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Abstract
The geometric dimensions and bank profile shape of channels with boundaries containing particles on the verge of motion

(threshold channels) are significant factors in channel design. In this study, extensive experimental work was done at

different flow velocities to propose a reliable method capable of estimating stable channel bank profile. The proposed

method is based on gene expression programming (GEP). Laboratorial datasets obtained from Mikhailova et al. (Hydro

Tech Constr 14:714–722, 1980), Ikeda (J Hydraul Div ASCE 107:389–406 1981), Diplas (J Hydraul Eng ASCE

116:707–728, 1990) and Hassanzadeh et al. (J Civil Environ Eng 43(4):59–68, 2014) were used to train, test, validate and

examine the GEP model in various geometric and hydraulic conditions. The obtained results demonstrate that the proposed

model can estimate bank profile characteristics with great accuracy (determination coefficient of 0.973 and mean absolute

relative error of 0.147). Moreover, for practical calculations of channel dimensions, the model provides a specific math-

ematical relationship to solve problems with different discharge rates (Q) and particles with various median grain sizes

(D50). The proposed model’s performance is compared with 8 relationships suggested previously by researchers (based on

empirical and theoretical analyses) and a relationship obtained using a nonlinear regression model with different exper-

imental data. The polynomial VDM and two exponential functions, i.e. IKM and DIM, are introduced as the superior

existing models. According to the present study results, the proposed GEP model can predict the bank profile shape trend

well and similar to the experimental datasets. Sensitivity analysis was also applied to assess the impact of each input

variable (x, Q and D50) on the presented relationship. According to the current study, the GEP model provides a suit-

able equation for predicting the bank profile shape of stable channels.
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1 Introduction

River science engineering requires determining the

threshold conditions in natural rivers and irrigation chan-

nels for design purposes. The threshold or static equilib-

rium status of a channel is the final stage of channel

widening [48], when the channel’s cross-sectional area

reaches the smallest value. The geometric profile of a

threshold channel’s cross section is determined according

to the properties of flow and materials on the channel bed.

If the side slope is defined, it is possible to calculate the

geometric shape of a channel with a specified central depth.

Yu and Knight [57] defined two common methods of

determining the geometric shape of a threshold channel.

One of the methods is established on the channel widening

procedure, whereby channel widening is simulated using

numerical modelling of the bed shape change. This

widening process occurs when the rate of sediment trans-

port at any point on the wall is gradually removed and a

threshold channel forms accordingly. The second method

considers the equilibrium of the effective shear force on
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particles at any point on the bed, the shear stress value at

the incipient motion of sediment and the flow discharge to

calculate the threshold condition of materials on the

channel’s side slope. Glover and Florey [26] were the first

who studied the notion of a stable channel profile. Steb-

bings [52], Mikhailova et al. [40] and Macky [37] subse-

quently carried out extensive experimental investigations

on the bank profile shapes of stable channels. Parker [47]

employed an evolutionary method to determine the distri-

bution of mobile bed shear stress in channels with certain

flow velocities. Ikeda et al. [31] presented a model for

predicting the depth and width of rivers with gravel beds.

They affirmed that the main factor affecting channels in

stable state is lateral diffusion due to fluid turbulence.

Moreover, the first effective parameters in determining

stable channel geometry were introduced as the flow

velocity, free-surface longitudinal slope and average size of

particles on the bed. Cao and Knight [4] proposed a geo-

metric model including flow continuity, frictional resis-

tance, sediment transport, and bank profile-based entropy

profile equations. Cao and Knight [4] stated that the bank

profile shape is a polynomial curve. Mironenko et al. [41]

deduced that the shape of a channel’s transverse profile is a

parabolic curve, while Diplas [6] and Pizzuto [49] sug-

gested an exponential function shape. Diplas and Vigilar

[7] used a numerical model and solved the momentum,

fluid and energy balance equations for sediment particles in

impending motion. They also presented some relationships

for predicting channel stability. Their results suggested a

polynomial of degree five for the predicted bank profile,

which is quite different from conventional threshold bank

shapes, such as cosine, parabolic and exponential. Vigilar

and Diplas [55] suggested an exponential equation for bank

profile calculation. The optimum existing channel profile

shape is polynomial. Vigilar and Diplas [56] subsequently

suggested the third-degree polynomial. Babaeyan-Koopaei

and Valentine [3] evaluated stable alluvial channel profile

geometry experimentally and compared the results with

previously published equations. Apparently, the polyno-

mial equation recommended by Diplas and Vigilar [7]

leads to better estimation with the normal-depth method.

The researchers suggested two hyperbolic functions for

predicting channel cross-sectional shape. Dey [5] presented

a modified model to calculate the cross-sectional dimen-

sions of a threshold channel. Macky [38] proposed two

models, namely a conventional and a diffusive model to

describe the widening process in stable channels.

In recent decades, various soft computing methods have

been applied for modelling complex phenomena. Many

researchers have used soft computing to model a diversity

of engineering cases, such as simulating open channel

bends [19–24], predicting the discharge in flow diversion

structures, such as weirs and side orifices [8, 34], and

scouring [45]. Based on the authors’ knowledge, the only

method ever used for predicting the bank profile shape of

stable channels involves artificial neural networks (ANN).

Khadangi et al. [32] employed ANN to model the geometry

of alluvial channels and compared the results with semi-

empirical equations. Madvar et al. [39] used a multi-layer

perceptron neural network (MLPNN) to estimate

stable channel dimensions. Taher-Shamsi et al. [53]

employed ANN modelling to predict stable channel width

and compared the results with regression equations. Shamsi

et al. emphasized the high ANN model accuracy in pre-

dicting stable channel dimensions. One of the major set-

backs of ANN models is the absence of a specific

relationship for use in practical applications. Gholami et al.

[25] evaluated GMDH performance in designing

stable channel width, depth and slope for instance. Their

results validated the high efficiency of the proposed

GMDH model. However, they did not discuss bank profile

shape in stable state nor assessed equations governing the

stable bank profile. Shaghaghi et al. [51] compared a

GMDH model with a particle swarm optimization evolu-

tionary algorithm in estimating stable channel width. They

declared that the generalized structure of the GMDH type

(GS-GMDH) based on GA is more efficient that GMDH-

PSO in making predictions.

