
S. I : INDIA INTL. CONGRESS ON COMPUTATIONAL INTELLIGENCE 2017

Verbal aggression detection on Twitter comments: convolutional
neural network for short-text sentiment analysis

Junyi Chen1 • Shankai Yan1 • Ka-Chun Wong1

Received: 28 November 2017 / Accepted: 16 March 2018 / Published online: 20 March 2018
� The Natural Computing Applications Forum 2018

Abstract
Cyberbullying and hate speeches are common issues in online etiquette. To tackle this highly concerned problem, we

propose a text classification model based on convolutional neural networks for the de facto verbal aggression dataset

built in our previous work and observe significant improvement, thanks to the proposed 2D TF-IDF features instead of

pre-trained methods. Experiments are conducted to demonstrate that the proposed system outperforms our previous

methods and other existing methods. A case study of word vectors is carried out to address the difficulty in using pre-

trained word vectors for our short-text classification task, demonstrating the necessities of introducing 2D TF-IDF

features. Furthermore, we also conduct visual analysis on the convolutional and pooling layers of the convolutional

neural networks trained.

Keywords Aggression detection � Sentiment analysis � Machine learning � Convolutional neural network

1 Introduction

Sentiment analysis and opinion mining task [1] is one of

the well-studied fields in text mining and natural language

processing. It aims at detecting and analyzing human

opinions, attitudes, and emotions. Application scenarios of

sentiment analysis can stem from product reviews [2],

advertisement distribution, stock market [3, 4], social net-

works [5, 6] or even government intelligence [7].

Many research and famous datasets of sentiment analysis

such as IMDB [8] and Yelp [9] acquaint positive or negative

opinion as known as PNO [10] about a certain object from user

comments. Contrariwise, we focus on the behavior of users by

capturing verbal offense which potentially arouses negative

feelings among other users. Recently, we built a de facto

network comment datasetwith ‘aggressivity’ label and adopted

predictive models to detect verbal offenses [11]. The dataset

included manually collected paragraphs and paragraphs from

‘Sentimen140’ [12] with labels renovated. Combined with

WordNet [13] lemmatizer and Porter’s stemmer [14], support

vector machine [15] and logistic regression [16] can achieve

decent performance with F1-scores [17] greater than 0.80 on

the 783 pieces of aggressive and unaggressive comments

without any extensive hyper-parameter tuning. Despite those

twomethods achieve good results onour verbal offense dataset,

we were looking for models that can outperform our previous

ones for verbal aggression detection.

Convolutional neural networks (CNN) [18] are originally

designed to process and learn information from image features

by applying convolution kernels and pooling techniques

which are widely adopted for extracting stationary features;

for instance, CNNhas shown its adaptability in the field of text

mining and NLP tasks. Kim et al. reported series of experi-

ments with CNNs [19] that achieve good results on sentence

classification and sentiment analysis tasks. Lee et al. propose a

weakly supervised CNN architecture [20] to identify dis-

criminatingkeywords inPNOtasks. Inspiredby the successful

examples of CNN applications in the field of text classifica-

tion,we introduce aCNNmodel todetect verbal offenses from

& Ka-Chun Wong

kc.w@cityu.edu.hk

Junyi Chen

junyichen8-c@my.cityu.edu.hk

Shankai Yan

sk.yan@my.cityu.edu.hk

1 City University of Hong Kong, Kowloon Tong, Kowloon,

Hong Kong SAR

123

Neural Computing and Applications (2020) 32:10809–10818
https://doi.org/10.1007/s00521-018-3442-0(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3442-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3442-0&domain=pdf
https://doi.org/10.1007/s00521-018-3442-0

the aggression dataset we collected in the previous research to

look for performance enhancement.

The contribution of this work is to further improve the

performance of the sentiment analysis task we previously

proposed by introducing an efficient CNN-based deep

learning model. In addition, by testing different kinds of

models and methods, we discovered some interesting CNN

architectures which can outperform others.

2 System modeling

2.1 Model architecture

The model architecture of CNN in the present paper is derived

from Kim [19] and Lee et al. [20]. Motivated by those suc-

cessful results attained in the aforementionedworks, we design

the network architectures by referencing former experiences.

