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Abstract
Based on support vector machine (SVM), incremental SVM was proposed, which has a strong ability to deal with various

classification and regression problems. Incremental SVM and incremental learning paradigm are good at handling

streaming data, and consequently, they are well suited for solving time series prediction (TSP) problems. In this paper,

incremental learning paradigm is combined with incremental SVM, establishing a novel algorithm for TSP, which is the

reason why the proposed algorithm is termed double incremental learning (DIL) algorithm. In DIL algorithm, incremental

SVM is utilized as the base learner, while incremental learning is implemented by combining the existing base models with

the ones generated on the new data. A novel weight update rule is proposed in DIL algorithm, being used to update the

weights of the samples in each iteration. Furthermore, a classical method of integrating base models is employed in DIL.

Benefited from the advantages of both incremental SVM and incremental learning, the DIL algorithm achieves desirable

prediction effect for TSP. Experimental results on six benchmark TSP datasets verify that DIL possesses preferable

predictive performance compared with other existing excellent algorithms.

Keywords Time series prediction (TSP) � Incremental SVM � Incremental learning � Double incremental learning (DIL)

algorithm

1 Introduction

In the past few decades, time series prediction (TSP) has

been a challenging problem in machine learning. Time

series forecasting is an effective means for assessing the

characteristics of dynamic systems and predicting trends in

complex systems. Moreover, with the development of TSP

theory, its application in real life becomes more and more

extensive. In recent years, TSP has been increasingly

applied in many fields, such as traffic flow forecasting [1],

cargo sales forecasting [2], sunspot prediction [3] and stock

market forecasting [4].

Time series is defined as a vector formed by data

recorded at the same time interval. The general process of

TSP can be divided into three steps: (1) collect historical

data; (2) design one model to study the characteristics of

the data; and (3) use the model to predict future data.

Among them, the second step is the most critical step.

In the early days, the common approaches for TSP were

some traditional statistical models, such as exponential

smoothing (ES), AutoRegressive integrated moving aver-

age (ARIMA) model and AutoRegressive conditional

heteroskedasticity (ARCH), etc. [5]. However, these sta-

tistical models are only suitable to time series with linear

features and cannot be applied to many complex systems

with nonlinear features in the real world. Therefore, these

models have great limitation in practical applications.

In the past few decades, the theories of machine learning

have been gradually applied to the field of TSP, such as

artificial neural networks (ANNs) [6–11], evolutionary

computation [12], feed-forward neural networks (FNNs)

[13–15] and support vector machine (SVM) [16–18]. Out

of numerous methods, ANNs have strong learning and

generalization ability, which have been in the leading

position of TSP. The well-known ANNs-based models are

fuzzy neural networks [9, 10], recurrent neural networks
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[7, 11], wavelet neural networks [8] and radial basis

function (RBF) neural networks [6].

Although ANNs have many advantages, they still have

some drawbacks, such as longer training periods and being

easy to fall into local optimal traps. Moreover, hidden layer

sizes and learning rates are also difficult to determine.

These are issues that affect the generalization capacity of

ANNs and are difficult to avoid [19]. However, these

problems can be solved by using SVM in conjunction with

statistical theory and structural risk minimization criteria.

SVM is a powerful nonlinear algorithm, having impor-

tant application in many fields of scientific research. It is

capable of generating nonlinear discriminant boundaries

through linear classifiers, while still has simple geometric

explanations. The original SVM was only applied to clas-

sification problems. With the development of theories,

support vector regression (SVR) was proposed [20], so that

SVM is applicable to the field of TSP. SVR is able to

effectively solve high-dimensional and complicated

regression problems [21], making it promising for TSP.

Ma and Laskov et al. proposed incremental SVM on the

basis of SVM [22, 23], which inherits the advantages of

SVM, and these advantages will be described in detail

below. In addition, incremental SVM learns new data by

modifying the trained SVM model rather than retraining a

model, so it is better at handling streaming data, which are

constantly changing over time. While time series is a kind

of typical streaming data, therefore, compared with SVM,

incremental SVM is more suitable for TSP. Particularly,

incremental SVM avoids the repetitive training of large

numbers of samples when processing stream data, so its

efficiency is much higher than SVM.

The most important factors affecting the generalization

performance of incremental SVM are kernel functions and

their parameters. There exist several widely used kernel

functions, such as RBF kernel, polynomial kernel, linear

kernel, and sigmoid kernel. The RBF kernel and polyno-

mial kernel are always able to satisfy Mercer’s theory,

while other kernel functions are in a certain condition to

meet the theory [24]. Since RBF kernel function can reduce

the computational complexity and improve the general-

ization performance of models, it is adopted in the algo-

rithm proposed in this paper.

Furthermore, we find that the combination of incre-

mental learning paradigm and incremental SVM can fur-

ther boost the performance for TSP, which motivates the

proposal of the double incremental learning (DIL) algo-

rithm in this work. Incremental learning was proposed

firstly by Cauwenberghs et al. [25], which enables the

algorithm to revise the previously generated model based

on the new data points. The idea of incremental learning is

to iteratively modify the effect of the new data point on the

regression function to find its Kuhn–Tucker condition,

while simultaneously keep the previously trained data

points satisfying the Kuhn–Tucker condition. The method

iteratively and appropriately modifies the model when a

new data point is input into the generated incremental

SVM, rather than retraining the model from scratch.

Although it is originally proposed for classification prob-

lems, incremental learning is also well suited to solve the

problems of regression [23].

With regard to the definition of incremental learning,

different literatures give different definitions [26–30]. In

this paper, we adopt a universally accepted concept of

incremental learning that satisfies the following conditions

[29, 30]:

1. It is capable of learning new knowledge from new

data.

2. Old data used for the existing models are not necessary

when training a new model.

3. Knowledge obtained previously could be preserved.

4. It should be able to accommodate the changes in the

characteristics of the new data.

Until now, a variety of incremental learning algorithms

has been proposed to solve a variety of different problems.

In some cases, incremental learning refers to the growing

or pruning of model architectures [31–34]. In other cases,

some forms of controlled modification of learner weights

have been proposed, which are ordinarily implemented by

retraining the samples with large prediction errors [35–38].

Though algorithms introduced above can absorb additional

knowledge from new data, it is hard for them to simulta-

neously meet all the four above-mentioned conditions of

incremental learning. They either need to access the pre-

vious original data, or are unable to retain the previously

obtained knowledge, or cannot adapt to the changes of the

attributes of new data.

Since ensemble learning usually has preferable perfor-

mance in comparison with single classifiers, we incorporate

it into our proposed algorithm to obtain the final predictive

values. The classical ensemble learning paradigm is divi-

ded into two stages, i.e., the generation of base models and

the combination of their decisions [39, 40]. What’s more,

many theoretical and experimental studies in the literature

have confirmed that, when the dataset is properly divided

into several subsets, compared to using the entire dataset,

using each subset as the training set to generate a compo-

nent model for the ensemble and integrating the decisions

of the ensemble components often achieves better or, at

least, similar generalization performance [41]. Later, we

would analyze this from the perspective of TSP.

TSP is a research field with high practical value. For

example, the forecasting of network access traffic allows

the company to dispatch resources in a timely manner, so

as to prevent a large number of concurrent visits, which

6056 Neural Computing and Applications (2019) 31:6055–6077

123



might cause the paralysis of the website. For another

example, by forecasting the sales of goods, it is possible to

determine the future purchase to prevent the goods from

encountering poor sales or out of stock. For still another

example, investors may be able to get the maximum profit

by properly predicting the stock movements. These prac-

tical applications have greatly promoted the study of TSP.

