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Abstract
Semi-supervised classification is a hot topic in pattern recognition and machine learning. However, in presence of heavy

noise and outliers, the unlabeled training data could be very challenging or even misleading for the semi-supervised

classifier. In this paper, we propose a novel structure regularized self-paced learning method for semi-supervised classi-

fication problems, which can efficiently learn partially labeled training data sequentially from the simple to the complex

ones. The proposed formulation consists of three components: a cost function defined by a mixture of losses, a functional

complexity regularizer, and a self-paced regularizer; and the corresponding optimization algorithm involves three iterative

steps: classifier updating, sample importance calculating, and pseudo-labeling. In the proposed method, the cost function

for classifier updating and sample importance calculating is defined as a combination of the label fitting loss and manifold

smoothness loss. Then, the importance of the pseudo-labeled and unlabeled samples is adaptively calculated by the novel

cost. Unlabeled samples with high importance values are pseudo-labeled with their current predictions. In this way, labels

are efficiently propagated from the labeled samples to the unlabeled ones in the robust self-paced manner. Experimental

results on several benchmark data sets are provided to show the effectiveness of the proposed method.

Keywords Semi-supervised classification � Pattern classification � Self-paced learning � Manifold learning �
Locally linear coding

1 Introduction

Recently, semi-supervised classification (SSC) has

received considerable interest in pattern recognition and

machine learning. It can utilize a large amount of unlabeled

data to help the labeled data build a better classifier. This is

found to be very useful in many real-world applications

where labeled samples are expensive to obtain and unla-

beled data are cheap. Successful applications of SSC

include image classification [1], text analysis [2], and

bioinformatics [3]. So far, many SSC methods have been

proposed and studied, such as the generative-based method

[4, 5], self-training [6, 7], co-training [8, 9], transductive

support vector machines [10], sparse-based models

[11],and graph-based methods [12–17].

Among various kinds of SSC approaches, the graph-

based SSC (GSSC) methods have attracted much attention

due to their success in applications and the computational

efficiency. GSSC methods generally need to define a graph

G ¼ ðV;EÞ over the training data, where the set V consists

of both the labeled and unlabeled samples, and E denotes

the set of edges. There is a weight matrix W for graph G
whose entries represent the similarities between pair-wise

samples. Then, based on certain assumptions, the label

information of labeled samples is propagated to unlabeled
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samples across the graph. Important assumption for SSC is

the cluster assumption [18–20],which assumes nearby

samples are likely to belong to the same class and points on

the same cluster are likely to belong to the same class as

well. Typically, Zhu et al. proposed an Gaussian random

field (GRF) method [12, 13], in which the learning problem

is formulated as a Gaussian random field on data graph, and

then harmonic functions are employed to propagate the

label information. Zhou et al. proposed an algorithm called

learning with local and global consistency (LGC) [14], in

which an iterative framework is constructed on the graph

over data manifold. Belkin et al. proposed the manifold

regularization (MR) framework [15] which considers both

the complexity of the classifier in ambient space and the

smoothness of the classifier on data manifold.

Despite the success of SSC [21], there are still some

open problems that have not been addressed thoroughly.

One important problem is how to efficiently deal with data

that are with various level of noise and even outliers. The

value of the discriminative information in the training data

varies drastically from one sample to another. Many SSC

methods simply treat all samples equally, regardless of the

different values/contributions of the data samples on clas-

sifier training, and thus maybe suboptimal in the view of

classification. To address the problem, in this paper, we

propose a novel structure regularized spaced learning

(SSPL) method for robust semi-supervised classification.

The proposed method is based on the MR [15] framework

that consists of three terms: a fitting term for the labeled

points, a regularization term that controls the complexity of

the classifier in the ambient space, and another regular-

ization term that controls the smoothness of the classifier

with respect to the intrinsic distribution of data. Further-

more, the proposed method makes use of the strategy of a

recently proposed learning regime, Self-Paced Learning

(SPL), to evaluate sample importance according to the

sample-wise cost and then assign pseudo-labels to impor-

tant unlabeled samples. SPL [22] is motivated by the

learning principle of human/animal that trains a rough

model on easy/important samples first, and then automat-

ically incorporates more complex/(less important) samples

in the self-paced fashion. Theoretical analysis of the

robustness of SPL in the presence of extreme outliers or

heavy noises has been provided by Meng et al. [23].

Because of its generality, the SPL theory has been applied

to various tasks, such as Multimedia Event Detection

(MED) [24], co-saliency detection [25], face identification

[26], object tracking [27], and specific-class segmentation

learning [28]. Especially, the SPL regime has been inte-

grated into the system developed by CMU Informedia

team, and achieved the leading performance in the chal-

lenging TRECVID MED/MER competition organized by

NIST in 2014 [29].

Referring to the self-paced theory, the proposed SSPL

method iterates among three key steps: classifier training,

sample importance calculating, and pseudo-labeling. To

train the classifier, we utilize the locally linear recon-

struction to control the smoothness of the classification

function with respect to data manifold distribution, and we

also consider minimization of the label predicting error and

the complexity of the classification function in the repro-

ducing kernel Hilbert space of the classifier. To define the

sample importance, we propose a novel cost function

which consists of a mixture of losses. The new cost func-

tion combines the label fitting loss with the manifold

smoothness loss, where the smoothness loss requires the

classifier varies smoothly with respect to the local data

manifold distribution. Then,the importance of each unla-

beled data point can be automatically obtained through the

corresponding output of the cost function. Instead of uti-

lizing all training samples simultaneously to train the

classifier, in each iteration, important samples for the cur-

rent classifier can be automatically pseudo-labeled with

their current predictions and then added into the training

data in the following model training process. This provides

the classifier with more reliable training data. With the

sample importance evaluation and pseudo-labeling strate-

gies, the class labels are propagated from labeled samples

to unlabeled samples in a self-paced fashion. Finally, the

alternative optimization strategy is utilized to obtain the

explicit nonlinear multi-class classification function.

The main contributions of the paper are summarized as

follows:

(1) The proposed SSPL method is able to guide the

learning process through providing samples with

importance values. The method pays more attention

on the reliable patterns (with high importance) rather

than the indistinctive ones (with less importance).

Therefore, the classifier is robust to data with heavy

noise and the outliers.

(2) Importance evaluation is key to the proposed SSPL.

A new cost function for both labeled and unlabeled

samples is defined as a mixture loss. It considers

both the label predicting error and the smoothness

with respect to the data manifold. The cost function

can better describe the importance of the samples

than any single loss, which efficiently extends self-

paced learning to partially labeled training data.

(3) The importance of both labeled and unlabeled

samples for classifier in the subsequent iteration

can be determined adaptively by the proposed cost

function, without need of manually designing.

(4) The proposed method is naturally inductive. The

gained explicit nonlinear multi-class classification
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function can be used to rapidly predict the labels of

test samples.

