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Abstract
A tensor-based extreme learning machine is proposed, which is referred to as tensor-based type-2 extreme learning

machine (TT2-ELM). In contrast to the work on ELM, regularized ELM (RELM), weighted regularized ELM (WRELM)

and least squares support vector machine (LS-SVM), which are the most often used learning algorithm in regression

problems, TT2-ELM adopts the tensor structure to construct the ELM for type-2 fuzzy sets, Moore–Penrose inverse of

tensor is used to obtain the tensor regression result. No further type-reduction method is needed to obtain the coincide type-

1 fuzzy sets, and type-2 fuzzy structure can be seamlessly incorporated into the ELM scheme. Experimental results are

carried out on two Sinc functions, a nonlinear system identification problem and four real-world regression problems,

results show that TT2-ELM performs at competitive level of generalized performance as the ELM, RELM, WRELM and

LS-SVM on the small- and moderate-scale data sets.

Keywords Extreme learning machine � Type-2 fuzzy sets � Tensor regression � Fuzzy modelling � Moore–Penrose inverse �
Einstein product

1 Introduction

Extreme learning machine (ELM) has been attracting much

attention because of its excellent performance in training

speed and predicting accuracy [1–4]. To improve the

generalization ability of ELM, varieties of ELM variants

have been proposed, such as RELM [2], WRELM [5],

summation wavelet ELM [6], and optimally pruned

extreme learning machine (OP-ELM) [7], et al. OP-ELM

utilizes least angle regression and leave-one-out validation

method to afford enhanced robustness. Tikhonov-

regularized OP-ELM (TROP-ELM) is a newly proposed

method, where ‘1 penalty, ‘2 penalty, and a variable

ranking method named multiresponse sparse regression [8]

are applied to the hidden layer and the regression weights,

respectively [9]. A supervised algorithm with kernel

method, which randomly selects a subset of the available

data samples as support vectors, referred to as the reduced

kernel ELM is studied by Deng [10]. ELM is also a useful

tool for large-scale data analysis, especially in dimen-

sionality reduction in big dimensional data [11, 12]. As far

as we know, all the regression problems of ELM are solved

by Moore–Penrose (M–P) inverse of matrices. There exists

no tensor-based ELM, since the usage of the type-2 fuzzy

sets in the hidden layer mapping leads to a tensor regres-

sion problem, and little work has been down yet on ELM

with type-2 fuzzy hidden layer mapping.

Modern networks (such as internet traffic, telecommu-

nication records, mobile location and large-scale social

networks) generate massive amounts of data, the data

present multiple aspects and high dimensionality. Such

data are complex for matrix form and easy for multi-way

arrays or tensor, ELM and its variants do not suit for the

tensor data with high dimensionality. Consequently, tensor
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decomposition such as Tucker decomposition becomes

important tool for tensor summarization and tensor analy-

sis. One major challenge of tensor decomposition is how to

deal with high-dimensional or sparse data with most of the

entries of the data are zero. To address the memory over-

flow problem, Kolda and Sun [13] propose a memory-

efficient Tucker method, which adaptively selects the right

execution strategy during the decomposition. Kolda also

presents an overview of higher-order tensor decomposition,

higher-order tensor applications and well-known software

for higher-order tensor [14]. Incomplete tensor completion

and data factorization method called CANDECOMP/

PARAFAC (CP) weighted optimization [15] is equivalent

to solve the weighted least squares problem. The CP

expresses a tensor as the sum of component rank-one

tensors. However, doing CP decomposition can be difficult

due to alternating least squares optimization. To avoid this

problem, a kind of gradient-based optimization method is

used to do the CP decomposition [16]. A new and highly

parallelizable method (ParCube) for speeding up tensor

decomposition that is well-suited to producing sparse

approximations in data mining applications is proposed, the

ParCube can scale to truly large data sets [17]. In [18], a

sparse tensor decomposition algorithm that incorporates

sparsity into the estimation of decomposition components

is proposed, and the method provides a general way to

solve the high-dimensional latent variable models. An

alternating direction method of multiplier-based method

[19] is developed to solve the tensor completion problem

and its low-rankness approximation problem. A new

algorithm [20] is proposed to find the generalized singular

value decomposition (SVD) of two matrices with the same

number of columns, and the sensitivity of the algorithm to

the matrix entries’ errors can be suppressed. In [21], a

highly efficient and scalable estimation algorithm for a

class of spectral regularized matrix regression is developed,

and model selection algorithm along the regularization path

is finished by a degree of freedom formula. In [22], an

algorithm called alternating SVD is proposed for the

computation of a best rank-one approximation of tensors,

the convergence of the alternating SVD is guaranteed.