According toLee’s statement, applying a largenumberoffilters

rather than deep architectures is good for text classification.We

set 128 filters on the convolution layer, and each of them is

10 9 2 rectangular-shaped matching our 100 9 20 inputs.

Also, after comparison experiments which will be discussed in

the next section,we decide to usemeanpooling rather thanmax

pooling as an optional choice in the pooling layer. Finally, a

two-layered multilayer perceptron [21] is introduced to be the

classification model following the pooling layer. Summarizing

these aspects, our model structure is shown in Fig. 1 and

detailed settings will be shown in the experiments. Further

justification of the architecture will be discussed in the Dis-

cussion section.

2.2 Word features

The model mentioned above use word embeddings tech-

niques like Word2Vec [22] or Glove [23] to represent word

features. Trained by a self-supervised model, words are

transformed into similar vectors if they have similar verbal

meanings. However, these approaches highly rely on the

article context. Our dataset contains short passages from

Twitter and usually contains short sentences in each doc-

ument. Sentiment analysis on short texts is a difficult

business [24]. This organization of data makes Word2Vec

and Glove hard to learn information of each word by its

‘context.’ The situation that our task does not favor con-

text-based pre-trained embedding methods will be shown

afterward in the case study part. Another word embedding

method presented in Gal et al. [25] is a method that treats

word embedding on-the-fly. Encoded one-hot word vectors

are linearly combined by an embedding layer whose

weights are updated by backpropagation in the network.

This is the method adopted in our experiment.

Alternatively, we apply TF-IDF [26] matrix as docu-

ment-level features in the present work. In such short

paragraph text classification problem, we think that word

occurrence statistics are appropriate solutions which con-

tain enough information although TF-IDF is a traditional

method. Furthermore, to better utilize the CNN property,

the 1-dimensional vector is transformed to a 2-dimensional

matrix, and hence, CNN filters can convolve word features

in a larger field as shown in Fig. 2. Features in 1-dimen-

sional only share the same weight with other features

within the window size, while 2-dimensional features can

share weights with features in the next row which are

unreachable in 1-dimensional case. Theoretically, 2-di-

mensional features with 2-dimensional kernel can capture

features from a larger space than single dimensions.

… … …

Conv 2D

…

Pooling Flatten Fully connect OutputInput

Feature

128 filters

Fig. 1 Model structure of the proposed convolutional neural networks

10810 Neural Computing and Applications (2020) 32:10809–10818

123

3 Experiment settings

3.1 Dataset and preprocessing

As it is shown in our previous paper [11], the number of

features after document encoding (regardless of lemma-

tizing methods) is around 2000 tabulated in Table 1. With

such dictionary size, we limit the maximum number of

features to 2000 features as sorted by their TF-IDF weights

(ascending order). To obtain the optimal solution, different

word tokenizing methods (Porter and WordNet) are

compared.

Apart from the dictionary size, word count is another

import statistic of the dataset. Figure 3 is a histogram to

show the relation between word count and document count.

Under the constraint of 140 words in Twitter, most com-

ments in the dataset contain less than 40 words. Few of

them contain 60–80 words, while fewer contain around 100

words. This property will affect the training result of

Word2Vec which will be discussed in the case studies.

3.2 Learning algorithms and models

To verify the efficiency of the presented model, baseline

models from previous work and other typical frameworks

are introduced to the experiment. Settings of those models

to be examined are listed in Table 2.

Firstly, the CNN models mentioned in the previous

sections which are capable of both TF-IDF matrix and

word embeddings are introduced to the experiment. Except

for the proposed CNN architecture, two algorithms that can

achieve desirable results in the previous research [11],

support vector machine and logistic regression with

stochastic gradient descent, are included in the experiment.

These two methods are baselines for comparison in this

study. Thirdly, a modification of recurrent neural network

(RNN) [27] called long short-term memory also known as

‘LSTM’ [28] is also tested for the widely successful

applications of recurrent networks. Mikolov et al. [29]

introduce recurrent network to language model. Yang et al.