The rest of the paper is organized as follows. Some related

works are reviewed in Sect. 2. In Sect. 3, we introduce the

structure regularized self-paced learning approach for

semi-supervised classification. Experiments on benchmark

real-world data sets are reported in Sect. 4. Finally, some

concluding remarks are given in Sect. 5.

2 Background

2.1 Manifold regularization framework for semi-
supervised classification

MR [15], a general framework for semi-supervised binary-

classification problem, was proposed by Belkin et al. based

on the regularization theory. In contrast with the traditional

regularization theory which concentrates on the complexity

of functions in a functional space, MR framework exploits

the geometry of the probability distribution that generates

data samples and incorporates it as an additional regular-

ization term. In detail, the framework can be formulated as

follows:

f � ¼ argmin
f2HK

1

m

Xm

i¼1

Lðzi; f ðxiÞÞ þ cKkfk2K þ cIkfk2I

( )
:

ð1Þ

Here, f is the desired classification function, HK is the

reproducing kernel Hilbert space (RKHS), m is the number

of labeled samples in the training set, zi 2 f�1; 1gði ¼
1; . . .;mÞ is the binary class label of the sample xi, Lð�; �Þ is
certain loss function, kfk2K is the complexity regularization

term that measures the complexity of the classifier in HK ,

kfk2I is the smoothness regularization term that measures

the smoothness of the classifier with respect to the geo-

metric distribution of data, cK and cI are two parameters.

Supposing that the data lie on a low-dimensional man-

ifold embedded in high-dimensional space, the smoothness

regularization term kfk2I can be defined to measure the

smoothness of the classifier with respect to the manifold

geometry. To model the data manifold, usually a graph G
on training data is utilized. Given a neighborhood size

(integer k or positive real e), there are usually two ways to

construct the graph G:

(1) k-nearest neighborhood (k-NN) method: If xi is one

of the k nearest data points to xj, set an edge between

data points xi and xj;

(2) e-neighborhood (e-NN) method: If kxi � xjk2\e
where k � k2 is the 2-norm of vector, set an edge

between data points xi and xj.

The pair-wise weights of the edges in graph G can be

defined as

wij ¼
1 or expf�kxi � xjk22=rg if xi and xj are neighbors

0 otherwise

(

ð2Þ

where r is a parameter. Then, the regularization term kfk2I
can be defined as kfk2I ¼ 1

n2

Pn
i;j¼1ðf ðxiÞ � f ðxjÞÞ2wij;

where n is number of training data points. Meanwhile, if

the loss function is defined as: Lðz; f ðxÞÞ ¼ ðz� f ðxÞÞ2;
then the Laplacian Regularized Least Square Classifier

(LapRLSC) [15] can be obtained.

For different choices of the loss function Lð�; �Þ and the

smoothness regularization term kfk2I , different MR algo-

rithms can be derived. Though MR framework was pro-

posed mainly for semi-supervised learning, it can actually

develop algorithms including unsupervised, semi-super-

vised, and fully supervised learning. It can also unify many

of the graph-based semi-supervised classification algo-

rithms by ignoring the complexity regularization term,

which leads to that the framework only has the error term

and the smoothness regularization term.

2.2 Self-paced learning

Inspired by the learning principle of human/animal, Bengio

et. al. proposed the concept of curriculum learning (CL)

[30], that is, training a learning machine with a predefined

curriculum that can gradually involve samples into training

from easy to complex. However, the curriculum design in

CL turns out difficult in real applications. Therefore, based

on the learning philosophy of CL, Kumar et al. promoted

CL as a new concise model, named Self-Paced Learning

(SPL) [22]. Different from CL, SPL learns the training data

from easy to complex adaptively determined by the feed-

back of the learner itself.

Denote Lðzi; f ðxi;wÞÞ as the loss between the ground

truth label zi and the estimated label f ðxi;wÞ, where w

represents the model parameter of the classification func-

tion f. Then,SPL model can be expressed as [23, 31, 32]:

min
v2½0;1�m;w

Xm

i¼1

viLðzi; f ðxi;wÞÞ þ gðvi; kÞf g: ð3Þ

Here, v ¼ ½v1; v2; . . .; vm�T denote the weight variables

reflecting the importance of the training samples, gð�; �Þ is
called the self-paced regularizer (SP-regularizer) deter-

mining the learning scheme, and k is the age parameter of

SP-regularizer that controls the learning pace of the model.
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SPL utilizes alternative optimization strategy to jointly

learn the model parameter w and the latent weight vector v.

By sequentially optimizing the model with gradually

increasing age parameter, more and more samples can be

automatically included into training from easy to complex

in a pure self-paced way.

Jiang et al. [31, 32] have presented a formal definition

for the self-paced regularizer gðv; kÞ. That is, gðv; kÞ should
satisfy: (1) gðv; kÞ is convex with respect to v 2 ½0; 1�; (2)
the optimal weight v�ðk; ‘Þ ¼ argminv2½0;1�ðv‘þ gðv; kÞÞ is
monotonically decreasing with respect to the loss ‘ ¼ L

ðz; f ðx;wÞÞ, and it holds that lim‘!0 v
�ðk; ‘Þ ¼ 1;

lim‘!1 v�ðk; ‘Þ ¼ 0; (3) the optimal weight v�ðk; ‘Þ is

monotonically increasing with respect to k, and it holds

that limk!1 v�ðk; ‘Þ� 1; limk!0 v
�ðk; ‘Þ ¼ 0.

In this definition, condition (2) indicates that the model

is inclined to select easy samples (with smaller loss) rather

than complex samples (with larger loss); condition (3)

states that when the model ‘‘age’’ k gets larger, it tends to

incorporate more, probably complex, samples to train a

‘‘mature’’ model; the convexity in condition (1) further

ensures the soundness of the regularizer for optimization.

Under this definition, different SP-regularizers can be

constructed, such as the hard weighting regularizer, linear

soft weighting regularizer, logarithmic weighting regular-

izer, and the mixture weighting regularizer [22, 31, 32].

Alternative optimization strategy (AOS) [22, 33] is

generally utilized to solve problem (3). AOS is an iterative

method for optimization, which divides the variables into a

set of disjoint blocks and optimizes each block of variables

while keeping other blocks fixed in each iteration. For

problem (3), when v is fixed, we can utilize the existing

off-the-shelf supervised learning methods to obtain the

optimal w. When w is fixed, taking the hard SP-regularizer

gHðvi; kÞ ¼ �kvi for example, the global optimum v� ¼
½v�1; v�2; . . .; v�m�

T
can be easily obtained by [22]:

v�i ¼
1; if Lðzi; f ðxi;wÞÞ\k

0; if Lðzi; f ðxi;wÞÞ � k

�
ð4Þ

There exists an intuitive explanation behind this alternative

optimization strategy. On the one hand, when updating v

with a fixed w, the sample whose loss Lðzi; f ðxi;wÞÞ is

smaller than the parameter k is taken as an ‘‘easy’’ sample

(v�i ¼ 1), and will be incorporated into the training process

for the next iteration, or otherwise unincorporated (v�i ¼ 0).