However, the existing algorithms exposed some problems

in practice. Therefore, double incremental learning (DIL)

algorithm is proposed in this work, with the motivation

being to improve the prediction effect, and to further pro-

mote the application of TSP in practice. DIL integrates

incremental learning paradigm together with incremental

SVM, which is where the algorithm name, i.e., double

incremental learning (DIL) algorithm, comes from.

The DIL algorithm proposed in this work satisfies all of

the above-mentioned four conditions. Besides, DIL differs

from the traditional incremental learning algorithms in that,

it generates new base models for the unknown parts of the

feature space, instead of generating new nodes for each

previously unknown instance. This scheme is similar to the

rationale of ensemble learning paradigm, which signifi-

cantly improves the performance of DIL algorithm in TSP.

Specifically, the dataset is preprocessed firstly and then

divided into several appropriate subsets. For each subset of

the dataset, weights are assigned for each sample, and the

training and testing subset are selected according to the

weights. Based on the training subset, a base model is

obtained by implementing the incremental SVM algorithm.

The weight of the base model is set according to its pre-

diction error, and then the weighted majority voting rule is

used to combine the generated base models to get a com-

posite model. Finally, weights of the samples are adjusted

in terms of the prediction error of the composite model.

The above steps are repeated until a sufficient number of

base models are obtained, and then, the final composite

model is achieved by integrating all the base models using

the weighted majority voting rule.

Next, the advantages, innovations and contributions of

the proposed DIL algorithm will be introduced from sev-

eral ways.

First of all, in the DIL algorithm, a new sample weight

update rule is proposed, which updates the weights based

on the performance of the composite model produced so

far, rather than updates the weights based on the perfor-

mance of the base models. Therefore, the update to the

weights is more reasonable, and this rule is conducive to

improving the generalization performance and robustness

of the model.

In addition, the weighted majority voting method, which

allocates the corresponding weight of the base model

according to the performance of each base model, is used

in the base model integration. Therefore, the base model

with poor performance has lower discourse power, which

allows the integrated model has better prediction

performance.

Finally, since DIL has combined incremental learning

paradigm with incremental SVM, it inherits several

advantages from both of them. Incremental learning mainly

brings two advantages to DIL. The first is that, it does not

need to save historical data and can save the storage space.

The second is that, it learns new data incrementally and

makes full use of the learned knowledge without retraining

the whole model, thus reducing learning time and

improving learning efficiency.

DIL also inherits three major characteristics from

incremental SVM. The first is its excellent generalization

performance. The optimization goal of incremental SVM is

to achieve the smallest structural risk, rather than the least

empirical risk. Therefore, compared with many other

excellent algorithms, it possesses better generalization

performance. The second is the higher learning efficiency

and better robustness, which are mainly benefited from the

support vectors. The last point is, since incremental SVM

itself has the characteristics of incremental learning, it has

better generalization performance while processing time

series data. Therefore, incremental SVM further enhances

the overall performance of the DIL algorithm in handling

TSP issues.

The numerical experiments are conducted based on six

benchmark time series datasets, i.e., Mackey–Glass, Lor-

enz, Sunspot, Nikkei 225 Index (N225), Dow Jones

Industrial Average Index (DJI), and Shanghai Stock

Exchange Composite Index (SSE) datasets, to evaluate the

effectiveness of the proposed DIL algorithm. The predic-

tive performance of DIL is compared with some other

excellent algorithms reported in the literature. From the

comparison results, it can be concluded that DIL is superior

to these comparative algorithms.

The rest of the paper is organized as follows. In Sect. 2,

the required theoretical knowledge about SVM and incre-

mental SVM will be described in detail. Section 3 will

cover the details of the proposed DIL algorithm. The

experimental results on the six benchmark time series

datasets are reported in Sect. 4. Finally, in Sect. 5, the

conclusions and outlook for future works are given.

2 Theoretical basis

SVM was originally a powerful algorithm for solving

classification problems, which was proposed by Vapnik

et al. [42]. With the development of relevant theories,

Vapnik et al. proposed a kind of SVM for solving regres-

sion problems, i.e., SVR [43]. On the basis of SVM,

incremental SVM is presented [22, 23], which inherits the
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power of SVM. Furthermore, the performance of incre-

mental SVM is more excellent for regression problems.

Therefore, incremental SVM is implemented as the base

learner of the proposed DIL algorithm. In the following of

this section, the principle of incremental SVM is

introduced.

Let’s consider the regression problem. Assume that the

training set is D ¼ fðx1; y1Þ; ðx2; y2Þ; . . .; ðxm; ymÞg, where
ðxi; yiÞ; i ¼ 1; . . .;m are training samples, xi; i ¼ 1; . . .;m

are feature vectors, and each element in the feature vectors

is a real number; yi 2 <, i = 1, …, m represent the target

values. m indicates the size of the dataset D, that is, the

number of training samples. The goal of learning is to get

the model shown in Eq. (1):

f ðxÞ ¼ xTxþ b; ð1Þ

where x and b are the model parameters. The output of the

model f ðxÞ should be as close as possible to y. Similarly, x

is a feature vector and y represents the target value.

The above model is proposed in the original feature

space, but in practice, usually the kernel function is used to

map the original space to high-dimensional space to

facilitate the solution. Let /ðxÞ denote the eigenvector after
mapping x to high-dimensional space, the model corre-

sponding to Eq. (1) is as follows:

f ðxÞ ¼ xT/ðxÞ þ b: ð2Þ

According to literature [43], the solution of SVR is

obtained as follows:

f ðxÞ ¼
Xm

i¼1

ðâi � aiÞjðx; xiÞ þ b; ð3Þ

where jðx; xiÞ ¼ /ðxÞT/ðxiÞ is the kernel function, âi; ai
are Lagrange multipliers.

According to Eq. (3), we can make the following marks:

ti ¼ âi � ai ð4Þ

hðxiÞ ¼ f ðxiÞ � yi ¼
Xm

j¼1

jijtj � yi þ b ð5Þ

According to the value of t, the training dataset can be

divided into the following three subsets:

S ¼ fxij0\ tij j\Cg
E ¼ fxij tij j ¼ Cg
R ¼ fxij tij j ¼ 0g

ð6Þ

Assume that sample xc be a sample newly added to the

training set. Since the elements in set S satisfy DhðxiÞ ¼ 0,

the following equations can be obtained:

DhðxiÞ ¼ jicDtc þ
X

xj2S
jijDtj þ Db ¼ 0; 8xi 2 S ð7Þ

Dtc þ
X

xj

Dtj ¼ 0 ð8Þ

Assume that set S ¼ fxs1 ; xs1 ; . . .; xslg, then the incre-

mental value of t corresponding to the element in set S

should meet the following equation:

H

Db
Dts1
..
.

Dtsl

0
BBB@

1
CCCA ¼ �

1

js1
..
.

jsl

0
BBB@

1
CCCADtc ð9Þ

where

H ¼

0 1 � � � 1

1 js1s2 � � � js1sl
..
. ..

. ..
.