Tensor regression problem is relatively new comparing

with matrix regression problem. There exist a few papers

on this topic, to name a few, a new tensor decomposition

method (based on the fact that a tensor group endowed with

the Einstein product is isomorphic to the general linear

group of degree n) which has been proven to be related to

the well-known canonical polyadic decomposition and

tensor SVD [23] is introduced, and multilinear systems are

solvable when the tensor has an odd number of modes or

when the tensor has distinct dimensions in each modes. The

M–P inverse of tensors with the Einstein product is first

proposed in [24], and some multilinear systems’ general

solution or the minimum-norm least squares solution are

given based on the M–P inverse of tensors. In [25], a

method to compute the M–P inverse of tensors is proposed.

Reverse order laws for several generalized inverses of

tensors are also presented. In addition, general solutions of

multilinear systems of tensors using the generalized M–P

inverse of tensors with the Einstein product are discussed.

In [26], the fundamental theorem of linear algebra for

matrix space is extended to tensor space, and the rela-

tionship between the minimum-norm least squares solution

of a multilinear system and the weighted M–P inverse of its

coefficient tensor is studied.

Inspired by the abovementioned topics, in this paper, we

extended the ELM in three folds: (1) Triangular type-2

fuzzy set is used to formulate the uncertainty; (2) Tensor

structure is adopted to construct the ELM; (3) Only type-2

fuzzy membership functions are needed in tensor-based

type-2 ELM (TT2-ELM), extreme learning results are

solved by tensor-based regression problem in which clas-

sical M–P inverse of matrix is replaced by M–P inverse of

tensor, and the type-reduction in type-2 fuzzy set is avoi-

ded. As far as we know, there exists no work on the

extreme learning machine scheme which uses tensor to

train the model, let alone on the type-2 fuzzy set-based

ELM.

This paper is organized as follows. The basic concepts

of type-2 fuzzy sets are described in Sect. 2. In Sect. 3, a

tensor-based type-2 ELM is proposed, and proof of the

tensor regression for TT2-ELM is presented at the end of

Sect. 3. Section 4 provides three types of examples to

illustrate the utilization of the proposed algorithm. Finally,

conclusions and future work are given in Sect. 5.

2 Triangular type-2 fuzzy sets

Type-2 fuzzy set is introduced as an extension of the

ordinary fuzzy set, the membership grades of type-2 fuzzy

sets themselves are type-1 fuzzy sets. For a type-2 fuzzy set
~A, the type-2 membership function l ~Aðx; uÞ with x 2 X and

u 2 Jx � ½0; 1� is described as ~A ¼ fððx; uÞ; l ~Aðx; uÞÞj8x 2
X; 8u 2 Jx � ½0; 1�g [27], where 0� l ~Aðx; uÞ� 1. Another

representation form of the type-2 fuzzy set ~A can be

expressed as

~A ¼
Z

x2X

Z
u2Jx

l ~Aðx; uÞ=ðx; uÞ; Jx � ½0; 1�; ð1Þ

where
R R

denotes union over all admissible x and u, Jx is

the primary membership of x (usually a closed interval of

real numbers that is contained within [0, 1]).

To the triangular type-2 fuzzy sets, the partition of the

primary domain X in the discrete form is denoted as
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fx1; x2; . . .; xng, let fk be the secondary membership func-

tion of xk, and it can be denoted by

fkðuÞ ¼ max 0;min
u � l

k

l̂k � l
k

;
u � lk

l̂k � lk

( )( )
; ð2Þ

where �lk [ l̂k [ l
k

are upper, principal and lower mem-

bership grades for k ¼ 1; 2; . . .; n, respectively.

For a given testing data set denoted as fDtgN
t¼1, where

Dt ¼ ðxt; ytÞ; xt ¼ ðxt1; xt2; . . .; xtKÞ 2 RK and yt 2 R. A

lower membership function matrix U 2 RN�2�L�1 can be

constructed to approximate the relationship between input

xt and a desired output yt via lower membership functions,

U:;:;1;1 ¼

lðw11x1 þ b11Þ lðw12x1 þ b12Þ

..