On the other hand, when updating w with a fixed v, the

classifier is trained only on the selected ‘‘easy’’ samples.

The parameter k controls the pace at which the model

learns new samples, and physically k corresponds to the

‘‘age’’ of the learner. At the beginning of the training, the

age parameter k is set to be small, and in this way only the

‘‘easy’’ samples with small losses can be taken into

account; then, with the growing of k, more samples with

larger losses will be incorporated to train a more ‘‘mature’’

model [24].

Based on the SPL learning regime, multiple variations

have been proposed [24–26, 31, 32, 34]. For example, [34]

proposed a unified framework named self-paced curricu-

lum learning, that can make use of both prior knowledge

before training and dynamical information extracted during

training, and stated that this regime is analogous to an

‘‘instructor-student-collaborative’’ leaning mode. In [24],

Jiang et al. proposed an approach called self-paced learning

with diversity, which not only prefers easy samples but also

diverse samples in training. In [26], Lin et. al. combined

active learning with SPL and introduced a novel cost-ef-

fective framework for face identification, which builds

classifiers by progressively annotating and selecting unla-

beled samples in an active self-paced way.

3 The structure regularized self-paced
learning method

In this section, we introduce the details of the proposed

SSPL method for semi-supervised classification. We first

present the mathematical formulation of the proposed

model and then introduce the alternative optimization

algorithm for solving this model.

3.1 Structure regularized self-paced learning
model

For semi-supervised classification problem, we denote the

partially labeled training data set as D ¼
fðx1; z1Þ; . . .; ðxm; zmÞ; xmþ1; . . .; xng. Here, m is the num-

ber of labeled samples, n is the number of total training

samples, xi is a D-dimensional feature representation for

the ith sample. For data sets with C classes, we denote

zi ¼ ½z1i ; . . .; zCi �
T 2 RC as the class label for xi, where z

j
i

corresponds to the label of xi to the jth class. That is, if xi
belongs to the kth (k ¼ 1; 2; . . .;C) class, then zki ¼ 1 and

z
j
i ¼ 0ðj ¼ 1; . . .;C; j 6¼ kÞ. All data points and the corre-

sponding label vectors are in the form of column vectors

and denoted by bold lowercases. Matrices are denoted by

capital bold letters.

We first give an overview of the proposed method,

which iterates among classifier updating, sample impor-

tance calculating and pseudo-labeling in a self-paced

fashion.

(1) Classifier updating We consider three terms for

classifier training, that is, the label fitting loss of the

labeled and the pseudo-labeled samples, the func-

tional complexity, and the smoothness with respect

6562 Neural Computing and Applications (2019) 31:6559–6574

123



to the data manifold. In the beginning, only the

labeled samples are utilized for training; then, with

the self-paced learning regime, more unlabeled

samples are pseudo-labeled and incorporated into

training.

(2) Sample importance calculating In each iteration,

once the classifier has been updated, the mixture

losses of unlabeled samples can be computed, taking

account of both the pseudo-label fitting loss and the

smoothness of the classifier with respect to the

locally linear reconstruction error. Then, the impor-

tance values of the unlabeled samples can be

obtained.

(3) Pseudo-labeling After the calculation of the impor-

tance values of the unlabeled samples, we can assign

or re-assign the pseudo-labels to samples with high

importance values. As iteration goes on, the ground

truth labels and pseudo-labels can be propagated

smoothly from labeled samples to unlabeled samples

in the self-paced manner.

The general formulation of the proposed structure regu-

larized self-paced label propagation method is presented as

follows.

min
fs2HK ;v;fzigni¼mþ1

1

n

Xn

i¼1

viLðzi; fðxiÞÞ þ cKkfk2K

(

þ cI
n

Xn

i¼1

viLIðxiÞ þ
1

n

Xn

i¼1

gðvi; kÞ
)

s.t. vi 2 Wk
i ði ¼ 1; . . .; nÞ

ð5Þ

Here, f ¼ ½f1; f2; . . .; fC�T is the desired multi-class classi-

fication function, v ¼ ½v1; v2; . . .; vn�T is the weight vari-

ables reflecting the importance of the training samples, zi is

the ground truth label for the labeled sample xiði ¼
1; 2; . . .;mÞ or pseudo-label for the unlabeled sample

xiði ¼ mþ 1;mþ 2; . . .; nÞ, Lð�; �Þ is the loss function, HK

is certain RHKS, cK and cI are regularization parameters,

k � kK is the norm of the function in RKHS HK , LIðxiÞ is

the smoothness loss of the function f at the data manifold

around xi, gð�; �Þ is the self-paced regularizer and k is the

corresponding age parameter, \n
i¼1fvi 2 Wk

i g is the prede-

termined curriculum constraint of the model at the pace age

k [26, 34].

Roughly speaking, in the optimization problem (5), the

first term of the objective function measures the weighted

average loss between the predicted label fðxiÞ and the

ground truth label or the pseudo-label zi; the second term

of the objective function is the complexity regularization

term that controls the complexity of the classifier in the

ambient space; the third term of the objective function is

the smoothness regularization term that controls the

smoothness of the classifier with respect to the data

manifold structure; the last term of the objective function is

the self-paced regularizer that controls the self-paced

learning scheme of the classifier; the optimization con-

straint imposes a prior knowledge about the sample

importance for the self-paced learning scheme.

For the first term of the objective function of problem

(5), we simply define the fitting loss function as:

Lðzi; fðxiÞÞ ¼ kzi � fðxiÞk22; ð6Þ

where k � k2 is the 2-norm of vector.

