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Abstract
Today’s human activity recognition is an important part of healthcare and ambient-assisted living where accelerometer and

gyroscope sensors provide the raw data about physical activities and functional abilities of an observed person. Previous

studies have shown that activity recognition can be seen as a machine learning chain with its particular data preprocessing

technique. In recent past, several scientists measured rather high recognition accuracies on public databases or in laboratory

environment but their solutions have not been tested in real environment. The goal of this paper is to examine the efficiency

of previously used machine learning methods in real time by an Android-based, self-learning, activity recognition

application which has been designed especially to this study according to the latest theoretical results (with the most

relevant feature extraction and machine learning algorithms). Before real-time tests, we investigated the design consid-

erations and application possibilities of different shallow and deep methods. The final outcome shows recognition rate

difference between the ‘‘online’’ and ‘‘offline’’ cases. In the article we present some reasons for the difference and their

possible solutions.
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1 Introduction

Physical activity is an important component of a healthy

lifestyle. The goal of human activity recognition is to

determine the activity level of someone. Monitoring and

recognizing daily activities of a people can help in the

evaluation and prediction of his/her health status. An

interesting study [1] has shown that physically active

people who live a healthier lifestyle have lower rates of

diseases. Moreover, the rapidly growing rate of elderly

population greatly influences the development of health-

care services. Based on these new challenges, many

different approaches have been suggested by researchers

for the recognition of physical activities in different

application areas such as in ambient-assisted living and

healthcare [2, 3]. In the past few decades, researchers tried

different data acquisition approaches for human activity

recognition (HAR). The two major techniques are based on

computer vision and wearable sensor networks. Due to the

disadvantages and limitations of camera-based methods

(privacy issue, background change, lighting conditions,

special environment, etc.), wearable sensors and their

networks have received higher attention. The miniaturized

sensor technology has made it possible for a person to wear

data acquisition devices continuously on predetermined

body segments. It motivated the researchers, research

groups and companies to develop their own data acquisi-

tion devices with different kinds of sensors and controllers

for HAR purposes [4–6]. According to the sensor tech-

nology development, the importance and popularity of

HAR have notably increased in the past decade.

Today’s smartphones also can be used as a complete

HAR system without any additional hardware components.

Already several researchers used phones for HAR [7]. Most
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of them used the phone as a data acquisition device, and the

evaluation happened offline by mathematical or data min-

ing tools such as Weka, Python and MATLAB [8, 9].

Nowadays, almost everyone has a smartphone which is

well equipped with fast processor(s), plenty memory, built-

in sensors and powerful battery. Therefore, they are pro-

viding new opportunities in the HAR research. They have

some advantages unlike special purpose data acquisition

devices. For instance, smartphones are providing high-level

programming environment with different visualization,

data storage and communication capabilities. According to

the previous reasons, in this study a smartphone acts in the

sensor role and an Android-based, self-developed applica-

tion performs the complete classification process which has

been designed especially to this study according to the

latest theoretical results.

Even though many data capture devices and different

kinds of algorithms exist, activity classification is not an

easy task. In order to the recognition be efficient,

researchers applied stable and robust machine learning

(ML) techniques that can handle noisy data. For example,

Yang et al. [10], Khan et al. [11] and Oniga and Suto [12]

used feed-forward artificial neural networks to the classi-

fication and measured 95 and 97.9 and 99% recognition

rates, respectively. Preece et al. [13] and Duarte et al. [14]

reached 95 and 97.8% accuracy with the k-nearest neigh-

bour method, while Maurer et al. [4] and Gao et al. [15]

measured similarly good rates (92.8, 96.4%) with decision

trees. After the appearance of deep learning, some scien-

tists from the HAR community turned towards deeper ML

algorithms such as convolutional neural networks. They

claimed that convolutional network is a better choice for

HAR because it does not require feature extraction as

shallow techniques. For instance, Sheng et al. [16] and

Yiang and Yin [17] measured more than 95% recognition

rates on public databases with this method. Consequently,

the current state of the art proposes numerous ML solutions

to HAR but we do not have any useful information about

their usability in a real-time application. Therefore, the aim

of this study is to investigate the efficiency and reliability

of previous, promising offline results in real environment.

To the best of our knowledge, it is the first work which

compares offline and online results in this manner.

