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Abstract
Determination of the critical failure surface is performed in stability evaluation process for road cut slope, embankments,

dam, excavations, retaining walls and many more. Finding the critical failure surface in a rock or soil slope is very

cumbersome and becomes a difficult constrained global optimization problem. Due to existence of discontinuous function

and strong multiple local minima points, researchers are facing difficulties to employ trial-and-error methods in a large

search space. Thus, classical optimization techniques fail to converge to a valid solution. In this study a stochastic method

called biogeography-based optimization algorithm was adopted for analyzing the factor of safety. Based on the finding

from the implementation and quantitative evaluation, it was found that the proposed method for locating critical failure

surface in homogeneous soil slope acquires more efficient results over other implemented methods such as grid search and

genetic algorithm. The validation and effectiveness of the proposed method are investigated by solving two benchmark

case studies from the literature, while the simulation design for slip surfaces is carried out using ‘Rocscience slide’

software tool for comparing the results.
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1 Introduction

Slope stability evaluation is a classical problem in the field

of civil, mining, hydraulic and geotechnical engineering.

The recognition of safe design of human-made or natural

slopes is achieved by assessing the stability analysis. The

stability analysis includes the study of a wide range of

ground movements or slope failures influenced by gravity.

These failures may arise due to earthquake, floods, land-

slides and many other geohazards. These failures can often

catastrophic and sometimes involve the extensive loss of

economy, social and environment damage. In recent years,

numerous methods have been developed to access the

failure mechanism and to understand the instability due to

geological, hydrological, seismology and geotechnical

exploration. But due to existing lots of imprecision and

uncertainties and many complex decision-making problems

encountered in the actual scenario make the slope stability

as a very challenging task. Many stochastic and fuzzy-

based techniques [1–4] have been rapidly increased to

solve such problems. Locating the critical slip surface

associated with least factor of safety value is traditionally

performed to estimate the slope stability. It is an NP-hard,

unconstrained global optimization problem due to its dis-

continuous function and several local minima points

available in the search space. In this concern, the slip

surfaces with its corresponding forces such as the forces

tending to make slope down, restored forces which stabi-

lized the slope mass are essential to evaluate the available

safety margin. Various approaches such as finite element

method, rigid element method, limit equilibrium method,

limit analysis method, distinct element method, proba-

bilistic analysis methods and others have been used for
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such analysis. But, the most widely analytical technique

used for geotechnical analysis is limit equilibrium [5]. In

limit equilibrium analysis (LEM), some methods of slice,

such as Fellenius method [6], Bishop method [7], Mor-

genstern and Price [8], Spencer method [9], Janbu

method [10] and others, derive factor of safety based on

some assumption criteria [11]. The essence of these

methods is to divide the whole sliding slope mass into a

finite number of vertical slices and evaluate the slip sur-

faces to calculate the factor of safety margin in terms of

different acting forces. To evaluate the slip surfaces in a

large search space made the safety factor margin big and

prove to be a difficult problem in the field of geotechnical

engineering. Ching and Fredlund [12] discussed some

encountered problems associated with the limit equilibrium

methods of slices. Baker and Garber [13] also demon-

strated the problem of limiting equilibrium in terms of the

variational calculus, and then, it is proven that the minimal

factor of safety must occur on slip surfaces with a special

geometric property. Trial-and-error methods are also not

found suitable due to lack of engineer’s experience or high

solution search space [14]. The factor of safety function is

often highly multimodal, and it is certainly nonsmooth due

to varying the soil parameters, ground condition and

external loads. In the presence of several local minima

points in the search space and high computational com-

plexity environment, classical techniques fail to give a

valid solution. In the presence of these disadvantages,

stochastic techniques could efficiently approximate the

optimal solution to such kind of problems. Yamagami and

Ueta [15] used some stochastic approach such as BFGS and

DFP method to investigate the factor of safety of the dif-

ferent slopes. In a similar way, an extensive number of

stochastic approaches [16–19] also received a lot of

attention, because of its elegance and efficiency. Many

researchers have successfully employed meta-heuristic

optimization algorithms for slope stability problems, such

as: Greco [14] used Monte Carlo technique; Chen and

Morgenstern [20], McCombie and Wilkinson [21],

Das [22], Zolfaghari et al. [23], Jianping et al. [24] and

Sengupta and Upadhyay [25] used different search tech-

niques like grid method and genetic algorithm. Kahatade-

niya et al. [26] used ant colony optimization. Ahangar-Asr

et al. [27] applied evolutionary polynomial regression

(EPR)-based approach for analyzing the slope stability of

soil and rock slopes. Khajehzadeh et al. [28, 29] have

implemented a new metaheuristic approach GSA based on

the law of gravity and motion. And Kashani et al. [30] used

ICA-based search for slope stability problems.

In the present study, the biogeography-based optimiza-

tion (BBO) algorithm is employed to locate the margin of

the safety factor. This algorithm has been widely adopted

due to its ease of implementation and ability to solve

highly complex, nonlinear optimization problems. The

Fellenius method from LEM’s methods of the slice is

defined as an objective function to calculate the factor of

safety. The effectiveness of the proposed method is

investigated by solving two benchmark problems from the

literature, where the simulation design for slip surface

model is compared using ‘Rocscience slide’ software tool

for validating the results. From the implementation result

and quantitative evaluation, it is clearly visible that the

proposed method for locating critical failure surface for

homogeneous soil slope acquires more efficient results over

implemented methods.

2 Slope stability analysis

The slope stability analysis is done through many con-

ventional methods such as numerical methods, kinematics

methods, probabilistic methods, limit equilibrium methods,

imperial methods [27, 31]. The most widely analytical

technique used for geotechnical analysis is limit equilib-

rium [28–34], which calculates the safety factor based on

the Mohr’s coulomb criteria. In this study, the procedure

based on the method of slices is to run a large number of

iterations to locate the critical failure surface, where the

center coordinate points and radius of the circle are varied

until the slip surface for which the factor of safety would be

minimum. The essence of this method is to divide the

whole sliding slope mass into a finite number of vertical

slices so that the comparison between the total available

shear strength along the slip surface with total forces acted

in the slice’s face required to be in equilibrium state could

easily derive. In the proposed methodology, a finite number

of valid slip surfaces are only computed, whereas the

invalid surfaces which yield the unreasonable FoS values

are ignored. The methodology for evaluating the failure

surface is illustrated in Fig. 1.