As a subset of genetic algorithms, gene expression

programming (GEP) is very popular with researchers (e.g.

[2, 9, 17, 18, 27, 42, 46, 58]) because GEP facilitates the

precise prediction of hydraulic phenomena and consumes

less calculation time. In general, the major problem with

some soft computing models (such as ANN and ANFIS) is

the presence of complex rules that prevent these models

from providing relationships for predicting variables

regarding different inputs for use in various applications.

The unique properties of the GEP model and its multi-

genic nature facilitate complex program improvement [15].

One of the noteworthy advantages of GEP over ANN is

that GEP models provide an efficient and transparent

modelling solution [28]. Moreover, GEP models have the

powerful ability to generate equations for predicting vari-

ables [15, 43]. In a GEP model, the most important pre-

diction set is selected and it does not require setting many

parameters. These advantages render GEP a simple model

for common uses [10, 50].

The main aim of the current study is to present a reliable

GEP model for predicting the bank profile characteristics

of stable channels. Therefore, a vast experimental study

was carried out using discharge rates of 1.157, 2.18, 2.57

and 6 l/s to predict stable channel shape. In addition,

extensive experimental data obtained by other researchers

in various hydraulic and geometric conditions in different

countries were applied to create the proposed models. A

remarkable advantage of GEP is the possibility to extract a
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simple mathematical relationship for problem solving. GEP

modelling also facilitates determining an appropriate

channel profile geometric shape by using different dis-

charge rates and median grain sizes. The proposed GEP

model results are compared with 8 theoretical and experi-

mental relationships, and the superior model is introduced.

Sensitivity analysis of the different input parameters for

predicting stable channel shape is carried out as well.

2 Materials and methods

This section presents the various models used to predict

stable channel shape, the experiments performed, the

optimum GEP model and the model assessment criteria.

2.1 Overview of existing models

The shape of a channel in stable state is significant to bank

profile geometric shape formation. Figure 1 illustrates two

bank profile characteristics. In this figure, x and y (m) are

the transverse and vertical distances from the bed centre,

respectively, h is the flow depth at the centre line and T is

the water surface width. The bank profile characteristics are

dimensionless (y* = y/h, x* = x/h and T* = T/h) and shown

in Fig. 1.

Vigilar and Diplas [55] presented the following rela-

tionships to determine h and T*:

h ¼ ðSs � 1Þd50
d�cr

s�c ð1Þ

T� ¼ T

h
¼ �16:1814l3 þ 44:3206l2 � 43:5548lþ 21:1496

ð2Þ

where h = the depth at the bed centre in stable condition,

T* = dimensionless water surface width, qs = sediment

density, q = water density, d50 = mean sediment size (m),

Ss = qs/q = relative density, s�c ¼ sc=qgd50Rs is the

dimensionless critical shear stress, sc = critical shear

stress, g = gravitational acceleration, Rs = (qs - q)/q is

the submerged specific gravity of sediment, and d�cr = the

critical bed stress depth that is obtained as follows:

d�cr ¼ �0:0223l3 þ :01481l2 � 0:31403lþ 1:031 ð3Þ

where l = tan(h) is the submerged coefficient of the static

friction of sediment particles and h is the angle of repose of

sediment. Yu and Knight [57] presented an empirical

equation for l as follows:

l ¼ tan
0:302 log 100d50ð Þ5þ0:126 log 100d50ð Þ4
�1:811 log 100d50ð Þ3�0:57 log 100d50ð Þ2þ5:952 log 100d50ð Þ þ 37:52

� �

ð4Þ

sc
* has a dimensionless value that may be obtained from

Van-Rijn’s [54] equations, where D� ¼ d50
Ss�1ð Þg
m2

h i1=3
is

the dimensionless particle size and m is the kinematic

viscosity of water. Table 1 lists the relationships exam-

ined in this study and proposed by Glover and Florey

[26], Ikeda [30], Pizzuto [49], Diplas [6], Babaeyan-

Koopaei and Valentine [3], Cao and Knight [4], Vigilar

and Diplas [56] and Dey [5]. These relationships were

achieved from numerical, experimental or field models

based on analytical, mathematical, theoretical or regres-

sion relationships. The abovementioned relationships are

expressed in the present study as follows: GFM (Glover

and Florey’s Model), IKM (Ikeda’s Model), PIM (Piz-

zuto’s Model), DIM (Diplas’ Model), VDM (Vigilar and

Diplas’ Model), CKM (Cao and Knight’s Model), BVM

(Babaeyan-Koopaei and Valentine’s Model) and DEM

(Dey’s Model).

2.2 Experimental model

In the present study, ten experimental datasets were used

for model assessment. The laboratorial data obtained from

Ikeda [30], Mikhailova et al. [40] (two sets), Diplas [6] and

Hassanzadeh et al. [29] (two sets), and four datasets from

the current laboratorial work were used to train, test and

calibrate the models for stable channel bank profile esti-

mation. The data applied in the models consist of several

lateral points on the lateral profile of a channel’s mobile

bed. All experiments were done in laboratory flumes. The

sediment was coarse and the flow shallow to avoid ripple

formation. The Froude number was larger than the dune

formation range [6].

In addition, four sets of experiments were carried out to

measure the bank profile parameters. The flume employed

was 20 m long, 1.22 m wide and 0.6 m deep. The flume

bed was filled with uniform sand with d50 of 0.53 mm and

standard deviation (r) of 1.23. For the experiments, two

trapezoidal and triangular-shaped cross sections were

selected. Flow passed through the channel at fourFig. 1 Sketch of geometric characteristics
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velocities, each of which remained constant until

stable channel state was attained. A magnetic flow metre

was used to measure flow velocity. For each discharge rate

(flow velocity), a 0.23% slope was fixed using a wooden

former fixed on a carriage. Each test set continued until

stable channel state was achieved at the plane and cross

sections. All experiments were carried out for 10–12 h

each until stable channel state was achieved. Finally, the

geometry of the cross sections and bank profile was

recorded. Two free water surface and channel bed levels

were measured using a point gage at transverse distances of

8, 9 and 11 m from the channel entrance [33]. Table 2

summarizes the characteristics of the experimental sets

conducted by Ikeda [30], Mikhailova et al. [40], Diplas [6]

and Hassanzadeh et al. [29] as well as the current labora-

torial work. The laboratorial flume used in the current

study is shown in Fig. 2.