1 jsls1 � � � jslsl

0
BBB@

1
CCCA ð10Þ

From Eq. (9), the following equations can be obtained:

Db ¼ gDtc ð11Þ
Dtj ¼ gjDtc; 8xj 2 S ð12Þ

where g and gj can be acquired by the following formula:

g
gs1
..
.

gsl

0

BBB@

1

CCCA ¼ �H�1

1

ys1ycjs1c
..
.

yslycjslc

0

BBB@

1

CCCA ð13Þ

For samples xj’s that are not in set S, we can get

gj ¼ 0 ð8xj 62 SÞ. For samples in sets R and E, DhðxiÞ can
be obtained from:

DhðxiÞ ¼ jic þ
X

xj2S
jijDgj þ g

0
@

1
ADtc ¼ ciDtc ð14Þ

According to the principle of asymptotic movement, the

value of Dtc can be calculated in four cases, and the

maximum one is taken as the final value of Dtc. Since the

detailed calculation method of Dtc does not fall into the

focus of this paper, we will not elaborate it here. When a

new sample xc is added to the set S, the matrix W ¼ H�1

should be updated as follows:

W ¼

0

W 0

..

.

0 0 � � � 0

0
BB@

1
CCA

þ 1

cc

g
gs1
..
.

gsl
1

0

BBBBB@

1

CCCCCA
g gs1 � � � gsl 1
� �

ð15Þ
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3 Methodology

3.1 Base learner

The base learner is the cornerstone of DIL. Although the

selection to the base learner is varied, it is necessary to

select the appropriate base learner according to the specific

problem. In this paper, incremental SVM is chosen as the

base learner. We make such a choice mainly based on the

following two considerations. First, incremental SVM

inherits several advantages from SVM, such as good

generalization performance and high robustness. Second,

incremental SVM can learn new data incrementally, which

makes it more suitable for TSP, as previously mentioned.

In DIL, it is necessary to implement incremental SVM

to generate a base model in each iteration. The final

composite model is obtained by combining all the gener-

ated base models. Based on the theoretical analysis in the

previous section, the pseudocode of incremental SVM can

be gained, as shown in Algorithm 1.
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3.2 The proposed DIL algorithm

In this section, a detailed description of the proposed DIL

algorithm is presented. In the DIL algorithm, incremental

learning is implemented by combining the existing base

models with the base models generated on the new data. As

mentioned previously, DIL inherits some merits from both

incremental SVM and incremental learning; therefore, it is

particularly suitable for time series forecasting. Moreover,

the strategy of DIL is similar to the rationale of the adap-

tive boosting (AdaBoost) algorithm, thus, it naturally

inherits performance improvement attribute of AdaBoost.

One major characteristic of DIL is that, each new base

learner added to the ensemble is trained on a set of samples

selected based on a distribution got by normalizing the

weights of the samples, which ensures that samples with

larger errors have a higher probability to be selected as

training samples. In general, the samples with high

prediction errors are unknown samples, or samples that

have not been used to train learners.

DIL generates a collection of weak learners and com-

bines the predictive values obtained by individual learners

using the method of weighted majority voting. This

scheme is similar to the AdaBoost algorithm. During each

iteration, DIL uses an update strategy to change the weight

of the current sample, selecting different training data to

obtain diverse weak learners. AdaBoost’s distribution

update rule is designed to improve the accuracy of the

classifier, while DIL’s distribution update strategy is opti-

mized for learning new data incrementally and further

decreasing predictive errors. For a detailed description

about AdaBoost, please refer to [44].

In Algorithm 2, the specific pseudo code of the DIL

algorithm is presented, and its block diagram is given in

Fig. 1.

Time series data:

tw

Pretreatment: get
Data

Divides: get

K

T
kS

Initialize weights:
ω

Randomly choose
TR and TE

Set appropriate
parameters value

Training data:
TR

Incremental SVM

Get Model: ht
Compute: et

te
Y 1tt

Get Model: Ht
Compute: Et tE

N

1tt

N

Update weights:
ω kTt Y 1tt

Kk Y 1kkGet final model:
Hf

N

N

Y

Fig. 1 Block diagram of the DIL algorithm
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We now give a detailed description of the DIL algo-

rithm. The inputs of DIL are as follows:

1. The original time series dataset T ¼ x1; x2; . . .; xnf g.
xi, i = 1, …, n, is the value at a certain time point ti,

which is a continuous value.

2. Time window size tw, which is required in prepro-

cessing the original time series dataset.

3. The number of data subsets K, which is used to divide

the dataset. The dataset obtained by the pretreatment is

divided into K parts, to obtain K data subsets.

4. Number of iterations Tk, which means the number of

iterations implemented on each data subset, indicating,

meanwhile, the number of base learners generated on

each data subset.

5. Base learner, i.e., incremental SVM, which is imple-

mented in each iteration.

The final model Hf is the output of the proposed

algorithm. Our purpose is to get a final model Hf that

possesses powerful predictive capability. In this work, we

focus on the research of one-step-ahead prediction, thus

Hf is used to predict the data values at the next point in

time.

Let T ¼ x1; x2; . . .; xnf g be a time series and xi ¼
xi; xiþ1; . . .; xiþtw�1ð Þ be the input of the i-th base learner,

where tw denotes the time window size. yi = xi?t is

regarded as the target value. Then, xi; yið Þ represents a

sample, and Data ¼ xi; yið Þ; i ¼ 1; . . .;Nf g is our dataset.

DIL generates an ensemble consisting of weak learners,

each base learner is trained on different subsets of the

currently available data subset Sk; k ¼ 1; . . .;K. All of the
K data subsets are gained by dividing Data into K parts. In

each iteration, 4/45.5 of the dataset Sk; k ¼ 1; . . .;K are

utilized as the training data, and the remainder are used as

the testing data. Each specific instance used to train the

base learners is selected according to the weight of each

instance in Sk; k ¼ 1; � � � ;K. In each iteration, after

updating, the weight vector x is normalized, which makes

the weights a distribution. The instances with higher pre-

diction errors are more likely to be added into the training

set for the next iteration. For each dataset Sk; k ¼ 1; . . .;K,

the weight vector x can be initialized as any value, while in

this paper, each element value of the weight vector x is

initialized to 1/m, so that, initially, each instance has the

same chance of being selected into the training subset.

In the tth iteration, t = 1, 2, …, Tk, the DIL algorithm

first selects the training subset TR and the testing subset TE

from Sk; k ¼ 1; . . .;K according to the weight vector x

(Step 1). Then, appropriate parameters are selected for

incremental SVM to generate base model ht (Step 2). The

error et of model ht on Sk ¼ TRþ TE; k ¼ 1; . . .;K is

defined as:

et ¼
Xm

i¼1

xðiÞ � htðxiÞ � yij j ð16Þ

where | � | indicates the absolute value (Step 3). That is

simply the weighted sum of absolute deviations.

If et[ e, ht will be discarded, and TR and TE will be

rechosen, where e is a threshold preset according to the

distribution of the dataset. That is, whether a base model

could be retained is mainly dependent on its performance

over Sk; k ¼ 1; . . .;K. The threshold e is used to measure

whether ht has reached the required level of performance.

Since the value of e is determined based upon the dataset, it

usually owns different values for different datasets, but in

general e is less than 1/2.