2.1 Formulation of slip surface

A 2-dimensional slip surface is formulated here. The fail-

ure direction and the x–y plane where the search procedure

for slip surface is to made must be specified. In this study,

the prime objective is to locate the critical failure surface—

a surface along which the rock mass or soil is more likely

to fail. This ‘likelihood-to-fail’ is quantified by the factor

of safety, which is associated with a unique slip surface.

This slip surface is described by a polyline of 2-dimen-

sional-N-points {P0, P1, P2; . . .;Pn � 2, Pn � 1}. It must

satisfy all its kinematic and geometric constraints [24].

Here, the slip surface is considered as a function F(P).
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P ¼

P0 ¼ slopeðt0Þ ¼ ðx0; y0Þ
P1 ¼ ðx0; y0Þ

. . .

Pi ¼ ðxi; yiÞ
. . .

Pn�2 ¼ ðxn�2; yn�2Þ
Pn�1 ¼ slopeðtn�1Þ ¼ ðxn�1; yn�1Þ

2
666666666664

3
777777777775

ð1Þ

where positional vector matrix (P) is a solution vector and

represents a polyline that describes a failure surface. The

function F(P) shown in Eq. 1 consumes n-points of a

polyline as inputs while outputting a scalar factor of safety

value associated with a failure surface [35, 36]. However,

F(P) function is often highly discontinuous as well as

multimodal when its all geometric and kinematic con-

straints are being satisfied. Sometimes, multimodality may

be the results from the multilayering of the soil or mineral

lenses in the potential mass. In the research of Chen and

Shao [37], it is clearly demonstrated that there may be

several local minima presented in the solution space.

Hence, the function F(P) is here certainly nonsmooth and

being regarded as an NP-complete problem. These all

pertain to make the considered problem as a global opti-

mization problem [36, 37].

2.1.1 Dimension of the problem

The dimension of the problem will be dictated by the

number of vertices which describe a slip surface from

bottom to top. Each inner vertex of the slip circle con-

tributes to two extra dimensions, while single parametric

values are needed to describe the entry and exit vertex

surface since both must lie on the slope surface. Thus, a

failure surface of n vertices (i.e., including entry and exit

points) will translate to 2� ðn� 1Þ a dimension problem

[35, 38].

2.1.2 Constraints and Bounds

Let us consider, a Cartesian, X–Y plane shown in Fig. 2, the

function y ¼ SðxÞ represents slip surface, while the bedrock
surface is described by y ¼ RðxÞ. In order to satisfy all

kinematic and geometric conditions, for a potential failure

surface, some geometric constraints are very necessary to

bind to the surface to make in equilibrium. These con-

straints will define the domains for each 2n� 2 control

variables [39]. The slope surface is first parameterized from

right to left between 0 and 1, and as such,

t0; tn�1jt0 [ tn�1 2 ½0; 1� define the entry and exit point of

the failure surface. This generates points p0 ¼ slope ðt0Þ ¼
ðx0; y0Þ and point pn�1 ¼ slope ðtn�1Þ ¼ ðxn�1; yn�1Þ.

2.1.3 Bounds for x-coordinates

The failure surface of n vertices can be divided equally

from x0 and xn�1 to generate n� 2 slices. These slices

bound the set of x-coordinates such that-

xi [ xj j j[ i 8 xi ¼ 1; 2; 3; . . .; n� 2; and

xj ¼ 2; 3; 4; . . .n� 1

where xi 2
�
xi�1; xi�1 �

xn�1 � x0

n� 2

� ð2Þ

Since, the distance between each vertices (P0;P1; . . .Pn�1)

are equal. That is,

ðxi � xiþ1Þ ¼ ðxiþ1 � xiþ2Þ ¼ � � � ¼
�
xn�1 � x0

n� 2

�
;

where i 2 ½0; n� 1�
ð3Þ

2.1.4 Bounds for y-coordinates

The control variables y0 and yn�1 directly depend on slope

height and base of the slope which can be determined

easily from the slope geometry, while remaining 2n� 2

Fig. 1 Transition workflow diagram for slope stability analysis
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variables i.e., fx0; ðx1; y1Þ; . . .; ðxi; yiÞ; . . .; ðxn�2; yn�2Þ;
ðxn�1Þg will be derived as per the coordinate system for

slip surface. Cheng [36] proposed in his study that if the

value of x1 to xn�1 are defined, then corresponding lower

bounds and upper bounds to ðy2; . . .; ynÞ are then calcu-

lated by utilizing the geometry and bed rock [40, 41]. The

bounds on the control variable should be dynamic for

being an admissible surface. The bounds for y0-coordinate

will be-

y0 2
�
ðRxÞ; ðSxÞ

�
ð4Þ

As the line connecting points pn�1 and p1, intersects with

the line x ¼ x2 at point H with y-coordinate yH and a line

passing through p0 and p1 which is extended to interact

with the line x ¼ x2 at point G with y-coordinate yG
determine. Hence fy2min; y2maxg can be determined as

y2min
¼ maxðyG;Rðx3ÞÞ and y2max

¼ minðyH ; y0ðx3ÞÞ. Simi-

larly, the bounds on y-coordinate of each point on the slip

surface, i.e., fy1min; y1max; . . .; yn�1min
; yn�1max

g shown in

Fig. 2, can be determined by the relation,

yi 2
��

MaxðRðxiÞÞ; Yimin
Þ;
�
MinðSðxiÞÞ; Yimax

��
ð5Þ

where Yimin
¼ yi�1 þ

�
yi�1 � yi�2

xi�1 � xi�2

�
ðxi � xi�1Þ ð6Þ

Yimax
¼ yi�1 þ

�
yn�1 � yi�1

xn�1 � xi�1

�
ðxi � xi�1Þ ð7Þ

2.2 Modeling the objective function

In this study, the development of the objective function is

made for employing the BBO algorithm. The factor of safety

equation derived using Fellenius method [6, 32] is defined as

the objective function or fitness function for the algorithm.

