation

dxðtÞ
dt

¼ 0:2xðt � fÞ
1þ x10ðt � fÞ � 0:1xðtÞ ð4Þ

For f[ 17, the series exhibits chaotic behavior.

Any differences in initial conditions could lead to

diverging conclusions. For reliability, a chaotic time series

is predicted by utilizing the fuzzy logic systems which

inhibit the nonstationary nature of data to affect the pre-

dicting power of the system.

Hence, a proper control is obtained over the varying

wind data. The system is studied using a combination of

ANN and fuzzy techniques (ANFIS) network which can

create rules so as to reduce the errors in prediction.

An ANFIS network will be constructed which can pre-

dict the future values [34] of the wind speed, i.e., y(t ? 6)

from the preceding values of the chaotic wind speed time

series, i.e., y(t), y(t - 6) and y(t - 12) as shown in Fig. 6.

3.2.1 Mackey–Glass time series

The Mackey–Glass time series [35] is represented by the

subsequent equation:

_yðtÞ ¼ ayðt � dÞ
bþ yhðt � dmÞ

� cyðtÞ ð5Þ

and its discrete form is denoted as

yðt þ 1Þ ¼ cm yðtÞ þ amyðt � dmÞ
bm þ yhmðt � dmÞ

ð6Þ

If properly selected embedding dimension m and delay

time to, the wind power time series {xk: k = 1, 2…, n} can

be reconstructed in which, N = n - (m - 1) denotes the

extent of the reformed wind time series arrangement.

Hence for construction of phase space, there should be a

proper selection of delay time interval and the embedded

dimensions. Hence, these parameters optimize the preci-

sion behavior of the model parameters.

3.2.2 Chaotic time series for prediction

A single-stage prediction method is utilized for forecasting

the chaotic time series for wind speeds as shown in Fig. 7.

Historical values of wind speed are utilized to predict wind

Fig. 5 Nonlinear autoregressive model with external parameters

d1

Current 
wind speed

y(t)

y(t-6)y(t-12)y(t-18)

Future value of 
wind speed y(t+6)

I/P 
Layer

Hidden 
Layer

O/P 
Layer

d3d2 d4 d5

dn

Fig. 6 Neural architecture for chaotic prediction
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data on an hourly basis for which a fuzzy logic technique is

exercised. The neural network architecture is then used to

train the deduced rule set and utilized to procure the pre-

dicted time series [36]. The steps of formation of a fore-

casted time series are shown in the flowchart shown in

Fig. 8.

4 Performance metrics

There are some standard performance metrics which are

used to evaluate the standard of all the training algorithms

used for prediction and can be used for performance

analysis. These consist of the mean squared error (MSE),

root-mean-squared error (RMSE), mean absolute percent-

age error (MAPE) and mean absolute deviation (MAD)

[37, 38].

Mean square error is the average of the square of

deviations between the actual and predicted wind speed

values and can be stated as:

1

N

XN

j¼1

ðPactual
j � P

predicted
j Þ2 ð7Þ

RMSE formula is the square root of the average of

squared errors between the actual and predicted wind

speeds and useful for larger errors and is more accurate

than MSE. It can be stated as follows

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

j¼1

ðPactual
j � P

predicted
j Þ2

vuut ð8Þ

The cancelation of positive and negative errors is per-

meated by the mean absolute percentage error (MAPE)

which is the aggregate of the time series of absolute errors

between model output data pairs.

The MAPE criterion is explained as:

MAPE ¼ 100

N

XN

j¼1

Pactual
j � P

predicted
j

Pactual
j

�����

����� ð9Þ

where Pactual
j represents the actual and P

predicted
j represents

the predicted wind power.

Mean absolute deviation (MAD) is able to permeate the

zero denominator and other scale problems that are

prevalent in MAPE hence is less sensitive to the errors as

contrasted to the standard deviation.

