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Abstract
There has been an alarming increase in the number of skin cancer cases worldwide in recent years, which has raised interest

in computational systems for automatic diagnosis to assist early diagnosis and prevention. Feature extraction to describe

skin lesions is a challenging research area due to the difficulty in selecting meaningful features. The main objective of this

work is to find the best combination of features, based on shape properties, colour variation and texture analysis, to be

extracted using various feature extraction methods. Several colour spaces are used for the extraction of both colour- and

texture-related features. Different categories of classifiers were adopted to evaluate the proposed feature extraction step,

and several feature selection algorithms were compared for the classification of skin lesions. The developed skin lesion

computational diagnosis system was applied to a set of 1104 dermoscopic images using a cross-validation procedure. The

best results were obtained by an optimum-path forest classifier with very promising results. The proposed system achieved

an accuracy of 92.3%, sensitivity of 87.5% and specificity of 97.1% when the full set of features was used. Furthermore, it

achieved an accuracy of 91.6%, sensitivity of 87% and specificity of 96.2%, when 50 features were selected using a

correlation-based feature selection algorithm.

Keywords Feature extraction and selection � Fractal dimension analysis � Discrete wavelet transform �
Co-occurrence matrix

1 Introduction

Dermoscopic images are widely applied for automated

diagnosis of pigmented skin lesions. Such images can be

acquired from dermatoscopes or specific cameras to pro-

vide a better visualization of the pigmentation pattern on

the skin surface. Several computational systems have been

proposed to assist dermatologists in obtaining an effective

diagnosis [1–3]. These systems can be used to monitor

benign skin lesions, and malignant lesions may be diag-

nosed at an early stage, so that the patient has a higher

probability of being cured with less aggressive therapies.

The ABCD dermoscopy rule is usually taken into account

for skin lesion diagnoses and when designing feature

extraction methods; therefore, such diagnoses are based on

the analysis of asymmetry, border, colour and differential

structures, A, B, C and D, respectively. The asymmetry

criterion can be defined by the asymmetry analysis of the

skin lesion border, its colour or structures. The border

criterion analyses the abrupt cut-off of the network at the

lesion border, and the colour criterion identifies the pres-

ence of possible basic colours, such as white, red, light-

brown, dark-brown, blue-grey and black. The differential

structures criterion is characterized by the presence of

pigment networks, vascularization, regression structures,

streaks and dots/globules [4]; nevertheless, the
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identification of these structures is rarely used for auto-

mated diagnosis of skin lesions, mainly due to their com-

plexity [5].

The features extracted from skin lesion images must

represent their class, e.g. benign or malignant. Several

methods to extract shape-, colour- and texture-related

features for the automated diagnosis have been proposed in

the literature [6–11]. Such features are based on the ABCD

rule, and they can characterize skin lesion properties ade-

quately. Equivalent diameter, solidity, rectangularity,

aspect ratio and eccentricity are some examples of the

shape features used, which represent both the A and B

criteria of the ABCD rule. Statistical measures in several

colour spaces are used to represent colour features based on

this rule, and texture analysis methods, e.g. grey-level co-

occurrence matrix are commonly used to represent the D

criterion [5, 7, 12]. Nevertheless, few of the systems that

have been proposed combine different methods to extract

features in a similar category, e.g. texture analysis. Texture

analysis methods are usually categorized as structural,

statistical, model-based and transform. Although the

structural approach provides a good symbolic description,

some extracted features can be more useful for synthesis

tasks rather than analysis tasks [13]. Among the various

statistical methods that have been proposed, the co-occur-

rence matrix has shown potential for effective texture

discrimination with dermoscopic images [5, 14, 15].

Fractal dimension is a model-based method that is also

potentially useful for texture analysis in skin lesion images

[16]. Fourier [17], Gabor [18] and wavelet [7] transforms

have been also applied to extract texture features in skin

lesion images.

The assessment of classifiers is an important issue for

pattern recognition processes [19, 20]. The most commonly

used classifiers in skin lesion pattern recognition [24]

include the nearest neighbours [12, 21], Bayes networks

[5, 7], decision tree [7, 17], artificial neural network [2, 22]

and support vector machine [6, 7]. Other difficulties for

pattern recognition processes involve defining which fea-

tures are meaningful to describe the skin lesions, including

the presence of highly correlated, redundant and irrelevant

features. Some studies have proposed feature selection

methods [23] to overcome these difficulties, such as feature

selections based on correlation, gain information and relief-

F [6, 7]. An overview of the computational methods for

pigmented skin lesion classification in images, which

addresses the feature extraction and selection, and the

classification steps, is presented in Oliveira et al. [24].

The aim of the present study was to evaluate and pro-

pose the most relevant features for skin lesion computa-

tional diagnosis based on the ABCD rule, including shape

properties, colour variation and texture analysis using

several different methods. The main contributions of this

study were expected to be the texture analysis based on

four colour spaces and the combination of different texture

extraction methods, since texture features are usually

extracted from grey-level images or from a few colour

channels, and using only one texture extraction method

[7, 25]. In addition, good classification results were also

expected when these features were combined with shape

and colour features.

This article is organized as follows: the proposed feature

extraction system, based on shape, colour and texture

properties, is explained in Sect. 2. The algorithms used for

selecting features and classifying skin lesions in dermo-

scopic images are detailed in Sect. 3. The experimental

results are presented in Sect. 4. A discussion about the

results obtained with the skin lesion classification is pre-

sented in Sect. 5. Finally, the conclusions drawn and pro-

posals for future studies are presented in Sect. 6.

2 Proposed feature extraction

In this section, a combination of features to represent the

skin lesion images is proposed. These features are based on

the ABCD rule of dermoscopy, which is commonly used

by dermatologists when diagnosing skin lesions. Various

approaches have been proposed in the literature for skin

lesion diagnosis in dermoscopic images [24]. Here, the

feature extraction step is based on the intensities of the

pixels in the regions of interest (ROIs) defined by spe-

cialists, i.e. binary masks, where the nonzero pixels belong

to the lesion, and the others to the background skin. The

binary masks were used in order to obtain trustworthy

classification results and conclusions. Figure 1 provides an

overview of the approach proposed in this study. The

features were categorized into shape properties, colour

variation and texture analysis as described in Table 1. The

extracted features were combined in a pool in the following

sequence: shape, colour and texture. A dataset was built

from this pool of features with a number of samples xið Þ,
according to the number of images n for a given classifi-

cation problem, i ¼ 1; 2; . . .; n. Each sample (xi) was

composed of m features (xim) and the class to which it

belongs (yi). Such a dataset was used in the image classi-

fication process of benign or malignant lesions using dif-

ferent classifiers and feature selection algorithms to

evaluate the proposed approach.

2.1 Shape properties

Shape properties provide measures of the lesions based on

their geometrical properties, their asymmetry or irregular-

ity of their borders. These features are important for skin

lesion diagnosis, as an asymmetric shape, border
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irregularity or ill-defined structure can characterize

malignant lesions. Other geometrical properties of the

lesion area which are commonly computed include the

number of pixels inside the lesion region, aspect ratio,

compactness, perimeter, greatest and shortest diameters,

equivalent diameter, eccentricity, solidity, rectangularity

and circularity [6, 7, 14]. The lesion asymmetry can be

evaluated by dividing the region of the lesion under anal-

ysis into two sub-regions using an axis of symmetry, and

thereby analyse the similarity of the area by overlapping

the two sub-regions of the lesion along the axis. In some

studies, the axis of symmetry is based on both major and

minor axes [6, 7]. Features extracted from a wavelet

transform [7, 27], Fourier transform [28], fractal dimension

[29], and irregularity index [7] have also been used to

assess border irregularity. More details about shape clas-

sification and analysis can be found in [26]. In this study,

18 shape features of lesion were extracted from each image

under analysis. These features are based on some of the

standard features previously mentioned and some new

features presented in a previous study [16].