For the second term of the objective function (5), we

define kfk2K as the square of the norm of f in the ambient

space. It is known that any positive semi-definite kernel

kð�; �Þ gives rise to an RKHS HK , which can be constructed

by considering the space of finite linear combinations of

kernels
P

i gikðxi; �Þ with the inner product being

hkðxi; �Þ; kðxj; �ÞiHK
¼ kðxi; xjÞ [15, 35]. Then, for the

function fs 2 HK , we can define kfsk2K as the square of the

norm of fs in HK . For the vector function

f ¼ ½f1; f2; . . .; fC�T, kfk2K can be defined as the summation

of the norms of all component functions:

kfk2K ¼
XC

s¼1

kfsk2K : ð7Þ

For the third term of the objective function of problem (5),

we make use of locally linear reconstruction method to

measure the smoothness of the classifier with respect to the

data manifold distribution. Supposing that each data point

and its neighbors lie on or close to a locally linear patch of

the manifold, we can characterize the local geometry of

these patches by linear coefficients that reconstruct each

data point from its neighbors. Then the overlapped locally

linear patches can well discover the global nonlinear

manifold structure [36]. For each training data point

xiði ¼ 1; 2; . . .; nÞ, the coefficients of xj for the locally

linear reconstruction of xi can be obtained by solving the

following problem:

min
Mip

kxi �
Xn

p¼1

Mipxpk22

s.t.
Xn

p¼1

Mip ¼ 1; and Mip ¼ 0 ðif xp 62 N iÞ;
ð8Þ

where N i ¼ fxi1 ; xi2 ; . . .; xikg is the k-nearest neighbor-

hood set or e-neighborhood set of xi. The optimal weights

of problem (8) can be computed in closed form, as stated

in Proposition 1. Supposing that the classification function

f is approximately locally linear, we expect that the label

of xi can also be approximately locally linear recon-

structed by the labels of the nearby neighbors, utilizing

the same reconstruction coefficients. Therefore, we define
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LIðxiÞ, the smoothness loss of the classification function f

at the data manifold around xi, as the following recon-

struction error:

LIðxiÞ ¼
1

n
kfðxiÞ �

Xn

p¼1

MipfðxpÞk22: ð9Þ

Proposition 1 The optimal weights of problem (8) are:

wi ¼ C�11=a: ð10Þ

Here, wi ¼ ½Mi;i1 ;Mi;i2 ; . . .;Mi;ik �
T 2 Rk represent the

coefficients of xi1 ; xi2 ; . . .; xik for the reconstruction of xi,

C ¼ ðcqjÞk�k is the Gram matrix with cqj ¼ gTqgj and

gq ¼ xi � xiq , 1 ¼ ½1; 1; . . .; 1�T is a k-dimensional vector,

a is the sum of all elements in C�1.

Proof The objective function of problem (8) can be

transformed as:

kxi �
Xn

p¼1

Mipxpk22 ¼ k
Xn

p¼1

Mipðxi � xpÞk22 ¼ k
Xk

q¼1

Mi;iqgqk
2
2:

ð11Þ

Therefore, we can define the Lagrange function as

L ¼ k
Xk

q¼1

Mi;iqgqk
2
2 � ~a

Xk

q¼1

Mi;iq � 1

 !
ð12Þ

where ~a is the Lagrange multiplier. Let oL
oMi;iq

¼
2
Pk

j¼1 Mi;ijg
T
qgj � ~a ¼ 0; we have

Pk
j¼1 Mi;ijg

T
qgj ¼

~a
2
; ðq ¼ 1; 2; . . .; kÞ: Therefore, Cwi ¼ ~a

2
1; wi ¼

~a
2
C�11: Besides, from 1Twi ¼ 1 we can know that ~a

2
¼ 1

a :

Then, the conclusion of this proposition can be got. h

Remark 1 In Eq. (10), if the matrix C is nearly singular,

we can add a small multiple of the identity matrix to C.

The last term of the objective function of problem (5) is

the self-paced regularizer. Similar to the scheme that

human learns knowledge, self-paced regularizer determines

a scheme for the model to learn new samples. According to

the cost value of each sample, one can define different

kinds of self-paced regularizer to assign different kinds of

sample importance calculating regime, such as hard

weighting regime that provides the importance value v 2
f0; 1g and the soft weighting regime that provides

v 2 ½0; 1�. In this paper, we utilize the following linear soft

weighting regularizer since it is easy to implement and is

robust to complex data sets:

gðvi; kÞ ¼
k
2
ðv2i � 2viÞ: ð13Þ

For the optimization constraint vi 2 Wk
i ði ¼ 1; . . .; nÞ,Tn

i¼1fvi 2 Wk
i g is the predetermined curriculum that

weakly guides the learning from easy to complex samples.

The curriculum can be seen as a training procedure that is

associated with a set of weights on training samples, or

more generally, on a reweighting of the training data dis-

tribution. Specifically, here we set Wk
i , the curriculum

constraint for sample xi, as following:

(1) The curriculum for labeled samples For each labeled

sample xiði ¼ 1; . . .;mÞ, we set Wk
i ¼ f1g. That is,

the importance values of the labeled samples are

fixed as vi ¼ 1 during the training process. In this

way, the discriminative information hidden in the

labeled training data can be fully investigated.

(2) The curriculum for unlabeled samples For each

unlabeled sample xiði ¼ mþ 1; . . .; nÞ, we set

Wk
i ¼ ½0; 1�. The importance value of xi is learned

in the self-paced learning procedure, depending on

the value of cost of the sample by the current

classifier.

This definition of curriculum can be considered as an

‘‘instructor-student collaborative’’ learning mode, as

opposed to ‘‘student driven’’ learning mode in SPL and

‘‘instructor driven’’ learning mode in previous curriculum

learning works [26, 34]. With this curriculum, instructors

provide prior knowledge on a weak learning sequence of

samples, while leaving the learner some freedom to adjust

to the actual curriculum according to the learning pace.

In summary, based on the above discussions, the pro-

posed SSPL model can be formulated as:

min
fs2HK ;v;fzigni¼mþ1

1

n

Xn

i¼1

vikzi � fðxiÞk22 þ cK
XC

s¼1

kfsk2K

(

þ cI
n2

Xn

i¼1

vikfðxiÞ �
Xn

p¼1

MipfðxpÞk22 þ
k
2n

Xn

i¼1

ðv2i � 2viÞ
)

s.t. vi 2 Wk
i ði ¼ 1; . . .; nÞ

ð14Þ

3.2 Alternative optimization strategy
for the SSPL model

We can make use of alternative optimization strategy

[22, 33] to solve the proposed SSPL problem (14). AOS is

an iterative method for solving optimization problem. It

divides the variables into a set of disjoint blocks and

optimizes each block alternatively in each iteration. In the

case of problem (14), the variables are divided into three

blocks: the classifier parameters, importance values v of

samples, and the pseudo-labels ziði ¼ mþ 1; . . .; nÞ. In

detail, the AOS process for the proposed SSPL problem

(14) is presented as follows:
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(1) Initialization In this step we set the initial values of

parameters of the algorithm. For importance values of

samples, we set vi ¼ 1 for labeled samples xiði ¼ 1; . . .;mÞ,
and vi ¼ 0 for unlabeled samples xiði ¼ mþ 1; . . .; nÞ. The
age parameter k is initialized with a small value to allow

only labeled samples into training for the first iteration. The

regularization parameters ck and cI are fixed as specific

values during the training process.

(2) Classifier updating This step is to optimize the

parameters of the classifier with fixed importance weights v

and pseudo-labels of important samples. In this case, the

SSPL problem (14) can be reformulated as follows:

min
fs2HK

1

n

Xn

i¼1

vikzi � fðxiÞk22 þ cK
XC

s¼1

kfsk2K

(

þ cI
n2

Xn

i¼1

vikfðxiÞ �
Xn

p¼1

MipfðxpÞk22

)
:

ð15Þ

For this problem, we have the following representer theo-

rem, showing that the minimizer has an expansion in terms

of both labeled and unlabeled samples.