[30] design an infrastructure that capture sentence and

word-level attentions using gated recurrent units [31]

which is also a modified LSTM. Based on these successful

attempts, LSTM is also tested in our experiment using

settings indicated in Table 2.

3.3 Performance benchmarking

Performance benchmarking is held based on holdout vali-

dation method [32] which means the original dataset is

randomly divided into training set and test set. In our

experiment, 60% of the original data is used to train the

model, while 40% of data is used for testing. Performance

metrics are accuracy and area under the curve (AUC) of the

receiver operating characteristic (ROC) [33].

4 Results

The results of our present approaches against some other

experiments are shown as follows. Table 3 and Fig. 4

depict the accuracy values and AUC values of different

Filter process 1-d features inside a window

Filter process 2-d features across rows

Fig. 2 Comparison between 1-D feature and 2-D feature, each

element in the vector/matrix is an attribute from TF-IDF document

representation

Table 1 Feature numbers tokenized by non-lemmatized, WordNet

lemmatizer and Porter’s stemmer

Lemmatization Number of features

Non-lemmatized 2257

Porter’s 2028

WordNet 2196

Fig. 3 Word count distribution of documents in the dataset

Neural Computing and Applications (2020) 32:10809–10818 10811

123

measures adopted in the experiment. Deep learning algo-

rithms are expected to gain better performance as evi-

denced by many other similar studies. Compared with the

baseline methods we experimented in the previous

research, LSTM model is proved to be enhanced with 0.91

as accuracy and 0.96 as Macro-AUC. By contrast, the

proposed CNN model with 2-dimensional TF-IDF matrix

results in further improvement with accuracy equals to 0.92

and Macro-AUC equals to 0.98.

Apart from numeral performance benchmarks, Fig. 4

depicts the ROC curves of different methods for illustra-

tions. Magenta dash line is a microaverage curve, navy

blue dash line denotes macroaverage [34] curves, while

cyan and yellow are curves with respect to each class. The

curves stay near the upper-left corner, implying that the

corresponding model achieves good performance. We can

see that not only accuracy but also ROC curves demon-

strate that CNN with 2D TF-IDF matrix is a superior

solution to our problem.

4.1 Embedding layer and TF-IDF

Another alternative for feature construction is to introduce

embedding layer proposed in [25] by adding a lookup

table also known as one-hot word vectors and an embed-

ding weights layer. Document matrices are represented by

the concatenation with paddings of word vectors. Embed-

ding approach enables us to learn in word level rather than

document level. Table 4 and Fig. 5 show some statistic and

analysis of embedding experiments.

As shown in the table and figures above, the accuracy of

CNN drops from 0.92 to 0.83, while the accuracy of LSTM

drops from 0.91 to 0.72. We can be informed that, although

embedding method reserves word level and ordinal informa-

tion, it compromises the prediction performance. Both CNN

and LSTM with embedding layer output worse performance

compared with TF-IDF feature at the document level.

4.2 WordNet and Porter

‘WordNet’ and ‘Porter’ are two stemming methods to

group words by their lexical roots: ‘WordNet’ group words

by meanings while ‘Porter’ group word by word roots. In

the previous paper, we tested two methods on support

vector machine and logistic regression and concluded that

on these two models. ‘WordNet’ is an optimal solution of

stemming. To our surprises, the present CNN model

reveals an opposite conclusion shown in Fig. 6 and

Table 5. According to the figure and table, Porter’s stem-

mer outputs 0.85 accuracy and 0.94 Macro-AUC which are

7 and 4% less than 0.92 and 0.98, respectively, using

WordNet. Porter’s stemming is a more aggressive

scheme than WordNet and lose some information in when

doing word tokenizing.

4.3 Model generalization analysis

In this section, we discuss the generalization of the model

using learning curve. The learning curves are generated by

increasing the size of the training set. If testing score

decreases along with the increment of training set size, the

model tends to suffer from the overfitting problem.

According to Fig. 7, the testing accuracy keeps increasing

and both accuracies converge at a value larger than 0.9.