2.1.1 Geometrical property measures

These measures can provide the geometrical properties of a

lesion by comparing the shape of the lesion with geomet-

rical objects, e.g. a circle or a rectangle. However, some of

these features depend on the image resolution and fre-

quently the properties of the images are different as they

may have been acquired from different distances and,

Fig. 1 Overview of the proposed approach for the skin lesion computational diagnosis

Table 1 Features extracted from skin lesion images based on shape properties, colour variation and texture analysis

Skin lesion features Denotation Number of features

(channels c ¼ 1; 2; . . .; 12)

Shape properties

Geometrical properties A;P;ED;CO;CI; S;R;AR; e 9

Lesion asymmetry ls; s
2
s ; ss 3

Border irregularity pS; vS; lS; pL; vL; lL 6

Colour variation

Colour average, variance and standard deviation lc; s
2
c ; sc 3 (9 12)

Minimum and maximum colours minc;maxc 2 (9 12)

Colour skewness SKc 1 (9 12)

Texture analysis

Fractal dimension analysis D2
c

1 (9 12)

Discrete wavelet transform E Sbð Þc;H Sbð Þc; Sb ¼ 1; 2; . . .; 10 20 (9 12)

Co-occurrence matrix ASMc;Cc;CRLc;VARc; IDMc;SAc;SVc;

SHc;Hc;DVc;DHc;CRL1c;CRL2c;MCCc

14 (9 12)
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therefore, have different resolutions. Consequently, a nor-

malization procedure is required. This will be considered in

the following Sects.

1. Lesion area and border perimeter: the lesion area A is

the number of pixels within the lesion border, and the

border perimeter P is the number of pixels along the

lesion border.

2. Equivalent diameter, compactness and circularity:

these measures are based on a circle. The equivalent

diameter ED is the diameter of a circle whose area is

same as the lesion area A, which is given by

ED ¼
ffiffiffiffiffiffiffiffiffiffiffi

4A=p
p

. The compactness CO measures the

ratio of the lesion area to a circle with the same

perimeter. Nonetheless, an alternative version based on

the perimeter can be calculated as the ratio between the

equivalent diameter ED and maximum diameter MD

of the lesion [6], CO ¼ ED=MD. The circularity CI is

the measure of how closely the lesion area approaches

that of a circle, CI ¼ 4Ap=P2.

3. Solidity and rectangularity: these measures are based

on a convex hull (it checks a curve for convexity

defects and corrects them) and a bounding rectangle

from the lesion area. The solidity S is computed by the

ratio of lesion area A to its convex hull area CH,

S ¼ A=CH. Rectangularity R is the ratio of the lesion

area to the bounding rectangle area BA, i.e. a

bounding-box, R ¼ A=BA, where

BA ¼ width � height.

4. Aspect ratio and eccentricity: these measures can be

based on the structure of moments, up to the third order

of a lesion shape [6]. The aspect ratio AR is

determined by the ratio of the length of the major axis

A1 to the length of the minor axis A2, AR ¼ A1=A2,

where A1 and A2 are given by:

A1;A2 ¼ 8 mu02 þmu20 � mu02 �mu20ð Þ2þ4mu11

h i1=2
� �� �1=2

;

ð1Þ

where muij, defined in Eq. (2), is the i; jð Þth order of central
moments of the lesion shape. The relation cx; cy

� �

denotes

the lesion shape centroid given by: cx ¼ m10=m00 and

cy ¼ m01=m00, which is computed from the geometric

moments, mij, given by Eq. (3).

muij ¼
X

rows

x¼1

X

cols

y¼1

x� cxð Þi� y� cy
� � j

; ð2Þ

mij ¼
X

rows

x¼1

X

cols

y¼1

xi � y j: ð3Þ

The eccentricity e is a measure of the shape elongation

of the lesion region, which can be computed as:

e ¼ mu02 �mu20ð Þ24mu11

h i.

mu02 þmu20ð Þ2; ð4Þ

where muij is the central moments defined in Eq. (2).

2.1.2 Lesion asymmetry

In order to extract features based on the asymmetry prop-

erties, adapted from Oliveira et al. [16], the region of the

lesion under analysis is divided into two sub-regions

R1;R2ð Þ by an axis, according to the longest diagonal, d,

defined by the Euclidian distance:

D p;qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � x2ð Þ2þ y1 � y2ð Þ2
q

, where x1; y1ð Þ and

x2; y2ð Þ are the coordinates of the border pixels p and q. All

the border pixels are analysed in order to find which pair

has the greatest distance D p;qð Þ. Perpendicular lines Si from

the pixels of the longest diagonal d are computed to

analyse the similarity between two sub-regions of the

lesion. Afterwards, two semi-lines are determined from

each perpendicular line of the set Si, one semi-line repre-

sents the sub-region R1, and the other represents the sub-

region R2.

The distance D p;qð Þ of the semi-line for both sub-regions

R1;R2ð Þ is computed for each perpendicular, where p is a

pixel of the diagonal d and q is a pixel of the border. The

ratio between the shortest and longest distances based on

the semi-lines R1;R2ð Þ from each perpendicular line of set

Si is computed. The ratio between the two semi-lines can

determine whether the lesion area is more symmetric or

more asymmetric to a particular pixel of the longest

diagonal. Three features are extracted to represent the

lesion asymmetry: average ls, variance s
2
s and the standard

deviation ss from the ratios between the two semi-lines

based on all perpendicular lines of set Si.

2.1.3 Border irregularity

The border is represented by pixels that make up the lesion

boundary. A one-dimensional border of the lesion under

analysis is defined to extract features based on this prop-

erty. The number of peaks, valleys and straight lines of the

border is computed using the vector product and inflexion

point descriptors from the one-dimensional border,

according to Oliveira et al. [16]. The inflexion point

descriptor aims to analyse border pixels Pi to define which

pixels show a change of direction. On the other hand, the

vector product descriptor aims to analyse the border pixels

to identify peaks and valleys with substantial irregularities.

Six features are extracted to represent border irregularities:

(1) the number of peaks pS, valleys vS and straight lines lS
based on small irregularities of the border using the

inflexion point descriptor; and (2) the number of peaks pL,
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valleys vL and straight lines lL based on large irregularities

of the border using the vector product descriptor.

2.2 Colour spaces

Several colour spaces, described in the literature, are used

to obtain more specific information about the colours of a

lesion [24]. Some studies were focused on using only RGB

images, and most of them only used the red channel as it is

suitable to characterize skin lesions due to the dark colour

of malignant lesions and the reddish colour of benign

lesions [30]. Other studies used the RGB space combined

with other colour spaces to describe the colours of skin

lesions, such as the HSV, CIE Lab and CIE Luv spaces that

represent colours based on human perception [5, 6, 12, 14].

Furthermore, CIE Lab and CIE Luv spaces are approxi-

mately perceptually uniform colour spaces which can

facilitate the human perception of the colour properties

[31]. Here, for the extraction of colour and texture features,

four colour spaces were used: RGB, HSV, CIE Lab and CIE

Luv, which correspond to the defined sequence of the

channels c ¼ 1; 2; . . .; n, where n is the number of channels

(n ¼ 12), in order to explore the potential of each of them

as already mentioned.

1. RGB colour space: this colour space represents the

numerical values of the red, green and blue channels

and is widely used, since the images are originally

obtained with this colour space. Moreover, the original

RGB colour image can be used for conversion to other

colour spaces. Although this colour space presents

some disadvantages such as high correlation between

the channels and no perceptual uniformity [32], several

studies have achieved good results from it [6, 14].

2. HSV colour space: this colour space represents the hue,

saturation and value channels, which define the

perceived colour of an area, the purity of colour and

the brightness of colour, respectively. The conversion

from the RGB colour space to the HSV colour spaces is

given by:

V ¼ max R;G;Bð Þ;

S ¼ V �min R;G;Bð Þ½ �=V ; if V 6¼ 0

0; if V ¼ 0

�

;

H ¼
60 G� Bð Þ= V �min R;G;Bð Þ½ �; if V ¼ R

120þ 60 B� Rð Þ= V �min R;G;Bð Þ½ �; if V ¼ G

240þ 60 R� Gð Þ= V �min R;G;Bð Þ½ �; if V ¼ B

8

>

<

>

:

:

H ¼ H þ 360; if H\0; ð5Þ

where 0�H� 360, 0� S� 1 and 0�V � 1, and the

separation of each channel corresponds to H ¼ H=2,

S ¼ 255S and V ¼ 255V .

3. CIE Lab and CIE Luv colour spaces: these colour

spaces were proposed by the International Commission

on Illumination (CIE, in French), whose main goal was

to provide a uniform colour space. This means that the

distance between two colours in such a colour space is

strongly correlated with the human visual perception.