In Fellenious method, the slope failure is considered to be in

circular shape, while the slide side forces E1, E2 and X1, X2

shown in Fig. 3 are assumed to be negligible. In this study,

the objective function is chosen here to be express a safety

factor of a circular slip surface, where it would be derived in

terms of center points (a, b) and radius (R). In regard to

proceed this, a circular surface is drawn within its slope

geometry by random selection of a center point (a, b) and

radius (R). The intersection points that meet the circular

surface and slope boundary are derived. The circular arc

path (AB is shown in Fig. 3) is assumed to be a failure

surface with center ‘O’ and radius ‘R.’ The whole slope

mass (ABCD) is divided into a finite number of slices which

are depicted in Fig. 3 so that the total available shear

strength (resisting force Fr) and total shear stress (deriving

force Fd) can be easily calculated. The Fellenius factor of

safety equation is expressed as

F ¼
Xn
i¼1

Fr

Fd

¼
Pn

i¼1½c0ili þ ðWi cos ai � liliÞ tanð/0
iÞ�Pn

i¼1 Wi sin ai
ð8Þ

Finally, the working of BBO algorithm is mentioned for

minimization of the objective function. The center coor-

dinates and radius are varied in every iteration until the slip

surface whose corresponding factor of safety (FoS) is

found minimum.

Fig. 2 Control variables for an admissible slip surface
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2.2.1 Derivation of failure slip surface in terms of (a, b, R)

To employ the BBO algorithm, the factor of safety (FoS) is

defined as the fitness function, which must be derived in

terms of the center point (a, b) and radius (R) of the cir-

cular surface. In the next stage, the development of

objective function is built. First, we determine the inter-

section points that meet the circular path with the sloped

boundary and then the distance from top to bottom of the

circular failure surface is calculated for finding the width of

the slices. Finally, the point of intersection with the middle

of the slice and boundary of slip surface is calculated for

deriving the base angle (a) of the slice. Let

ðx1; y1Þðx2; y2Þ; . . .; ðxn; ynÞ are the coordinates of intersec-

tion points of the failure slip surface with the middle of n-

slice in the direction from foot to top of the slope, where

the height of the slope is y ¼ h.

The equation of circle is:

ðx� aÞ2 þ ðy� bÞ2 ¼ R2 ð9Þ

The intersection points ðxl; ylÞ and ðxU ; yUÞ of a circle and a
line of the form y ¼ mxþ d are as follows:

xl;u ¼
aþ bm� dm�

ffiffiffi
o

p

1þ m2
ð10Þ

where o ¼ r2ð1þ m2Þ � ðb� ma� dÞ2

yl;u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � ðxl;u � aÞ2Þ

q
þ b ð11Þ

If the intersection points are not in slope region, it will be

corrected using geometry so that an admissible failure

surface is created with valid intersection points on slip

surface. Now, the width of slices can be determined as

Width of each slice ðbÞ ¼ jxu � xlj
n

ð12Þ

where n ¼ number of slices divided in the region. Now,

using geometry the angle of slice base (a) with the tangent

at intersection point (xmi; ymi) is derived. A free body dia-

gram (FBD) of ith- slice and angle of slice base is shown in

right of Fig. 3.

Angle of slice baseðaÞ ¼ sin�1

�
xmi

R

�
ð13Þ

where xmi ¼ xi � b=2 and ymi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � ðxmi � aÞ2Þ

q
þ b

Now, other terms that come into play in the derivation

for factor of safety (FoS) will be calculated as follows:

Length of SliceðLÞ ¼ b

cos a
ð14Þ

Tengential force at each slice ðTÞ ¼ w � sinðaÞ
¼ c � h � b � sinðaÞ ð15Þ

Normal force at each slice ðNÞ ¼ w � cosðaÞ
¼ c � h � b � cosðaÞ ð16Þ

Thus, all the terms are calculated here. Now, by substi-

tuting all these terms associated with each slice in Eq. 8,

the factor of safety (FoS) value corresponding to a failure

surface is derived. Algorithm 1 illustrates the pseudocode

for deriving factor of safety for slope surface.

Fig. 3 Slip surface of having finite vertical slices with FBD
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3 Working principle of biogeography-based
optimization algorithm

Biogeography-based optimization (BBO) is a stochastic

random search algorithm inspired from island biogeogra-

phy [42]. It presents the robustness of the optimum solution

to many complex-type engineering problems. BBO algo-

rithm has been widely adopted due to its ease of imple-

mentation and the ability to solve highly nonlinear

problems. With these advantages, BBO algorithm has been

used in many applications recently, such as classifica-

tion [43, 44], sequence alignment [45], TSP problems [46]

and other global optimization problems. The algorithm

examines the factors that affect the distribution of biolog-

ical species among neighboring islands [47, 48]. The

algorithm is implemented typically with a population of

possible solutions and uses probabilistic transition rules

instead of deterministic rules, whereas the classical opti-

mization techniques such as linear programming and inte-

ger programming work with a single solution [49]. The

algorithm starts with the initialization of the population

(called habitats). Each habitat represents a possible solution

of the problem under consideration. Every solution or

habitat is a collection of suitability index variables (SIVs),

where SIVs indicate the independent variables of the

habitat (features of the solution) that represents suitability

of the habitat to which it belongs. Similarly, another habitat

suitability index (HSI) relates the dependent variables

associated with goodness of habitat solution. The BBO

approach describes the immigration and emigration of

species between habitats. High HSI of the habitat is anal-

ogous to good solutions and will be occupied by a large

number of species, so it is having a high emigration rate

and low immigration rate (since the habitat is nearly sat-

urated with species), while low HSI habitat is analogous to

poor solution and will be having a small number of species.