2.3 Gene expression programming (GEP) model

GEP is a linear-based genetic programming method pre-

sented by Ferreira [11] and developed from two evolu-

tionary algorithms, namely the genetic algorithm (GA) and

genetic programming (GP). GA presents the estimated

results only in numerical form but GP solves the GA

problem using a specified mathematical relationship and a

computer program with a tree structure [36]. Ferreira [11]

exploited the benefits of using both GA and GP simulta-

neously to overcome the shortcomings of the two indi-

vidual methods. Because GEP uses different genetic

operators in the chromosomes, it leads to genetic diversity.

This method is also considered multigenetic, which leads to

more various complex programs [11–13]. To obtain a

solution for a specific problem, GEP employs fixed-length

character sequences and presents the solution as parse

Table 1 Models investigated in this study

Model Equation Parameters

GFM [26] y� ¼ 1� cosðlx�Þ
IKM [30] y� ¼ exp

x�T
2

K

� �
K ¼ 1

h

R T=2

0
ydy ¼ displacement thickness

CKM [4] y� ¼ ðlx�Þ2=4 l = coefficient of static friction (= tan\u)

u = angle of repose of sediment

DIM [6] y� ¼ exp x� � T�

2

� �
PIM [49] y� ¼ exp l x� � T�

2

� �� 	
VDM [56] y� ¼ a3x

�3 þ a2x
�2 þ a1x

� þ a0ð Þ a0, a1, a2 and a3 are a function of l and dc
* is the

dimensionless critical stress depth obtained by Vigilar

and Diplas [55]

BVM (Babaeyan-

Koopaei and

Valentin [3]

y� ¼ 3:5 tanh � x�

4

� �� 	4

DEM [5] ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2l2 � 1

p
dy�

dx�
¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y� þ Cmx�m�1ð Þð1� blÞ þ bl½ �2�1

q
C and m are the coefficient and exponent, respectively,

which are determined based on experimental data.

b ¼ FL

FD
, FL = lift force and FD = drag force

Table 2 Experimental characteristic summary of the data used in the present study

Researchers Number of

experiments

D50

(mm)

Discharge

Q (l/s)

Water surface width

T (cm)

Central water depth

h (cm)

Water surface slope

S (9 10-3)

Mikhailova et al.

[40]

3 2 44–69 143–362 14–14.4 8–1.8

Ikeda [30] 34 1.3 1.06–25.2 24.8–166.8 1.63–4.03 1.8–5

Diplas [6] 7 1.9 4.9–12.52 54.8–79.8 2.1–4.9 3.7–9.1

Hassanzadeh et al.

[29]

6 1.2–1.6 11.09–20.07 64–81.2 8.6–10.9 –

Present paper 3 0.53 1.16–6.2 19.6–43.4 3.7–8 2.3
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trees, or expression trees (ETs) [1] of different shapes and

sizes [44]. The main components of the GEP algorithms

include the control, fitness function, function set, terminal

set and terminal condition parameters [44]. Each gene in

GEP includes a fixed-length set of symbols that can be any

components of the terminal set {Z, L, M, N, - 1} or

function set {?, -, 9, /, H, tan, cos} [1]. For instance, for

a chromosome with two genes consisting of four functions

{H, 9, /, ?} and three terminals (a, b, c), the related

algebraic expression is ða=bÞ þ ð
ffiffiffiffiffiffiffiffiffiffiffi
a� b

p
Þ. The GEP mod-

elling process is initialized with the random generation of a

primary chromosome population. Each individual chro-

mosome in the initial population is evaluated using the

fitness function defined for the problem. Fitness functions

may include mean square error (MSE), root mean square

error (RMSE), root relative square error (RRSE) and rel-

ative square error (RSE) [2, 11, 35]. However, owing to the

widespread use and good RRSE results in various studies

[35], this fitness function is used in the current study.

Chromosomes deemed to have superior fitness function

values are selected for use in the next generation. Subse-

quently, the selected chromosomes are adapted using

genetic operators. Several genetic operators used for

chromosome modification are: mutation, inversion, three

transportation operators and three recombination operators,

which are defined as follows:

2.3.1 Mutation

Mutation can happen anywhere in the chromosome. The

existing function at the chromosome head can be switched

with a function or terminal, but at the tail, a terminal must

be exchanged only with another terminal. Therefore,

mutation helps maintain structurally organized chromo-

somes and structurally correct programs when using the

new individuals generated by this operator. There are no

imperatives regarding the number or type of mutations in a

certain chromosome. Mutation is done at point 0 on gene 1,

point 3 on gene 2 and point 1 on gene 3 (Fig. 3).

2.3.2 Inversion

This genetic operator is limited to the gene head and

inverts a selected sequence in the gene head. To modify the

gene, the terminal and initial points of the head portion are

inverted through the random selection of chromosomes.

With the inversion operator, each chromosome is changed

only once. In Fig. 3, inversion is conducted at gene 2,

whereby sequence adjkb is the inverse of sequence bkjda.

2.3.3 IS transposition

The insertion sequence (IS) transposition elements are

selected randomly throughout the chromosomes. These

Fig. 2 Laboratorial model
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elements are short genomic fragments with a terminal or

function in the first position. IS transposition randomly

selects a chromosome, a gene to be reclaimed, the start of

an element, the target site and the transposon length.

Considering a chromosome with two genes (Fig. 3),

sequence bba was selected in the second gene for the IS

component. Bond 6 in gene 1 was chosen to be cut and

sequence bba was copied in the insertion place. With this

operator, the sequence upstream of the insertion position

remains unaltered, though the sequence downstream of the

replicated IS component is eliminated at the head end, so in

the examples, a*b is eliminated. It should be noted that

insertion does not change the chromosome structural

organization and the newly generated individuals are suit-

able programs. Moreover, the transposition results in

extreme expression tree changes, which means a great

adjustment occurs upstream of the insertion area.