Another advantage of these colour spaces is the

separation of the luminance component L from the

chrominance channels (a, b) and (u, v). A difference

between these two colour spaces is that the CIE Lab

colour space normalizes the values by division with the

white colour point of the CIE XYZ colour space,

whereas the CIE Luv colour space normalizes the

values by the subtraction of such a white colour point

[31, 32]. The conversion from RGB colour space to the

CIE Lab and CIE Luv colour spaces is based on the

CIE XYZ colour space. Considering the values Xn, Yn,

and Zn as being the white colour points, the CIE Lab

colour space is computed by the following equations:

L ¼ 116 Y=Ynð Þ1=3�16; for Y [ 0:008856
903:3Y=Yn; for Y � 0:008856

�

;

a ¼ 500 X=Xnð Þ1=3� Y=Ynð Þ1=3
h i

;

b ¼ 200 Y=Ynð Þ1=3� Z=Znð Þ1=3
h i

; ð6Þ

where 0� L� 100, �127� a� 127 and

�127� b� 127, and the separation of each channel

corresponds to L ¼ L � 255=100, a ¼ aþ 128 and

b ¼ bþ 128. And finally the CIE Luv colour space is

computed by the following equations:

L ¼ 116 Y=Ynð Þ1=3�16; forY [ 0:008856

903:3Y=Yn; forY � 0:008856

(

;

u ¼ 13L u0 � unð Þ; v ¼ 13L v0 � vnð Þ;

u0 ¼ 4X=X þ 15Yþ 3Z, v0 ¼ 9Y=X þ 15Yþ 3Z,

un ¼ 4Xn=Xn þ 15Yn þ 3Zn; vn
¼ 9Yn=Xn þ 15Yn þ 3Zn; ð7Þ

where 0� L� 100, �134� u� 220 and

�140� v� 122, and the separation of each channel

corresponds to L ¼ L � 255=100, u ¼
255=354 uþ 134ð Þ and v ¼ 255=262 vþ 140ð Þ.

2.3 Colour variation

Statistical measures based on several colour spaces are

commonly applied to the feature extraction from the lesion

region [5, 6, 14]. Furthermore, these measures are also

applied to other regions associated with the lesion border.

The background skin [14] and surrounding skin (inner or

Neural Computing and Applications (2019) 31:6091–6111 6095

123



outer peripheral regions) [6] are examples of such regions

that are considered for feature extraction. Skin lesion fea-

tures based on relative colours have been proposed [6, 14]

in order to assess colour features from the different regions

associated with the lesion. Basic colours in the skin lesions

have also been considered and computed [33].

In order to analyse the colour variation, six statistical

measures are computed for each colour channel c of the

lesion region using the four colour spaces as defined ear-

lier, with c ¼ 1; 2; . . .; n, where n is the number of channels

used for the colour feature extraction.

1. Colour average, variance and standard deviation: these

measures evaluate the average and the variation of a

set of lesion intensity values Ip, of each colour channel

c. The average lc, variance s2c and standard deviation

sc are computed by the following equations:

lc ¼
1

N

X

N

p¼1

ðIpÞ; ð8Þ

s2c ¼
1

N � 1

X

N

p¼1

Ip � lc
� �2

; ð9Þ

sc ¼
ffiffiffiffi

s2c

q

; ð10Þ

where N is the number of pixels of the ROI in the

image.

2. Minimum and maximum colours: these measures

define the minimum value, minc ¼ min Ip
� �

, and the

maximum value, maxc ¼ max Ip
� �

of the set of lesion

intensity values Ip, of each colour channel c.

3. Colour skewness: this measure computes the asymme-

try SKc of the data around the set of lesion intensity

values Ip:

SKc ¼
1

N

X

N

p¼1

Ip � lc
� �3

" #

=s3c ; ð11Þ

where l, s are the average and the standard deviation

of the set of lesion intensity values Ip, and N is the

number of pixels of the ROI in the image.

2.4 Texture analysis

The best features to represent the skin lesion texture were

acquired by using three texture analysis methods. The

texture features are computed for each colour channel

using the four colour spaces as defined earlier. Thus, a total

of 420 texture features are extracted: 12 features from the

fractal dimension analysis [34], 240 features from the

discrete wavelet transform [35] and 168 features from the

single-channel co-occurrence matrix [36].

2.4.1 Colour image-based fractal dimensional analysis

In order to extract the texture properties of the skin lesions,

fractal dimensions are computed from the image under

study using a box-counting method (BCM), since it is

simple and effective for skin lesion analysis [16]. A fractal

dimension [34] is a procedure for splitting the input image

into several quadrants to quantify the irregularity level or

self-similarity of the image fractals, according to

D ¼ log Pð Þ= log 1=Tð Þ, where P represents the number of

elements of the self-similar parts that reconstruct the

original image, and T is the number of quadrants corre-

sponding to a fraction of its previous size. BCM projects a

grid over the image, i.e. it divides the image into several

squares. The process is iterative, in which the size of each

square decreases and the number of squares that covered

the fractal is counted at each iteration.

The bi-dimensional fractal dimension D2
c , which is

computed individually for each channel c of the colour

spaces, is defined as:

D2
c ¼

1

N

X

rows

i¼1

X

cols

j¼1

Di;j

 !

þ 1; with c ¼ 1; 2; . . .; n; ð12Þ

where Di;j is the fractal dimension obtained at each itera-

tion, i.e. it is computed individually for each row i and

column j of the image, N is the total number of fractal

dimensions, and n is the number of channels used for the

texture feature extraction.

2.4.2 Colour image-based wavelet transform

There are several transform methods that have been applied

to diagnose skin lesions based on texture feature analysis,

including the Fourier [17], Gabor [18] and wavelet [7]

transforms. Texture analysis methods based on the Fourier

transform may present poor performance due to its lack of

spatial localization, whereas a Gabor filter allows a supe-

rior spatial localization. However, the wavelet transform

presents several advantages compared to the Gabor trans-

form; for example, the variation of the spatial resolution

allows it to represent textures using a more suitable scale.

There are several scales available to the wavelet function

and therefore it can choose the best one for a given

application [13]. In this work, a discrete wavelet transform

(DWT) was adopted to extract texture features from ima-

ges, since it provides a representation that is easy to

interpret [35], and that can be efficiently implemented with

a pyramidal structure using quadrature mirror filters for

texture discrimination [37].

A bi-dimensional wavelet transform is used to decom-

pose a 2-D image, to which one-dimensional transforma-

tions are applied individually along the horizontal and
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vertical directions of an image [35]. The decomposition of

a one-dimensional signal f tð Þ is based on a family of

wavelet functions that usually is defined as complete and

with an orthogonal base:

Wa;b ¼
Z

1

�1

f tð Þwa;b tð Þdt: ð13Þ

This family is obtained by dilating and translating a

single function defined as the mother wavelet w:

wa;b tð Þ ¼ 1
ffiffiffi

a
p w

t � b

a

� �

; ð14Þ

where a and b are the parameters of dilating and translat-

ing, respectively. When a and b are defined for discrete

signals, a DWT is obtained.

The DWT, based on a multi-resolution, decomposes an

input signal in two new signals with different frequencies

using quadrature mirror filters. Such signals correspond to

low- and high-pass filters that represent the wavelet func-

tions (mother wavelet) w tð Þ and scaling functions (father

wavelet) / tð Þ, respectively. The low-pass filter corresponds
to approximation coefficients, whereas the high-pass filter

corresponds to detail coefficients.

The decomposition of a bi-dimensional signal using

DWT yields a subsample with four sub-bands for one level

of decomposition that are: LL, LH, HL and HH. The sub-

band LL corresponds to the clustering of low-pass filtering

in the lines and columns. The sub-band LH corresponds to

the clustering of low-pass filtering in the lines and high-

pass filtering in the columns. The sub-band HL corresponds

to the clustering of high-pass filtering in the lines and low-

pass filtering in the columns. The sub-band HH corre-

sponds to the clustering of high-pass filtering in the lines

and columns. These sub-bands have an equal number of

pixels as the original image. A multi-level decomposition

can be considered, when the decomposition is applied

recursively to the LL sub-band. The result of such

decomposition is a standard pyramidal wavelet transform.

A problem in this wavelet decomposition approach is

the large number of features that can be obtained depend-

ing on the number of levels used and it can give the clas-

sification a high computational cost. In addition, the

resolution of the images decreases at each level decom-

position and smaller details can gradually disappear [37].