Hence, the learning curve demonstrates that the network

Table 2 Hyper-parameters settings of different models

Model Settings

Convolutional neural

network (CNN)

1. Convolution layer

Filters: 128; kernel size: 10 9 2;

activation: RELU, strides: 1 9 1

2. Average pooling layer pool size: 2 9 2,

strides: 2 9 2

3. Dense layer

Units: 256, activation: tanh

4. Dense layer

Units: 2, activation: soft-max

Loss: cross-entropy; optimizer: Adam

Long short-term

memory (LSTM)

1. LSTM layer 1

Units: 256; dropout: 0.2; recurrent dropout:

0.2

2. LSTM layer 2

Units: 256; dropout: 0.2

3. 2 dense layers’ settings are the same

with CNN

Loss: cross-entropy; optimizer: Adam

Support vector machine

(SVM)

Kernel: linear; C: 1.25, degree: 1;

tolerance: 0.001

Logistic regression

(logistic)

Loss: log; alpha: 0.00075; penalty: l1

Table 3 Performances of

different models (SVM, logistic,

LSTM, CNN)

Method Accuracy Micro-AUC Macro-AUC

Support vector machine (SVM) 0.86 0.91 0.89

Logistic regression (logistic) 0.86 0.92 0.89

Long short-term memory (LSTM ? 2D TF-IDF) 0.91 0.96 0.93

Convolutional neural network (CNN ? 2D TF-IDF) 0.92 0.98 0.97

10812 Neural Computing and Applications (2020) 32:10809–10818

123

achieves decent testing performance as well as a good

ability of generalization.

5 Discussion

5.1 Limitations of pre-trained embedding

In this section, we demonstrate a case study on the

Word2Vec method presented by Mikolov et al. [22].

Before training the proposed models for experiments, we

have finished the word vector pre-trained procedure and

observed the generated word vectors. We examined a set of

word vectors and found that most of the pre-trained word

vectors did not preserve the desired properties of Word2-

Vec: consistency between vector similarity and word

similarity.

Some sample words and their nearest neighbors ordered

by similarity are shown in Table 6. We select words which

are positive (successful, happy), negative (worst, lose) and

neutral (everyone). Many of the words are not ‘well

trained’ and failed to reserve word meanings. Short para-

graph and small dataset (shown by Fig. 3) hinder the per-

formance of Word2Vec training which highly relies on

context no matter by the continuous bag of words (predict

word by context) or skip gram (predict context by word)

[22]. The limitation of the pre-trained model is shown in

our dataset.

Fig. 4 ROC curves of the convolutional neural network (CNN ? 2D TF-IDF, max pooling), long short-term memory (LSTM), support vector

machine (SVM) and logistic regression (logistic)

Table 4 Performances of introducing embedding layer to CNN and

LSTM

Method Accuracy Micro-AUC Macro-AUC

LSTM ? EMBEDDING 0.72 0.81 0.75

CNN ? EMBEDDING 0.83 0.88 0.85

Neural Computing and Applications (2020) 32:10809–10818 10813

123

5.2 Visual analysis of convolution layer
and pooling layer

After benchmarking of the model, some case studies on our

CNN model are carried out. One property of CNN concerns

about applying convolution operations with trained kernels

on the original feature matrix to filter out new feature sets.

Our 2D TF-IDF matrix can be regarded as a single channel

picture with 100 9 20 pixels. To better observe the

behavior of CNN, we construct a dictionary document (a

document contains every single word once excluding stop

words in the dictionary) and see how. The TF-IDF trans-

formed dictionary is shown in Fig. 8. Attributes with

higher TF-IDF scores are highlighted in yellow color in the

picture. Otherwise, attributes with low TF-IDF scores are

purple pixels. Shown by the dictionary figure, features in

the TF-IDF matrix are ranked by word counts inside the

field of the picture. Intuitively, a dictionary is a color

gradient bar change from purple to yellow with a small

amount of noise because a word with a larger number of

counts does not pick up some examples from guaranteed

words to gain a higher TF-IDF score. The picture of the

processed dictionary convolved by 128 trained filters is

shown in Fig. 8, while some samples before and after going

through the pooling layer are also shown.