If et B e is satisfied, then calculate the normalized error

bt(0 B bt B 1) according to Eq. (17):

bt ¼ et=ð1� etÞ: ð17Þ

The rule of weighted majority voting is then used to

combine the base models generated in the previous t iter-

ations (Step 4). When voting, the weight of each base

model is the logarithm of the reciprocal of the normalized

error bt. Thus, base model with a smaller error rate is

assigned a higher voting weight. The composite model Ht

is obtained by combining every base model as follows:

Ht ¼ argmax
y

X

t: htðxÞ�yj j\d

logð1=btÞ: ð18Þ

In order to make it easier for the reader to understand the

weighted majority voting rule in DIL, we give a schematic

diagram in Fig. 2.

Note that the predicted value given by Ht is the value

obtained by weighted majority voting within a certain error

range. That is, if the total number of votes received in the

interval y� d; yþ dð Þ is the highest, then the combined

forecasting is y.

The composite error Et of model Ht is computed on

Sk; k ¼ 1; . . .;K as:

Et ¼
Xm

i¼1

xðiÞ � HtðxiÞ � yij j; ð19Þ

The composite error Et and the error et have the same

mathematical significance. If Et[ e, then discard the cur-

rent composite model Ht, select a new training subset and

generate a new Ht. It is found that, in most cases, the

condition Et B e could be satisfied, because the perfor-

mance of each base model ht has been verified in step 3. If

Et B e is satisfied, the composite normalized error Ct will

be calculated as

Ct ¼ Et=ð1� EtÞ: ð20Þ

The weight vector x is updated and normalized so that

the weights become a distribution. And then, they are used

6062 Neural Computing and Applications (2019) 31:6055–6077

123



to select the training and testing subsets, i.e., TR and TE,

respectively, for the next iteration. The specific weights

update method is as follows:

xðiÞ ¼ xðiÞ � Ct; if HtðxiÞ � yij j\d
xðiÞ; otherwise

�
: ð21Þ

Furthermore, the weight vector x is normalized as:

x ¼ x

,
Xm

i¼1

xðiÞ: ð22Þ

The weights update rule is one of the most important

parts of the DIL algorithm. In order to make it easier to

understand, its schematic diagram is given in Fig. 3.

Following this rule, if the prediction error of the com-

posite model Ht for yi is within a certain range, i.e.,

HtðxiÞ � yij j\d, the corresponding weight xðiÞ is multi-

plied by a factor Ct. According to the definition of Ct, its

value is less than 1. If HtðxiÞ � yij j\d is not satisfied, the

corresponding weight xðiÞ will remain unchanged.

According to this rule, instances with higher prediction

errors are more likely to be selected into TR in the next

iteration. If we regard those instances, whose prediction

errors are large, as hard instances, while the instances with

small prediction errors as simple instances, then the algo-

rithm would be more and more concerned about hard

instances, and the hard instances will be further intensively

studied. Therefore, the DIL algorithm belongs to the

incremental learning paradigm, which is specially designed

for TSP.

After generating Tk base models on each dataset

Sk; k ¼ 1; . . .;K, all the base models generated so far are

integrated by using the weighted majority voting rule to

obtain the final composite model Hf. The specific form of

the final composite model Hf is as follows:

Hf ¼ argmax
y

XK

k¼1

X

t: htðxÞ�yj j\d

log 1=Ctð Þ ð23Þ

The time complexity of the proposed DIL algorithm is

O(KTk(CH ? Ch)), where K represents the number of data

subsets after dataset division, and Tk represents the number

of iterations. Ch and CH, respectively, represent the number

of base models and compound models discarded during one

iteration.

Note that the DIL algorithm preserves all of the gener-

ated base models; therefore, the previous data can be dis-

carded to save storage space, without forgetting the

previous knowledge. In addition, DIL has another impor-

tant feature, i.e., the independence from the base learner.

That is to say, any appropriate weak learner could be

chosen as the base model for DIL, which has only a little

effect on the overall performance of the algorithm. How-

ever, choosing the corresponding base learner according to

the specific problems is helpful for DIL to achieve more

desirable prediction results. Generally, the DIL algorithm

is able to achieve good prediction effect for various TSP

problems, which is propitious to solve many problems in

reality.

3.3 A discussion about the extensions of DIL
algorithm with respect to deep learning

In recent years, with the development of machine learning

theory, deep learning (DL), as a new research branch, has

emerged. A lot of researches and applications have verified

the powerful performance of deep learning [45–47]. Deep

learning is essentially a nonlinear combination of multi-

level representation learning methods. Representation

learning [48] refers to learning the feature representation

from data, in order to extract useful information from the

data for the purpose of classifying or forecasting. Starting

from raw data, DL paradigm transforms each layer’s fea-

tures into higher layers and more abstract features, so as to

discover intricate structures in high-dimensional data.

In the field of DL, various deep structures have been put

forward. Among them, several most classic deep structures

are deep belief network (DBN) [49], deep Boltzmann

machine (DBM) [50] and stacked autoencoder (SAE) [51].

DBN and DBM are obtained by stacking restricted Boltz-

mann machines [52]. SAE is formulated by stacking

Fig. 2 The weighted majority voting rule in DIL
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autoencoders [53]. Furthermore, researchers have proposed

some excellent deep structures, recently. For example,

Zhang et al. [54] developed a character-level sequence-to-

sequence learning method, i.e., RNNembed, for neural

machine translation.

About the extensions of the proposed DIL algorithm

with respect to deep learning, we have three ideas. The first

one is that, inspired by SAE, multiple incremental SVMs

could be stacked together to get a deep incremental support

vector machine, which could be used to replace the original

base learner of the DIL algorithm to further improve its

performance.

The second idea is, firstly, building a deep neural net-

work for feature extraction from data, and then, feeding the

obtained feature representation through unsupervised

learning into the base models of the DIL algorithm, i.e.,

incremental SVMs, so that the DIL algorithm could be used

to predict the trend of data.

The third thought is, it might be desirable to integrate

incremental learning with deep learning paradigm, such

that deep neural networks can learn data incrementally. For

example, a deep neural network is used for feature learn-

ing, while an incremental learning algorithm integrates

existing feature sets with newly acquired features in a

particular way.

4 Numerical experiments

In order to evaluate the performance of the proposed DIL

algorithm, simulation experiments based on several

benchmark synthetic and real-world datasets are con-

ducted. And the experimental results of DIL on each

dataset are compared with those state-of-the-art algorithms

proposed in other literatures, with the detailed experi-

mental results and discussions given in Sect. 4.2. The

experimental results have demonstrated the significant

improvement to the predictive performance achieved by

the proposed algorithm.

4.1 Datasets and experimental setup

4.1.1 Datasets

Simulation experiments on six benchmark datasets have

been conducted in this work, including two synthetic

datasets and four real-world datasets. The details of the six

benchmark datasets are described in turn as below.

(A) Mackey–Glass database

Originally, the Mackey–Glass equation was presented as

a model for regulating blood cell. One of the major features

of the Mackey–Glass dataset is its chaotic nature; therefore,

it is one of the classical datasets in the field of chaotic TSP.

The time series is generated by the following nonlinear

differential equation:

dx

dt
¼ axðt � sÞ

1þ xcðt � sÞ � bx tð Þ: ð24Þ

If s[ 16.8, then the time series is chaotic.According to the

literatures [7, 55, 56], the parameters selected for generating

the time series are a = 0.2, b = 0.1, c = 10, and s = 17.