Therefore, a three-level decomposition was used to

decompose the images based on experiments performed by

Mallat [37] who illustrated the numerical stability of this

level for the decomposition and reconstruction processes

with good quality. Based on this, the number of sub-bands

ns was defined as 10 for each channel of the colour spaces.

A Haar wavelet filter was used to implement the DWT,

with the coefficients defined as h ¼ 1:0=
ffiffiffi

2
p

; 1:0=
ffiffiffi

2
p

� �

.

This filter was used since it is simple and has been previ-

ously applied to extract texture from skin lesion images

[38].

The energy E Sbð Þc and entropy H Sbð Þc measures for the

feature extraction from the coefficients obtained by DWT

are computed for each sub-band Sb ¼ 1; 2; . . .; ns and each

colour channel c:

E Sbð Þc¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

Xrows

i¼1

Xcols

j¼1
Sb2i;j

	 


r

; ð15Þ

H Sbð Þc¼
1

N

X

rows

i¼1

X

cols

j¼1

Sb2i;j � log Sb2i;j

	 
h i

; ð16Þ

where Sbi;j corresponds to the sub-band coefficient for the

pixel i; j and N is the total number of pixels in the sub-

band. These measures are commonly used to represent the

texture of skin lesion images [7].

2.4.3 Colour image-based co-occurrence matrices

The grey-level co-occurrence matrices (GLCMs) represent

the relationship between the intensities of neighbouring

pixels to characterize the texture of an image [36]. Such a

matrix m i; j; d; hð Þ is obtained by the joint probability of

occurrence of grey levels considering each pair of

neighbour pixels i; j of an image, where these pixels are

separated by a distance d and in a specific direction h.
In this study, co-occurrence matrices (CMs) were used

for the colour channels. The single-channel co-occurrence

matrices (SCMs) were applied separately to each colour

channel, with c ¼ 1; 2; . . .; n, where n is the number of

colour channels. The parameters used to set up the matrices

are based on Haralick et al. [36]. The intensities of each

channel are quantized by an equal probability quantizing

algorithm, with q ¼ 16. The distance d between one pixel

and its neighbours is d ¼ 1, and four orientations h are

considered h ¼ 0	; 45	; 90	; 135	ð Þ. In order to extract

rotation invariant features, a normalized SCM is obtained

from the SCMs corresponding to the four orientations.

From the normalized SCM, 14 statistical measures

based on Haralick’s texture features [36] were extracted

from the image: angular second moment ASMc, contrast

Cc, correlation CRLc, variance VARc, inverse difference

moment IDMc, sum average SAc, sum variance SVc, sum

entropy SHc, entropy Hc, difference variance DVc, dif-

ference entropy DHc, information measure of correlation

1 CRL1c, information measure of correlation 2 CRL2c
and maximal correlation coefficient MCCc. These features

are expressed in Eqs. (17)–(30), where mi;j is the entry

value in the position i; j of the normalized matrix and N is

the number of different intensities contained in the

quantized image:
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ASMc ¼
X

N

i¼1

X

N

j¼1

mi;j

� �2
; ð17Þ

Cc ¼
X

N

i¼1

X

N

j¼1

mi;j i� jð Þ2
h i

; ð18Þ

CRLc ¼
X

N

i¼1

X

N

j¼1

i� j� mi;j

� �

� lxly

" #,

rxry; ð19Þ

where lx, ly, rx and ry are the averages and standard

deviations of mx ¼
PN

j¼1 mi;j

� �

and my ¼
PN

i¼1 mi;j

� �

; and

VARc ¼
X

N

i¼1

X

N

j¼1

i� lð Þ2mi;j

h i

; ð20Þ

IDMc ¼
X

N

i¼1

X

N

j¼1

mi;j=1þ i� jð Þ2
h i

; ð21Þ

SAc ¼
X

2N

i¼2

i� mxþy ið Þ
� �

; ð22Þ

SVc ¼
X

2N

i¼2

i� SEchð Þ2mxþy ið Þ

h i

; ð23Þ

SHc ¼ �
X

2N

i¼2

mxþy ið Þ log mxþy ið Þ
� �� �

; ð24Þ

Hc ¼
X

N

i¼1

X

N

j¼1

mi;j log mi;j

� �� �

; ð25Þ

DVc ¼ variance mx�y

� �

; ð26Þ

DHc ¼ �
X

N�1

i¼0

mx�y ið Þ log mx�y ið Þ
� �� �

; ð27Þ

where mxþy kð Þ ¼
PN

i¼1

PN
j¼1 mi;j

� �

, with k ¼ 2; 3; . . .; 2N,

iþ j ¼ k, and mx�y kð Þ ¼
PN

i¼1 mi;j

� �

PN
j¼1 mi;j

� �

, with

k ¼ 0; 1; . . .;N � 1, i� jj j ¼ k; with:

CRL1c ¼ HXY� HXY1ð Þ=max HX;HYð Þ; ð28Þ

CRL2c ¼ 1� exp �2:0 HXY2� HXYð Þ½ �ð Þ1=2; ð29Þ

where HX and HY are entropies of mx ið Þ and my jð Þ,

HXY ¼ �
PN

i¼1

PN
j¼1 mi;j log mi;j

� �� �

,

HXY1 ¼ �
PN

i¼1

PN
j¼1 mi;j log mx ið Þmy jð Þ

� �� �

, and

HXY2 ¼ �
XN

i¼1

XN

j¼1
mx ið Þmy jð Þ log mx ið Þmy jð Þ

� �� �

, and:

MCCc ¼ second largest eigen value of Qð Þ1=2; ð30Þ

where Qi;j ¼
PN

k mi;kmj;k

� �

= mx ið Þmy kð Þ
� �� �

.

3 Skin lesion classification

Here, first the set of features for skin lesion diagnosis are

constructed, and then classified. The classification process

must be accurate, since it is used to assist dermatologists in

their diagnosis; however, the accuracy of the classification

depends on several factors, such as a reliable dataset. The

pre-processing step in this study included data normaliza-

tion, dataset balancing and feature selection. The classifi-

cation was carried out using the Weka library [39].

3.1 Data pre-processing

The data pre-processing step, which precedes the classifi-

cation process, normalizes the dataset values from the

feature extraction process as they contain different ranges,

and some classifiers cannot handle such differences. The

normalization procedure scales all numeric values in the

dataset to within the same interval [0, 1] by computing:

xnim ¼ xim �min ximð Þ½ �= max ximð Þ �min ximð Þ½ �; ð31Þ

where xim is the actual value of the feature m in the sample

i, with the minimum and maximum values of features of all

the samples, and xnim is the normalized value of the same

feature m in the same sample i.

Unbalanced datasets can affect the performance of

classifiers. For example, here the dataset was composed of

916 samples of benign lesions and 188 samples of malig-

nant lesions. This unbalanced dataset, i.e. with different

numbers of samples in each class, can decrease the accu-

racy of the evaluation result, since classifiers tend to pri-

oritize classes with a higher number of samples. Sampling

methods have effective strategies to overcome such a

problem and are commonly used [40]. In this work, a

combined resampling strategy was applied to the dataset

[39], considering the random under-sampling and random

over-sampling methods that are the two basic methods used

for balancing classes. The random under-sampling removes

samples randomly in the majority class, i.e. samples of

benign lesions, while the random over-sampling replicates

samples randomly in the minority class, i.e. samples of

malignant lesions. This strategy produced a random sub-

sample of the original dataset using sampling with

replacement, where the samples are replicated or removed

in the minority or majority class until a uniform distribu-

tion of the samples is reached. This strategy was adopted

because it ensured a uniform distribution of the samples

without removing to many samples from the majority class

and without replacing to many samples in the minority

class. This process established 552 samples of benign

lesions and 552 samples of malignant lesions.

Another problem that also affects the performance of

classifiers is the choice of meaningful features to represent
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the input images. Therefore, feature selection algorithms

are used to define the best features to solve such a problem

[41]. Feature selection consists of finding the best features

through an evaluation process according to either ranking

or search strategies. The ranking strategy produces a

ranked list of features based on the evaluation process. On

the other hand, the search strategy influences the search

direction and execution time of the selection process

depending on the search strategy adopted, which can be

complete, sequential or random [42]. The sequential search

strategy is usually used for skin lesion feature selection and

it can be by the forward, backward or bi-direction selection

depending on the search method used. The forward selec-

tion process starts with an empty set, and the best features

are gradually added to the set, according to the perfor-

mance obtained from the evaluation method, whereas the

backward selection process starts with all features and the

worst features are removed at each iteration. The bi-di-

rection selection combines both the forward and backward

searches.