2 Methodology

Most works in HAR follow a general activity recognition

chain. It contains data acquisition from sensor(s), data

segmentation, feature extraction (sometimes feature selec-

tion), classifier training and classification. In this section,

we will thoroughly describe each of these steps. Beyond

the type of data capture devices and classifier algorithms,

other questions also exist in this research field. The fol-

lowing subsections give an overview about the questions

and their latest solutions which have been utilized in this

study.

2.1 Number of sensors and sensor placement

Several researchers tried to find the most suitable body

position for sensor placement which provides the best

recognition accuracy. One part of researches investigated

the usage of single sensor, placed on a specific body

location. Godfrey et al. [18] used a single chest-mounted

sensor for their study. Ayu et al. [9] worked with a single

smartphone for data acquisition (on hand and in pocket),

while in the work of Yang et al. [10] a single three-axis

accelerometer was placed to the wrist of the observed

person. Other part of studies applied multiple sensors on

different body positions. Yang et al. [19] collected the data

from five sensor nodes placed on the left and right ankle,

left and right hand and hip. The authors of [13] worked

with two sensors and placed them on the ankle and thigh.

Our sensor (the smartphone) placement choice was moti-

vated by several previous works. Gao et al. [15] presented

that the recognition difference between multi-sensor and

single-sensor systems is rather small. Ertugrul et al. [20]

and Oniga and Suto [21] demonstrated that a single sensor

with a three-axis accelerometer and gyroscope is enough

for good daily activity recognition. Finally, Preece et al.

[13] showed that the ankle is the most suitable place for

single sensor. According to their results, in this study the

sensor has been attached to the right ankle of the volunteers

with a holder (Fig. 1). By this fixed vertical placement of

the phone, we avoided the variable orientation problem

which is the main disadvantage of a general smartphone-

Fig. 1 Placement of the phone on the right ankle

15674 Neural Computing and Applications (2020) 32:15673–15686

123



based HAR systems. Another disadvantage of a phone

against a special purpose device is its size. Such a size

difference can be seen in Fig. 2. However, the size of the

phone does not affect the data acquisition and the final

outcome of this study.

2.2 Sampling

The sampling frequency is an important parameter in all

signal processing applications because it greatly influences

the power requirement, computational load and the per-

formance. In some studies, the raw sensor output was

oversampled. For instance, the sampling rate in the work of

Yang et al. [10] was 100 Hz. However, such a high rate is

unnecessary because the main frequency components of

body movement are less than 10 Hz during daily activities

[5, 22]. Gao et al. [15] examined the relation between

sampling frequency and recognition rate, and they pro-

posed 20 Hz sampling frequency to multi-sensor systems

and a little higher rate to single-sensor systems. Maurer

et al. [4] also showed that there is no significant

improvement in recognition rate above 20 Hz. Other

authors similarly used exactly or approximately 20 Hz

sampling rate to the data acquisition such as Khan et al.

[11] and Yang et al. [19]. According to these facts, the

sampling frequency in our application is approximately

25 Hz. Unfortunately, the application does not guarantee

an exact sampling rate. The real sampling frequency is

scattering around the ideal with variable deviation. It

comes from the mechanism of the operation system.

However, it does not cause problem when the device has

enough computational capacity and it is not overloaded. In

this case the deviation will be negligible. The official

Android developer website [23] gives more information

about built-in motion sensor handling.

2.3 Windowing

Generally, the signal comes from the sensors as a dis-

cretized and continuous data flow. To facilitate the activity

classification, the continuous signals will be divided into

small pieces. Those pieces are called windows. The main

challenge of this segmentation is to find the correct window

size which is suitable for recognition. Researchers followed

different approaches in this question. On one hand, short

time windows may not provide enough information about

the activity. On the other hand, long windows may cover

more than one activity in one window. In spite of this

ambiguity, most scientists use static window size but some

dynamic approaches also exist in the literature [24]. The

survey of Lara and Labrador [25] gives a brief description

about the advantages and disadvantage of different window

sizes.

Generally, the windows size depends on the sampling

frequency and it covers one or two seconds wide time

period. Gao et al. [15] and Karantonis et al. [22] used 1-s

wide windows without overlapping between them. Preece

et al. [13] worked with 2-s wide windows which are

overlapping with 1 s. Chernbumroong et al. [6] applied a

wider window size (3.88 s) with 50% overlap between

windows. In this study the window size was approximately

1.3 s (32 samples) with 50% overlap in the training phase.

In the test phase we have not used overlap between win-

dows in order to the test process be faster.