According to Eq. (24), a chaotic time series dataset with the

length of 10,000 is generated,with the initial value being set to

1.2, that is,xð0Þ ¼ 1:2. Thefirst 8000values are discarded and

the last 2000 values are kept for the experiments.

(B) Lorenz database

The Lorenz time series is a three-dimensional dynamical

system that exhibits chaotic flow and was found by Edward

Lorenz. The equation for generating the Lorenz time series

is as follows:

dxðtÞ
dt

¼ r yðtÞ � xðtÞ½ �

dyðtÞ
dt

¼ xðtÞ r � zðtÞ½ � � yðtÞ

dzðtÞ
dt

¼ xðtÞyðtÞ � bzðtÞ:

ð25Þ

Fig. 3 The weights update rule in DIL
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where r, r and b are the dimensionless parameters. The

parameters used to generate the time series are set

according to the literatures [7, 55, 56], where r = 10,

r = 28 and b = 8/3. In this group of experiments, the x-

coordinate of the Lorenz time series is taken as the

experimental dataset. A chaotic time series dataset with the

length of 10,000 can be generated according to Eq. (25).

Similarly, in order to reduce the transient effect, we discard

the first 8000 values and keep the last 2000 values for the

experiments.

(C) Sunspot database

The Sunspot time series is a time series that regularly

records the number of sunspots, which is an important

indicator for the study of the solar cycle. The solar cycle

has a significant impact on the Earth’s climate, the opera-

tion of the satellite, and so on; therefore, it is of great

practical significance to predict the sunspots number.

However, the prediction of sunspot numbers is still a

challenging task, because of its own complexity. The

monthly smoothed Sunspot time series used in this paper is

obtained from Sunspot Index World Data Center (SIDC)

[57]. To compare the performance of the proposed DIL

algorithm with the other algorithms in the literatures, the

Sunspot time series from November 1834 to June 2001 is

selected as our dataset, which contains 2000 data values.

(D) Three financial datasets

In addition to the three benchmark datasets introduced

above, there are three important stock index datasets,

respectively, N225, DJI and SSE. These three stock

indexes have a more important impact on the international

financial markets, thus, it is necessary to do some research

on them. The N225 dataset in the fourth group of experi-

ments consists of monthly sampled data, which includes all

the closing prices from April 1988 to March 2015, con-

taining 324 data points [58]. The monthly closing prices of

DJI from February 1985 to March 2015 are selected as the

experimental data for the fifth group of experiments,

including 352 data values [58]. Similarly, in the sixth group

of experiments, the monthly closing prices of SSE from

December 1990 to January 2015 are selected as the

experimental data, containing 290 data points [58].

Furthermore, in order to facilitate comparison, it is

necessary to normalize the data, that is, to adjust the data to

the range of [0, 1]. The normalization formula is as

follows:

x0i ¼
xi � xmin

xmax � xmin

; ð26Þ

where x0i is the normalized data value, xi is the original

value, xmax and xmin are the maximum and minimum values

in the original data, respectively.

4.1.2 Experimental setup

In order to carry out the experiments of this work, some

parameters are required to be preset appropriately.The specific

parameters of the DIL algorithm are shown in Table 1.

For the time window size tw, it is found by trial-and-

error that, the feasible value range of the time window tw is

[4, 10] for datasets with different sizes. For data partition, it

is important to determine an appropriate size for the data

subset Sk; k ¼ 1; . . .;K, which is usually related to the size

of the original dataset. After repeated experiments, it is

found that, for datasets with different sizes, when the

number of subsets K is set within the range [2, 6], the

subset Sk; k ¼ 1; . . .;K will have a more appropriate size.

In this paper, the original dataset is evenly divided into

several subsets, that is, the sizes of Sk’s are identical.

However, in fact, the DIL algorithm does not force the

sizes of the subsets Sk’s to be the same. The DIL algorithm

would generate Tk base models on each Sk; k ¼ 1; . . .;K. Tk
should not be too large, because blindly increasing Tk is not

much helpful to upgrade the model performance, and

would lead to inefficiency; however, Tk should also not be

too small, because a too small Tk will reduce the model

performance. As shown in Table 1, the value of Tk in this

work is set as 20.

In order to evaluate the performance of the proposed

DIL algorithm and to compare it with the algorithms in the

literatures, we need proper measurements to measure their

prediction performance. In the field of TSP, there are

several commonly used prediction performance measure-

ments, among which the following four error measures,

i.e., root mean squared error (RMSE), normalized mean

squared error (NMSE), mean absolute error (MAE), and

absolute error (Error), are employed in this work. Their

specific formulas are presented as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

xi � x̂ið Þ2
vuut ; ð27Þ

NMSE ¼
PN

i¼1 xi � x̂ið Þ2
PN

i¼1 xi � �xð Þ2

 !
; ð28Þ

Table 1 The parameters of DIL
Parameters Time window size tw Number of data subsets K Number of iterations Tk

Values [4, 10] [2, 6] 20
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MAE ¼
PN

i¼1 xi � x̂ij j
N

; ð29Þ

Error ¼ xi � x̂i; ð30Þ

where xi and x̂i; i ¼ 1; . . .;N represent the original data and

the predicted data, respectively. �x represents the average of

the original data, and N denotes the size of the testing

dataset.

In order to reduce the contingency of the experimental

results, twenty repetitive experiments are performed on

each dataset, and the average values of the repetitive

experimental results are taken as the final results.

Finally, the operating environment of the experiments in

this work is MATLAB R2009a. The hardware configura-

tion is one PC with 2.4 GHz CPU and 12 GB RAM.

4.2 Results and discussion

In this section, the experimental results of the proposed

algorithm on the six benchmark datasets are given, and the

relevant experimental results graphics are drawn. Further-

more, the prediction performance of the DIL algorithm is

compared with other excellent algorithms in the literatures.

Tables 2 and 3 show the maximum, minimum and

average values of RMSE and the run times (CPU time) of

the DIL algorithm in 20 independent and repetitive runs on

the six benchmark datasets, which are what they have in

common on each dataset. The difference between Tables 2

and 3 lies in that, Table 2 lists out the maximum, minimum

and average values of NMSE on the Mackey–Glass, Lor-

enz and Sunspot datasets, while Table 3 displays those

values of MAE on the N225, DJI and SSE datasets. The

reason why the experimental results are listed out in this

way is because the performance of DIL is required to be

compared with other state-of-the-art algorithms. However,

the comparative algorithms in some literatures provide

their RMSE and NMSE results, while the comparative

algorithms in other literatures provide their RMSE and

MAE results.

As can be seen from Tables 2 and 3, the DIL algorithm

is capable to complete training and prediction on the six

datasets in a short period of time. In addition, according to

the minimum, maximum, mean of the RMSEs, NMSEs and

MAEs, we can see that the error range of DIL on five

datasets is very compact with slight fluctuation, except

those on the Mackey–Glass dataset. Although the error

fluctuation on the Mackey–Glass dataset is slightly larger,

it is also within acceptable limits. And it can be seen from

the subsequent chapters that, it is caused by very few

examples. From these experimental results, a conclusion

could be drawn that, the DIL algorithm possesses a rela-

tively stable performance in most cases.