We conduct a case study to observe pooling effect in

terms of text classification. Figure 8 shows features before

pooling in the first row while the features after pooling in

the second row. Visually, the picture of the feature after

Fig. 5 ROC curves of introducing embedding layer to CNN (up) and

LSTM (down)

Fig. 6 ROC curves of WordNet lemmatizing (up) and Porter’s

stemmer (down)

Table 5 Performances of WordNet lemmatizing and Porter’s

stemmer

Lemmatizing Accuracy Micro-AUC Macro-AUC

WordNet 0.92 0.98 0.97

Porter’s 0.85 0.94 0.91

10814 Neural Computing and Applications (2020) 32:10809–10818

123

pooling is ‘brighter’ which may imply feature values are

amplified after pooling. We also conclude some patterns

and pick up some examples of the processed features. The

second leftmost column has sparse active features only in

some region of the matrix, while most of the values are

close to zero. This pattern implies that the convolution

layer ‘filters out’ crucial features. Another pattern shown in

the third column is that convolution layer ‘wipes out’ some

features in a certain region (bottom from the picture) from

original features. The third discovered pattern in the fourth

column is that the outputted feature is almost identical to

the original one except ‘diluting’ the original values.

Finally, the patterns from the rightmost column ‘highlight’

attributes from a certain region while minimizing feature

values outside the region. From the scope of the convolved

dictionary, we can be implied that features are enriched by

the convolution layer and all these new implicit features

will be flattened and go through the training process of two

fully connected neural network.

To further explore the functionality of pooling layer, we

perform experiments by replacing average pooling layer by

max pooling. Figure 9 shows plots of average pooling

output and max pooling output; we noted that these outputs

came from different training process. Comparing max

pooling with average pooling, max pooling outputs more

features with zero values. We assume that, with richer

features, the average pooling should output superior results

than max pooling.

Nonetheless, the scope of performance benchmarking in

Table 7 shows a contrary result. The max pooling outputs

0.92 accuracy, 0.98 Micro-AUC and 0.97 Macro-AUC,

while average pooling outputs 0.92, 0.96 and 0.95,

respectively. The max pooling layer in our experiment

shows stronger ability to filter out necessary features to

avoid overfitting than the average pooling layer.

Using the analysis method above, we sample one

aggressive sentence and one non-aggressive sentence from

the dataset with some measurements shown in Table 8 and

plot the visualized aggressive sentence in Fig. 10. Since the

example sentence covers a small set of words in the whole

dictionary, the input features are sparse since only a few

areas in the plots are colored.

According to Table 8, bold words are the most infor-

mative ones, while italic words are the second. Words that

implicit the aggressive sentiment in each sentence obtain

high scores using our feature construction approach. Then,

the convolutional layer and the pooling layer further extract

and filter these features. These functions of the two layers

are reflected by the alteration of the colored region shown

by the plots in Fig. 10.

5.3 Architecture design experiments

The proposed network architecture is rooted from Kim [19]

which trains a convolutional neural network with one layer

of convolution. To examine the design principle, we test

Fig. 7 The learning curves of the proposed CNN model, lower

(upper) bound of the filled area is the minimum (maximum) score

within 15 epochs

Table 6 Similar word samples

Sample word Most similar words (order by similarity)

Everyone Zac, winner, across, freaky, plane…
Worst Definitely, jail, three, cast, everything…
Lose Proudly, warren, absolutely, tomorrow…
Successful Picture, dad, stock, background, apartment…
Happy Program, wait, foil, belong, may…

Fig. 8 Dictionary as input feature (left), some convolved features

(upper right) and some pooled features (lower right)

Neural Computing and Applications (2020) 32:10809–10818 10815

123

different architectures with alternative numbers of convo-

lutional layers (followed by max pooling layers) and dense

layers. The design of architecture is based on the statistics

shown in Table 9, and our proposed neural network with 1

convolutional layer and 2 dense layers achieves the best

accuracy among all experiment settings.