2.3.4 RIS transposition

The difference between IS and root insertion sequence

(RIS) is at the starting point. The starting point for IS can

be a function or terminal, whereas for RIS it is always a

function. Therefore, the RIS components are selected

between head sequences. After randomly selecting a point

in the head, the gene is checked downstream to find a

function. If no function is found, the RIS operator is

ineffective. The results of RIS transportation copying in the

gene root are presented in Fig. 3. Here, sequence ?bb in

gene 2 of a chromosome with two genes is considered a

component of RIS transposition.

2.3.5 Gene transposition

With this operator, a complete gene operates as a trans-

poson. The gene transposition operator transposes itself to

Fig. 3 GEP model genetic operators
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the beginning of the chromosome and deletes the gene at

the place of origin, unlike IS and RIS transposition.

Therefore, the chromosome length is maintained. Random

selection is considered to select the chromosome that

undergoes gene transposition and one of its genes except

the first one is selected for transposition. An example of

gene transposition is presented in Fig. 3.

2.3.6 One-point recombination

In one-point recombination, the crossover point is selected

randomly and the parent chromosomes are coupled at

similar points. The gene’s contribution following the

crossover point is replaced among two chromosomes,

generating two daughter chromosomes (Fig. 3).

2.3.7 Two-point recombination

In two-point recombination, two crossover points are

selected randomly and two parent chromosomes are cou-

pled. Two new chromosomes are produced by replacing the

material among two crossover points. In this operation, the

first gene of both parents is cut downstream of the termi-

nation point. Gene 2 related to chromosome 1 is split

downstream of the termination point. Moreover, the second

gene related to chromosome 2 is cleaved upstream of the

termination point (Fig. 3). Two-point recombination is

more powerful than one-point recombination and is fruitful

for the evolution of more complex problems, chiefly when

using multi genetic chromosomes with multiple genes.

2.3.8 Gene recombination

In this operation, there are gene replacements among two

parent chromosomes, creating daughter chromosomes that

include genes from the two parents. The displaced genes

are selected casually and situated in identical locations as

the parent chromosomes. The newly generated individuals

consist of genes from the two previous parents. In this

operation, similar genes replace each other and most times,

the replaced genes differ from the previous ones and new

materials are created. In gene recombination, new genes

have different arrangements from existing genes, and this

operator is not capable of producing new genes.

Chromosomes thus reproduce through this process,

which continues until a stopping criterion is fulfilled.

Figure 4 displays the proposed method flowchart.

2.4 Deriving stable channel bank profile
characteristics for GEP modelling

To generate the initial population, a chromosome with

three different genes is used. According to Ferreira [11],

the initial population number should be determined based

on the 30–100 range, and in this study, the population

number selected was 30. By considering other effective

modelling parameters as fixed, the initial population was

larger. However, even with a population increase no sig-

nificant changes in modelling results were observed. The

best value obtained for the preliminary population was 80.

Then the fitness of every individual was estimated with the

following equation:

fi ¼ 1000=ð1þ EÞ Ei ¼ Pij � Oj ð5Þ

where Oij and Pij are the observed value and value obtained

using the ith individual chromosome for fitness case j. The

optimum result was achieved when the observed and pre-

dicted values were equal (Eij = 0). Subsequently, the

function and terminal set were selected. To select the

function set, {?, -, 9, /} was used first. Trial and error

was employed to improve modelling accuracy and addi-

tional functions were added separately. Function set {?,

-, 9, /, x2, x4, x5,
ffiffiffi
x5

p
, Ln} was ultimately considered and

the terminal set was as follows:

T ¼ y;Q; xf g ð6Þ

The head/tail length and number of genes were obtained

by trial and error. Three genes were used in each chro-

mosome and the head length was 7. As the maximum

number of arguments was 3, the tail was 15

(t = 7 9 (3 - 1) ? 1). Owing to the good performance of

addition as a linking function, this function was used in this

study [1, 9, 16, 59]. In the next stage, the values of different

genetic operators, such as mutation, crossover, were

determined as presented in Table 3.

2.5 Goodness of fit of model performance

To assess the different models employed in comparison

with experimental data, the following statistical indices

were used: three absolute error indices, i.e. Mean Error

(ME), Mean Absolute Error (MAE) and Root Mean

Squared Error (RMSE), the relative error index Mean

Absolute Relative Error (MARE), and the statistical

parameters coefficient of determination (R2), correlation

coefficient (R), BIAS and q (Eqs. 7–14).

ME ¼ 1

n

Xn
i¼1

ðOi � PiÞ ð7Þ

MAE ¼ 1

n

Xn
i¼1

Oi � Pij j ð8Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðOi � PiÞ2

r
ð9Þ
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MARE ¼ 1

n

Xn
i¼1

Oi � Pij j
Oi

� �
ð10Þ

R ¼
Pn

i¼1 ðOi � OiÞ � ðPi � PiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðOi � OiÞ2

Pn
i¼1 ðPi � PiÞ2

q ð11Þ

Bias ¼
PN

i¼1 ðPi � OiÞ
n

ð12Þ

SI ¼ RMSE
1
n

Pn
i¼1 Oi

ð13Þ

q ¼ SI

1þ R
ð14Þ

Start

Determine of GEP parameters

- Function set
- Chromosomal architecture
• Chromosome length
• Number of genes
• Head size
• Linking function
- Genetic operators

Determine of input combination
Y= f (x, Q)

Initial population creation

Chromosome expression as 
ET

ET execution

Fitness function Evaluation

Stop 
Criteria

?

Yes No

Return best chromosome

Start

Chromosome selection

Reproduction by genetic 
operators

Reproduction by genetic 
operators

New generation creation

Fig. 4 GEP flowchart

Table 3 GEP model parameters
Parameter type Parameter Value

General setting P1 number of generations 25,000

P2 function set ?, -, 9, /, x2, x4, x5,
ffiffiffi
x5

p
, Ln

Chromosomal architecture P3 chromosome length 80

P4 number of genes 3

P5 head size 7

P6 linking function Addition (?)

Genetic operators P7 mutation rate 0.014

P8 inversion 0.1

P9 IS transposition 0.1

P10 RIS transposition 0.1

P11 on-point recombination 0.3

P12 two-point recombination 0.3

P13 gene recombination rate 0.1

P14 gene transposition rate 0.1
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where Oi is the observational value, Pi is the value pre-

dicted by the models, Pi and Oi are the means of the

parameters and n is the number of parameters. R2 (coeffi-

cient of determination), which is the linear regression line

between the observed values and the values estimated by

the models, was used to determine the model performance.