The evaluation process using filters allows for assessing

the quality of selected features without using any classifi-

cation algorithms. Each candidate subset is evaluated by

applying an independent criterion, which can be based on

several measures to compare it with the best current subset

previously established. If the new evaluated subset is

considered better then it becomes the best current subset.

These measures can be defined as [43]:

• Distance measures that try to find the feature that can

separate the classes as far as possible from each other;

• Information measures that establish the information

gain from a feature and the feature with the most

information is preferred; and

• Dependency measures that are also known as correla-

tion measures applied to evaluate the ability to predict

the value of one feature from the value of another, or

how strongly a feature is in regard to the class.

In this study, six feature selection algorithms, based on

the measures discussed above and on a feature transfor-

mation algorithm, were used to generate different subsets

of features. These six algorithms are commonly used for

the selection of skin lesion features [24], since they present

several advantages over others, such as computationally

efficient, simpler and faster algorithms, independent eval-

uation criteria and ability to overcome over-fitting.

1. Relief-F feature selection [44]: this algorithm is an

extension of the relief algorithm to deal with noise and

multi-class problems. The dataset samples are ran-

domly defined. For each sample that is defined, the

closest samples of the same and different classes are

selected using a nearest-neighbour algorithm [45]. The

quality of each feature is estimated, according to its

value in regard to these closest samples.

2. Information gain-based feature selection [41]: this

algorithm estimates the quality of a feature, according

to its information gain in regard to the class. The

information gain between each feature F and the class

C is measured by the entropy H, according to the

information theory criteria [46]. Therefore, the features

that have high information gain Ig C;Fð Þ are considered

the most relevant, where Ig C;Fð Þ ¼ H Cð Þ � HðCjFÞ.
3. Gain ratio-based feature selection (GRFS) [39]: this

algorithm is also based on the entropy H and it

estimates the quality of a feature F, according to its

gain ratio in regard to the class C. Therefore, the

features that have high gain ratio Gr C;Fð Þ are consid-

ered the most relevant, where

Gr C;Fð Þ ¼ H Cð Þ � H CjFð Þ½ �=H Fð Þ

.

4. Correlation coefficient-based feature selection [41]:

this algorithm estimates the quality of a feature,

according to its Pearson’s correlation coefficient in

regard to the class. The correlation coefficient is

computed by a covariance and variance between the

features and the class.

5. Correlation-based feature selection (CFS) [47]: this

algorithm tries to find a set of features that are highly

correlated with a class and with low inter-correlation

between them. The degree of correlation between the

features is computed by a symmetrical uncertainty,

which is a modified version of the information gain

measure.

6. Principal component analysis (PCA) [48]: here the

features are transformed to a PC based on a correlation

matrix, where eigenvectors (vectors of features) are

defined, according to some percentage of the variance

in the original data. The worst eigenvectors are

removed and the new features are ranked, according

to the best eigenvalues.

All feature selection algorithms discussed above are

single-feature evaluators, with the exception of CFS that is

a feature subset evaluator. The single-feature evaluators are

used with a ranking strategy, where the features are ranked

individually according to their evaluation, i.e. the most

relevant [39]. Here, in order to study different stopping

criteria for the ranking strategy, the numbers of features to

be retained (N) were empirically defined: 25, 50 and 75. On

the other hand, the feature subset evaluator, i.e. CFS,

measures the quality of a subset of features and returns a

value that is used in the search [39]. In this study, the

greedy stepwise and best first search methods were com-

pared for use with the CFS algorithm. The greedy stepwise
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method searches for feature subsets in either the forward or

backward directions in a greedy way [39]. The selection

process using the greedy stepwise method and the CFS

algorithm must stop when the addition or removal of any

feature worsens the quality of the best-found subset, i.e.

when the evaluation of the current subset presents a lower

quality than the evaluation of the subset of the previous

iteration. The best first method searches the feature subsets

by greedy hill-climbing, and the search direction can be

forward, backward or bi-direction [39]. The stopping cri-

terion for the best first method and CFS algorithm was to

stop after five successive iterations that did not improve the

previous result.

3.2 Classification

In this study, the focus is on models with a single classifier

that can choose the best classification using different

datasets, e.g. using a stratified k-fold cross-validation pro-

cedure [39]. This approach splits the training set in k

subsets of equal size and the procedure is repeated k times.

In each procedure, one subset is employed as a test set

while the others are used as the training set. The best model

is chosen, according to its performance, which is measured

by averaging the accuracy obtained from each trial. This

procedure can be applied to avoid over-fitting while testing

the capacity of the classifier to generalize. In addition, this

approach has shown good results compared with other

procedures [49].

Six different categories of classifier were applied in this

work to evaluate the dataset from the extracted features:

the k-nearest neighbours (KNN) [45], Bayes networks

(Bayes Net) [50], C4.5 decision tree [51], multilayer per-

ceptron (MLP) [52] and support vector machine (SVM)

[53] were the most commonly used classifiers, according to

the categories presented by Oliveira et al. [24]. In addition,

the optimum-path forest (OPF) classifier [22] was also used

in this study. To the best our knowledge, no previous study

has used this later classifier to identify skin lesions in

images.

1. kNN: here, a search algorithm and a distance function

are used to assess which sample of the training set is

closest to an unknown sample and then assigning the

unknown sample to the class with the majority of

k-nearest neighbours. The main advantages of these

classifiers are their simplicity to implement and the

possibility to add new samples to the training set at any

time.

2. Bayes Net: this is a Bayesian learning-based algorithm

[50] that computes the probability of a given set of

features to belong to each class, assuming that the

features are independent. The Bayes Net learning uses

search algorithms and quality measures, which provide

a network structure and conditional probability

distributions.

3. C4.5: this algorithm is used to create a decision tree

[54] that has a structure similar to a flowchart, in which

each internal node (non-leaf) represents a test of a

feature, each branch represents the result of the test,

and each external node (leaf) indicates a prediction of

the class. A complete decision tree can contain

unnecessary structures, and strategies of pre-pruning

and post-pruning can be performed to simplify its

structure. Pre-pruning involves decision making during

the tree building process, whereas in the post-pruning

this is done afterwards. The C4.5 algorithm divides the

features at the nodes based on information gain. It

prevents over-fitting which is also a form of pre-

pruning. The post-pruning in C4.5 yields a dense

decision tree very quickly. It can also deal with

situations in which two features that individually

present no contribution, but are powerful predictors

when combined [39].

4. MPL: this algorithm is one of the most commonly used

architectures of artificial neural network (ANNs) [52]

that are parallel distributed systems composed of layers

of input and output elements linked by weighted

connections. During the learning phase, the weights are

adjusted to predict the correct class based on the input

samples. The MPL can include one or more layers of

processing, also called hidden layers, placed between

the input and output layers. Back-propagation is a

supervised learning method widely used in the MLP

architecture, which consists of forward and backward

processes applied to adjust the weight values of the

connections. The MLP algorithm has good capability

and flexibility to overcome various non-separable

problems.

5. SVM: this classifier is used to build a hyper-plane to

separate data, according to the defined classes. This

kind of classifier has been commonly applied to

classify skin lesions due to its good overall properties.

Furthermore, kernel functions simplify the process of

separating the nonlinear data using a simple hyper-

plane in a high-dimension feature space. The radial

basis function (RBF) and polynomial kernels have

been frequently used in several different studies [24].

For the SVM classifier, Platt’s [55] sequential minimal

optimization algorithm was used.

6. OPF: this is applied to solving pattern recognition

problems as a graph based on prototypes to represent

each class by one or more optimum-path trees,

considering some key samples. The training samples

are nodes of a complete graph, whose arcs are the link

of all pairs of nodes. The arcs are weighted by the
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distances between the feature vectors of their corre-

sponding nodes. The classification of a new sample is

defined, according to the strong connectivity of the

path between the sample and the prototype. Therefore,

the path with minimum cost, among all paths, is

considered the optimum one. The OPF classifier shows

some interesting properties, such as speed, simplicity,

ability to deal with multi-class classification and

overlapping between classes, parameter independence

and no assumptions are based on the shape of the

classes. For the application of the OPF classifier, it was

used the Weka library based on LibOPF [22] as

proposed by Amorim et al. [56].