. ..
.

lðw11xN þ b11Þ lðw12xN þ b12Þ

2
664

3
775;

..

.

U:;:;L;1 ¼

lðwL1x1 þ bL1Þ lðwL2x1 þ bL2Þ

..

. ..
.

lðwL1xN þ bL1Þ lðwL2xN þ bL2Þ

2
664

3
775;

where bil and wil ¼ ½wi1;wi2; . . .;wiK �
(i ¼ 1; 2; . . .; L; l ¼ 1; 2) are random generated bias and

input weights, respectively. Similarly, the principal and

upper membership function matrices Û; �U 2 RN�2�L�1 are

Û:;:;1;2 ¼

l̂ðw11x1 þ b11Þ l̂ðw12x1 þ b12Þ
..
. ..

.

l̂ðw11xN þ b11Þ l̂ðw12xN þ b12Þ

2
664

3
775;

..

.

Û:;:;L;2 ¼

l̂ðwL1x1 þ bL1Þ l̂ðwL2x1 þ bL2Þ
..
. ..

.

l̂ðwL1xN þ bL1Þ l̂ðwL2xN þ bL2Þ

2
664

3
775;

�U:;:;1;3 ¼

�lðw11x1 þ b11Þ �lðw12x1 þ b12Þ
..
. ..

.

�lðw11xN þ b11Þ �lðw12xN þ b12Þ

2
664

3
775;

..

.

�U:;:;L;3 ¼

�lðwL1x1 þ bL1Þ �lðwL2x1 þ bL2Þ
..
. ..

.

�lðwL1xN þ bL1Þ �lðwL2xN þ bL2Þ

2
664

3
775:

A 4-tensor U 2 RN�2�L�3 can be constructed by

U:;:;:;1; Û:;:;:;2 and �U:;:;:;3. In the following, we denote tensor

U by A for the following tensor regression section.

3 Tensor-based type-2 ELM (TT2-ELM)

In this section, we establish the basic structure of TT2-

ELM. First, tensor operations and inverse of tensor are

introduced. In [24], a generalized M–P inverse of even-

order tensor is introduced, which is formulated as follows.

Definition 1 Let A 2 RI1...N�K1...N , the tensor X 2
RK1...N�J1...N is called the M–P inverse of A, denoted by Aþ,

and it satisfied the following four tensor equations:

(1) A �N X �N A ¼ A;

(2) X �N A �N X ¼ X ;

(3) ðA �N XÞ� ¼ A �N X ;

(4) ðX �N AÞ� ¼ X �N A,

where I1...N ¼ I1 � � � � � IN ; J1...N ¼ J1 � � � � � JN ;K1...N ¼
K1 � � � � � KN ; �N is the Einstein product1 of tensor, and

A �N X is defined as

ðA �N XÞi1...N j1...N
¼

X
k1...N

ai1...N k1...N
xk1...N j1...N : ð3Þ

For an even-order tensor A 2 RI1...N�I1...N , Brazell et al.

[28] shown that the inverse of tensor A exists if there exists

tensor X 2 RI1...N�I1...N such that A �N X ¼ X �N A ¼ I ,

denoted by A�1. Clearly, if A is invertible, then

AðiÞ ¼ Aþ ¼ A�1, where AðiÞ satisfies the ith condition of

Definition 1. For a tensor S 2 RI1...N�J1...N , it follows from

Definition 1 that Sþ 2 RJ1...N�I1...N and

ðSþÞJ1...N�I1...N
¼ ðSÞþI1...N�J1...N

; ð4Þ

where

sþ ¼
s�1; if ðI1; . . .; INÞ ¼ ðJ1; . . .; JNÞ; s 6¼ 0;

0; if ðI1; . . .; INÞ 6¼ ðJ1; . . .; JNÞ;
or ðI1; . . .; INÞ ¼ ðJ1; . . .; JNÞ; s ¼ 0:

8><
>:

and s ¼ ðSÞi1...N�j1...N
. It is easy to see that S �N Sþ and

Sþ �N S are diagonal tensors whose diagonal entries are 1

or 0.