Through the migration operation, high HSI solutions share

a lot of features with poor solutions and poor solutions can

accept a lot of features from good solutions [47]. This

probabilistic operation (migration) modifies SIVs of the

habitats based on the immigration rate (ki) and the emi-

gration rate (li), where both ki and li are the functions of a
number of species in ith habitat (Hi). For mathematical

convenience, it is assumed that the immigration rate (ki)
and emigration rate (li) are linear functions of the number

of species. The linear migration model for ith habitat is

formulated using Eqs. 17 and 18.

ki ¼ I � ð1� niÞ=n ð17Þ

li ¼ E � ni=n ð18Þ

where I and E represent the maximum possible immigration

and emigration rate, ‘n’ indicates the maximum number of

species, and ni is the number of species in the ith habitat.
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The relationship between species count (S), maximum

immigration (I) and emigration rate (E) is illustrated in

Fig. 4, where ‘S0’ is the equilibrium number of species and

Smax is the maximum species count. The decision to modify

each solution is taken based on the immigration rate of the

solution. After following migration operation habitats go

through the mutation process for maintaining the diversity

among the population. In this process of mutation, a change

is made by replacing an HSI from the habitat with another

randomly generated HSI with a very low probability [47].

Each candidate solution is associated with a mutation

probability defined by Eq. 19.

MðsÞ ¼ Mmaxð1� PsÞ
Pmax

ð19Þ

Here, Mmax is a user-defined parameter, Ps is the species

count of the habitat, Pmax is the maximum species count.

Finally, the whole process is run for a consecutive number

of generations until to have a minimum objective function

value is attained. Figure 5 represents the workflow diagram

for the whole BBO process.

4 Implementation of BBO algorithm
in failure slip surface analysis

To implement the BBO algorithm, the factor of safety

(FoS) function is defined as fitness function which is

derived in terms of the center coordinates (a, b) and radius

(R) of the circular surface. The Fellenius method [6] from

limit equilibrium methods is used to derive the factor of

safety (FoS). The analysis of the problem can be consid-

ered in two stages. In the first stage, development of

objective function is built, which is demonstrated in

Sect. 2.2, while in a second stage the working of BBO is

mentioned for minimization of the fitness function using

migration and mutation operation. Further, the population

passes through elitism mechanism, where a habitat with

best fitness value is chosen to pass in the next generation

for preserving the solution quality. Real values are coded

for the variables in the derivation of the fitness function,

while the parameters of the algorithms such as population

size, emigration rate (E), immigration rate (I), mutation

rate (Mmax) are fine-tuned with the best values in the

implementation. The proposed BBO algorithm has the

following steps:

4.1 Generating population

In the first step of implementation, a number of habitat

population are generated, where each population consti-

tutes with no. of variables and represents a solution in

search space. The variables (a, b, R) in the population are

chosen randomly within its range, and then intersection

points ðxl; ylÞ, ðxu; yuÞ of circular surface are derived. Thus,
a typical habitat design with 7 variables like

ajbjRjxljyljxujyu computes a slip surface. During the

implementation process, the real values are used for each

variable, while the range of variables is tuned according to

the problem under consideration. The encoding represen-

tation of a slip surface from a habitat is shown in Fig. 6.

Fig. 4 Species model for species count, immigration rate and

emigration rate relationship

Fig. 5 Flowchart of BBO algorithm
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4.2 Migration and mutation

The migration operation in BBO is used to diversify the

solution space. It generally explores the whole solution

search space. In this process, a pair of habitat is picked up

on the basis of migration rate and emigration rate and then

exchanges the variables (features) of high HSI habitat to

low HSI to improve the solution quality [50]. The proba-

bility of the habitat (Hi) to be modified is proportional to its

immigration rate ðkiÞ, while the probability of exchange

variables from the source habitat (Hj) is proportional to the

emigration rate ðljÞ. This migration between variables of

habitats can be expressed using Eq. 20.

HiðSIVÞ ¼ HjðSIVÞ ð20Þ

The pseudocode for the whole migration process is

depicted in Algorithm 2. After cross-exchange of variables

(migration) between habitats, the FoS values for all pos-

sible habitats are calculated. The habitat having lower fit-

ness value is chosen for participating in next further

process, while habitats associated with invalid solutions

(belong to invalid surfaces) are ignored. This process can

result a better habitat which is being added to the popula-

tion. With this new value of habitat, the algorithm may able

to produce a better solution.

This whole migration process is followed by mutation

operation. The mutation operator generally intensifies the

solution search space by altering one or more features in a

habitat and gives a new solution chance to improve better

fitness value. In this process, a probability is assigned to

each habitat. High probability means the solution is very

near to an optimum solution. If it is low, the solution is far

away from the optimum solution and shows a high chance

for mutation operation. Algorithm 3 shows the pseudocode

for mutation process.

5 Validation using different numerical
benchmark studies

In this section, effectiveness and validation of the proposed

approach are examined by solving two different numerical

benchmark problems from the literature. These problems

are considered for homogeneous soil slope, where the

Fellenius method is considered to be used as fitness func-

tion of the algorithm. At first, the safety factor is examined

using grid search (GS) method, where the center point of a

failure surface falls into a specified rectangular area, whose

position is determined on the basis of solid engineering

experiences. In this rectangular grid, each point represents

a center of slip surface on a certain radius range. Finally, on

each grid point, the factor of safety is calculated to examine

the minimum safety factor [51, 52]. In the similar way to

validate the methodology, genetic algorithm (GA) is also

implemented. In this approach, a binary-coded chromo-

some in the population is encoded using 24 bits

(00111000|10010010|01000010) associated with its vari-

ables (a, b) and R. Each chromosome in the population

described a possible solution in the search space. Finally,

the minimization of the fitness function is achieved by

evaluating the chromosome selected over consecutive

generations where the performance has been improved by

using the application of crossover, mutation operators. The

remaining of the implementation have been employed the

same as in the literature of Sengupta and Upadhyay [25]. In

the next stage, the BBO algorithm is adopted to locate the

critical failure surface associate with optimal factor of

safety. The findings of this algorithm indicate that the BBO

algorithm produces the minimum result more efficient with

fast convergence rate. The statistical analysis of the

experimental results also confirms the higher stability

analysis of the algorithm.