Theorem 1 (Representer Theorem) The minimizer of

problem (15) admits an expansion

fðxÞ ¼
Xn

i¼1
bikðxi; xÞ; ð16Þ

where bi ¼ ½b1i; . . .; bCi�T 2 RC.

Proof The theorem can be proved similarly as Theorem 2

of [15], which states that the LapRLSC problem:

argmin
f2HK

1

m

Xm

i¼1

Lðzi; f ðxiÞÞ þ cKkfk2K þ cI
n2

Xn

i;j¼1

ðf ðxiÞ � f ðxjÞÞ2wij

( )

ð17Þ

admits an expansion f ðxÞ ¼
Pn

i¼1 aikðxi; xÞ 2 R and

ai 2 R, where f ð�Þ is the classification function for binary-

classification problem.

In the following, we will give the proof of Theorem 1.

For the RKHS HK corresponding to the kernel kð�; �Þ, any
function fs in HK can be uniquely decomposed into a

component ðfsÞ k in the linear subspace spanned by the

kernel functions fkðxi; �Þgni¼1 and a component ðfsÞ?
orthogonal to it. Thus,

fs ¼ ðfsÞ k þ ðfsÞ? ¼
Xn

i¼1

bsikðxi; �Þ þ ðfsÞ?: ð18Þ

Then, we have f ¼ ½f1; . . .; fC�T ¼
Pn

i¼1 bikðxi; �Þ þ f?;

where bi ¼ ½b1i; . . .; bCi�T 2 RC and f? ¼ ½ðf1Þ?; . . .;
ðfCÞ?�

T 2 RC.

For any training sample xjðj ¼ 1; 2; . . .; nÞ, we have

fðxjÞ ¼½hf1; kðxj; �Þi; . . .; hfC; kðxj; �Þi�T

¼
Xn

i¼1

b1ikðxi; �Þ; kðxj; �Þ
* +

þ hðf1Þ?; kðxj; �Þi; . . .;
"

Xn

i¼1

bCikðxi; �Þ; kðxj; �Þ
* +

þ hðfCÞ?; kðxj; �Þi
#T

:

ð19Þ

Since hðfsÞ?; kðxj; �Þi ¼ 0 and hkðxi; �Þ; kðxj; �Þi ¼ kðxi; xjÞ,
we can get that

fðxjÞ ¼
Xn

i¼1

bikðxi; xjÞ: ð20Þ

This means that fðxjÞ is independent of the orthogonal

component f?. Therefore, the first and third terms of the

optimization function in (15) are independent of the

orthogonal component f?. In other words, the value of f?
will not affect the values of the first and third terms.

In fact, the orthogonal component f? only increases the

complexity regularization term
PC

s¼1 kfsk
2
K , since

kfsk2K ¼ k
Xn

i¼1

bsikðxi; �Þk2K þ kðfsÞ?k
2
K �k

Xn

i¼1

bsikðxi; �Þk2K :

ð21Þ

Thus, the minimizer of the problem (15) must have a zero

orthogonal component f? ¼ 0 and we can see that the

solution of problem (15) admits a representation

fð�Þ ¼
Pn

i¼1 bikðxi; �Þ.

Substituting the expansion (16) into (15), we can get the

following matrix formulations:

Xn

i¼1

vikzi � fðxiÞk22 ¼ tr ðZ� BKÞVðZ� BKÞT
� �

kfsk2K ¼ bsKb
T
s

XC

s¼1

kfsk2K ¼ trðBKBTÞ

Xn

i¼1

vikfðxiÞ �
Xn

p¼1

MipfðxpÞk22 ¼ tr BKðI�MÞTVðI�MÞKBT
� �

ð22Þ

Here, trð�Þ is the trace operator of a matrix, Z ¼
½z1; . . .; zn� 2 RC�n represents the label matrix, B ¼
½b1; . . .; bn� 2 RC�n is the coefficient matrix, K ¼
ðkðxi; xjÞÞ 2 Rn�n is the kernel matrix, V 2 Rn�n is a

diagonal matrix with the ith (i ¼ 1; 2; . . .; n) diagonal ele-
ment being vi, bs is the sth row of matrix B, I is the identity

matrix of size n, M ¼ ðMijÞ 2 Rn�n is the locally linear

reconstruction coefficient matrix.

Therefore, the problem (15) can be reformulated as

follows.
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min
B

1

n
tr ðZ� BKÞVðZ� BKÞT
� �

þ cK trðBKBTÞ
�

þ cI
n2

tr BKðI�MÞTVðI�MÞKBT
� �o

:

ð23Þ

Forcing the derivative of the objective function with

respect to B being 0, we can get the optimal solution:

B� ¼ ZV KVþ cKnIþ
cI
n
KðI� AÞTVðI� AÞ

� ��1

:

ð24Þ

Then, the optimal classification function of problem (15) is

obtained as

f�ðxÞ ¼ ½f �1 ðxÞ; f �2 ðxÞ; . . .; f �CðxÞ�
T ¼

Xn

i¼1

b�i kðxi; xÞ; ð25Þ

where b�i is the ith column of B�. Correspondingly, the

classifier is updated as

identityðxÞ ¼ s� ¼ argmax
s¼1;2;...;C

ff �s ðxÞg: ð26Þ

(3) Sample importance calculating The purpose of this step

is to assign importance vales vi to the training samples, and

further pick the important unlabeled samples (with nonzero

values vi) for the training process at the next iteration. In

this case, with fixed classifier f and pseudo-labels of

important samples, the SSPL problem (14) turns out to be

the following optimization problem:

min
v

Xn

i¼1

vikzi � fðxiÞk22 þ
cI
n

Xn

i¼1

vikfðxiÞ
(

�
Xn

p¼1

MipfðxpÞk22 þ
k
2

Xn

i¼1

ðv2i � 2viÞ
)

s.t. vi 2 Wk
i ði ¼ 1; . . .; nÞ

ð27Þ

This optimization problem is separable with respect to vi.