2.4 Feature extraction and selection

Many machine learning applications require feature

extraction and feature selection. After data segmentation,

windows will be the input of the feature extraction meth-

ods. Feature extraction tries to take out the relevant

information from the raw signal. Instead of normalized

sensor data, extracted features are more advantages

because a feature characterizes the whole window and the

pattern location inside a window does not affect the feature

value [26]. An appropriate feature set can significantly

improve the classifier performance and makes the classifier

model simpler.

In previous papers, different authors extracted different

features especially from the time and frequency domains

because a well-established feature group does not exist

[25]. A small part of scientists [27] used the wavelet

transformation for feature extraction instead of time and

frequency domains’ features. In the paper of Suto et al. [28]

the authors tried to collect all relevant feature extraction

techniques from the literature of HAR research. Their work

also showed that a general feature set does not exist

because feature efficiency depends on the movement styleFig. 2 Size difference between smartphone and a special purpose data

collector device (made at University of Debrecen)
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of a person. According to their work, 15 feature extraction

methods have been implemented in the Android applica-

tion. Those features can be seen in Table 1. In this study

we did not use wavelet transformation for feature extrac-

tion because Preece et al. [13] showed that features from

the time and frequency domains are more efficient than the

wavelet transformation approach. The features from

Table 1 were normalized with (1) where f(i) and fnorm(i) are

the ith initial and normalized feature values (from the ith

window), while lf and rf are the means and standard

deviations of a feature set which come from the training

data. Normalization makes features equally important.

fnorm ið Þ ¼ f ið Þ � lf
� �

=rf ð1Þ

In some cases, the number of features is rather huge and

some features can be useless. Feature selection is the

process of choosing a subset from the original features set

according to the distribution of feature vectors or relations

(e.g., correlation) between them. It is a frequently used

dimensionality reduction technique. Essentially, the goal of

all feature selection algorithms independently of their types

is to find an appropriate hyperplane in the feature space

where the class distributions are distinct. The work of

Saeys et al. [29] gives additional information about feature

selection and its applications in bioinformatics.

One part of HAR researchers did not use feature selec-

tion. They selected features from one or two domains

without any relation test between them. The other group of

researches utilized feature selection. They focused on the

supervised category and inside it for the filter and wrapper

techniques. Maurer et al. [4] reduced the number of fea-

tures with the Correlation based Feature Selection

algorithm. Gou et al. [30] used the information gain (IG).

Jatoba et al. [31] chose the Minimum Redundancy Maxi-

mum Relevance technique. Suto et al. [28] conducted an

efficiency investigation between feature selection methods

in HAR. They tested a naı̈ve Bayesian wrapper method and

eight filter-based selection strategies. The selected features

were different in the case of each person. It clearly indi-

cates that a generally efficient feature combination which is

independent of people does not exist. In their work the

Naı̈ve Bayesian and the Chi Square methods were the most

effective. The paper of Damasevicius et al. [32] also con-

tains measurements of feature selection efficiency in HAR.

Although the usage a feature selection simplifies the model

and speeds up the classification process, sometimes it

causes a small accuracy loss [26]. Therefore, our Android

application does not use feature selection.

Since the application extracts features from the fre-

quency domain, the fast Fourier transformation (FFT) is

essential. During test phase the FFT execution is periodi-

cally continuous (on each window). In this case the first

step in the FFT is to determine the so-called phase (or

twiddle) factors and use them as constants during the

application run time period. It is possible because the

window size is a fix value which is a power of two.

Therefore, in the application an improved radix-2 FFT

algorithm has been implemented which utilizes all three

relations between the phase factors. Equations (2)–(6)

describe those relations where WN
k is the kth phase factor

and N is the window size, while Im and Re refer to the

imaginary and real components. By these equations it is

enough to calculate and store the first (N/8 ? 1) phase

factors because their real and imaginary components with

the appropriate sign can be substituted into the FFT com-

putation stages. More information about this modified

radix-2 FFT and the relations between its twiddle factors

can be found in the article of Suto and Oniga [39].