For a tensor A 2 RJ1...N�I1...N , if A �N A� ¼
A� �N A ¼ I , then A is called the orthogonal tensor. The

SVD of a tensor A has the form as A ¼ U �N B �N V�,

where U 2 RI1...N�I1...N and V 2 RJ1...N�J1...N are orthogonal

tensors, and B 2 RJ1...N�I1...N satisfies Eq. (4). For some

‘square’ case, that is Ik ¼ Jk; k ¼ 1; 2; . . .;N, the existence

for the inverse of A is given by an isomorphism map

L : TI1...N�I1...N
ðRÞ ! M QN

i¼1
Ii

� �
�
QN

i¼1
Ii

� �ðRÞ, where the

1 TPROD efficiently allows any type of tensor product between two

multi-dimensional arrays, which can be downloaded from Math-

works’s file exchange.
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Einstein product is used in the tensor group TI1...N�I1...N
ðRÞ,

and the matrix group M QN

i¼1
Ii

� �
�
QN

i¼1
Ii

� �ðRÞ used the

usual matrix product [28]. The M–P inverse of A 2
RI1...N�J1...N exists and is unique [24], and Aþ ¼ V �N Sþ �N

U� (Pseudo code of M–P inverse of even-order tensor A is

listed in Algorithm 1).

TT2-ELM2 is a neural network with a single-layer feed

forward, structure of TT2-ELM is shown in Fig. 1. For a

given testing data set denoted as fDtgN
t¼1, where Dt ¼

ðxt; ytÞ; xt ¼ ðxt1; xt2; . . .; xtKÞ 2 RK and yt 2 R. TT2-ELM

can be constructed to approximate the relationship between

input xt and desired output yt. For N training patterns, the

TT2-ELM’s mathematical model can be formulated in a

compact form

A �N X ¼ Y; ð5Þ

where X 2 RJ1...2 ;Y 2 RI1...2 , and A 2 RI1...2�J1...2 can be

reshaped via U with dimension N � 2 � L � 3. We can find

the value of output weight X by solving the linear tensor

Eq. (5).

Remark 1 The regression tensor’s dimension is

N � 2 � L � 3, we can deduce that Y 2 RN�2 based on

Einstein product. A vector should be copied once to meet

the dimension requirement.

In the following, the multilinear system Eq. (5) is gen-

eralized as follows

A �N X ¼ Y; ð6Þ

where A 2 RI1...N�J1...N ;X 2 RJ1...N and Y 2 RI1...N . It is

obviously that (5) is the special case of (6) when N ¼ 2.

The following theorem holds for the multilinear system

Eq. (6).

Theorem 1 The multilinear system (6) is solvable if and

only if X ¼ Að1Þ �N Y is a solution of the TT2-ELM with

the system Eq. (6), where Að1Þ is a solution of

A �N X �N A ¼ A. If there doesn’t exist any X 2 RJ1...N for

Eq. (6), then there exists a minimum-norm solution X ¼
Aþ �N Y to unsolvable multilinear system (6), and the

norm is defined as the Frobenius norm

k � kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i1...N j1...N

jai1...N j1...N j
2

s
:

Proof The proof is based on kernel theory and norm

theory of tensor, which is slightly different from [24]

(Theorem 4.1 (1)), it is more easily for us to understand the

idea that how the tensor linear equation is incorporated into

the extreme learning design framework. Since

A �N ðAð1Þ �N AÞ �N Z ¼ A �N Z, where Z is an arbitrary

tensor with suitable order, we knew that ðI � Að1Þ �N

AÞ �N Z satisfies that A �N ðI � Að1Þ �N AÞ �N Z ¼ 0. It

means that ðI � Að1Þ �N AÞ �N Z belongs to the null space

of A �N X ¼ 0. Obviously, the general solution is

X ¼ Að1Þ �N Y þ ðI � Að1Þ �N AÞ �N Z; ð7Þ

where Að1Þ is the 1-inverse of A. The general solution is

constituted by two parts, one is from Eq. (6), the other is

from null space of equation A �N X ¼ 0.

For multilinear system (6), if the multilinear system (6) is

unsolvable, there exists a minimum-norm solution to Eq. (6).