5.1 Case study 1

The geometry of this homogeneous soil slope shown in

Fig. 7 is taken from the study of Yamagami and Ueta [15].

Fig. 6 Pictorial view of a habitat structure to represent a failure slip

surface
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The geotechnical properties of the soil material are taken as

effective internal base friction ð/Þ is 10�, effective cohe-

sion (c) is 9.8 KPa, pore pressure ðlÞ is 0, unit weight ðcÞ is
set 17.64 kN/m3. In the proposed analysis, the above

algorithms (grid search, GA and BBO) are rigorously run a

consecutive number of iterations. As can be seen from

Fig. 8, it has been observed after successive iterations that

the factor of safety obtained by grid search and the GA is

stabilized at 1.265 and 1.237, which shows the local min-

ima. BBO algorithm has little better performance as it

produces the minimum factor of safety at 1.224, which

represents global minima in the search space. The tuning

parameters of the algorithm which are rigorously found as

best parameters to fine-tune the result are depicted in

Table 1.

The critical slip surfaces located by the above algo-

rithms over different iterations are shown in Fig. 9,

whereas its associated factors of safety are tabulated in

Tables 2, 3 and 4. The Tables 5, 6 and 7 illustrate the result

with all slice data values for global minimum factor of

safety using the above approaches (GS, GA and BBO). -

From the comparative result of present method’s and for-

mer studies summerized in Table 8, it is observed that the

critical slip surface associated with a minimum factor of

safety obtained by grid search, GA and BBO methods tends

to near with previously computed values.

5.2 Case study 2

This example problem is abstracted from the literature by

Fredlund and Krahn [31]. The analysis is done for homo-

geneous cohesive soil slope, whereas the geotechnical

properties of the material are taken as; unit weight (c) is
120 pcf, friction angle is 20�, and effective cohesion is set

at 29 KPa. The geometric view of the slope model is

depicted in Fig. 10.

This problem is also examined over grid search, GA and

BBO algorithm with a similar setup and objective function.

The minimum safety factor has been analyzed over suc-

cessive iterations. The variation of factor of safety derived

by present algorithms on various consecutive generations

are depicted in Fig. 12, whereas the critical failure surface

associated with minimum FoS over different iterations are

illustrated in Tables 9, 10 and 11. The parameters which

involved in deriving the optimal factor of safety corre-

sponding to critical failure surfaces are tabulated in

Tables 12, 13 and 14.

From the result shown in Fig. 11, it is clearly understood

that the grid search and GA approach would have assumed

Fig. 7 Geometry and properties of slope model for case study 1
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Fig. 8 The variation of FoS

with no. of generation on

presented methods. a Factor of

safety versus generation graph

and b factor of safety versus

different methods

Table 1 Tuned BBO parame-

ters for case study 1
Number of habitats 100

Emigration rate (E) 1

Immigration rate (I) 0.5

Mmax 0.2

Number of generation 250
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Fig. 9 Critical slip surfaces determined with Fellenious method over

different generations. a Minimum FoS at generation 10, b minimum

FoS at generation 20, c minimum FoS at generation 50, d minimum

FoS at generation 70, e minimum FoS at generation 100, f minimum

FoS at generation 150, g minimum FoS at generation 200 and

h minimum FoS at generation 250

Table 2 Results for minimum FoS achieved by grid search over the iterations

No. of

generation

Center point

(a, b)

Radius

(R)

Intersection points

ðxu; yuÞ; ðxl; ylÞ
Deriving moments

ðFdÞ
Resisting moments

ðFrÞ
FoS

10 8.98, 12.28 7.63 (16.26, 10.00) (5.75, 5.37) 142.542 190.285 1.335

20 8.76, 9.86 8.96 (17.72, 9.73) (1.24, 5.00) 317.154 421.642 1.329

50 9.12, 10.08 9.24 (18.35, 10.00) (1.41, 5.00) 332.541 440.217 1.324

70 10.56, 11.83 8.88 (19.25, 10.00) (4.90, 5.00) 330.218 250.746 1.317

100 9.69, 12.77 10.76 (20.09, 10.00) (2.25, 5.00) 324.788 422.967 1.302

150 9.07, 11.78 10.02 (18.93, 10.00) (1.70, 5.00) 320.585 409.554 1.278

200 9.12, 10.63 8.76 (17.86, 10.00) (2.40, 5.00) 290.850 367.966 1.265

250 8.98, 12.00 9.94 (18.72, 10.00) (1.93, 5.00) 306.153 387.215 1.265
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1.928 and 1.921 to be the lowest factor of safety. But in

BBO algorithm, upon increasing the number of generations

and fine-tune the parameters of the algorithm, the final

factor of safety stabilizes at 1.916, which represents the

global minima. The tuning parameters which are rigorously

found to be best for fine-tune the result are depicted in

Table 15.

The comparison of results and effectiveness in terms of

a minimum safety factor of the proposed method with the

previous methods is summarized in Table 16.

6 Result discussion and comparison

As can be seen from the above results of the case studies,

the factor of safety obtained by BBO algorithm is stabilized

at lowest value as compared with grid search and GA.