RMSE, MARE and MAE values closer to zero indicate

little difference between the values predicted by the models

and the experimental values. The SI values (dimensionless

form of RMSE values) were used for better comparison.

The BIAS index represents how the models performed in

estimating variables as negative and positive. Negative and

positive BIAS values indicate model underestimation and

overestimation, respectively. The models (GEP, 8 relations

and NLR) should be compared with the experimental

model using another suitable criterion and not only R. This

is because R does not change meaningfully by shifting a

model’s result values similarly, and the error functions only

signify the error values and not the correlation in terms of

RMSE and MARE. The q index was introduced by Gan-

domi and Roke [14].

3 Results and discussion

The first part of this section evaluates in detail the appli-

cation of ten observational datasets to model learning. In

the second part, the GEP and NLR models as well as

available empirical relationships are verified, and

stable channel shape is discussed. The third part addresses

the bank profile shape suggested by the model introduced

in this study. Finally, the model sensitivity to different

input variables is analysed.

3.1 Data processing

In the present study, ten experimental datasets were uti-

lized for model training to predict threshold channel bank

profile [30, 40] (two sets), [6], Hassanzadeh et al. [29] (two

sets) and four sets from the current laboratorial work). Each

dataset is related to a specific laboratorial setup with dif-

ferent hydraulic conditions and sand particles applied for

stable channel formation. In each laboratorial dataset, the

Q (discharge) and D50 (median grain size) values com-

pletely differ from each other. Hence, the models were

trained in different discharge conditions, which is a sig-

nificant advantage of the present study. The models were

examined for different values of D50 and discharge

(Q) (hydraulic condition) as well as x (geometric parame-

ter). Various profile shapes were obtained for each gov-

erning circumstance. Three variables, namely Q, D50 and

x (transverse distance from the channel centre), were used

as input variables and y (vertical boundary level of points

located on a stable bank profile) served as output data from

the introduced model. In total, there were 276 laboratorial

data for Q, D50 and x and 276 data corresponding to

y. From the total, four laboratorial datasets were utilized

from the current research (155 data) for training, while four

laboratorial dataset (51 data) from Ikeda [30], Mikhailova

et al. [40] (two sets) and Diplas [6] were used for testing,

and two datasets (71 data) from Hassanzadeh et al. [29]

were used for model calibration. Therefore, different ran-

ges of hydraulic conditions (Q in a high range of 2–69 l/s

and D50 in the range of 0.2–1.9 mm) and geometric vari-

ations (x in the 0–90.77 cm range and y in the 0–12.24 cm

range) were utilized for model training so the extracted

model results would be reliable.

3.2 Verification of existing methods
in predicting bank profile characteristics

This section evaluates the performance of GEP, NLR and

prior empirical relationships in predicting two threshold

channel bank profile characteristics (x, y). The models were

trained using ten experimental datasets with different

hydraulic and geometric conditions. In the present study, in

addition to artificial intelligence (AI), nonlinear regression

(NLR) was also fitted to the experimental data to provide

the following Eq. (15) for channel bank profile (y) pre-

diction, where Q, D50 and x are considered input data:

y ¼ 0:11628� Q�0:53536 � D�0:08449
50 � x1:53783 ð15Þ

Figure 5 presents scatter plots of y* predicted by the

GEP and NLR models in comparison with experimental

values in training (current research experimental data),

testing [30, 40] (two sets); [6]) and validation [29] (two

sets). The figure shows the ± 10 and ± 20% error lines

accordingly. Table 4 displays the error indices for the

models with all ten datasets compared with experimental

values.

According to Fig. 5, the GEP model data compressed

around the exact line and the data correlation percentage is

high, with acceptable R2 values approaching 0.9 in all

stages. The R2 coefficient in training was 0.975, which is

very close to 1 and indicates high GEP model prediction

accuracy. Moreover, almost 90% of data are within the ±

10% error lines and all data are located within the ± 20%

error lines, signifying low model prediction error. The GEP

models were validated with high-precision experimental

datasets [29] and were in good compliance with the

experimental results (R2 = 0.9464). For the validation

datasets, the fitted line almost coincides with the exact line.

Moreover, few data exceed the ? 20% error line. Hence,

the GEP model results can be trusted in diverse practical

cases. For the NLR model, data compression is not around
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the exact line and most data are located above the fitted

(dotted) line. If the fitted line is at the right of the exact

line, it means the model overestimated and if it is at the

left, the model underestimated. With the NLR model, the

fitted line is much to the left of the exact line (especially in

testing), which represents model underestimation. In

training, the GEP results were in acceptable compliance

with the experimental results, with a high R value of 0.976.

In the validation stage, the GEP model exhibited a high

correlation value (R = 0.952), but a few data exceed

the ± 20% error lines. Also with the NLR model, most

data are in the positive error range and only a small
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Fig. 5 Comparison of y*

predicted by the GEP and NLR

models with experimental

results in a training, b testing

and c validation

Table 4 Comparison of GEP

and NLR models with

experimental results according

to various statistical indices

Models Stage R MARE RMSE MAE BIAS q

GEP Training 0.993 0.188 0.034 0.026 0.0005 0.049

Testing 0.938 0.800 0.133 0.159 0.055 0.164

Validation 0.973 0.147 0.064 0.047 - 0.013 0.076

NLR Training 0.976 0.312 0.102 0.076 - 0.0035 0.149

Testing 0.807 0.950 0.272 0.306 - 0.068 0.360

Validation 0.952 0.375 0.115 0.103 0.054 1.191
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percentage of data are scattered around the exact and

- 10% error lines. According to Table 4 (for training and

testing), the GEP model had R of 0.993 and 0.973 in

training and validation, respectively, which are very close

to 1 (the same values as for R2), indicating 100% model

compliance with the experimental results. Moreover, the

low relative and absolute error index values in all stages

signify the high GEP model accuracy (MARE = 0.147 and

RMSE = 0.064 with the validation dataset). Also according

to the table regarding the validation dataset, the lower

relative error index value (MARE = 0.147) compared to

the corresponding testing (0.80) and training (0.188) values

represents superior model performance in the validation

stage. The higher validation values for other indices

(RMSE = 0.064, q = 0.076) than training (RMSE = 0.034,

q = 0.049) were due to model weakness in predicting high

y values (close to the free water surface values), which

produced high RMSE and MAE values.