Let EðXÞ ¼ kA �N X � Yk2
F ; E1ðXÞ ¼ traceððA �N XÞT

�NðA �N XÞÞ; E2ðXÞ ¼ �2traceðYT �N ðA �N XÞÞ, and

E3ðXÞ ¼ traceðYT �N YÞ, it holds that EðXÞ ¼ E1ðXÞþ
E2ðXÞ þ E3ðXÞ. After some tensor differential operations,

we have that

oE1

oX ¼ 2ðAT �N AÞ �N X ;
oE2

oX ¼ �2AT �N Y; oE3

oX ¼ 0:

ð8Þ

Noticed that a minimum-norm solution to Eq. (6) is

equivalent to the following tensor optimization problem

min
X

EðXÞ: ð9Þ
2 TT2-ELM’s source MATLAB code can be download directly from

https://github.com/zggl/TriT2ELM.

xt1

xtK

.

⎛
⎜

0 1 0 0 0
21.6814 0.0017 0 0 3.1189

0 0 0 1 0
1.5405 0.0033 0 0 1.0272

⎞
⎟×

×

.

..
⎛
⎜

0 1 0 0 0
12.0587 −0.0655 0 0 0.6671

0 0 0 1 0
0.2620 −0.1234 0 0 0.9522

⎞
⎟

µ̄1

µ̂1

µ
1

µ
K

µ̂K

µ̄K

X3

X2

X1

yt

MFs

µ

0
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22
3

4

1
4

2
7

4

2
1

2
1

4
22

7
4

1
5

6
8

1
3

4
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4

1

1

µ̂

0
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22
333

4

1
4

2
7

4

222
1

2
1

2
4

4
2

777
4

111
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666
8

1
3

22
44

2
7

4

1

1
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0
1

2
333

4

1
4

2
777

4
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111
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8

2
1

3
22

4

Fig. 1 Tensor-based type-2 ELM
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The necessary condition for (9) is
oE1

oX þ oE2

oX ¼ 2ððAT �N AÞ �N X �AT �N YÞ ¼ 0, that is, the

tensor equation

ðAT �N AÞ �N X ¼ AT �N Y: ð10Þ

Left hand of Eq. (10)’s gain tensor AT �N A is a ‘square

tensor’, tensor Eq. (10) is solvable. Using Eq. (7), we have

X ¼ ðAT �N AÞð1Þ �N AT �N Y
þ ðI � ðAT �N AÞð1Þ �N ðAT �N AÞÞ �N Z:

ð11Þ

It holds that X is the minimizer when Z ¼ 0. We have

A ¼ A �N ðAT �N AÞð1Þ �N ðAT �N AÞ by Corollary

2.14(1) [25], there also exists ðAT �N AÞð1Þ such that

Aþ ¼ ðAT �N AÞð1Þ �N AT . Then the minimum-norm least

squares solution can be obtained as X ¼ Aþ �N Y. h

Remark 2 The tensor regression is necessary for the type-

2 fuzzy set-based extreme learning scheme, since the tensor

structure can incorporate the information of the secondary

membership function directly, the type-reduction step

which is the most important step in type-2 fuzzy inference

is avoided, and type-2 fuzzy structure can be seamlessly

incorporated into the ELM scheme.

Remark 3 The regression tensor A 2 RN�2�L�3, the sec-

ond dimension equals to 2. Thus, TT2-ELM needs two

randomly generated weight vectors, any one of the vectors

is randomly generated weight vectors which can be used by

the RELM and WRELM.

4 Performance comparison

In this section, three types of examples are involved in

algorithms’ performance comparison. Two function

approximation problems are presented in Sect. 4.1. A

nonlinear system identification problem which has three

input variables is provided in Sect. 4.2. In Sect. 4.3, four

real-world regression problems in which the input variables

range from 2 to 61 are given. Parameters sensitivity and

stability analysis are carried out for different iteration

number at the end of this section.

ELM, RELM and WRELM are applied to compare with

TT2-ELM in the section. The RELM and WRELM use

constraint on minimum norm of weight factor, while TT2-

ELM’s mathematical model only has constraint on mini-

mum norm of error. Mathematical models of the four

algorithms, that is, ELM, RELM, WRELM and TT2-ELM

are listed in Table 1. The algorithms RELM and WRELM

have two design parameters L and C, while ELM and TT2-

ELM only presents one design parameter, the hidden layer

neuron number L. All of the compared results are carried

out by averaging with 1000 times. The triangular type-2

fuzzy sets are used in the TT2-ELM design. The principal

membership grade is randomly generated, the lower and

Table 1 Mathematical models and its design parameters

Algorithm Problem formulation Design parameters

ELM minb kUb� Yk2
2

L

RELM minb CkUb� Yk2
2 þ kbk2

2
L, C

WRELM minb CkWðUb� YÞk2
2 þ kbk2

2
L, C

TT2-ELM minb kU �N b� Yk2
F

L

Table 2 Comparison results for the one-input Sinc function (12)