As can be seen from Figs. 4, 5, 6, 7, 8 and 9 that, the

DIL algorithm has good predictive performance on all the

six benchmark datasets. Figures 4a, 5a, and 6a compare the

predictive values with the original values on the Mackey–

Glass, Lorenz, and Sunspot datasets, respectively, which

indicate that the differences between these two values are

very small. Figures 7a, 8a, and 9a compare the predictive

values with the original values on the N225, DJI, and SSE

datasets, respectively. On these three datasets, the high

degree of unpredictability of financial data causes slightly

larger prediction errors. But, the forecast trend is basically

consistent with the actual trend, and the prediction per-

formance of the DIL algorithm on these three datasets also

exceeds many existing algorithms.

Correspondingly, Figs. 4b, 5b, 6b, 7b, 8b, and 9b show the

prediction errors (absolute errors) on the six datasets,

respectively. The results show that, the absolute errors on the

six datasets at most reach the value of 10-2 or reduce to even

Table 2 RMSE, NMSE and

CPU time of the DIL algorithm

on the first three datasets

Datasets RMSE NMSE Time (s)

Max Min Mean Max Min Mean

Mackey 9.66E-04 3.65E-04 5.69E-04 1.41E-05 2.01E-06 5.18E-06 913.51

Lorenz 3.79E-04 3.15E-04 3.46E-04 3.11E-06 2.15E-06 2.60E-06 199.77

Sunspot 7.26E-03 6.41E-03 6.72E-03 6.24E-04 4.07E-04 4.86E-04 67.58

The way of expression of 9.66E-04 is scientific notation, that is, 9.66E-04 stands for 9.66 9 10-4. The

same markings in the following tables have the same meaning

Table 3 RMSE, MAE and CPU

time of the DIL algorithm on

the last three datasets

Datasets RMSE MAE Time (s)

Max Min Mean Max Min Mean

N225 3.00E-02 2.30E-02 2.54E-02 2.27E-02 1.75E-02 1.96E-02 2.95

DJI 2.03E-02 1.77E-02 1.91E-02 1.48E-02 1.35E-02 1.42E-02 4.41

SSE 2.54E-02 2.04E-02 2.23E-02 2.03E-02 1.55E-02 1.73E-02 2.75
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lower values. Figure 4b shows that, very few data points

fluctuate much, which confirms the results in Table 2. From

these prediction errors graphs, we can conclude that, the DIL

algorithm has less error fluctuation on the five datasets, and

its prediction performance is stable.

As can be seen from the preceding introduction, the DIL

algorithm integrates the incremental learning paradigm

together with incremental SVM. In order to analyze which

part has a greater impact on the overall performance of the

DIL algorithm, we split the DIL algorithm into two parts.

The first part is an incremental learning framework, in

which, the traditional SVM is chosen as base learner,

replacing the incremental SVM. This algorithm is called

single incremental learning (SIL) algorithm in this paper.

The second part is the base learner of the DIL algorithm,

i.e., incremental SVM, which is abbreviated as ISVM.

Tables 4 and 5 show the experimental results of DIL,

SIL and ISVM algorithms on the six datasets, respectively.

These results are obtained by averaging the results of

twenty repeated experiments. As can be seen from these

two tables, the performances of SIL and DIL are relatively

close to each other, while the performance of ISVM is

quite different from the former two. This situation illus-

trates that the incremental learning framework contributes

more to the overall performance of the proposed DIL

algorithm, while the base learner has little impact on it.

There are some parameters in the proposed DIL algo-

rithm, among which, the time window size tw, the number

of data subsets K, and the number of iterations Tk are the

three most important parameters. In order to analyze the

impact of these parameters on the performance of the DIL

algorithm, repeated experiments are performed on six data

sets. In the course of the experiments, each parameter takes

various values to carry on the experiments in turn. Through

these experiments, we can determine a suitable range of

each parameter values. These experiments also further

verify the values intervals of the parameters setting in

Sect. 4.1.2 are reasonable.

Tables 6, 7 and 8 show the results of DIL algorithm with

different values of time window size tw on six datasets,

while the values of the other two parameters K and Tk are

set as 4 and 20, respectively, by trial-and-error. It is not
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Fig. 4 a The prediction results graph of the DIL algorithm on Mackey–Glass. b The prediction errors of the DIL algorithm on Mackey–Glass
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difficult to find from these three tables that, the prediction

results of DIL algorithm are similar when the values of tw

are within the interval [4, 10]. If the tw’s value is not within

the range of [4, 10], the prediction effect of DIL algorithm

will be worse. This shows that, the value of tw should not

be too large nor too small. If tw is too small, samples will

contain too little valid information, which might lead to

poor predictive performance. If the value of tw is too large,

samples will contain too much noise, thus affecting the

learner’s learning.

The experimental results of the DIL algorithm with

different values of the number of data subsets K on six

datasets are shown in Tables 9, 10 and 11, while the other

two parameters tw and Tk take the values of 7 and 20,

respectively, by trial-and-error. From these three tables, we

can draw a conclusion similar to the previous one. The

three tables show that, proper partitioning of the datasets

can improve the overall performance of the algorithm.

However, the size of the data subset should not be too

small, since a single base model learned on an undersized

dataset would have a poor overall description of the data.

This also has a certain impact on the overall performance

of DIL algorithm.

Similarly, different values are set for the number of

iterations Tk, and then experiments are conducted on the six

datasets. In this experimental part, the values of the other

two parameters tw and K are set as 7 and 4, respectively, by

trial-and-error. The experimental results are presented in

Tables 12, 13 and 14. It can be easily seen from the

experimental results that, when the value of Tk is too small,

that is, the generated base models are too little, the per-

formance of the algorithm will be obviously decreased.

This is because the number of base models is too small and

the data have not been fully learned. It is not difficult to

find that, when the value of Tk increases to a certain extent,

if it continues to increase, the performance of the algorithm

would not only not be significantly improved, but rather

result in performance degradation. The reason might be

that, when the value of Tk becomes too large, the diversity

among the base models could decrease, while their accu-

racies might not be improved, simultaneously.

In order to show the superiority of the proposed algo-

rithm, the predictive performance of DIL on the six time
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graph of the DIL algorithm on

Lorenz. b The prediction errors

of the DIL algorithm on Lorenz
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series datasets are compared with the latest excellent

algorithms in the literatures, as shown in Tables 15, 16, 17,

18, 19 and 20. For the sake of comparison, the best results

are highlighted in bold. In addition, the results listed in the

tables are the average values of the 20 repetitive experi-

mental results obtained by DIL.

Table 15 shows the comparison between the algorithms

reported in the literatures with the proposed DIL algorithm

based upon RMSE and NMSE values on the Mackey–Glass

dataset. It is easy to see from the table that, DIL has better

performance in predicting this time series, compared with

other algorithms. Obviously, compared with other algo-

rithms, both RMSE and NMSE values have been signifi-

cantly reduced by DIL.

Table 16 presents a comparison of the prediction errors

on the Lorenz time series. The results show that, the DIL

algorithm has much smaller RMSE and NMSE values, and

more accurate prediction results.

In Table 17, the proposed DIL algorithm achieves

smaller RMSE in predicting the Sunspot time series, when

compared to other algorithms. The mean value of NMSE

for 20 runs of DIL is minimal, although only slightly

smaller than the second optimal algorithm. Table 2 shows

that, the maximum NMSE of DIL is 6.24E-04 on the

Sunspot dataset, which is worse than the Residual Analysis

method using Hybrid Elman-NARX Neural Networks

(HENNN-RA) [55] and Taguchi’s Design of Experiment

(Taguchi’s DoE) [56] models. However, we can see that,

the minimum and average NMSE values achieved by DIL

are smaller than Taguchi’s DoE. In fact, 16 results of

NMSEs are within the range of (4.07E-04, 5.03E-04) in

20 repetitive experiments. The prediction NMSEs of the

proposed model are better than the second optimal model

in most cases. Combining with the results of NMSE and

RMSE, we have sufficient reason to believe that the per-

formance of the proposed DIL algorithm is better than all

the other comparative models.