From the quantitative evaluation and implementation

result, it is clearly visible that the BBO outperforms over

these methods with stable convergence and local minima

avoidance. From Fig. 8 of case study 1, it has been illus-

trated that grid search and GA achieved 1.265 and 1.237

Table 3 Results for minimum FoS achieved by GA over different iterations

No. of generation Center point

(a, b)

Radius (R) Intersection points ðxu; yuÞ; ðxl; ylÞ Deriving moments ðFdÞ Resisting moments ðFrÞ FoS

10 10.49,13.16 9.31 (19.25,10.00) (5.54,5.27) 214.378 287.586 1.341

20 7.25,11.67 8.37 (15.46,10.00) (2.20,5.00) 188.425 250.649 1.330

50 8.10,11.95 7.59 (15.43,10.00) (5.02,5.01) 141.199 186.734 1.322

70 7.28,13.65 9.99 (16.58,10.00) (2.30,5.00) 198.630 258.228 1.30

100 9.69,12.11 9.94 (19.40,10.00),(275,5.00) 303.370 391.238 1.290

150 8.98,11.62 9.35 (18.19,10.00) (2.38,5.00) 286.851 359.657 1.254

200 8.98,11.73 8.80 (17.61,10.00) (3.31,5.00) 248.276 307.001 1.237

250 9.12,11.56 8.06 (17.02,10.00) (4.45,5.00) 208.901 258.318 1.237

Table 4 Results for minimum FoS achieved by BBO over different iterations

No. of generation Center point

(a, b)

Radius (R) Intersection points ðxu; yuÞ; ðxl; ylÞ Deriving moments ðFdÞ Resisting moments ðFrÞ FoS

10 10.49,13.21 9.31 (19.23,10.00) (5.59,5.29) 211.563 284.501 1.344

20 10.44,12.88 10.80 (20.86,10.00) (3.06,5.00) 322.219 430.645 1.336

50 10.71,11.84 8.92 (19.44,10.00) (4.99,5.00) 252.598 335.565 1.328

70 10.00,13.10 9.16 (18.62,10.00) (5.39,5.19) 206.098 269.589 1.308

100 7.70,14.09 9.86 (16.67,10.00) (3.88,5.00) 172.91 224.125 1.296

150 8.27,12.83 9.51 (17.35,10.00) (2.88,5.00) 230.372 287.390 1.248

200 9.01,12.34 8.80 (17.49,10.00) (4.16,5.00) 220.695 270.105 1.224

250 9.02,12.27 8.76 (17.48,10.00) (4.15,5.00) 221.357 270.995 1.224

Table 5 Global minima safety factor computation using grid search

Slice

no.

c (KPa) l (KPa) / (�) b (m) l (m) h (m) w (m) a (�) Resisting moment (Fr)

clþ ðw cos a� llÞ tan/
Deriving moment

(Fd) w sin a

1 9.8 0 10 1.766 2.211 0.769 23.943 -37.022 25.036 -14.41

2 9.8 0 10 1.766 1.917 2.609 81.265 -22.904 31.976 -31.612

3 9.8 0 10 1.766 1.794 4.016 125.067 -10.149 39.274 -22.027

4 9.8 0 10 1.766 1.767 5.022 156.425 2.107 44.863 5.749

5 9.8 0 10 1.766 1.823 5.648 175.916 14.462 47.89 43.913

6 9.8 0 10 1.766 1.991 5.853 182.301 27.562 48.001 84.313

7 9.8 0 10 1.766 2.394 5.262 163.88 42.504 44.762 110.679

8 9.8 0 10 1.766 3.843 2.955 92.042 62.684 45.117 81.755

Factor of safety (FoS) ¼
Pn

i¼1
Fr

Fd
FoS ¼ 1.265
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factor of safety values. But in BBO, upon increasing the

number of generations and suitable tuning parameters, the

factor of safety stabilizes finally at 1.224 on 250 genera-

tions. In a similar way, from Fig. 11 of case study 2, it

appears that the minimum FoS value is stabilized at 1.928

and 1.921 with grid search and GA, whereas the BBO

acquired at 1.916 as global optima on 200 generations. The

variation of the factor of safety with the number of gen-

erations and its corresponding comparison graphs as

determined by grid search, GA and BBO methods is

demonstrated in Figs. 8, 9, 11 and 12. In order to obtain the

reliability of the solution and validation of the proposed

approach, the above results of the case studies have been

validated through a Rock-science slide software tool [55].

Table 6 Global minima safety factor computation using genetic algorithm

Slice

no.

c (KPa) l (KPa) / (�) b (m) l (m) h (m) w (m) a (�) Resisting moment (Fr)

clþ ðw cos a� llÞ tan/
Deriving moment

(Fd) w sin a

1 9.8 0 10 1.815 2.143 0.651 20.832 -32.104 24.109 -11.066

2 9.8 0 10 1.816 1.923 2.024 64.812 -19.302 29.63 -21.413

3 9.8 0 10 1.817 1.831 3.363 107.693 -7.447 36.761 -13.952

4 9.8 0 10 1.818 1.82 4.324 138.463 4.09 42.176 9.87

5 9.8 0 10 1.819 1.887 4.913 157.343 15.798 45.171 42.815

6 9.8 0 10 1.820 2.06 5.087 162.913 28.24 45.488 77.048

7 9.8 0 10 1.821 2.457 4.672 149.598 42.38 43.557 100.795

8 9.8 0 10 1.822 3.744 2.375 76.046 61.029 43.191 66.51

Factor of safety (FoS) ¼
Pn

i¼1
Fr

Fd
FoS ¼ 1.237

Table 7 Global minima safety factor computation using BBO algorithm

Slice

no.

c (KPa) l (KPa) / (�) b (m) l (m) h (m) w (m) a (�) Resisting moment (Fr)