MAD ¼ 1

N

XN

j¼1

jPactual
j � P

predicted
j j ð10Þ

5 Results

The data that are considered for the study were monthly

data of wind data from the wind-monitoring systems

installed by National Institute of Wind Energy (NIWE),

India, from the period 2015–2017 [39]. For both the

models, the complete wind data were divided into three

parts: training, validation and test data. The training set

Fig. 7 Mackey–Glass time series for wind data

Start

Chaotic Wind 
data acquisition 
from monitoring 
station according 
to Mackey-Glass 

equation

Normalize the 
given data

Selecting the 
input and target 

parameters

Divide given data 
into training, 

validation and 
test sets

Generate FIS 
matrix from 
training set

Train the network 
according to fuzzy 

rule set

Get the 
forecasted wind 

series

END

Compare the 
actual and 

forecasted series 
to check network 

performance

Fig. 8 Flowchart depicting steps for chaotic series prediction
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comprises of 504 observations (i.e., 70%) and utilized for

modeling. The parameters for training the neural network

models are discussed in Table 1.

The validation set comprises of 108 observations to

postulate the predicting capability of the predicting models

for future prediction. Before the data are ready for use in

the neural network, it was preprocessed so that it is a better

fit for activation function’s range. Hence, the data were

normalized in the range of - 1 to ? 1. The algorithm can

function properly leading to a uniformity in data analysis.

The forecasted values are based on past observations of the

series itself and also any external variables as input.

In the neural network architecture, the number of hidden

layers was taken as 3, the delay was taken as 1 and a single

output. The training algorithm used was the Levendberg–

Marquadt algorithm. Weights are automatically adjusted by

the feedback sent from the output to the input. The oper-

ation of the network was improved for the training set over

the validation set so that the data does not overfit the

model.

The network presenting the best generalization ability is

chosen for future prediction of time series of wind data. For

achieving the desired results, MATLAB 2015 which was

utilized for neural and chaotic wind simulation.

5.1 NAR (nonlinear autoregressive model)

The input wind speed time series is fed to the NAR net-

work and the corresponding predicted wind speeds are

plotted with respect to the actual time series and a close

approximation is observed between input and output series

as shown in Fig. 9. The subsequent mean square errors and

regression values for the trained NAR model, i.e., training,

testing and validation are shown in Table 2.

5.2 NARX (NAR model with exogenous inputs)

The input wind speed time series along with additional

parameters like temperature and pressure is fed to the

NARX network, and the corresponding predicted wind

speeds are plotted with respect to the actual time series and

a close approximation is observed between input and out-

put series as shown in Fig. 10a. The time response plot for

the trained model which depicts minimal errors on all three

sets which are shown in Fig. 10b, and its prediction

accuracy is shown in Fig. 10c. It can be observed that the

lowest validation error happens at epoch number 21 which

yields the lowest mean square value, i.e., 0.00,427 after

which the training process halts. The subsequent mean

square errors and regression values for the trained NARX

model are shown in Table 3.

5.3 Chaotic wind speed prediction

A predicted wind speed time series is formed from previ-

ous values of the wind speeds using ANFIS which can

predict y(t ? 6) values from preceding values of wind

speeds, i.e., y(t), y(t - 6), y(t - 12) and y(t - 18). From

time sample of wind speeds for selected location from 101

to 524, where initial points are not considered in order to

avoid transients. We have collected the data for which 223

data points are utilized for training, while rest of the wind

speed data is used for testing and validation. Initially, an

Table 1 Parameters for NAR and NARX training

Training parameters Values

Data proportions Training (70%)

Validation (15%)

Testing (15%)

Hidden layer transfer function Tan–Sigmoid

Output layer transfer function Linear

Hidden neurons 3

Number of delays 2

Training Algorithm Levendberg–Marquardt

Fig. 9 Plot of actual speed vs

predicted wind speed for NAR

model

Table 2 Mean square errors in neural model for NAR method

Target values MSE R

Training 504 5.33543e-3 9.87302e-1

Validation 108 5.48887e-3 9.95152e-1

Testing 108 6.58619e-3 9.82011e-1
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FIS matrix using the Sugeno model is generated utilizing

the training data which is shown in Fig. 11a. There are 16

rules for the FIS matrix defined where of fitting parameters

are 104 where 80 are linear parameter while rest are non-

linear parameters.