L Algorithm C ¼ 2�5 C ¼ 2�10 C ¼ 2�15 C ¼ 2�20

Training Testing Training Testing Training Testing Training Testing

25 ELM 4.08e-04 4.76e-04 3.97e-04 4.72e-04 3.66e-04 4.46e-04 3.46e-04 4.08e-04

RELM 7.45e-02 7.57e-02 4.38e-02 4.39e-02 1.40e-02 1.41e-02 7.73e-03 9.02e-03

WRELM 7.56e-02 7.70e-02 4.62e-02 4.64e-02 1.49e-02 1.49e-02 7.89e-03 9.72e-03

TT2-ELM 8.02e-07 1.07e-06 5.99e-07 7.67e-07 1.05e-06 1.37e-06 8.81e-07 1.18e-06

30 ELM 2.84e-04 3.41e-04 3.33e-04 3.94e-04 3.02e-04 3.65e-04 3.05e-04 3.57e-04

RELM 7.34e-02 7.47e-02 4.01e-02 4.01e-02 1.23e-02 1.25e-02 6.99e-03 8.22e-03

WRELM 7.34e-02 7.46e-02 3.94e-02 3.94e-02 1.26e-02 1.28e-02 7.56e-03 9.51e-03

TT2-ELM 2.13e-05 2.13e-05 2.19e-05 2.19e-05 2.18e-05 2.18e-05 2.52e-05 2.52e-05

35 ELM 2.48e-04 2.95e-04 2.60e-04 3.15e-04 2.47e-04 3.01e-04 2.58e-04 3.10e-04

RELM 7.25e-02 7.37e-02 3.52e-02 3.50e-02 1.14e-02 1.17e-02 6.67e-03 7.86e-03

WRELM 7.25e-02 7.37e-02 3.55e-02 3.53e-02 1.16e-02 1.20e-02 7.10e-03 8.96e-03

TT2-ELM 5.61e-03 5.62e-03 6.18e-03 6.19e-03 6.09e-03 6.09e-03 7.56e-03 7.57e-03
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upper membership grades use two offset variables, one is

0.01, and the other is 0.05.

4.1 Modelling of Sinc functions

Consider one-input Sinc function

z ¼ sin x

x
; x 2 ½� 10; 10�: ð12Þ

Table 2 shows the comparison results among ELM,

RELM, WRELM and TT2-ELM. All the training data are

randomly generated from interval ½� 10; 10�, while testing

data are uniformly generated from interval ½� 10; 10� with

step equals to 0.01. TT2-ELM solves a regression problem

AX ¼ Y with A 2 R600�2�L�3;X 2 RL�3, and Y 2 R600�2

(L 2 f25; 30; 35g). It is needed to be pointed out that the

data should be the repeat copies of the first column of the

array if we only have a single column data, the column data

should repeat once more to meet the dimension require-

ment of Y for TT2-ELM. When L ¼ 35, the ELM out-

performs the TT2-ELM on all the design parameters

f2�5; 2�10; 2�15; 2�20g.

Consider two-input Sinc function

z ¼ sin x � sin y

xy
; ðx; yÞ 2 ½�p; p�2: ð13Þ

Table 3 Comparison results for the two-input Sinc function (13)