In Tables 18, 19 and 20, the main comparisons are

conducted toward the results of RMSE and MAE. Table 18

shows that, the average values of RMSE and MAE

obtained by DIL are the smallest when predicting the N225

time series, which is superior to the best existing neuron
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model with nonlinear interactions between excitation and

inhibition of dendrites (NBDM) [58]. Furthermore, we can

conclude that, DIL has improved performance by at least

25% compared to NBDM. As can be seen from Table 19,

when the DJI time series is predicted, the proposed DIL

algorithm achieves the smallest average values of RMSE

and MAE, which are 1.91E-02 and 1.42E-02, respec-

tively. Compared to the optimal NBDM, the average values

of RMSE and MAE achieved by DIL are reduced by at

least 45%. In Table 20, similarly, DIL achieves the optimal

average results of RMSE and MAE when predicting the

SSE time series. And the average values of RMSE and

MAE obtained by DIL are decreased by 19.5 and 22.4%,

respectively, compared with the best NBDM.

Next, we will further verify the computational com-

plexity of the proposed DIL algorithm through experi-

ments. Moreover, five comparative algorithms are selected

to be compared with the proposed DIL algorithm, including

locally linear neurofuzzy model with locally linear model

tree (LLNF-LoLiMot) algorithm [60], competitive island-

based cooperative coevolution methods for two islands

(CICC-two-island) [62], cooperative coevolution for

training recurrent neural networks with synapse level

encoding (SL-CCRNN) [7], orthogonal least squares

learning algorithm for Radial Basis Function networks

(RBF-OLS) [60], and cooperative coevolution for training

recurrent neural networks with neuron level encoding

(CCRNN-NL) [61], in terms of overall computational time

on the six benchmark datasets. According to the previous

analysis, the computational complexity of the proposed

DIL algorithm is O(KTk(Ch ? CH)). In the following, the

computational complexities of the five selected compara-

tive algorithms are briefly analyzed. O(2Mp4) is the time

complexity of LLNF-LoLiMot, where M is the number of

neurons, p is the dimension of the sample space. The

computational complexity of SL-CCRNN is O(nsT), where

n means n generations, s is equal to the total number of

synapses and biases, T is the number of iterations.

10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time

V
al

ue

Real Value
Predictive Value

10 20 30 40 50 60 70 80 90
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Time

Er
ro

r

(a)

(b)

Fig. 7 a The prediction results graph of the DIL algorithm on N225. b The prediction errors of the DIL algorithm on N225

6070 Neural Computing and Applications (2019) 31:6055–6077

123



O(T1T2D(S ? N)) is the computational complexity of

CICC-two-island, where T1 represents global evolution

times, T2 means island evolution times, D is the depth of

n generations, N is the number of sub-populations at neuron

level, S is the number of sub-populations at synapse level.

The time complexity of CCRNN-NL is O(ckm), where c is

the number of cycles, k is the total number of hidden and

output neurons, m is the number of generations. O(Rp) is

the time complexity of RBF-OLS, where R is the number

of all the candidate regressors, p represents the number of

steps set in the algorithm.

Table 21 shows the overall computational times of these

algorithms on the six benchmark datasets, which are also

obtained by averaging the results of twenty repeated

experiments. Combining the results in Table 21 and the

time complexities of the comparative algorithms, the fol-

lowing conclusions could be drawn easily. SL-CCRNN,

CCRNN-NL and DIL have similar time complexities, and

their running times are also relatively close. However, the

predictive performance of the DIL algorithm is much better

than either of them. The time complexities of LLNF-

LoLiMot and CICC-two-island are higher than DIL, and,

correspondingly, their running times are much longer than

DIL. Moreover, the predictive performance of DIL is better

than both of them. This situation shows that, DIL is

superior to the two comparative algorithms in both effi-

ciency and performance. For RBF-OLS algorithm, its time

complexity is lower than DIL, and its running time is also

shorter than DIL. However, as you can see from Tables 15,

16, 17, 18, 19 and 20, DIL’s predictive performance is

better than RBF-OLS.

5 Conclusions and future works

In this paper, a novel integrated algorithm, i.e., the DIL

algorithm, with promising performance for TSP is pre-

sented, where incremental SVM is employed as the base

leaner. In the first stage of DIL, several base models are

generated, with each one generated based on a respective
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Fig. 8 a The prediction results

graph of the DIL algorithm on

DJI. b The prediction errors of

the DIL algorithm on DJI
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training data subset. Then, during training, the weighted

majority voting method is used to combine the base models

into a composite model. According to the composite

model, the weight of one specific sample is updated by

using a novel weight update rule. Finally, after all the base

models have been learnt using all the training subsets,

again, the weighted majority voting technique is utilized to

combine them to get the final composite model. In the DIL
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Fig. 9 a The prediction results

graph of the DIL algorithm on

SSE. b The prediction errors of

the DIL algorithm on SSE

Table 4 The results of DIL, SIL

and ISVM algorithm on the first

three datasets

Datasets RMSE NMSE

DIL SIL ISVM DIL SIL ISVM

Mackey 5.69E204 6.19E-04 1.19E-03 5.18E206 5.66E-06 1.02E-05

Lorenz 3.46E204 3.87E-04 5.33E-03 2.60E206 3.11E-06 7.86E-05

Sunspot 6.72E203 7.01E-03 1.52E-02 4.86E204 5.25E-04 2.24E-03

Table 5 The results of DIL, SIL

and ISVM algorithm on the last

three datasets

Datasets RMSE MAE

DIL SIL ISVM DIL SIL ISVM

N225 2.54E202 3.02E-02 5.63E-02 1.96E202 2.43E-02 4.43E-02

DJI 1.91E202 2.35E-02 1.33E-01 1.42E202 1.91E-02 7.22E-02

SSE 2.23E202 2.44E-02 6.61E-02 1.73E202 2.01E-02 4.77E-02
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Table 6 RMSE of the DIL