With NLR, R was 0.976 and 0.952 in training and val-

idation, respectively, which are very close to 1, signifying

high model accuracy. However, compared with the GEP

model (R = 0.938), this index value decreased by 16% in

testing for the NLR model (R = 0.807). Moreover, the

increasing q value for NLR in both modes (by about 3

times especially in testing), indicates the superior GEP

model performance. The error index values of NLR were

about 2.5 times greater than GEP (MARE = 0.375 and

RMSE = 0.115). The negative and positive BIAS index

values indicate model underestimation and overestimation,

respectively. Table 4 shows that for the NLR model, this

index in training and testing was - 0.0035 and - 0.068,

respectively, which indicates model underestimation

(Fig. 5). For the GEP model, the BIAS values very close to

0 indicate high model accuracy (BIAS = 0.0005 and

- 0.013 in training and validation, respectively). The MAE

index shows the absolute difference between the predic-

tions and experimental results. This index value is almost

65% lower for the GEP model (the lowest MAE value of

0.026 in training) than for NLR (the lowest MAE value of

0.076 in training). That means the GEP model is more

accurate than NLR and can predict stable channel bank

profiles well. Besides, the high GEP model accuracy with

different experimental data ranges and in all stages (espe-

cially in validation with the lowest relative error and high

R coefficient) represents the applicability of GEP in most

similar hydraulic and geometric circumstances. Figure 6

presents the genotype and phenotype [Expression Trees

(ETs)] of a population individual related to the GEP model.

In order to simplify these ETs, the pseudocode in Fig. 7

was used to predict bank profiles with different particle

sizes and discharge rates.

3.3 Comparison of GEP and NLR models
with existing methods in stable bank profile
shape prediction

In the present section, the results obtained with the GEP

model are compared with those of 8 existing models.

Table 5 shows the relative and absolute MARE and RMSE

error indices for the different models [GEP, NLR and 8

theoretical equations (Table 1)] in comparison with

experimental data from the present work and Ikeda [30]

and Diplas’ [6] data for discharge rates of 1.157, 16.28 and

12.526 l/s. Figure 8 presents MARE index bar graphs for

better comparison.

Figure 9 presents the threshold channel bank profiles

modelled by GEP, NLR, GFM, CKM, BVM, IKM and

GFM in comparison with the experimental values from the

present work and Ikeda [30] and Diplas’ [6] data. Figure 8

and Table 5 demonstrates that the GEP model error was

lower than previous models (MARE = 0.021 and

RMSE = 0.0343) in training. After the GEP model, DEM

and CKM exhibited the lowest error index (MARE of 0.12

and 0.1095, respectively). As seen in Fig. 9, these models

performed almost the same and predicted a smaller cross

section than the experimental outcome. The GFM model

also calculated a small cross section and performed inef-

ficiently, because the GFM equation does not consider lift

force, which creates a sharp bank slope. Lift force is the

main parameter affecting channel formation and equilib-

rium shape. The GFM model suggested a cosine curve as

the channel shape, which is not a stable shape [7]. With

three experimental datasets, CKM and GFM predicted

smaller cross sections similar to other models but with a

slight difference in error values. A channel with clean

water and non-cohesive sediment particles was analysed.

Based on the authors’ data, despite the drop in MARE error

value (0.1095) due to the non-cohesive sediments in the

experiments, the CKM model estimated a smaller cross

section than the experimental cross section. Moreover,

CKM suggested a parabolic curve according to Mironenko

et al.’s [41] study, which is not a suitable shape. Con-

cerning lift force and non-cohesive sediments, DEM esti-

mated a small cross section. However, the results indicate

that the DEM modelling process was similar to VDM and

the current research data, and DEM underestimated the

experimental data (MARE = 0.1200). Unlike Diplas and

Ikeda’s data, the DEM model had quite a large error and

was not as efficient as other models. After DEM, the PIM

and VDM models had greater errors based on the present

research data and calculated larger channel cross sections.

The two models produced approximately the same error

values (MARE = 0.3227 and 0.265 for PIM and VDM,

respectively). Apart from Diplas and Ikeda’s data, the PIM
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and VDM models performed the best with low error values.

As seen in Fig. 9 b, the highest compliance with experi-

mental data was achieved by the VDM model. Therefore,

PIM and VDM are introduced as the best among the other

models. The VDM model yielded a three-degree polyno-

mial for a stable bank profile and is introduced as the best

and most accurate model for stable channel profile

prediction [33]. With the PIM and VDM models, the

momentum equations for fluid and the force balance

equations for sediment particles in impending motion were

solved by a numerical method. The momentum diffusion

term was also considered in the numerical models. The

VDM and PIM models suggested polynomial and expo-

nential curve channel profiles. The VDM model is the

modified case of Pizzuto’s equation [49, 56]. Ikeda’s data

fit well on two exponential curves of DIM and IKM, so

these models are introduced as highly accurate based on

Ikeda’s data. Also according to Diplas’ data, IKM and DIM

are among the best performing models after VDM and

Clear
clc;

Q=input ('Q = ');
D50=input ('D50 = ');
x=input ('x = ');

% GEP Model Formula for estimating vertical boundary elevation (y):

x1=(ln(0.334106)/ln(acosh(asinh((Q.^3)))));
y1=(((Q-0.334106)-SIN(Q)).^3);
AA==1/(1+exp(-(x1+y1)));
ET1=(x.*AA)/8.609863;
ET2=(x/(Q+8.367737.*((1/(1+exp(-((tan(Q-10.649445))+(Q)))))))).^3;
ET3=atan(x./(((asinh(3.948792+Q-(D50.*x))).^2)-(x-(10.610443/sin(D50)))));

y=ET1+ET2+ET3;

disp('The vertical boundary elevation’);
disp(y);

Fig. 7 Output program of the

optimum GEP model

Table 5 Evaluation of GEP, NLR and 8 previous models in com-

parison with experimental data from the present study, and Diplas [6]

and Ikeda’s [30] data according to the relative and absolute MARE

and RMSE error indices

EXP. data Present work Diplas [6] Ikeda [30]