Error curves for both training and checking data are

shown in Fig. 11b. The training error exceeds the checking

error due to the utilization of ANFIS learning.

The actual wind time series and the series predicted by

ANFIS network are compared with each other, and the

results are displayed in Fig. 11c. The prediction errors for

wind data using ANFIS are shown in Fig. 11d where the

data are trained for 10 epochs. After 10 epochs, the mean

square error of training converges down to the value

2.5 9 10-3. The selected ANFIS parameters for prediction

of chaotic time series are discussed in Table 4.

6 Comparison

All the three prediction techniques are compared with each

other in Fig. 12. It is seen that the NARX prediction is

having less error than any of the other discussed models.

Several simulations with different values of delay vari-

ables and hidden layer were chosen and on a hit and trial

method, it was found that the configurations with three

hidden layers were the most appropriate and with the least

error and giving the best performance plot as per the out-

put. However, further configurations could yield a different

result. NAR network was selected for the study using the

wind data from the site and after training the normalized

data; the difference between the actual and predicted time

series was plotted with respect to the time axis in Fig. 12.

Similarly, after inclusion of variables like pressure and

temperature, the NARX was used for prediction of wind

speeds at the same site. The mean square error for training

the model was found to be less than the NAR model. The

difference between the actual and predicted wind speeds

was again plotted on the same time axis to permit com-

parison. The wind speed was further forecasted by the

chaotic method using the Mackey–Glass equation and

utilizing the ANFIS network, and the difference error was

again plotted on the same time axis. It can be observed that

the fluctuations between the actual and predicted wind

speeds were least in case of NARX. There are occasional

Fig. 10 a Plot of actual speed vs predicted wind speed for NARX model. b Time response plot, c prediction accuracy of neural network

Table 3 Mean square errors in neural model for NARX method

Target values MSE R

Training 504 5.09836e-3 9.87436e-1

Validation 108 5.32027e-3 9.87511e-1

Testing 108 6.22405e-3 9.83209e-1
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peaks where the predicted value deviates from the true

value; however, this could be due to a sudden change in

external variables and the average error in wind speed

remains between 0.1 and 0.2 m/s. The NAR model creates

further deviations and is less efficient than NARX method

in predicting the wind speed. The average error remains

within approx. 0.3–0.4 m/s. The chaotic prediction

sequence of data was the least effective in capturing the

eccentricity of wind speeds; however, the average error

remains between 0.3 and 0.5 m/s; however, training the

Fig. 11 Chaotic model.

a Generated FIS matrix, b error

curves, c plot of actual speed vs

predicted wind speed by

ANFIS, d prediction errors

between actual and forecast by

ANFIS

Table 4 Parameters of ANFIS network

Number of nodes 55

Number of linear parameters 80

Number of nonlinear parameters 24

Total number of parameters 104

Number of training data pairs 200

Number of fuzzy rules 16
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ANFIS model for a higher number of epochs and noise

removal in wind data could lead to improved results.

The wind power error distribution of the NAR network

has been discussed in Fig. 13. The error histogram as

observed in Fig. 13 is centered uniformly across the zero

error line; however, negative values of error exceed the

positive ones hence mean absolute percentage error could

be a better alternative for performance analysis.

The actual and forecasted wind energy models have

been compared with each other along with the rated power

of wind turbine and are discussed in Fig. 14. It depicts the

comparison of power production of the wind turbine. The

Fig. 12 Plot of comparison of

NAR, NARX and chaotic

prediction models with respect

to time axis

Fig. 13 Error histogram for

nonlinear autoregressive model

Fig. 14 Plot of actual and

forecasted wind energy

production and error with

respect to the rated power of the

turbine
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power output of the wind turbine is computed for the

particular site according to the actual and predicted wind

speeds, and the actual and forecasted energy generation is

shown in the figure where it is compared with the rated

power of the turbine.