For labeled samples xiði ¼ 1; . . .;mÞ, the optimal solution

is v�i ¼ 1. For unlabeled samples xiði ¼ mþ 1; . . .; nÞ, the
optimal solution can be gained by solving the following

problem:

min
vi2½0;1�

EðvÞ ¼ vikzi � fðxiÞk22 þ
cI
n
vikfðxiÞ

n

�
Xn

p¼1

MipfðxpÞk22 þ
k
2
ðv2i � 2viÞ

)
:

ð28Þ

The objective function EðvÞ is convex with respect to

variable v, and the global minimum can be obtained by

forcing the derivative for vi to be 0:

oEðvÞ
ovi

¼ kvi þ kzi � fðxiÞk22 þ
cI
n
kfðxiÞ

�
Xn

p¼1

MipfðxpÞk22 � k ¼ 0:
ð29Þ

Considering vi 2 ½0; 1�, the close-formed optimal solution

for problem (27) can be obtained:

v�i ¼ 1; i ¼ 1; . . .;m

v�i ¼
1� CðxiÞ=k CðxiÞ\k

0 CðxiÞ� k

�
; i ¼ mþ 1; . . .; n

ð30Þ

where the new cost function consists of a mixture of losses

as

CðxiÞ ¼ kzi � fðxiÞk22 þ
cI
n
kfðxiÞ �

Xn

p¼1

MipfðxpÞk22:

ð31Þ

The new cost function defined in Eq. (31) combines the

label fitting error Lðzi; fðxiÞÞ ¼ kzi � fðxiÞk22 with the

smoothness term LIðxiÞ ¼ 1
n
kfðxiÞ �

Pn
p¼1 MipfðxpÞk22 of

the classier with respect to the local data manifold distri-

bution. If the regularization parameter cI is small, the label

fitting loss that measures the difference between pseudo-

label and predicted label will dominate the mixture loss; if

the parameter cI is large, the smoothness loss that measures

the locally linear reconstruction ability of f will dominate

the mixture loss.

The mixture loss (31) measures the learning easiness of

the unlabeled sample for the current classifier. The unla-

beled sample with both low label fitting loss (guaranteeing

the consistency of label predicting) and low smoothness

loss (guaranteeing the smoothness of label propagating)

can be seen as easy/important samples. In other words, this

step examines the easiness of each sample based on what it

has already learned, and adaptively determines their

importance values to be used in the subsequent iterations.

Besides, it can be seen from Eq. (30) that only the labeled

samples and important unlabeled samples can be incorpo-

rated into training at the next iteration.

(4) Pseudo-labeling of unlabeled samples With fixed

classifier f and importance value v, the SSPL problem (14)

is equivalent with the following optimization problem:

minzi2½0;1�C
Pn

i¼mþ1 vikzi � fðxiÞk22: For unlabeled samples

xi with nonzero importance value vi, its pseudo-label can

be deduced by the sub-problem: minzi2½0;1�Ckzi � fðxiÞk22:
Therefore, we can assign the pseudo-label of xi as:
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zsi ¼
0 if f si � 0

f si if 0� f si � 1

1 if f si � 1

8
<

: ; ðs ¼ 1; 2; . . .;CÞ

ð32Þ

where zi ¼ ½z1i ; z2i ; . . .; zCi �
T
is the pseudo-label of xi, and

fðxiÞ ¼ ½f 1i ; f 2i ; . . .; f Ci �
T
is the predicted label of xi by the

current classifier.

Once pseudo-labels of important unlabeled samples

have been assigned, the self-paced age parameter k is

enlarged to allow more samples with larger mixture loss

values into training in the next iteration, and then we repeat

the above optimization process with respect to each vari-

able. In specific, to update k, we can specify the number of

unlabeled samples to be included in each iteration, and then

calculate k according to Eq. (30). For example, if p unla-

beled samples are needed to be selected for the current

iteration; we first sort the unlabeled samples in ascending

order of their mixture loss values, and then set k as the loss

value of ðpþ 1Þth sample.

The entire AOS algorithm for the proposed SSPL

method is summarized in Algorithm 1. Such an algorithm

converges since the objective function is monotonically

decreasing and is bounded from below. In detail, it can be

seen from Algorithm 1 that the method alternatively

updates three batches of variables: the classifier parameters

B, the importance weights v, and the pesudo-labels zi.

These updates are deduced by a global optimum obtained

from a sub-problem of the original model, then the

objective can be guaranteed to decrease.

In Algorithm 1, initially the age parameter k is set to be

a small value, then k is enlarged in each iteration. Besides,

from Eq. (30) we can see that, in each iteration the model

tends to emphasize and select the labeled samples and easy/

important unlabeled samples that have smaller mixture

losses than the current age parameter k. Therefore, at the
beginning of the training process, since the age parameter k
of self-paced regularizer is small, only labeled samples and

the high-confidence/easy unlabeled samples are empha-

sized and selected for training; then, by sequentially opti-

mizing the model with gradually increasing age parameter

k, more and more samples, that are probably more com-

plex, can be utilized for training in a pace adaptively

controlled by what it has already learned. With this self-

controlled sample selection regime, SSPL smoothly guides

the learning to emphasize the patterns of the reliable dis-

criminative samples rather than those confusing ones. In

this way, SSPL trains a more and more ‘‘mature’’ model,

and thus can obtain both effective and robust learning

performance.

(5) Complexity analysis The time complexity is a crucial

issue in applications. The nearest neighbor graph con-

struction process, including the locally linear coding, needs

Oðkn2Þ computational time. Subsequently, the classifier

updating step (24) computes the inversion of a matrix,

which consumes Oðn3Þ time. One requires Oðn2Þ compu-

tational time to evaluate the predictions of data set with

n samples by Eq. (25). The complexity for calculating

sample importance in (30) is O(n). In the pseudo-labeling

step, the unlabeled data are pseudo-labeled with a cost of

Oðn� mÞ computational time. The classifier updating,

sample importance calculating, and pseudo-labeling steps

are repeated multiple times until the algorithm ends.

Therefore, the major time complexity of the proposed

algorithm scales with Oðpðn3 þ n2Þ þ kn2Þ, where p is the

number of loops in Algorithm 1.

3.3 Discussions with related works

There are some works related with the proposed SSPL

method. For example, Zhao et al. have proposed a semi-

supervised learning method called Learning from Local

and Global Discriminative Information (LLGDI) [37].

Comparably, LLGDI is a linear method while SSPL is

nonlinear; to character the local manifold structure, LLGDI

utilizes local regression model, while SSPL utilizes locally

linear reconstruction; to measure the complexity of the

learner, LLGDI adopts Frobenius norm of the projection

matrix, while SSPL adopts the norm of the classification

function in RKHS; LLGDI makes use of local and global

regression model to learn, while SSPL makes use of SPL

regime to learn a more and more mature model. Besieds,

[38] proposed a semi-supervised dimensionality reduction

(DR) method called soft label-based linear discriminant

analysis (SL-LDA), which performs label propagation to

get the predicted soft labels of unlabeled samples and then

incorporates the soft labels into LDA. SL-LDA and SSPL

are much different, e.g., SL-LDA is a linear DR method,

while SSPL is a nonlinear classification method; SL-LDA

is a two-stage approach which firstly generates the soft
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labels and then learns the projection matrix for DR, while

SSPL iterates among classifier updating, sample impor-

tance calculating and pseudo-labeling in a self-paced

fashion; SL-LDA utilizes LDA to get the projection matrix,

while SSPL derives the classification function based on the

MR framework. In addition, Zhao et al. [39] proposed a

semi-supervised label propagation method named compact

graph-based semi-supervised learning (CGSSL) for image

annotation. Compared with SSPL which formulates the

graph weight by locally linear reconstruction, CGSSL

proposes a compact local reconstruction graph with sym-

metrization and normalization; compared with SSPL which

is an inductive learning method that has explicit classifi-

cation function, CGSSL is an transductive learning method

that directly predicts the labels of unlabeled samples;

besides, compared with SSPL which adopts a self-paced

regime to iterate among classifier updating, sample

importance calculating and pseudo-labeling, CGSSL

adopts a label propagation strategy that each unlabeled

sample receives label from its neighborhoods and its own

label.