Index MARE RMSE MARE RMSE MARE RMSE

Models

DEM 0.120 0.13 0.2 0.5 0.3 0.7

GFM 0.30 0.310 0.35 0.92 0.43 1.03

CKM 0.109 0.119 0.17 0.47 0.29 0.82

PIM 0.32 0.337 0.06 0.22 0.12 0.23

DIM 0.40 0.434 0.16 0.36 0.06 0.1

VDM 0.265 0.290 0.04 0.13 0.16 0.35

BVM 0.850 1.03 0.21 0.39 0.15 0.27

IKM 0.890 1.070 0.15 0.31 0.06 0.11

NLR 0.247 0.164 0.36 0.3 0.37 0.3

GEP 0.021 0.034 0.2 0.12 0.3 0.09

0
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0.8

Author Diplas (1990) Ikeda (1981)

M
A
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DEM GFM
CKM PIM
DIM VDM
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Fig. 8 MARE error index of bank profile characteristics predicted by

different models in comparison with the corresponding experimental

values from the present work and Ikeda [30] and Diplas’ [6] data
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PIM. With the present research data, the IKM and BVM

models had maximum MARE and RMSE errors and pre-

dicted much larger cross sections, which are not good

results. IKM introduced a displacement coefficient and

proposed a cosine curve, whose coefficient calculation

involves complex bank profile equations and trial and error.

BVM proposed two hyperbolic functions for channel

shape, and it was found that the equations obtained from

VDM made better estimations than other equations (based

on the cosine curve), signifying that hyperbolic equations

perform similar to the polynomial VDM [33]. In other

research studies, it seems that models which include

momentum diffusion (polynomial curve) predict a more

logical threshold channel form, although the error values

are higher than models which neglect this term (cosine

curve) [49]. The NLR model underwent a similar process

to the experimental model, but it significantly differed in

value prediction from the three experimental datasets

(especially the current study dataset).

Therefore, it can be concluded that the VDM model with

MARE of 0.265 that suggested a logical polynomial curve

was the superior model with data from the current study.

With Diplas and Ikeda’s data, the VDM model (MARE =

0.04), and DIM and IKM (MARE = 0.06) produced the

best performing relations.

With the data from the present study, the NLR model

with MARE of 0.25 performed similar to VDM and pro-

posed a similar shape as well. Compared to the other

models, GEP with MARE of 0.034 was in high compliance

with the experimental results and is introduced as the

superior model with the data from the present study. Based

on Diplas and Ikeda’s experimental data, the GEP model

predicted the profile shape almost according to the exper-

imental data and other models, but it predicted y values

with a slight difference from the experimental data. This

difference is on account of the varying hydraulic and

geometric circumstances in each laboratorial work; there-

fore, the proposed GEP model can be considered an

appropriate equation for any experimental and real-case

condition. With both datasets, the GEP models functioned

similar to DEM [5] with MARE of 0.2 and 0.3. With

Diplas’ data, the RMSE for the DEM model (0.5) was

greater than the GEP model (0.12). That is due to the weak

performance of DEM with high y* values, unlike the GEP

model (Fig. 9b) with acceptable prediction values in this

area. In Fig. 9 and according to all experimental data,

CKM, and VDM and GEP proposed parabolic and poly-

nomial curves for the channel, respectively. With the pre-

sent study data, the BVM and IKM models proposed a

cosine curve with a large difference from the experimental

data, unlike Diplas’s and Ikeda’s data where IKM and
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(a)Fig. 9 Bank profile shapes

suggested by different models

compared to the experimental

model with a current study data,

b Diplas’ [6] data and c Ikeda’s

[30] data
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BVM were the closest to the experimental values. GFM

predicted a small and unsuitable stable channel cross-sec-

tional shape with all experimental data. The next section

investigates the curved shape proposed by the GEP model

at different discharge rates and with different experimental

data.

3.4 Bank profile shape predicted by GEP
in different hydraulic conditions

Figure 10 compares the bank profile shape calculated by

the GEP model based on different experimental data and

discharge rates with the experimental values. Table 6

presents the error indices for the bank profile characteristic

predictions made by the GEP models compared to different

experimental values at various discharge rates. Figure 10

shows regression line plots for each GEP model and the

fitted equation for each discharge rate.

The proposed shape of a threshold channel is therefore

the ‘‘polynomial type’’ due to the transverse slope at the

channel centreline, which is zero and equal to the position

angle of sediment at the water surface. It is worth noting

that unlike the models presented in the prior section, the

channel shape is not a cosine curve, parabolic, exponential

or a hyperbolic function. An evaluation of the diagrams for

different discharge rates based on different experimental

datasets indicates that with increasing discharge, the

threshold channel’s cross section is wider and deeper. With

Mikhailova et al.’s [40] datasets, a wider cross section is

clear at high discharge of 69 l/s rather than at 65 l/s.

Moreover, sudden cross section widening occurred near the

free water surface with these datasets. In this condition, the

side bank slope reduced. In natural channels, during greater

flood periods, the water surface slope is lower. As the

width and bank adjustment rates occur much lower than the

depth adjustment, the discharge increases, causing river

water surface deepening. With Hassanzadeh et al.’s [29]

data, the GEP model predicted the side bank slope reduc-

tion well with increasing discharge up to 17.96 l/s, but the

difference between predicted values and the corresponding

experimental data was slightly greater than the values

predicted at 12.07 l/s. According to the error values in

Table 6, with all experimental datasets and at different

discharge rates, the error values decreased with increasing

discharge and model efficiency increased except for Has-

sanzadeh et al.’s [29] dataset. With this dataset, the error

values for two discharge rates were nearly equal, with

slightly higher values at high discharge of 17.96 l/s. As

mentioned previously, near the free water surface, the

efficiency reduced slightly compared with the experimental

values. With Mikhailova et al.’s [40] datasets, the RMSE

value at 65 l/s (0.094) was less than at 69 l/s (0.122),

unlike the MARE and R values. It can be said that the GEP

model was weak in predicting the y value near the free

water surface and could not predict the sudden channel

widening. Therefore, the RMSE value, which is the

squared difference between the model and observational

values increased at this water surface level. Based on

Ikeda’s [30] data, the GEP model with higher MARE (0.8)

than the experimental datasets exhibited low efficiency in

predicting y. With Ikeda [30] and Diplas’ [6] datasets,

despite the high difference between the model and exper-

imental values, GEP predicted the bank profile shape trend

similar to the observational values.