WK
N ¼ �W

KþN=2
N ð2Þ

W
KþN=4
NIm

¼ �Wk
NRe

ð3Þ

W
kþN=4
NRe

¼ Wk
NIm

ð4Þ

Wk
NIm

¼ �W
N=4�k
NRe

ð5Þ

Wk
NRe

¼ �W
N=4�k
NIm

ð6Þ

2.5 Machine learning

A proper classification system has to be capable of learn

and tolerate noise. In the recent past, researchers have

investigated the HAR problem with a wide variety of ML

techniques. Several scientists applied parametric methods

Table 1 Feature extraction methods in the application

Domain Feature

Time Mean

Standard deviation

Mean absolute deviation

Root mean square

Interquartile range

75th percentile

Kurtosis

Signal magnitude area

Max–min difference

Frequency Spectral energy

Spectral entropy

Spectral centroid

Principal frequency

Other Correlation between axes

Tilt angle
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such as artificial neural network (ANN) convolutional

neural network (CNN) and naı̈ve Bayesian, while others

tried to use nonparametric algorithms: decision tree (DT),

support vector machine (SVM) and k-nearest neighbours

(kNN) [25]. Usually the performance of the algorithms has

been tested on public databases or on self-recorded data

sets. For instance, Yang et al. [19], Oniga and Suto [34]

and Su et al. [33] worked on a public database which has

been composed at University of California, Berkeley, while

in the work of Godfrey et al. [2], Preece et al. [13] and Gao

et al. [15] the data acquisition took place in a special

environment. In this paper we tried to collect several good

reference works from the literature where machine learning

algorithm(s) were the classifier. Table 2 contains a list of

the collected papers.

As Table 2 demonstrates, different authors used differ-

ent shallow and deep ML algorithms for HAR. However,

some studies have shown that ANN and kNN are the most

efficient shallow methods for this purpose. A good com-

parison between shallow techniques can be found in the

papers of Gao et al. [15] and Rahman et al. [35]. In the last

decade, the appearance of CNNs caused a breakthrough in

several machine leaning topics. The idea of using convo-

lutional and pooling layers has become attractive for HAR

community because a CNN can automatically build high-

level representations from the raw sensor signal; thus, it

eliminates the static feature extraction step from shallow

methods [16, 17]. The above reasons motivated us to

implement the kNN, ANN and CNN algorithms for this

study.

As kNN classifier, the 1NN scheme has been imple-

mented with the well-known Euclidean distance metrics

between feature vectors. Actually in all three references in

Table 2, the scheme of the kNN classifier was the 1NN.

The design of the ANN architecture is based on the article

of Suto and Oniga [26] where the authors measured the

performance of three different ANN compositions with

different hyper-parameters on two public databases.

According to their results, the ANN classifier in our

implementation has the following settings:

• Two layers (one hidden and one output)

• 40 neurons on the hidden layer

• Gradient descent learning algorithm with momentum

• Stop condition: no improvement in 10 epochs

• Mean square error function with L2 regularization (9)

where M is the number of output neurons, N is the

number of samples, yj is the target, aj is the activation

of the output neuron, while k and x refer to the

regularization strength and weights, respectively

• Tangent and linear activation functions on the hidden

and output layers (10), (11)

• Batch size: 10

• Momentum: 0.15

• Epoch limit: 1000

• Biases were initialized with 0

• Initial weights come from a normal distribution (7)

where j is the inputs of a neuron on the lth layer

• Exponential learning decay as in (8) where a0 is the

initial learning rate, u is the decay factor, and e is the

epoch counter.

Table 2 Previous recognition

rates with machine learning

methods in HAR

Classifier References Data source Number of subjects Recognition rate (%)

kNN [14] Not public 5 98.0

[13] Not public 20 97.0

[35] Not public 8 99.7

DT [40] Not public 10 97.3

[4] Not public 6 92.8

SVM [33] Public databasea 20 98.5

[41] Public databaseb 30 96.0

[6] Not public 12 90.2

ANN [11] Not public 6 97.9

[34] Public databasea 20 98.1

[10] Not public 7 95.0

[15] Not public 8 96.8

CNN [16] Public databasea 20 95.9

[17] Public databaseb 30 95.2

[36] Public databaseb 30 95.8

ahttps://people.eecs.berkeley.edu/*yang/software/WAR
bhttp://archive.ics.uci.edu/ml/datasets/Human?Activity?Recognition?Using?Smartphones
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The CNN construction is also strongly based on earlier

articles. For instance, Sheng et al. [16] used two convolu-

tional and pooling layers with 128 and 256 depths and two

fully connected layers with 512 and 13 neurons. Jiang et al.

[17] tried different constructions and their best architecture

has similarly two convolutional and pooling layers with 5

and 10 feature maps and two fully connected layers. The

most detailed description about hyper-parameter settings of

CNNs can be found in the article of Ronao and Cho [36].