4 Experiments

In this section, we first introduce the utilized experimental

benchmark data sets and the compared algorithms. Then

we present the experimental settings and experimental

results.

4.1 Data sets and the compared algorithms

We implement experiments on five image data sets to

compare the proposed method with other methods. The

utilized five data sets include: the MIT CBCL data set,1 the

Altkom and the BANCA data sets,2 the CMUPIE data set

[40],and the ORL data set3 [41].

The MIT CBCL data set contains 6977 images of two

classes: 2429 face images and 4548 non-face images. Each

image has 19� 19 pixels and is reshaped into a 361-di-

mensional vector. In this section, we will use the whole

data set to do experiments.

The Altkom data set contains 1200 face images of 80

persons, that is, there are 15 images for each person. The

BANCA face data set consists of 520 face images of 52

persons, i.e., there are 10 images for each person. All

images in Altkom and BANCA data sets are normalized to

46� 56 pixels using manually labeled eye positions, and

are transformed into a 2576-dimensional vectors.

CMUPIE face database consists of 41,368 images of 68

persons. For each person, the images were taken under

different poses, illumination conditions, and expressions.

We randomly select 2000 images from the database.

Therefore, the experimental CMUPIE data set consists of

2000 images belonging to 68 classes. Each image is resized

to have 32� 32 pixels and is transformed into a 1024-di-

mensional vector.

The ORL face database consists of 400 images of 40

persons, i.e., there are 10 images for each person. The

images were taken for each person at different times,

varying the lighting, facial expressions (open or closed

eyes, smiling or not smiling), and facial details (glasses or

no glasses). The images were taken against a dark homo-

geneous background with the subjects in an upright, frontal

position (with tolerance for some side movement). Each

image from this database is resized to 32� 32 pixels and

reshaped to be a 1024-dimensional vector.

Besides, to alleviate the negative effect caused by the

different scales of different dimensions, for all the data

sets, each row of the training data matrix X ¼ ½x1; . . .; xn� 2
Rd�n is normalized to make the maximum component of

the row being 1.

The following SSC methods are compared in the

experiments: the proposed SSPL, the LapRLSC method

[15], the GRF method [12, 13], the linear neighborhood

propagation (LNP) method [42] and the 1-NN classifier,

where the 1-NN classifier is used as the baseline. For SSPL,

LapRLSC and GRF methods, we make use of the Gaussian

kernel, and search the kernel parameter in the range of r
from f0:1r0; 0:3r0; 0:5r0; . . .; 1:3r0g, where r0 is the

mean of L2-distance of all the training samples. As to the

complexity regularization parameter cK and the smooth-

ness regularization parameter cI of SSPL and LapRLSC

methods, we follow the strategy adopted in [15] which sets

CK ¼ cKm, CI ¼ cIm
n2
. We find that the algorithms perform

well with a wide range of parameters CK and CI. For

convenience, we simply set CK ¼ 0:005 and CI ¼ 0:1 for

all data sets. Besides, the neighborhood size k to build the

k-NN graph is empirically set to be 20 for CBCL data set, 7

for CMUPIE and Altkom data sets, and 4 for BANCA and

ORL data sets.

4.2 Experimental settings and results

The experiments on the five data sets are implemented with

the following settings. We first randomly select 85%

images of each data set as the training set XTr, and the rest

samples as the test set XTe. Then,for the training set XTr,

under a specific number of labeled training points (m), we

carry out tenfold cross validation (10-CV) to generate the

validation set and the labeled points of training set, with the

1 http://cbcl.mit.edu/software-datasets.
2 http://www.iis.ee.ic.ac.uk/icvl/code.htm.
3 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
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rest images forming the unlabeled points of training set.

For the proposed SSPL method, the age parameter k and

the kernel parameter r are tuned on this validation set. For

LapRLSC and GRF methods, the kernel parameter r is also

tuned on this validation set, to make a fair comparison.

Once we have learned the classifiers, classifications are

performed on the unlabeled points in the training set, and

on the test set XTe,respectively.
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Fig. 1 Classification results on the unlabeled samples of the training sets, where x-axis represents the number of labeled data points in the

training set, and y-axis represents the corresponding classification accuracy
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For the five data sets, the classification accuracies of the

compared algorithms for the unlabeled samples in the

training sets are shown in Fig. 1, with the number of

labeled data points (m) changing. From the results we can

see that, the proposed SSPL method performs best among

the compared methods. Though both based on the manifold

regularization framework, the proposed SSPL method

outperforms the LapRLSC method. There may be several

reasons. First, compared with LapRLSC method, SSPL

learns the model in a self-paced way that initially trains a

rough model on easy samples, and then gradually incor-

porates more and more complex samples, to train a mature

model. Second, LapRLSC makes use of Gaussian kernel to

build the relationship between neighborhood points, while

SSPL utilizes locally linear reconstruction which could be

more adaptive and flexible to model the relationship

between neighborhood points. Finally, SSPL takes account

of data importance in the training process, while LapRLSC

treats all training samples as equal importance. Besides,

compared with LNP algorithm which propagates the labels

from the labeled points to the whole data set using the

locally linear neighborhoods with sufficient smoothness,

the proposed SSPL method not only considers the

smoothness of the classification function, but also takes

account of the complexity of the classification function in

the reproducing kernel Hilbert space, and meanwhile, the

proposed SSPL adopts the self-paced regime which can

help to extract reliable knowledge from training samples.

The classification results of the algorithms on the test

sets are shown in Table 1 for several representative values

of m, where the best classification results are in boldface

for each specific value of m. The value in parenthesis is the

p value of the paired t-test between the proposed SSPL

method and other methods. From the statistical tests, we

can see that the discriminative ability of the proposed SSPL

is significantly better than other algorithms. Besides, it

should be pointed out that, the proposed SSPL method and

LapRLSC method are inductive, and the explicit classifi-

cation function learned by the training samples can be

utilized to predict the labels of test data points. Conversely,

the rest methods are transductive; therefore, in order to

predict the labels of test points, we should run the algo-

rithm again by combing training and test samples, which is

time-consuming. In this way, the proposed SSPL obtains

both effectiveness and efficiency.