The performance of the classification was evaluated

using accuracy (ACC), sensitivity (SE) and specificity (SP)

measures, which are based on outcomes of classifiers,

according to the predicted class and known class. These

outcomes represent the number of correct (true) and

incorrect (false) classification for each class, positive and

negative. These measures are commonly used according to

[24] and they are defined as:

ACC ¼ TPþ TN

Pþ N
� 100%; ð32Þ

SE ¼ TP

TPþ FN
� 100%; ð33Þ

SP ¼ TN

TNþ FP
� 100%; ð34Þ

where P is the number of positive samples and N is the

number of negative samples of the dataset. Here, the pos-

itive samples represent the benign lesions and the negative

samples the malignant lesions. Therefore, TP (true posi-

tive) is the number of correctly classified benign lesions,

TN (true negative) is the number of correctly classified

malignant lesions, FP (false positive) is the number of

incorrectly classified malignant lesions and FN (false

negative) is the number of incorrectly classified benign

lesions.

A cost function C adopted from Barata et al. [12] is used

to deal with the trade-off between SE and SP, which is

defined as:

C ¼ c10 1� SEð Þ þ c01 1� SPð Þ
c10 þ c01

; ð35Þ

where c10 is the cost of an incorrectly classified benign

lesion, and c01 is the cost of an incorrectly classified

malignant lesion. The costs used to evaluate the classifi-

cation were defined according to Barata et al. [12], where

c10 ¼ 1 and c01 ¼ 1:5. These authors chose a higher cost

for c01, since an incorrect classification of a malignant

lesion is more critical. The lower the value of cost C, the

better the classification performance is.

4 Experimental results

In order to evaluate the proposed feature extraction in the

classification of benign and malignant skin lesions, two

experiments were performed. First, the experiments for the

skin lesion classifications using all features of the dataset

are presented. Second, the experiments for the feature

selection of skin lesions are presented as well as these for

the lesion classification. In this section, classification

results are described and discussed. In addition, the image

dataset used to evaluate the results is presented, as well as

the computational time of the system.

4.1 Dermoscopic image dataset

The dermoscopic images of pigmented skin lesions used to

evaluate the extraction of features were collected from the

International Skin Imaging Collaboration (ISIC) dataset

[57]. Examples of these images are shown in Fig. 2. In

addition, the images are paired with the expert manual that

contains the skin lesion diagnoses, as well as the ground-

truth lesion segmentations in the form of binary masks. In

this study, a feature extraction approach, based on shape

properties, colour variation and texture analysis, is pro-

posed. Moreover, since the shape properties are obtained

from the lesion borders, only the images where the lesion

fitted completely within the image frame were selected so

that the features could be extracted with greater precision.

A total of 1104 images were selected from the original

dataset. Of these, 916 images were benign lesions and 188

images were malignant lesions. The images of the dataset

were resized to an average resolution of 400� 299 pixels

to simplify their processing.

4.2 Evaluation of the proposed feature
extraction

The performance of the classification using all extracted

features was evaluated by different classifiers, which were

described in the previous section. Each classifier was used

with several different parameters to find the best results

with a tenfold cross-validation procedure. The set of

parameters evaluated in this study was defined based on

previous studies that had used these classifiers for skin

lesion classifications [5, 12, 21, 58, 59]. The kNN classifier

used a linear nearest-neighbour search algorithm and three

distance functions were compared, i.e. Euclidean, Cheby-

shev and Manhattan, to find the nearest neighbours. Dif-

ferent values of k were applied for each distance function

and the number of neighbours used was k ¼ 5; 7; . . .; 25f g.
The Bayes net classifier used a hill-climbing search algo-

rithm to find the network structures, and a simple estimator
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to estimate the conditional probabilities of a network. The

parameter alpha for the simple estimator was settled with

the following values: A ¼ 0:1; 0:2; . . .; 0:9f g. The C4.5

classifier used two sets to define the minimum number of

samples per leaf, M1 ¼ 2; 4; . . .; 20f g and

M2 ¼ 82; 84; . . .; 100f g, and the values of the confidence

factor used for pruning were CF ¼ 0:1; 0:2; . . .; 0:9f g.
The MPL classifier analysed two values: one hidden

layer of the neural network, with H1 ¼
featuresþ classesð Þ=2 and the other H2 ¼ classes. The

learning rate L ¼ 0:3 is the number of the weights that

were updated, and the momentum M ¼ 0:2 was applied to

the weights when updating. The SVM classifier analysed

two kernels: the polynomial and RBF kernels. In the RBF

kernel, the parameter gamma was carried out with different

values of G ¼ 0:001; 0:002; . . .; 0:1f g, and the complexity

parameter C ¼ 1; 2; . . .; 10f g was applied to both kernels.

And finally the OPF classifier compared three distance

functions: Euclidean, Chebyshev and Manhattan, in order

to find the distances between the feature vectors.

As aforementioned, the best parameters for each clas-

sifier were defined based on the initial experiments.

Table 2 indicates the values of the parameters used in the

following experiments performed in this study. Table 3

shows that good results were achieved using these

parameters and the proposed extracted features, mainly for

the specificity of the malignant lesion classification (SP).

4.3 Performance evaluation using feature
selection

The best results were obtained by the OPF and SVM

classifiers as shown in Table 3 (in bold), where both

classifiers achieved a good generalization between the

classes. Despite the fast training of the Bayes Net classifier,

Fig. 2 Four examples of dermoscopic images: a and b are benign lesions, c and b are malignant lesions

Table 2 Best parameters achieved by each classifier

Classifier Parameters

k-nearest neighbours k:5

Search algorithm: linear NN Search

(distance function: Manhattan)

Bayes networks Estimator: simple estimator (alpha: 0.1)

search algorithm: hill-climbing

C4.5 decision tree Confidence factor: 0.3

Minimum number: 2

Multilayer perceptron One hidden layer: featuresþ classesð Þ=2
Learning rate: 0.3

Momentum: 0.2

Support vector machine Complexity parameter: 10

Kernel: RBF (gamma: 0.1)

Optimum-path forest Distance function: Euclidean
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the classification results were not so expressive, as this

classifier is sensitive to redundant features as it assumes

that the features should be independent. The kNN classifier

did not make a good distinction between the benign and

malignant classes. This classifier is sensitive to the exis-

tence of irrelevant features, which explain these results.

Although the MLP classifier is competent to solve several

non-separable problems, it was not able to make a good

distinction between the classes. Furthermore, this type of

classifier needs a long training time for the size of the

feature set. The C4.5 classifier, on the other hand, resulted

in a more balanced classification result between the two

classes. However, this classifier can have difficulties in

dealing with correlated features. All these classifiers can

achieve superior results using feature selection algorithms.

In order to improve the classification results and to avoid

over-fitting caused by a large number of features, several

different feature selection algorithms were used to find the

best features for the classification process. These algo-

rithms considered two types of evaluators as mentioned

earlier. The single-feature evaluators that use a ranking

method, i.e. the correlation coefficient, GRFS, information

gain, relief-F and PCA, were applied until a certain number

of features are selected, which correspond to the stopping

criterion belonging to the set N ¼ 25; 50; 75f g, with the

exception of the PCA algorithm that chooses enough

eigenvalues to rank the new transformed features. The

maximum number of features F ¼ 5 was used for the PCA

algorithm in order to include this number of features in

each transformed feature, and the proportion of variance

V ¼ 0:95 was used to retain a sufficient number of PC

features. Accordingly, 31 eigenvalues were selected by the

PCA algorithm to represent the vector with the new fea-

tures. The number of nearest neighbours for the relief-F

was defined as k ¼ 10 for the feature estimation.

In the case of the feature subset evaluator, i.e. CFS, the

greedy stepwise search method, in either forward or

backward directions, was applied until the addition or

removal of any feature in the subset caused a lower eval-

uation, i.e. low correlation to the class and high correlation

with one or more of the other features relative to the pre-

vious evaluation. This resulted in 37 features selected by

the forward direction and 50 by the backward direction.

The best first search method was also performed in the

directions: forward, backward or bi-direction. However,

experimental results, using the classifiers discussed in the

previous section, showed that this second method did not

improve the classification performance over that obtained

using the stepwise search method alone. Therefore, only

the stepwise method was used with CFS for comparison

with the other feature selection algorithms.