Unlike the previous articles, in this study the CNN input

was one-dimensional sensor signal; thus, convolutional

layers performed 1 dimensional convolution. The authors

have found that after three convolutional layers the per-

formance is decreasing. In addition, after 130 feature maps

the performance does not increase.

The above works illustrates that a well-established CNN

architecture does not exist in HAR because different

authors are trying different approaches. Therefore, we

implemented and tested two CNNs (CNN1 and CNN2) with

different layer depths and number of neurons on the first

fully connected layer. Figures 3 and 4 illustrate the struc-

tures of CNN1 and CNN2, respectively. The sensor signal

was arranged in two-dimensional form (number of sensors’

axis 9 window size) because a CNN takes into consider-

ation the spatial relationships between input data. In both

CNNs the filter sizes on the convolutional and pooling

layers were 2 9 2 with one-sample-long stride on the

convolutional layers (C1,2) and two-sample-wide strides on

the pooling layers (P1,2). On a volume in a CNN each

neuron has the same filter and bias. More formally, for the

i, jth hidden neuron on the lth layer’s vth volume, the

output is (12) where N 9 M is the filter size, V indicates

the number of volumes on the previous layer, b is the bias,

and x refers to the weights. The activation function on the

convolutional layers is rectified linear (ReLu) (13). On the

pooling layers the max-pooling has been applied which is

the most popular in the literature. On the final layer the

activation function is soft-max (14) with cross-entropy loss

(15) such as in [37, 38].

al;vi;j ¼
XV
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r
XN

n

XM

m
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n;ma

l�1;pv
iþn;jþm þ bl;v

 !

ð12Þ
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j
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Fig. 3 The first CNN

architecture with one

convolutional, one pooling, and

two fully connected layers. The

figure shows the different depth

sizes and neurons on the first

fully connected layer that have

been used in the study
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3 Operation of the application

The application is an improved version of the initial software

[43]. First time users should create an account and login to

our server. On the registration form they should type in their

user name, age and gender. Those parameters will be stored

on the server in an SQL database. After registration, the user

must login in order to use it. Screenshots of the registration

and login forms can be seen in Fig. 5. Thereafter, the pop-up

menu on the left side contains the available ‘‘fragments’’. On

the data acquisition fragment the user can collect training

data from each activity. Currently, the application is focusing

on seven main daily activities, namely

• Cycling

• Running

• Jogging

• Walking

• Sitting

• Standing

• Lying.

The users should designate the time interval while they

perform the selected activity. During this time, the software

acquires samples from the phone built-in accelerometer and

gyroscope and stores the samples into files. When each

activity has been performed, the data can be uploaded to our

remote server. It makes possible the dynamic data acquisi-

tion because data can be acquired independently of us. The

machine learning fragment performs the feature extraction

and classifier training with a selected ML algorithm. Each

feature from Table 1 will be extracted from the raw data and

normalized by Eq. (1). This normalized feature vector feeds

the classifier. On the ‘‘recognition’’ frame, the user should

perform each activity again until 45 s. During this time

interval, the software collects real-time test samples from the

accelerometer and gyroscope sensors. The features from the

test samples are also normalized by Eq. (1) where the mean

and standard deviation come from the training dataset.

Finally, the selected ML algorithm predicts the activity class

from the normalized feature vector. After a test process, the

proportion of correct and incorrect decisions can be seen on a

pie chart. Screenshots of the fragments can be seen in Fig. 6.

The current version of the application is freely available after

an official request. (The download link is password-pro-

tected.) Any additional materials can be found on the pro-

ject’s webpage (http://irh.inf.unideb.hu/user/sutoj/har.php).

4 Results and discussion

4.1 Offline tests

In order to verify the reliability of the ML methods, they

have been tested on a public database. The goal of this

Fig. 4 The second CNN

architecture with two

convolutional, pooling, and

fully connected layers. The

depth sizes and number of

neurons on the first fully

connected layer were also

illustrated as in Fig. 3

Fig. 5 Screenshots about login and registration forms
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offline investigation is to verify the correct operation of the

classifiers on an independent database. Since the applica-

tion was written in Java, the program code is easily

portable between computer and phone.

The public database [41] was also collected with a

single smartphone which contains embedded three-axis

accelerometer and gyroscope. Actually it is the (b) public

database from Table 2 which can be downloaded from the

well-known UCI machine learning repository. It his

repository, currently it is the seventh most popular dataset.