algorithm with different

parameter tw on six datasets

Datasets tw

2 4 7 10 15

Mackey 6.81E-03 5.64E204 5.84E-04 6.12E-04 1.33E-03

Lorenz 8.96E-04 4.19E-04 3.44E204 5.13E-04 1.60E-03

Sunspot 7.80E-03 6.71E-03 6.70E203 7.02E-03 8.64E-03

N225 3.34E-02 2.55E-02 2.46E202 2.63E-02 3.93E-02

DJI 2.83E-02 1.95E-02 1.91E202 1.99E-02 3.32E-02

SSE 4.17E-02 2.23E202 2.66E-02 2.79E-02 4.67E-02

Table 7 NMSE of the DIL

algorithm with different

parameter tw on the first three

datasets

Datasets tw

2 4 7 10 15

Mackey 6.87E-05 5.04E206 5.58E-06 6.09E-06 2.65E-05

Lorenz 1.41E-05 3.44E-06 2.55E206 4.46E-06 6.38E-05

Sunspot 6.78E-04 4.83E-04 4.78E204 5.22E-04 8.45E-04

Table 8 MAE of the DIL

algorithm with different

parameter tw on the last three

datasets

Datasets tw

2 4 7 10 15

N225 2.95E-02 2.05E-02 1.92E202 2.10E-02 3.35E-02

DJI 2.35E-02 1.46E-02 1.40E202 1.55E-02 3.28E-02

SSE 3.12E-02 1.77E202 1.92E-02 2.24E-02 4.11E-02

Table 9 RMSE of the DIL

algorithm with different

parameter K on six datasets

Datasets K

2 4 6 8 10

Mackey 5.89E-04 5.74E204 6.31E-04 7.81E-04 8.93E-04

Lorenz 3.80E-04 3.39E204 4.12E-04 5.73E-04 6.91E-04

Sunspot 6.77E-03 6.67E203 7.24E-03 1.18E-02 1.69E-02

N225 2.55E-02 2.48E202 2.71E-02 3.32E-02 3.78E-02

DJI 2.01E202 2.20E-02 2.43E-02 2.91E-02 3.53E-02

SSE 2.26E202 2.37E-02 2.51E-02 3.17E-02 4.24E-02

Table 10 NMSE of the DIL

algorithm with different

parameter K on the first three

datasets

Datasets K

2 4 6 8 10

Mackey 5.38E-06 5.11E206 5.83E-06 7.29E-06 8.32E-06

Lorenz 3.16E-06 2.56E206 3.39E-06 5.73E-06 7.91E-06

Sunspot 5.27E-04 4.85E204 5.93E-04 1.31E-03 1.95E-03

Table 11 MAE of the DIL

algorithm with different

parameter K on the last three

datasets

Datasets K

2 4 6 8 10

N225 2.03E-02 1.95E202 2.21E-02 2.65E-02 3.17E-02

DJI 1.46E202 1.62E-02 1.75E-02 2.28E-02 2.92E-02

SSE 1.69E202 1.78E-02 1.90E-02 2.45E-02 3.47E-02
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algorithm, the most critical part is the weight update rule,

which is a brand-new and powerful rule. This rule has

made a great contribution to the improvement of algorithm

performance.

Table 12 RMSE of the DIL algorithm with different parameter Tk on

six datasets

Datasets Tk

10 20 30 40

Mackey 6.60E-04 5.63E204 6.05E-04 6.14E-04

Lorenz 5.17E-04 3.56E204 4.06E-04 4.01E-04

Sunspot 8.05E-03 6.61E203 7.13E-03 7.31E-03

N225 2.88E-02 2.48E-02 2.44E202 2.56E-02

DJI 2.38E-02 1.96E-02 1.92E202 1.93E-02

SSE 2.66E-02 2.31E-02 2.15E202 2.18E-02

Table 13 NMSE of the DIL algorithm with different parameter Tk on

the first three datasets

Datasets Tk

10 20 30 40

Mackey 6.33E-06 5.12E206 5.92E-06 5.98E-06

Lorenz 3.43E-06 2.67E206 2.85E-06 2.83E-06

Sunspot 6.71E-04 4.74E204 5.56E-04 5.72E-04

Table 14 MAE of the DIL algorithm with different parameter Tk on

the last three datasets

Datasets Tk

10 20 30 40

N225 2.46E-02 1.92E-02 1.89E202 2.03E-02

DJI 1.88E-02 1.43E-02 1.41E202 1.42E-02

SSE 2.33E-02 1.84E-02 1.73E202 1.75E-02

Table 15 Comparisons with the results from the literatures on

Mackey–Glass

Prediction model RMSE NMSE

SL-CCRNN [7] 6.33E-03 2.79E-04

BPNN-GA-RA [59] 1.30E-03 /

RBF-OLS [60] 1.02E-03 /

LLNF-LoLiMot [60] 9.61E-04 /

CCRNN-NL [61] 1.07E-02 /

CICC-two-island [62] 8.47E-03 /

Proposed DIL 5.69E204 5.18E206

The mark ‘‘/’’ indicates that the contrastive algorithms have not listed

results corresponding to the certain performance measurement in the

reference paper

Table 16 Comparisons with the results from the literatures on Lorenz

Prediction model RMSE NMSE

SL-CCRNN [7] 6.36E-03 7.72E-04

ARMA-ANN [63] 8.76E-02 /

BPNN-GA-RA [59] 2.96E-02 /

CCRNN-NL [61] 1.36E-02 /

CICC-two-island [62] 9.15E-03 /

Proposed DIL 3.46E204 2.60E206

Table 17 Comparisons with the results from the literatures on

Sunspot

Prediction model RMSE NMSE

SL-CCRNN [7] 1.66E-02 1.47E-03

ERNN [11] 1.29E-02 2.80E-03

HENNN-RA [55] 1.19E-02 5.90E-04

Taguchi’s DoE [56] 1.10E-02 5.04E-04

CCRNN-NL [61] 3.91E-02 /

CICC-two-island [62] 4.06E-02 /

Proposed DIL 6.72E203 4.86E204

Table 18 Comparisons with the results from the literatures on N225

Prediction model RMSE MAE

NBDM [58] 3.42E-02 2.97E-02

ELMAN [64] 4.21E-02 3.32E-02

MLP [65] 5.80E-02 4.56E-02

ANFIS [66] 1.27E-01 3.38E-02

SMN [67] 6.68E-02 5.39E-02

Proposed DIL 2.54E202 1.96E202

Table 19 Comparisons with the results from the literatures on DJI

Prediction model RMSE MAE

NBDM [58] 5.13E-02 2.74E-02

ELMAN [64] 6.14E-02 3.47E-02

MLP [65] 1.26E-01 7.05E-02

ANFIS [66] 1.97E-01 9.72E-02

SMN [67] 2.02E-01 1.14E-01

Proposed DIL 1.91E202 1.42E202

Table 20 Comparisons with the results from the literatures on SSE

Prediction model RMSE MAE

NBDM [58] 2.77E-02 2.23E-02

ELMAN [64] 5.74E-02 5.24E-02

MLP [65] 7.86E-02 5.89E-02

ANFIS [66] 4.78E-02 5.15E-02

SMN [67] 6.65E-02 4.85E-02

Proposed DIL 2.23E202 1.73E202
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The previous description about the advantages of DIL,

including promising performance, desirable robustness,

and high stability, has been fully testified in the experi-

mental part. In addition, as mentioned earlier, since DIL

saves all the trained base models, the trained historical

data can be discarded, so that the storage space will be

saved. These characteristics indicate that, the proposed

DIL model has a broad prospect in its application to TSP

problems.

Compared with some of the other excellent algorithms

in the literatures, the experimental results on six bench-

mark time series datasets, including two synthetic and four

real-world datasets, fully confirm the superiority of the DIL

algorithm.

With regard to the outlook for future works, firstly, the

research of this work is only focused on single-step TSP

problems, while in the future, our research work can be

extended to multi-step TSP ones. Besides, in this work, the

parameters of DIL are determined by the trial-and-error

method, while in the future, we will consider the design of

self-adaptive parameters for the implementation of the

algorithm. Moreover, the proposed algorithm involves the

generation of multiple base models. However, ensemble

pruning techniques have not been employed. Therefore, in

the future, we will appropriately incorporate ensemble

pruning techniques into our developed algorithm to further

boost its efficiency and efficacy.
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