clþ ðw cos a� llÞ tan/
Deriving moment

(Fd) w sin a

1 10 0 10 1.67 1.881 0.493 14.512 11.991 20.703 -6.672

2 10 0 10 1.67 1.735 1.972 58.099 3.409 26.858 -15.678

3 10 0 10 1.67 1.676 3.105 91.486 -5.097 32.492 -7.312

4 10 0 10 1.67 1.68 3.915 115.346 -13.718 36.673 12.688

5 10 0 10 1.67 1.751 4.399 129.594 -22.670 38.945 38.869

6 10 0 10 1.67 1.916 4.511 132.912 -32.256 39.196 65.108

7 10 0 10 1.67 2.277 4.129 121.661 -42.998 38.043 82.703

8 10 0 10 1.67 3.384 2.024 59.622 -56.118 38.349 51.854

Factor of safety (FoS) ¼
Pn

i¼1
Fr

Fd
FoS ¼ 1.224

Table 8 Comparative summary

of factor of safety’s results for

case study 1

Optimization algorithms LEMs method Minimum FoS

Yamagami and Ueta [15] (BFGS) Spencer 1.338

Yamagami and Ueta [15] (DFP) Spencer 1.338

Greco et al. [14] (Monte Carlo, pattern search) Fellenius 1.326–1.333

Malkawi et al. [40] (Monte Carlo) Fellenius 1.238

Solati and Habibgahi [53] (GA) Janbu 1.380

Jianping et al. [24] (GA) Line, spline 1.324–1.327

Kahatadeniya et al. [26] (ACO) Morgenstern price 1.311

Kashani et al. [30] (ICA) Spencer 1.3206

Grid search method (current study) Fellenius 1.265

GA (current study) Fellenius 1.237

BBO method (current study) Fellenius 1.224
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This geotechnical analysis tool includes the probabilistic

analysis capabilities that statistically compute the factor of

safety based on Monte Carlo or Latin hypercube simulation

techniques [1, 14, 51]. In the present study, each slip sur-

face associated with its FoS value obtained by stochastic

approaches (GS, GA and BBO) over the different genera-

tions is validated over slide tool. An error between these

methods is calculated to show their superiority. The max-

imum percentage errors between stochastic approaches

with the calculated values from slide are summarized inFig. 10 Geometry and properties of slope model in case study 2

Table 9 Results for minimum FoS achieved by grid search over the iterations

No. of

generation

Center point

(a, b)

Radius

(R)

Intersection points

ðxu; yuÞ; ðxl; ylÞ
Deriving moments

ðFdÞ
Resisting moments

ðFrÞ
FoS

10 105.34, 95.59 86.42 (26.59, 60.00) (147.24, 20.00) 5043.132 9760.455 1.935

20 102.22, 79.02 70.00 (34.86, 60.00) (139.91, 20.04) 4561.108 8822.250 1.934

50 102.39, 77.06 70.00 (34.51, 60.00) (142.93, 20.00) 4823.828 9326.720 1.933

70 102.39, 79.51 70.00 (35.17, 60.00) (139.58, 20.20) 4494.300 8686.462 1.933

100 103.79, 83.68 70.35 (37.54, 60.00) (136.84, 21.57) 3968.377 7660.432 1.930

120 108.84, 80.25 78.11 (33.39, 60.00) (158.56, 20.00) 5678.977 10,955.115 1.929

150 102.051, 72.65 62.76 (40.57, 60.00) (137.82, 21.08) 4180.687 8061.115 1.928

200 (144.57,

110.46)

87.18 (82.94, 48.80) (133.930, 23.93) 1448.540 2793.176 1.928

Table 10 Results for minimum FoS achieved by GA over different iterations

No. of

generation

Center point

(a, b)

Radius (R) Intersection points ðxu; yuÞ; ðxl; ylÞ Deriving moments ðFdÞ Resisting moments ðFrÞ FoS

10 104.27, 81.76 76.79 (30.63, 60.00) (149.92, 20.00) 5348.586 10,355.853 1.936

20 109.01, 92.49 86.23 (29.13, 60.00) (155.70, 20.00) 5366.352 10,382.921 1.935

50 114.02, 71.23 56.41 (58.74, 60.00) (138.85, 20.58) 2825.903 5458.501 1.932

70 104.72, 72.58 70.04 (35.81, 60.00) (150.99, 20.00) 5368.424 10,362.625 1.930

100 115.39, 84.07 70.74 (48.86, 60.00) (145.38, 20.00) 3449.49 6641.772 1.925

120 103.61, 69.47 58.00 (46.39, 60.00) (136.54, 21.72) 3730.166 7174.276 1.923

150 122.07, 87.60 72.47 (55.06, 60.00) (148.18, 20.00) 3013.208 5788.085 1.921

200 126.57, 100.49 70.38 (74.86, 52.74) (120.78, 30.35) 1316.13 2529.296 1.921

Table 11 Results for minimum FoS achieved by BBO over different iterations

No. of

generation

Center point

(a, b)

Radius

(R)

Intersection points

ðxu; yuÞ; ðxl; ylÞ
Deriving moments

ðFdÞ
Resisting moments

ðFrÞ
FoS

10 101.49, 72.53 63.94 (38.79, 60.00) (138.80, 20.60) 4386.113 8501.784 1.938

20 108.31, 96.41 88.35 (27.82, 60.00) (152.66, 20.00) 10,024.444 5176.243 1.937

50 113.30, 98.34 79.31 (43.87, 60.00) (135.56, 22.22) 3061.430 5907.505 1.930

70 120.20, 104.11 85.55 (46.89, 60.00) (138.80, 20.60) 2926.120 5646.604 1.930

100 122.07, 108.42 94.17 (41.29, 60.00) (154.49, 20.00) 3795.981 7300.737 1.923

120 110.46, 105.21 92.59 (29.65, 60.00) (146.69, 20.00) 4507.961 8644.631 1.918

150 108.15, 90.35 73.22 (41.52, 60.00) (135.30, 22.35) 3408.054 6530.142 1.916

200 115.21, 114.35 77.80 (59.55, 60.00 ) (107.22, 36.96) 1364.78 2614.97 1.916
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Table 17. From this table, it is seen that for a given slip

surface associated with optimum FoS value obtained in

case study 1, the maximum error (%) is nearly 9.8% which

is a minimum error as compared to computed value 10.11

and 11.05% by grid search and GA, whereas in case 2, the

maximum error (%) for the optimum factor of safety value

by BBO method is nearly 2.45%, which is also found least

as compared to 4.3 and 4.9% by grid search and GA. In

addition to this, the present approach has been easily

implemented without additional computational complexity.