It has been created with a group of 30 participants. They

performed the following six daily activities:

• Walking

• Walking upstairs

• Walking downstairs

• Sitting

• Standing

• Laying.

At first the above-mentioned 1NN was tested on the

public data and it produced 91.6% recognition rate. The

1NN is the simplest algorithm from the three ML tech-

niques (1NN, ANN and CNN) which does not require any

additional hyper-parameters. However, in ANN and CNN

several parameters exist which influence their performance.

In ANNs the four most significant parameters during neural

network training are the number of neurons on the hidden

layer(s), regularization strength (k), learning decay factor

(u) and the initial learning rate (a0). After some experi-

ments we found that 40 neurons on the hidden layer can be

a good choice regarding to the performance and time

requirement of the network. In addition, we should high-

light that more than one hidden layer is unnecessary.

Although in some cases the involvement of additional

layers can slightly improve the performance of the net-

work, after two hidden layers the vanishing gradient

problem will occur which slows down the learning process.

To find an appropriate combination of the remaining three

parameters, we performed 100 random hyper-parameter

search trials on the database. The search took place on

exponential scale where the exponents were randomly

drawn from a uniform distribution according to (16). This

process has been performed on a laptop with 8 GB memory

and i5-2.3 GHz processor. The outcome of the parameter

search and its time requirement can be seen in Figs. 7 and

8. After hyper-parameter search the following combination

produced the highest accuracy: a0 = 0.000465,

u = 0.0000618, k = 0.0371.

a0;u; k 2 10U �4;�1ð Þ ð16Þ

Fig. 6 Screenshots about the

main fragments of the

application

Fig. 7 Result of the random hyper-parameter search after 100 trials
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Beyond the network structure, a CNN also requires the

same hyper-parameters than an ANN and some other set-

tings such as convolutional and pooling filter sizes and

their stride length. To find the optimal parameters to a

CNN is still an open question, and it is a slow process with

random parameter search because in this case the training

time is much longer. Therefore, in the tests, the filter size

was 2 9 2 on the convolutional and pooling layers per-

manently in both CNNs. The stride length is one sample

wide on the convolutional layers and two samples wide on

the pooling layers. As learning rate and decay factor the

same have been used as in the case of ANN. However, the

regularization strength was higher than in the previous case

(k = 0.9) because the overfitting in CNNs is a more

serious problem [38]. Since CNNs do not require feature

extraction, their input was raw data which come from the

sensors in two-dimensional normalized form with (1). In

this data matrix a row is a complete window (with 128

samples) from a sensor’s axis so the number of rows is

equal to the number of axes. The raw data in the database

consist of gyroscope, total acceleration and estimated body

acceleration values from three axes; therefore, the number

of rows in the input data matrix is 9. Tables 3 and 4 contain

the best recognition rates and the average time requirement

(in second) of both CNNs after three trials. The architec-

ture column in the tables shows the depth of the convolu-

tional layers and the neurons on the first fully connected

layer.

The above results demonstrate that our 1NN, ANN and

CNN algorithms can produce similarly or better perfor-

mance than other software which has been used in previous

works from Table 2. If we observe the result of the

parameter search, the importance of the hyper-parameters

in an ANN is clearly visible. Different parameter ensem-

bles produced different accuracies. The recognition rate

difference between the best and worst parameter

combinations was over 80% (97–16.8%). Moreover, after

parameter search the highest recognition rate was 97%

which is better than all previous results on the public

database.

In the case of CNNs, more complex structures caused

growing recognition rates. However, the best result

(94.2%) which has been reached with the deepest CNN2

(80–120–1000) is significantly smaller than the 97%.

Probably, the efficiency of CNNs also can be improved by

random hyper-parameter search but the training time of a

complex CNN is enormous in comparison with a shallow

ANN. The training time of the shallow network with the

best parameter combination was 1053 s, while the training

time of the deepest CNN2 was 350,677 s. On a smartphone

the time requirement of a CNN would be much higher thus

the usage of CNNs in real-time HAR applications in not a

good choice at present. Actually, the main application area

of CNNs is the image processing. Already several authors

[37, 38, 42] applied CNNs for object recognition or clas-

sification (e.g., ImageNet challenge). In those works the

scientists created rather deep CNNs (e.g., AlexNet and

GoogleLeNet) with several different layers. If we compare

the complexity of AlexNet or GoogleLeNet with the CNNs

that were used in HAR, we will see that the HAR problem

does not require as deep CNNs as object recognition.