It is observed that the wind turbine generated 0.3 MW

of power at the site compared to the 1.5 MW wind turbine

installed. This leads to an efficiency of 20% which is low.

The error generation plot is also shown for the difference

between the actual and forecasted values.

The different prediction techniques are then viewed with

respect to each other in Fig. 15 concerning their mean

square errors and root-mean-square errors.

The mean square errors and root-mean-square errors are

plotted with respect to each other for the chosen three

models namely NAR, NARX and chaotic prediction in the

figure. It is observed that the mean square error was least in

case of NARX, i.e., 0.00,509 and RMSE of 0.0714 giving

better prediction results than NAR and chaotic models.

An assessment of comparison of results of the findings

with past findings is discussed in Table 5.

It is verified from the results shown in [20] discussed in

Table 5 that NARX resulted in better performance than the

NAR method as demonstrated in this paper and the ANFIS

results shown in [19] approximated the ANFIS-based

chaotic prediction results calculated in this paper. It is

observed that further hybrid techniques discussed in other

references can be used to further increase the performance

accuracy of the neural network models.

Table 6 shows the average energy generation values for

the wind turbine on a monthly basis. The energy production

capacity of a wind turbine is calculated based on the dif-

ference in the actual and predicted wind speed and is dis-

cussed in the table. It is inferred that it is dependent on

various environmental parameters like wind direction,

wind speed, temperature, pressure as well as the accuracy

of the neural or chaotic model considered for the given

study.

It is observed that the generation is maximum in January

due to the presence of high-speed seasonal winds off the

coast of Gujarat and the least generation is observed in the

month of October which can be substituted by alternate

energy resources, hence vouching for its suitability on the

terrain in Gujarat. Based on the actual and forecasted wind

speed values computed from the neural models, the error

difference can be noted in Table 7.

The error difference varies throughout the year based on

the intermittency in wind behavior leading to deviations in

wind speeds leading to the greater error. These errors need

to be studied through different performance metrics dis-

cussed in Sect. 4 as this is crucial to plan the establishment

of wind energy generation centers. The mean square errors

NAR NARX Chaotic

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 MSE
 RMSE

Prediction method

M
SE

0.1

0.2

0.3

 R
M

SE

Fig. 15 Comparison XY plot for prediction errors for the three

selected models

Table 5 Comparison of prediction results with past references

References Method RMSE RMSE of proposed method

Meng et al. [15] WPD-CSO-NN 0.938 NAR 0.073

NARX 0.0714

Chaotic 0.2689

Wang et al. [16] EEMD-GA-BP 0.59 and 0.71

Mishra and Dash [17] PILNNR-RBF Average 0.7334

Mert et al. [18] ANN-SMLR 0.0541 for Pmin and 0.3470 for Pmax

Fazelpour et al. [19] ANN-RBF

ANFIS

ANN-GA

ANN-PSO

0.6016

0.5559

0.0469

0.3626

Cadenas et al. [20] NARX (MSE)

NAR (MSE)

1.80 9 10-3

1.89 9 10-3
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for the trained neural models are least in the case of

December leading to better prediction accuracy of the

trained model. Similarly, other metrics could be followed

based on the application. The wind energy that is produced

by the wind turbine or on a larger scale, a wind farm may

be studied by all the three techniques based on the above-

mentioned four performance metrics.

7 Conclusions

This paper discusses the relative assessment between ANN

networks (NAR and NARX) and chaotic wind speed pre-

diction models on the basis of their performance in pre-

dicting wind speed taken from a measurement setup

installed at Agiyali, Gujarat. The readings were considered

for the period from 2015 to 2017. The results from both the

cases were compared with each other. The prediction

results proved taking into consideration the mean squared

errors due to each methodology, and it was concluded that

the neural networks outperform the chaotic models in wind

prediction problem. Some external inputs like temperature

and wind direction were also assimilated in the given

models, and it was seen that the neural model was still

effective in managing its weights based on these external

inputs. Further study can include some more input vari-

ables apart from these variables and can also study the

impact of high wind speeds at different heights.
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