Figure 3 shows the percentage of selected features for

each feature selection algorithm. The features were divided

into five categories: shape, colour, fractal texture, wavelet

texture and Haralick’s texture; the percentage was com-

puted individually for each category. Only the best con-

figurations from the classification results were used for

each feature selection algorithm and the features selected

were: the first 75 ranked features from the correlation

coefficient, GRFS, information gain and relief-F algo-

rithms, the first 31 new features ranked by the PCA algo-

rithm, and a subset of 50 features defined by the CFS

algorithm.

Figure 3 shows that there were large differences

between the feature selection algorithms. The correlation

coefficient and information gain were the only algorithms

that did not select features from all the categories. The

PCA algorithm selected the greatest percentage of features

from the shape and colour categories, whereas the infor-

mation gain algorithm selected the greatest percentage of

texture features. The relief-F algorithm selected over 80%

of the fractal texture, but it did not select the wavelet and

Haralick’s texture features proportionally. On the other

hand, the GRFS and CFS algorithms selected features from

among all the categories in a more uniform way. The

results of this feature selection process were evaluated

using several different classifiers. The objective of this

evaluation was to analyse which feature selection algo-

rithms achieved the best classification results. The algo-

rithms that select features from all the categories were

expected to obtain the best classification results, according

to the objective proposed in this study.

Table 4 shows the best classification results using the

feature selection algorithms. These results show that the

OPF classifier with the features selected by the CFS

algorithm and the MPL classifier with the features selected

by the GRFS algorithm achieved superior results compared

to the others, as presented in Table 4 (in bold). In addition,

the features selected by the CFS and GRFS algorithms

obtained better results for the classifiers than the other

algorithms. As mentioned earlier, these algorithms selected

the features of all the categories more uniformly (Fig. 3),

which explains these results. The features selected by the

Table 3 Performance results for each classifier using all features

Classifier ACC (%) SE (%) SP (%) C

kNN 75.8 69.4 82.2 0.229

Bayes net 68.2 54.0 82.4 0.290

C4.5 86.9 82.2 91.5 0.122

MLP 74.5 61.2 87.7 0.229

SVM 91.7 87.1 96.2 0.074

OPF 92.3 87.5 97.1 0.067
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Fig. 3 Percentage of selected features after applying feature selection algorithms: a correlation coefficient, b GRFS, c information gain, d relief-

F, e PCA and f CFS

Table 4 The best classification

results using feature selection

algorithms

Classifier FS algorithm (search) Features ACC (%) SE (%) SP (%) C

kNN CFS (backward stepwise) 50 75.8 67.8 83.9 0.225

Bayes net CFS (forward stepwise) 37 74.4 64.3 84.4 0.236

C4.5 PCA (ranker) 31 89.7 83.5 95.8 0.091

MLP GRFS (ranker) 75 90.6 86.6 94.6 0.086

SVM Relief-F (ranker) 75 80.1 76.1 84.1 0.191

OPF CFS (backward stepwise) 50 91.6 87.0 96.2 0.075
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PCA algorithm also obtained good results among the

classifiers, despite the fact that it did not select the features

uniformly; also the C4.5 classifier had a high SP result.

However, this classifier did not stand out as much as the

OPF and MPL classifiers, i.e. the C4.5 classifier had a

higher classification cost.

The classification results are presented in more details in

Fig. 4, where it is possible to analyse the variation of the

accuracy, sensitivity and specificity, according to the

number of ranked features defined by the correlation

coefficient, GRFS, information gain and relief-F algo-

rithms. Figure 5 shows the variation of the results for the

features selected by the PCA and CFS algorithms. In

addition, the classification results for each feature selection

are compared with the results using the entire set of fea-

tures. From the feature selection, the OPF and kNN clas-

sifiers maintained their results, but they did not achieve

better results. The MPL, C4.5 and Bayes Net classifiers had

better results with the feature selection, whereas the SVM

classifier achieved much better results with the entire set of

features.

In order to evaluate the/a combination of features

(fractal texture, wavelet texture and Haralick’s texture

categories combined with shape and colour features), as

proposed in this study, some experiments considering

feature subsets for each category individually and the best

classifier achieved (OPF) were also performed. A texture

subset, i.e. with the combination of all features of the

texture categories achieved better results (ACC = 91.6%,

SE = 86.8%, SP = 96.4%, C = 0.074) than using each

category individual, i.e. fractal texture (ACC = 89.7%,

SE = 84.1%, SP = 95.7%, C = 0.089), wavelet texture

(ACC = 90.7%, SE = 85%, SP = 96.4%, C = 0.082) and

Haralick’s texture (ACC = 88.3%, SE = 80.1%, SP =

96.6%, C = 0.100). The extracted texture features com-

bined with shape and colour features obtained superior

results for skin lesion diagnosis (ACC = 92.3%, SE =

87.5%, SP = 97.1%, C = 0.067) than when only shape and

colour features were used (ACC = 90.5%, SE = 85%,

SP = 96%, C = 0.084).

4.4 Computational time

The proposed approach was developed using: (1) Visual

Studio Express 2012 environment, C/C?? and OpenCV

2.4.9 library for the feature extraction algorithms; and (2)

Eclipse IDE 4.6.1 environment, java 1.8.0_111, and Weka

3.8 library for the classification algorithms. Table 5 shows

the computational time of the processing of all images for

each task, which includes feature extraction, and classifi-

cation with and without feature selection using the best

classification model. All algorithms were performed on an

Intel(R) Core(TM) i5 CPU 650 @ 3.20 GHz with 8 GB of

RAM, running Microsoft Windows 7 Professional 64-bits.

The values in Table 5 indicate that the feature extraction

step was the most time-consuming; however, the compu-

tation time required by this step can be considerably

decreased using optimized C/C?? implementations. To

find the lesion asymmetry, the proposed algorithm will take

O n2ð Þ time where n is the number of boundary points;

however, the rotating callipers method [63] can be used to

reduce the complexity to O nlognð Þ.

5 Discussion

The main objective of this study was to evaluate and pro-

pose a set of features based on shape properties, colour

variation and texture analysis, using several different

methods, to diagnose skin cancer with a dataset of 1104

dermoscopic images. The full set of features (Table 1)

achieved ACC = 92.3%, SE = 87.5% and SP = 97.1%

using the OPF classifier. The best set of features from the

selection process was obtained using the CFS algorithm

and the OPF classifier that obtained ACC = 91.6%, SE =

87% and SP = 96.2%. This set was defined with the fol-

lowing features (Table 1): CO, CI, AR, s2s , ss, l2, s
2
2, s2,

max3, min4, s
2
5, l6, s

2
6, SK6, s

2
8, s8, SK8, max9, s

2
11, s11, D

2
3,

E 4ð Þ2, E 3ð Þ3, H 8ð Þ3, E 8ð Þ5, H 5ð Þ5, H 6ð Þ5, H 2ð Þ9, H 3ð Þ10,
E 7ð Þ11, H 2ð Þ12, H 4ð Þ12, H 7ð Þ12, VAR2, SA3, MCC3, SV4,

CRL14, MCC4, VAR5, MCC5, VAR6, CRL16, IDM8, DV8,

DH8, SA9, CRL19, SV11, CRL111. The selected features

were from all of the proposed categories, i.e. shape, colour,

fractal texture, wavelet texture and Haralick’s texture. In

addition, the four colour spaces were considered by the

automatic selection of the colour and texture features.

Although the feature selection results reduced the number

of features, i.e. removed the redundant and irrelevant fea-

tures, the full set of features presented the best results,

since the OPF classifier deals very well with redundant and

irrelevant features.

There are some important issues to be analysed in this

study regarding the extracted features. One of the texture

extraction methods adopted in this article was based on

DWT. There are also several other effective methods based

on transform, such as discrete cosine transform (DCT) and

wavelet packet decomposition (WPD) also known as tree-

structured wavelet, which have been used for texture

analysis in images [64, 65]. Therefore, comparing the

results of the combination of features proposed in this

article using other transform methods would be very

interesting in order to improve the findings of this study.

Since the extracted features in this study are all represented

in one pool in sequence as mentioned earlier, the feature
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selection process using a sequential search strategy can

select different features if the feature extraction considers

another representation, e.g. randomly. However, this rep-

resentation did not affect significantly the results of any of

the studied classifiers. For example, only two different

features were selected by the CFS algorithm, probably

redundant features from the features defined before,

because the OPF classifier achieved the same results and

thus, the random representation did not influence its

generalization.