Consequently, we can suppose that sensor data do not

contain such complex features than colour images.
Fig. 8 The training time of the neural network during hyper-

parameter search

Table 3 Recognition rates with CNN1

Architecture Rec. rate (%) Time (s)

10–40 84.6 1615

20–40 85.3 4071

30–100 86.4 6972

50–200 88.3 19,985

50–512 89.8 70,671

100–1000 89.9 286,509

Table 4 Recognition rates with CNN2

Architecture Rec. rate (%) Time (s)

20-30-100 88.8 16,142

20-50-100 89.5 19,394

30-50-200 90.6 36,747

30-50-512 92.4 62,380

50-100-512 92.8 90,921

80-120-1000 94.2 350,677
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According to the above reasons CNNs were not used in the

online tests.

4.2 Online tests

In this study we have followed all principles outlined in the

Helsinki Declaration (as revised in 2000) in all the exper-

iments involving human subjects. The online experiments

have been carried out with 3 volunteers. The first and third

volunteers are 27- and 28-year-old males, while the second

is a 17-year-old female. At the beginning of the tests, all

participants gave a clear description from the goal of the

survey and the operation of the application. We asked the

volunteers to collect as many training data as they can.

Although the maximum data acquisition time (4 min) does

not cause problem in static activities such as in standing or

lying but a 4-min-long running activity can be rather

exhausting or even impossible for an elderly people.

Moreover, the volunteers indicated that more than 4-min-

long training data acquisition would be inconvenient. With

the maximum (4-min-long training data acquisition from

each activity) training data set and 45-s-long test phase we

measured the following data preprocessing, training and

test times (in second) on a Google Nexus 4 phone:

• ANN training time: 1471 s

• 1NN training time: 0 s

• ANN decision time: 0.001 s

• 1NN decision time: 0.088 s

• Data preprocessing time in training phase: 8.0 s

• Data preprocessing time in test phase: 0.003 s.

Each participant performed the training data acquisitions

and the test process alone without supervisor and inde-

pendently of each other. The outcome of the online tests

can be seen in Tables 5 and 6 where the last row is the

average classification accuracy.

The measured accuracies in Tables 5 and 6 are not as

accurate as in Table 2 or in the above offline investigation.

Now the average recognition rates are smaller than before.

After a detailed analysis, we found some reasons for the

accuracy loss. Our examinations demonstrate that one of

the main reasons for performance loss is the large variance

in real-time data. In previous articles, most scientists

worked on public databases where the deviation between

samples is smaller. As was mentioned before, several

researches measured high recognition rates on the two

popular data sets from Table 2. In both cases the experi-

ments have been performed in indoor environment and

under supervision. Probably, the special environment cau-

ses more homogeneous data differently from everyday life

situations. For instance, Fig. 9 and 10 illustrate two ele-

ments wide feature vectors’ distributions of three different

walk activity records (walkA, walkB and walkC) of the

first volunteers from our online experiment and database (a)

from Table 2. In the database feature vector distributions

are more homogeneous than in the online case. The remote

feature vectors (from the mean) perhaps are outside of the

decision boundary. Moreover, Tables 5 and 6 illustrate that

the sitting activity has been recognised poorly. Its reason is

the overlap of feature distributions between activities.

Figure 11 illustrates such an overlap (with two features)

between sitting and standing. In both cases the leg can be in

the same position and it prevents the correct classification.

It causes accuracy loss because the classifier will not pro-

duce reliable decisions on the overlapping area. We can

solve it with at least one additional sensor on the appro-

priate body segment (e.g., on thigh). Finally, the accuracy

difference between ANN and 1NN was not as significant as

we expected. Although the ANN has better (or more

complex) decision boundary generation capabilities and

noise tolerance than 1NN, it is not reached much better

result. It also shows a particular noise reduction property of

feature extraction. Therefore, noise probably is not the

main reason for accuracy loss. We thought that one

Table 5 Online results with 1NN

Activities Participants

1 (%) 2 (%) 3 (%)

Lying 51.4 100 68.6

Standing 85.7 88.6 74.3

Sitting 37.1 5.7 74.3

Walking 91.4 74.3 57.1

Jogging 57.1 37.1 57.1

Running 97.3 65.7 85.7

Cycling 88.6 77.1 71.4

Average 72.7 64.1 69.5

Table 6 Online results with ANN

Activities Participants

1 (%) 2 (%) 3 (%)