6 Conclusion

In this paper, we present a new solution to the verbal

aggression detection task we aroused in the prerequisite

research based on convolutional neural networks (CNN)

using 2-dimensional TF-IDF features and observe signifi-

cant improvement. Firstly, experimental results indicate

that CNN model achieves significant improvement com-

pared with the baseline SVM and logistic regression

methods in the previous study as well as the newly tested

LSTM model in the problem. Moreover, we carried out

experiments on the dataset to explain the selection of word

lemmatizing. Finally, the problem that pre-trained word

Fig. 9 Overview of the 128

trained filters: averaged pooling

layer (up) contains more

nonzero values, while max

pooling layer (down) contains

more zero values

Table 7 Performances of max pooling and average pooling

Pooling Accuracy Micro-AUC Macro-AUC

Max 2D 0.92 0.98 0.97

Average 2D 0.92 0.96 0.95

10816 Neural Computing and Applications (2020) 32:10809–10818

123

vector method encountered on our dataset is annotated and

the preference of pooling strategies is studied by con-

ducting visual analysis on neural layers.

Acknowledgements The work described in this paper was substan-

tially supported by two grants from the Research Grants Council of

the Hong Kong Special Administrative Region (CityU 21200816) and

(CityU 11203217).

Compliance with ethical standards

Conflict of interest All the authors declare that they have no conflict

of interest.

References

1. Pang B, Lee L (2008) Opinion mining and sentiment analysis.

Foundations and Trends�. Inf Retrieval 2(1–2):1–135

2. Zhang W, Xu H, Wan W (2012) Weakness Finder: find product

weakness from Chinese reviews by using aspects based sentiment

analysis. Expert Syst Appl 39(11):10283–10291

3. Long W, Tang Y-R, Tian Y-J (2016) Investor sentiment identi-

fication based on the universum SVM. Neural Comput Appl.

https://doi.org/10.1007/s00521-016-2684-y

4. Hájek P (2018) Combining bag-of-words and sentiment features

of annual reports to predict abnormal stock returns. Neural

Comput Appl 29(7):343–358. https://doi.org/10.1007/s00521-

017-3194-2

5. Pak A, Paroubek P (2010) Twitter as a corpus for sentiment

analysis and opinion mining. In: LREc, vol 10, no. 2010

6. Kouloumpis E, Wilson T, Moore JD (2011) Twitter sentiment

analysis: the good the bad and the omg! Icwsm 11(538–541):164

7. Mullen T, Malouf R (2006) A preliminary investigation into

sentiment analysis of informal political discourse. In: AAAI

spring symposium: computational approaches to analyzing

weblogs, pp 159–162

8. Maas AL, Daly RE, Pham PT, Huang D, Ng AY, Potts C (2011)

Learning word vectors for sentiment analysis. In: Proceedings of

the 49th annual meeting of the association for computational

linguistics: human language technologies, vol 1. Association for

Computational Linguistics, pp 142–150

9. Tang D, Qin B, Liu T (2015) Document modeling with gated

recurrent neural network for sentiment classification. In: EMNLP,

pp 1422–1432

10. Liu B, Zhang L (2012) A survey of opinion mining and sentiment

analysis. In: Mining text data. Springer, New York, pp 415–463

11. Chen J, Yan S, Wong KC (2017). Aggressivity detection on

social network comments. In: Proceedings of the 2017 interna-

tional conference on intelligent systems, metaheuristics & swarm

intelligence. ACM, pp 103–107

12. Go A, Bhayani R, Huang L (2009) Twitter sentiment classifica-

tion using distant supervision. CS224 N Project Report, Stanford,

1(2009), 12

13. Fellbaum C (1998) WordNet. Wiley, New York

14. Porter MF (1980) An algorithm for suffix stripping. Program

14(3):130–137

15. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

16. Hosmer DW Jr, Lemeshow S, Sturdivant RX (2013) Applied

logistic regression, vol 398. Wiley, New York

17. Salton G, McGill MJ (1986) Introduction to modern information

retrieval. McGraw-Hill, Inc., New York

18. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86(11):2278–2324

19. Kim Y (2014) Convolutional neural networks for sentence clas-

sification. arXiv preprint arXiv:1408.5882

Table 8 Examples of verbal aggression detections and two most

informative words

Sentence Remarks

(1): Not really you voted for him because you re too

intellectually lazy to know better

Aggressive:

true

1st score:

5.97

2nd score:

5.57

(2): I wouldn t say I m Wayne Rooney s biggest fan
but these are the kind of stories everyone likes to

read He s just made that little lads year Top job

Aggressive:

false

1st score:

5.68

2nd score:

5.06

Fig. 10 Aggressive sentence (sentence 1 in Table 8) as input feature

(left), some convolved features (upper right) and some max pooled

features (lower right)

Table 9 Accuracies of models with different architecture

Convolutional

layers

Dense

layers

Test

accuracy

Number of

parameters

1 2 0.92 16,387,458

2 2 0.91 1,109,410

3 2 0.90 302,530

4 2 0.90 175,586

1 3 0.90 16,403,522

1 4 0.90 16,407,682

1 5 0.90 16,411,842

Neural Computing and Applications (2020) 32:10809–10818 10817

123

https://doi.org/10.1007/s00521-016-2684-y
https://doi.org/10.1007/s00521-017-3194-2
https://doi.org/10.1007/s00521-017-3194-2
http://arxiv.org/abs/1408.5882

20. Lee G, Jeong J, Seo S, Kim C, Kang P (2017) Sentiment clas-

sification with word attention based on weakly supervised lean-

ing. arXiv preprint arXiv:1709.09885

21. Gardner MW, Dorling SR (1998) Artificial neural networks (the

multilayer perceptron)—a review of applications in the atmo-

spheric sciences. Atmos Environ 32(14):2627–2636

22. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013).

Distributed representations of words and phrases and their com-

positionality. In: Advances in neural information processing

systems, pp 3111–3119

23. Pennington J, Socher R, Manning C (2014) Glove: global vectors

for word representation. In: Proceedings of the 2014 conference

on empirical methods in natural language processing (EMNLP),

pp 1532–1543

24. Dos Santos CN, Gatti M (2014) Deep convolutional neural net-

works for sentiment analysis of short texts. In: COLING,

pp 69–78

25. Gal Y, Ghahramani Z (2016) A theoretically grounded applica-

tion of dropout in recurrent neural networks. In Advances in

neural information processing systems, pp 1019–1027

26. Salton G, Buckley C (1988) Term-weighting approaches in

automatic text retrieval. Inf Process Manag 24(5):513–523

27. Williams RJ, Zipser D (1989) A learning algorithm for continu-

ally running fully recurrent neural networks. Neural Comput

1(2):270–280

28. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735–1780

29. Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S

(2010) Recurrent neural network based language model. In

Interspeech, vol 2, p 3

30. Yang Z, Yang D, Dyer C, He X, Smola AJ, Hovy EH (2016)

Hierarchical attention networks for document classification. In:

HLT-NAACL, pp 1480–1489

31. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:

1409.0473

32. Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. In:

Encyclopedia of database systems. Springer, New York,

pp 532–538

33. Fawcett T (2006) An introduction to ROC analysis. Pattern

Recognit Lett 27(8):861–874

34. Yang Y (1999) An evaluation of statistical approaches to text

categorization. Inf Retrieval 1(1):69–90

10818 Neural Computing and Applications (2020) 32:10809–10818

123

http://arxiv.org/abs/1709.09885
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473

	Verbal aggression detection on Twitter comments: convolutional neural network for short-text sentiment analysis
	Abstract
	Introduction
	System modeling
	Model architecture
	Word features

	Experiment settings
	Dataset and preprocessing
	Learning algorithms and models
	Performance benchmarking

	Results
	Embedding layer and TF-IDF
	WordNet and Porter
	Model generalization analysis

	Discussion
	Limitations of pre-trained embedding
	Visual analysis of convolution layer and pooling layer
	Architecture design experiments

	Conclusion
	Acknowledgements
	References