With the present study data, the statistical index values

were better at the 1.157, 2.57 and 6.2 l/s discharge rates,

because the experimental channel section in all three

modes was the same (trapezoidal) and at 2.18 l/s the

channel section was compound. It can also be concluded

from Table 6 that with increasing discharge, the relative

and absolute error indices decreased and the R coefficient

value increased. Therefore, it can be said that with

increasing discharge GEP model accuracy increased and it

performed the best at 6.2 l/s with the lowest index errors

(R = 0.994, MARE = 0.143, RMSE = 0.042). At this dis-

charge rate, the absolute difference between the predicted

and experimental data (MAE = 0.030) was very low (about

3%).

The proposed GEP model exhibited acceptable perfor-

mance in all stages of training, testing and especially val-

idation. Moreover, the GEP model was the most efficient

with Hassanzadeh et al.’s [29] validation dataset compared

to other datasets. Hence, the proposed GEP model is

applicable in different flow hydraulic and geometric cir-

cumstances. The GEP model could predict the bank profile

trend the same as the laboratory measurement despite the

small differences in some cases. It can be seen that the best

fitted line is a polynomial curve, which is in complete

compliance with the GEP model for all datasets.

3.5 Sensitivity analysis

In the present study, the effect of the Q, D50 and x param-

eters on estimating y (boundary elevation of a stable chan-

nel bank profile) was evaluated using sensitivity analysis.

To analyse the y variable change trend according to the Q,

D50 and x input variables, partial derivative sensitivity

analysis was applied to the equation extracted from the

GEP model. With this method, the partial differences

between the output variable and each input parameter were

used to investigate the sensitivity results of input parameter

xi. It is clear that much higher partial derivatives indicated

greater input variable effect on the results. If the derivative

value was positive, an increase in input parameters led to

an increase in the output variable. The sensitivity analysis

of the GEP model is shown in Fig. 11 for bank profile
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characteristic prediction based on Mikhailova et al. [40],

Ikeda [30], Diplas [6], Hassanzadeh et al. [29] and the

current study authors’ experimental data.

Figure 11 indicates that at D50\ 0.6 the sensitivity

values are positive, signifying the strong effect of this

parameter on y value prediction. With increasing D50

(D50[ 0.6), the sensitivity values gradually tend towards

negative, meaning that the parameter’s effect on y predic-

tion reduced in this range. In evaluating the effect of Q, it

can be said that at low discharge (almost Q\ 8 l/s), the

sensitivity values are negative and positive (at very low

discharge) and with increasing discharge (Q[ 8 l/s) the

effect of this parameter rises. In evaluating the effect of

parameter x on y value prediction, the sensitivity values in

all x ranges are positive, affirming the strong effect of x on

y prediction. At x\ 20 the sensitivity values increase to

high values on the axis (* 1), demonstrating the strong

effect of this parameter in low x value ranges. With

increasing x (x[ 40), the effect of this parameters on

y value prediction is fixed.

Table 6 Different error indices for bank profile characteristics predicted by the GEP model compared to experimental results at various

discharge rates

Researchers Discharge (Q) (l/s) R MARE RMSE MAE BIAS q

Authors’ data (training) 1.157 0.997 0.338 0.030 0.0265 0.0165 0.0021

2.57 0.994 0.143 0.042 0.033 - 0.021 0.0017

6.2 0.992 0.202 0.037 0.030 0.0096 0.0012

2.18 (compound) 0.998 0.157 0.028 0.02 0.00003 0.00075

Ikeda [30] (Testing) 16.28 0.97 0.80 0.122 0.107 0.080 0.021

Mikhailova et al. [40] (testing) 65 0.97 0.70 0.094 0.074 0.0264 0.014

69 0.935 0.496 0.122 0.107 0.0595 0.020

Diplas [6] (testing) 12.526 0.936 0.387 0.137 0.125 0.062 0.0198

Hassanzadeh et al. [29] (validation) 12.07 0.988 0.146 0.043 0.034 0.0015 0.00145

17.96 0.977 0.158 0.079 0.058 - 0.0265 0.0026
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results for different input
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4 Conclusions

In this study, we examined GEP model performance in

estimating a vertical boundary level located in the bank

profile of a threshold channel. The GEP model was trained,

tested and validated based on ten sets of laboratorial data

(276 data in total) with different hydraulic and geometric

conditions. A vast experimental study was done in order to

measure the stable bank profile shape in different hydraulic

conditions. A robust and practical relationship was achieved

from the proposed GEP model, while a nonlinear regression

model was fitted on the same observational data. In addition,

different relationships extracted by previous researchers

based on regression, numerical and analytical methods were

tested for comparison with the presentedGEPmodel in order

to assess the models’ efficiency in terms of various obser-

vational data. Furthermore, sensitivity analysis was done to

evaluate the impact of different parameters such Q, d50 and

x related to each point on GEP model performance. The

results demonstrate that GEP model performance was

acceptable with low error indices in all stages and especially

in the validation stage. Therefore, the GEP results can be

trusted in a range of hydraulic and geometric channel con-

ditions. Based on the authors’ current experimental data for

GEP model training, the GEP model introduced performed

the greatest compared with different prior models, with

lower error indices. Based on all available experimental

datasets, the GEPmodel generally predicted the bank profile

shape trend (by suggesting a polynomial equation) similar to

the experimental data despite the small error between pre-

dicted and experimental values. The GEP model suggested

the polynomial shape for the cross section of a stable chan-

nel, which was also expressed by the VDM and PIMmodels.

A great advantage of the proposed GEP model is that it

presents a reliable equation suitable for different hydraulic

and geometric conditions. The equation is capable of pre-

dicting the vertical boundary elevation of a bank profile and

can be utilized as an alternative to previous traditional

methods of practical predesigning. However, the presence of

various functions and operators in the relationship proposed

by the GEP model leads to higher GEP model complexity

compared to previous analytical and regression-based

methods. Therefore, we suggest using other computational

intelligence method functions based on evolutionary algo-

rithms to estimate the bank profile shape of stable threshold

channels and compare the results with those from the present

study.
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