Lying 94.6 89.2 86.5

Standing 91.9 89.2 94.6

Sitting 16.2 10.8 83.8

Walking 78.4 91.9 89.2

Jogging 8.1 10.8 83.8

Running 97.3 89.2 91.9

Cycling 13.5 97.3 91.9

Average 57.1 68.3 88.8
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possible reason for the poor ANN performance is the

incomplete training data set. Therefore, another experiment

also has been performed by participant 1 where the sliding

window stride is three samples. It means that the overlap

between two adjacent windows is approximately 90%;

thus, the training data set is much larger. With the extended

Fig. 9 Walk feature vector distributions from the (a) public database

Fig. 10 Walk feature vector distributions from our experiment

Fig. 11 Feature vector overlap

between standing and sitting

activities
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training data set ANN produced approximately 20%

improvement, while it was less than 10% in the case of

1NN. However, the bigger data set considerably changed

the test or training time of the ML algorithms on the same

device:

• ANN training time: 8434 s

• 1NN decision time: 0.64 s

• Data preprocessing time in training phase: 16 s.

5 Conclusion

This study examined previous offline activity recognition

results in real environment with a self-developed, Android-

based application. At the beginning of the article we

described the steps of a general activity recognition chain.

Moreover, the newest solutions for different activity

recognition related questions such as number of sensors,

sensor placement, sampling rate, window size, feature

extractor and classifier methods also have presented. As

reference, we collected some relevant works from the HAR

literature in Table 2 independently of the used ML method.

According to the outcome of the literature review, 15

feature extractor and 3 ML methods (1NN, ANN, CNN)

have been implemented in Java. Before the online inves-

tigation, the performance and reliability of our algorithms

have been tested on a well-known public database. The

offline tests demonstrated that each algorithm can produce

similarly or better performance than other software which

has been used in previous works. With the best parameter

combination the ANN reached 97% recognition rate on the

public database which is better than all previous results on

it where the researchers did not use parameter search. This

result clearly illustrates the importance of hyper-parame-

ters in ANN (and CNN) training because the recognition

rate difference between an efficient and an inefficient

parameter combination can be significant. Finally, we

found that CNNs cannot produce better accuracy than a

well-constructed ANN and due to the enormous training

time of complex CNNs, currently their usage in real-time

HAR applications is not a good choice. Therefore, CNNs

have been omitted from the real-time tests.

Although the number of volunteers in this work was

relatively small, the online investigation illustrates that

there is recognition rate difference between real-time and

previous offline HAR results. The first reason behind it is

the higher dispersion between feature vectors in real-time

data. In previous works usually the experiments have been

performed in special environment, under supervision.

Therefore, the collected data can be more homogeneous

than in the everyday life. However, in online applications

significant difference might exist between the training and

test data which come from real-life situations. It is unre-

alistic to collect a complete training data set from all types

of activities because a great number of situations exist

where test samples will differ from training data. If the

training data set is uncomplete the ML algorithm cannot

generalize well. We can protect the classifier against this

problem with an increase in the training data set. It can be

achieved with a longer data acquisition time and with a

wider overlapping area between two adjacent windows. We

showed that increasing the overlap between windows

increased the recognition rate, but it does not solve the

uncomplete training data set problem. Unfortunately,

training data acquisition is inconvenient, and it is particu-

larly true for the elder population. Therefore, the next

problem that HAR community should solve is the training

data augmentation. One possible solution for this problem

would be a multi-step data collection possibility. In this

case a person can acquire data when he wants and the new

data will be concatenated to the already existing one.

We can observe the different recognition rates for the

same activity of different participants. This can be

explained with the individual motion style of people which

is changing with the age. Since each human has different

motion style, the training data set also has to be individual.

The time requirement of the classifiers with the extended

training data set significantly increased, and this causes

additional problems. Currently, the 1NN with a great

training data set would be unusable on a wearable sensor or

sensor network because its test process would be slow,

while the ANN’s training time would be a very long pro-

cess. However, our opinion is that the technological

development will solve this problem really fast in the near

future.

Finally, depending on the activities, one sensor is not

always enough because one sensor can generate the same

data to different activities. To sum up, based on the current

solutions of the HAR literature a relatively acceptable real-

time activity recognizer can be constructed but a correct

HAR system requires additional improvements.
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