To further analyze whether self-paced learning regime

contributes to performance of the proposed SSPL method,

we implement a variant of SSPL, named SSPL (w/o SPL),

and compare the classification performance of SSPL (w/o

SPL) with SSPL. In detail, SSPL (w/o SPL) algorithm can

be formulated as:

min
fs2HK ;fzigni¼mþ1

1

n

Xn

i¼1

kzi � fðxiÞk22 þ cK
XC

s¼1

kfsk2K

(

þ cI
n2

Xn

i¼1

kfðxiÞ �
Xn

p¼1

MipfðxpÞk22

)
:

ð33Þ

Table 1 Classification results

(accuracy rates %, and p values

in the parentheses) on the test

sets with the number of labeled

points (m) varying

Data m SSPL LapRLSC LNP 1-NN GRF

CBCL 200 96.26 69.28 (0.0000) 79.35 (0.0000) 90.72 (0.0000) 63.32 (0.0000)

1200 98.62 90.71 (0.0000) 96.43 (0.0000) 95.85 (0.0000) 66.07 (0.0000)

2200 98.96 95.12 (0.0000) 97.60 (0.0000) 96.94 (0.0000) 76.39 (0.0000)

3200 99.08 97.28 (0.0001) 98.23 (0.0000) 97.57 (0.0000) 80.65 (0.0000)

Altkom 400 61.06 48.33 (0.0000) 30.83 (0.0000) 25.50 (0.0000) 23.67 (0.0000)

500 70.06 57.44 (0.0000) 34.67 (0.0000) 27.06 (0.0000) 25.78 (0.0000)

600 77.72 64.94 (0.0000) 39.17 (0.0000) 29.22 (0.0000) 28.44 (0.0000)

700 82.11 72.22 (0.0000) 41.89 (0.0000) 31.78 (0.0000) 30.67 (0.0000)

BANCA 180 64.63 59.63 (0.0002) 46.00 (0.0000) 42.75 (0.0000) 37.00 (0.0000)

220 72.13 65.88 (0.0011) 50.25 (0.0000) 47.13 (0.0000) 40.75 (0.0000)

260 77.50 71.75 (0.0006) 54.13 (0.0000) 50.00 (0.0000) 43.63 (0.0000)

300 80.75 75.50 (0.0002) 57.63 (0.0000) 54.00 (0.0000) 47.75 (0.0000)

CMUPIE 350 56.8 39.87 (0.0000) 26.23 (0.0000) 22.00 (0.0000) 8.57 (0.0000)

500 69.60 51.80 (0.0000) 33.07 (0.0000) 28.13 (0.0000) 11.30 (0.0000)

650 77.53 60.60 (0.0000) 38.17 (0.0000) 32.73 (0.0000) 13.80 (0.0000)

800 81.73 68.23 (0.0000) 42.47 (0.0000) 36.47 (0.0000) 16.70 (0.0000)

ORL 100 82.67 71.50 (0.0001) 71.33 (0.0001) 69.00 (0.0000) 76.83 (0.0064)

130 88.00 78.50 (0.0000) 76.83 (0.0000) 75.67 (0.0000) 80.50 (0.0006)

160 92.33 85.50 (0.0000) 82.83 (0.0000) 81.50 (0.0000) 85.50 (0.0013)

190 95.33 89.67 (0.0001) 85.50 (0.0006) 85.00 (0.0002) 88.17 (0.0020)
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Compared with the SSPL formulation (14), SSPL (w/o

SPL) sets the importance values viði ¼ 1; . . .; nÞ of all

training samples to be 1, i.e., SSPL (w/o SPL) removes the

self-paced learning regime of SSPL. In the optimization

process of SSPL (w/o SPL), the pseudo-labels ziði ¼
mþ 1; . . .; nÞ of unlabeled samples are initialized as 0, and

then SSPL (w/o SPL) utilizes AOS to iterate between

classifier updating and pseudo-labeling of unlabeled sam-

ples. In detail, the classifier can be updated via (24) and
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Fig. 2 Classification results of SSPL and SSPL (w/o SPL) on the

unlabeled samples of the training sets (left column) and on the test

samples (right column), where x-axis represents the number of labeled

data points in the training set, and y-axis represents the corresponding

classification accuracy
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(25) with V being the identity matrix, and the pseudo-

labels of unlabeled samples can be assigned by (32). We

compare the performances of SSPL and SSPL (w/o SPL)

on Altkom, BANCA and ORL data sets, and the classifi-

cation accuracies for the unlabeled samples in the training

sets and for the test samples are shown in Fig. 2. From the
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Fig. 3 Classification results on the unlabeled samples of the training sets (left column) and on the test sets (right column), with the regularization

parameters CK and CI varying
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results we can see that SSPL method outperforms SSPL (w/

o SPL), in other words, the self-paced learning regime

significantly enhances the classification performance of

SSPL.

Besides, to show the sensitiveness of the parameter

setting in the proposed SSPL method, we compare the

performance of SSPL with different regularization param-

eters, on Altkom, BANCA and ORL data sets. Here we

follow the strategy adopted in the MR framework [15],

which utilizes two intermediate parameters CK ¼ cKm,
CI ¼ cIm

n2
, where cK is the complexity regularization

parameter and cI is the smoothness regularization param-

eter, then we change CK and CI in the range

f0:005; 0:01; 0:02; 0:03; . . .; 0:1g. Figure 3 shows the

classification accuracies for the unlabeled samples in the

training sets and for the test samples. From the figure, we

can see that the proposed SSPL performs well with a wide

range of parameters CK and CI.

5 Conclusion

In this paper, we proposed a novel semi-supervised clas-

sification algorithm called structure regularized self-paced

learning (SSPL) method. SSPL integrates self-paced

learning paradigm, which learns the model gradually from

easy to complex samples, into the manifold regularization

framework for semi-supervised learning. The proposed

method learns the model by iterating among classifier

updating, sample importance calculating and important

unlabeled sample pseudo-labeling. With an adaptive pace

from easy to hard samples, the learner can extract reliable

knowledge from training data, and the labels can be

propagated from labeled samples to unlabeled samples.

Besides, SSPL defines a new kind of mixture loss which

can adaptively determine the sample importance for the

subsequent classifier, without need of manually designing.

Finally, the proposed method has an explicit multi-class

classification function for new samples. Experiments have

been conducted on several data sets, and the classification

results have shown the recognition superiority of the pro-

posed method. Despite being able to deliver promising

results for semi-supervised classification, SSPL can be

further improved in the future. For example, instead of

solving image classification problem, how to utilize SSPL

for some other real-world applications, such as electronic

book analysis [43], is another challenge and of great

importance.
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