One limitation with the research described in this article

is that the experiments were based on only one strategy to

reduce the unbalance of the classes, i.e. a combination

between the under-sampling and over-sampling methods.

Although this combination overcame the problem of the

unbalanced classes, there are several other effective

methods that can be used to deal with such a problem. For

example, the synthetic minority over-sampling technique

bFig. 4 Variation of the classification measures, according to the

number of features defined by the ranker of each feature selection

algorithm for all features of the dataset: a correlation coefficient,

b GRFS, c information gain and d relief-F

Fig. 5 Variation of the classification measures, according to the automatic number of features established by the feature selection algorithms for

all features of the dataset: a PCA and b CFS

Table 5 Computational time for the feature extraction and classifi-

cation tasks considering all images

Task Features Time

Shape feature extraction 18 10.26 min

Colour feature extraction 72 10.12 min

Fractal feature extraction 12 26.79 min

Wavelet feature extraction 240 34.37 min

Haralick’s feature extraction 168 29.48 min

Classification (without feature selection) 510 8.01 s

Classification (with feature selection) 50 5.91 s
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(SMOTE) [66], which is an over-sampling method for

overcoming the over-fitting and expand the decision region

for the minority class samples. Sampling methods can also

be combined with ensemble methods for addressing

unbalanced classes and they can present effective results

[67]. The lack of a lesion segmentation process may be

considered another limitation of the present study; how-

ever, ground-truth lesion segmentation masks were used in

order to obtain a more accurate computational system. For

example, the segmentation approach presented by Ma and

Tavares [61] can be used to evaluate the effectiveness of

the proposed classification model in the segmented images.

On the other hand, since the study did not use all the

images of the original dataset as mentioned earlier, the

results cannot be compared with the results obtained in the

studies using the same dataset and the ground-truth lesion

segmentation masks presented in Gutman et al. [57]. These

studies considered a set of 1279 images partitioned into

training and test sets. The best results were achieved by

Lequan et al. [62] (with ACC = 0.855, SE = 0.547 and

SP = 0.931), who proposed a novel method for melanoma

recognition by leveraging very deep convolutional neural

networks.

Several automatic diagnosis systems have been pro-

posed using models with a single classifier for skin lesion

classification, as was used in this study. In Celebi et al. [6],

the proposed classification model based on the SVM

classifier achieved SE = 93.33% and SP = 92.34% in a

dataset of 564 dermoscopic images. The authors extracted

11 shape, 354 colour and 72 texture features. In Abbas

et al. [25], the proposed system obtained SE = 88.2% and

SP = 91.3% in a dataset of 120 dermoscopic images. These

authors applied the SVM classifier to distinguish between

benign and malignant lesions using asymmetry, border

quantification, colour and differential structure features;

however, the number of features used was not mentioned.

Zortea et al. [60] proposed a computational system to

differentiate benign lesions and melanoma using a dis-

criminant analysis classifier, which achieved SE = 86%

and SP = 52% in a dataset of 206 dermoscopic images. The

feature extraction in this work used 6 asymmetry, 11 col-

our, 3 border, 3 geometry and 30 texture features of skin

lesions.

Other diagnosis systems that used different feature

extraction approaches can also be mentioned. For example,

Sharma and Virmani [68] proposed a decision support

system for the detection of renal diseases using GLCM

statistical features and a SVM classifier from ultrasound

images. The authors explored the potential of five texture

feature vectors that were obtained in various ways using

GLCM statistics exhaustively. The proposed system

achieved the highest overall classification result of

ACC = 85.7% for the differential diagnosis between

normal and MRD images. Wang et al. [69] developed an

improved parameter and structure identification of an

adaptive neuro-fuzzy inference system (ANFIS) for feature

extraction in images. Colour, morphology and texture

features were used as inputs and the least-square and

k-mean clustering methods were employed as the learning

algorithms for such a system. The training errors for the

affective values were tested and compared using the

International Affective Picture System, which achieved

14% of maximum errors. A new approach of diagnosis by

timed automata was proposed in Azzabi et al. [70]. The

approach is based on the operating time and is applicable to

systems whose dynamic evolution depends on the order of

discrete events and on their duration as in industrial pro-

cesses. The effectiveness of this approach was analysed in

a hydraulic system.

Li et al. [71] proposed reliability indices for rule-based

for rule-based knowledge presentation by using a back-

propagation neural network with a Bayesian regularization

algorithm. The proposed method was applied for shoe

design in a KANSEI evaluation system, and it achieved

superior performance compared to the other algorithms in

terms of the performance, gradient, Mu, effective number

of parameters and the sum square parameter in KANSEI

support and confidence time series prediction. In Ghosh

et al. [72], a classification system for an automated glau-

coma diagnosis was proposed. The proposed system is

based on both the grid colour moment method as a feature

vector to extract the colour feature and a neural network

classifier. This system was tested using an open RIM-ONE

database to classify both with and without glaucoma retina

images and it achieved ACC = 87.47%. An effective

method for analysing plantar pressure images in order to

obtain the key areas of foot plantar pressure characteristics

was proposed by Li et al. [73]. A plantar pressure imaging

dataset of diabetic patients was used to evaluate the pro-

posed method. First, the dataset was pre-processed by using

watershed transformation to determine the region of

interest. Afterwards, the convolutional neural network

based on k-mean clustering and parameterized manifold

learning using an improved isometric mapping algorithm

were used to attain segments of the imaging dataset. The

experiments achieved an average accuracy of 80% for the

clustering result, and the proposed manifold learning

method achieved an average accuracy of 87.2%.

6 Conclusion and future works

In this article, a combination of features based on shape

properties, colour variation and texture analysis using

several different feature extraction methods was presented.

Geometrical properties, lesion asymmetry and border
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irregularity were used for the extraction of the shape

properties. Statistical measures were used to analyse the

colour features. The fractal dimension analysis, discrete

wavelet transform and co-occurrence matrix methods were

applied to obtain the texture features. Four colour spaces,

i.e. RGB, HSV, CIE Lab and CIE Luv, were used for the

extraction of both colour and texture properties. For the

evaluation of the proposed feature extraction method, six

different categories of classifiers were adopted, namely

kNN, Bayes networks, C4.5 decision tree, MLP, SVM and

OPF. Furthermore, the classification performance was also

evaluated using six different feature selection algorithms,

which were correlation coefficient, GRFS, information

gain, relief-F, PCA and CFS.

Promising results were obtained with the proposed fea-

ture extraction for all the models evaluated. The best

classification results were from the OPF classifier when all

the features were used. The OPF results were: ACC =

92.3%, SE = 87.5% and SP = 97.1%. The OPF classifier

also obtained the best classification results using feature

selection algorithms for the skin lesion computational

diagnosis system and achieved: ACC = 91.6%, SE = 87%

and SP = 96.2%, when 50 features were selected using a

CFS algorithm. It should be noted that the OPF classifier

did not achieve better results by applying the feature

selection algorithms, but it maintained the good results

obtain when using all features. Moreover, the feature

selection step reduced the computational time for the skin

lesion classification. Another interesting result is that in

most cases, the performance of the classifiers tends to

improve when a percentage of features of all categories is

selected, i.e. shape, colour, fractal texture, wavelet texture

and Haralick’s texture by feature selection algorithms.

The main contributions of this study were: (1) the tex-

ture analysis based on four colour spaces, since the com-

bination of several different colour spaces presented quite

good results; skin lesion texture features proposed in the

literature are usually extracted using grey-level images or

only a few colour channels [6, 7, 25]; (2) the combination

of several methods applied to analyse the skin lesion tex-

ture, including fractal dimension, wavelet transform and

co-occurrence matrix based on colour image, since the

combination presented better results than when only one

texture method was used; and (3) the extracted texture

features combined with shape and colour features obtained

superior results compared to when such features are used

separately.

Future studies regarding the pigmented skin lesion

classification of dermoscopic images should involve

searching for new methods aiming to develop more effi-

cient and effective systems for better skin lesion diagnoses.

However, the classification results can be improved with

ensemble methods [39, 67, 74]. Such methods consist of

combining the results of several classification models in

order to develop a more robust system that provides more

accurate results than using a single classifier. Another

solution to improve the classification results would be

using deep learning architectures [75], since these archi-

tectures have shown that they have the capacity to learn

from a large dataset.
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