It utilizes better solution quality with stable convergence

rate and local minima avoidance. The algorithm provides a

Table 12 Global minima safety factor computation using grid search

Slice

no.

c (KPa) l (KPa) / (�) b (m) l (m) h (m) w (m) a (�) Resisting moment (Fr)

clþ ðw cos a� llÞ tan/
Deriving moment

(Fd) w sin a

1 29 0 20 6.372 6.481 1.102 132.36 -9.131 235.623 -21.002

2 29 0 20 6.372 6.55 2.941 353.171 -13.392 315.362 -81.786

3 29 0 20 6.372 6.69 4.273 513.097 -17.7 372.438 -155.998

4 29 0 20 6.372 6.879 5.065 608.129 -22.140 404.846 -229.186

5 29 0 20 6.372 7.125 5.268 632.457 -26.531 414.484 -282.497

6 29 0 20 6.372 7.484 4.812 577.779 -31.511 396.727 -301.975

7 29 0 20 6.372 7.937 3.598 432.051 -36.602 356.582 -257.598

8 29 0 20 6.372 8.597 1.474 177.021 -42.022 297.114 -118.495

Factor of safety (FoS) ¼
Pn

i¼1
Fr

Fd
FoS ¼ 1.928

Table 13 Global minima safety factor computation using genetic algorithm

Slice

no.

c (KPa) l (KPa) / (�) b (m) l (m) h (m) w (m) a (�) Resisting moment (Fr)

clþ ðw cos a� llÞ tan/
Deriving moment

(Fd) w sin a

1 29 0 20 5.739 5.783 1.103 119.321 -7.075 210.796 -14.689

2 29 0 20 5.739 5.864 2.949 318.872 -11.815 283.586 -65.259

3 29 0 20 5.739 5.99 4.294 464.343 -16.639 335.56 -132.897

4 29 0 20 5.739 6.172 5.106 552.128 -21.588 365.761 -203.047

5 29 0 20 5.739 6.424 5.334 576.758 -26.713 373.747 -259.139

6 29 0 20 5.739 6.773 4.902 530.067 -32.079 359.814 -281.388

7 29 0 20 5.739 7.26 3.696 399.644 -37.783 325.473 -244.743

8 29 0 20 5.739 7.971 1.532 165.664 -43.966 274.559 -114.963

Factor of safety (FoS) ¼
Pn

i¼1
Fr

Fd
FoS ¼ 1.921

Table 14 Global minima safety factor computation using BBO algorithm

Slice

no.

c (kPa) l (kPa) / (�) b (m) l (m) h (m) w (m) a (�) Resisting moment (Fr)

clþ ðw cos a� llÞ tan/
Deriving moment

(Fd) w sin a

1 29 0 20 5.959 6.019 1.087 122.081 -8.112 218.561 -17.201

2 29 0 20 5.959 6.115 2.907 326.368 -12.547 293.12 -70.861

3 29 0 20 5.959 6.235 4.235 475.44 -17.120 346.014 -139.957

4 29 0 20 5.959 6.426 5.039 565.679 -21.777 377.373 -209.616

5 29 0 20 5.959 6.663 5.271 591.75 -26.581 386.023 -264.684

6 29 0 20 5.959 6.994 4.862 545.889 -31.618 371.884 -286.119

7 29 0 20 5.959 7.463 3.711 416.604 -36.923 337.54 -250.253

8 29 0 20 5.959 8.098 1.658 186.174 -42.634 284.455 -126.088

Factor of safety (FoS) ¼
Pn

i¼1
Fr

Fd
FoS ¼ 1.916
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viable tool that allows users to gain information about

safety factor in a large search space. Based on these

advantages the BBO algorithm acquired the highest sta-

bility analysis.
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Fig. 11 The variation of FoS

with no. of generation over

presented methods. a Factor of

safety versus generation graph

and b factor of safety versus

different methods

Table 15 Tuned parameters of

BBO algorithm in case study 2
Number of habitats 100

Emigration rate (E) 1

Immigration rate (I) 1

Mmax 0.2

Number of generation 200

Table 16 Comparative

summary of factor of safety’s

results for case study 2

Optimization algorithms LEMs method Minimum FoS

Fredlund and Krahn [31] Fellenius method 1.928

Fredlund and Krahn [31] Simplified Bishop method 2.080

Fredlund and Krahn [31] Spencer 2.073

Fredlund and Krahn [31] Janbu simplified method 2.041

Fredlund and Krahn [31] Janbu rigorous method 2.008

Fredlund and Krahn [31] M-P method 2.076

SSDP (Baker [54]) Spencer 1.98

Grid search (current study) Fellenius method 1.928

GA (current study) Fellenius method 1.921

BBO method (current study) Fellenius method 1.916
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Fig. 12 Critical failure surfaces determined with Fellenius method

over different generations. a Minimum FoS at generation 10,

b minimum FoS at generation 20, c minimum FoS at generation

50, d minimum FoS at generation 70, e minimum FoS at generation

100, f minimum FoS at generation 120, g minimum FoS at generation

150 and h minimum FoS at generation 200
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7 Conclusion and future work

The BBO algorithm provides a viable tool to solve com-

plex and nonlinear-type geotechnical problems. The pro-

posed analysis allows the user to gain information about

stability evaluation in a large solution space. From the

detail discussion of this paper, it is found that the BBO

algorithm is a suitable technique for employing to locate

critical failure surface. Based on the findings, it appears

that the stability analysis procedure makes BBO approach

more efficient and applicable to achieve the reasonable

factor of safety. In addition, the procedure followed for

stability analysis eliminates invalid slip surfaces, which

yields an unreasonable factor of safety. Hence the valid

surfaces under the geometric and kinematic constraints

were evaluated. The validation and performance of the

algorithm were investigated by solving two different

numerical benchmark case studies adopted from the liter-

ature. The findings of the study indicate that the BBO

algorithm presents more consistent results with least per-

centage error as compared to previously developed meth-

ods such as grid search and GA. Nevertheless, the

modifications to the proposed algorithm are still needed to

continuously enhance the performance. Nonhomogeneous

soil and rock slope models with water and load conditions

in their stability analysis may be tried to explore more in

future.
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