L Algorithm C ¼ 2�5 C ¼ 2�10 C ¼ 2�15 C ¼ 2�20

Training Testing Training Testing Training Testing Training Testing

20 ELM 4.54e-02 7.32e-02 4.54e-02 7.32e-02 4.54e-02 7.32e-02 4.54e-02 7.32e-02

RELM 4.70e-02 7.06e-02 4.68e-02 7.08e-02 4.64e-02 7.11e-02 4.59e-02 7.19e-02

WRELM 4.82e-02 7.13e-02 4.82e-02 7.12e-02 4.80e-02 7.11e-02 4.75e-02 7.08e-02

TT2-ELM 4.40e-02 6.74e-02 4.40e-02 6.74e-02 4.40e-02 6.74e-02 4.40e-02 6.74e-02

60 ELM 4.45e-02 7.51e-02 4.45e-02 7.51e-02 4.45e-02 7.51e-02 4.45e-02 7.51e-02

RELM 4.69e-02 7.07e-02 4.66e-02 7.09e-02 4.60e-02 7.16e-02 4.56e-02 7.25e-02

WRELM 4.81e-02 7.12e-02 4.81e-02 7.12e-02 4.76e-02 7.08e-02 4.73e-02 7.07e-02

TT2-ELM 4.11e-02 6.70e-02 4.11e-02 6.70e-02 4.11e-02 6.70e-02 4.11e-02 6.70e-02

75 ELM 4.45e-02 7.53e-02 4.44e-02 7.53e-02 4.44e-02 7.53e-02 4.44e-02 7.52e-02

RELM 4.69e-02 7.07e-02 4.66e-02 7.09e-02 4.59e-02 7.17e-02 4.55e-02 7.27e-02

WRELM 4.81e-02 7.12e-02 4.81e-02 7.12e-02 4.76e-02 7.08e-02 4.73e-02 7.06e-02

TT2-ELM 4.03e-02 6.73e-02 4.03e-02 6.73e-02 4.03e-02 6.73e-02 4.03e-02 6.73e-02
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Fig. 2 Nonlinear system output. a Randomly generated control effort uðkÞ 2 f� 2; 2g and b specified control effort uðkÞ ¼ sinð2pk=25Þ
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Equally spaced 41 � 41 data pairs are used for training, and

equally spaced 30 � 30 testing data are used to check

generalization.

Table 3 lists the comparison results for the two-input

Sinc function (13). Results show that TT2-ELM outper-

forms ELM, RELM and WRELM for all the cases. Com-

bining the results which are listed in Tables 2 and 3, we

can infer that the hidden neuron number L is important to

each algorithm’s training and testing precision, the hidden

neuron number L must be lied in the certain range. The

performance will be poor when the hidden neuron number

L out of the range, and it will be tested again by the next

subsection’s nonlinear system identification problem.

4.2 Nonlinear system identification

Consider a nonlinear system given by [29]

ypðkÞ ¼
ypðk � 1Þypðk � 2Þðypðk � 1Þ þ 2:5Þ

1 þ ðypðk � 1ÞÞ2 þ ðypðk � 2ÞÞ2
þ uðk � 1Þ:

ð14Þ

The equilibrium state of the system is (0, 0) and input is

chosen as uðkÞ 2 f� 2; 2g, stable operation is guaranteed in

the range of f� 2; 2g. Uniformly distributed random vari-

able in the range f� 2; 2g is chosen as training input and

testing input is given by uðkÞ ¼ sinð2pk=25Þ. By selecting

½ypðk � 1Þ; ypðk � 2Þ; uðk � 1Þ� as input variables and ypðkÞ
as output variable, the system can write in form

ŷpðkÞ ¼ f̂ ðypðk � 1Þ; ypðk � 2Þ; uðk � 1ÞÞ: ð15Þ

Total 800 data are selected, 600 data are used for training

and 200 data for testing. Figure 2a shows the nonlinear

system output which is randomly generated by

uðkÞ 2 f� 2; 2g. Figure 2b shows the nonlinear system

output with specified control effort uðkÞ ¼ sinð2pk=25Þ.
To the relation between the hidden neuron number L and

testing error, we did the comparisons on nonlinear system

identification for TT2-ELM. Figure 3 shows the actual

output ypðkÞ and testing output ŷpðkÞ using specified con-

trol effort uðkÞ ¼ sinð2pk=25Þ with L ¼ 35, and the testing

error is 0.0580. Figure 4a shows the averaged 100 results

of training error, and testing error for different hidden layer

number L which varies from 25 to 75 is shown in Fig. 4b.

Figure results show that the testing error will not always

decrease when training error decreases and the hidden layer

number L increases. Thus, to achieve a satisfiable preci-

sion, trail-and-error method should be used for the
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Fig. 3 Actual output and testing output using uðkÞ ¼ sinð2pk=25Þ
with L ¼ 35

25 30 35 40 45 50 55 60 65 70 75
L

0.04

0.0405

0.041

0.0415

0.042

0.0425

0.043

0.0435

0.044

Tr
ai

ni
ng

 E
rr

or

(a)

25 30 35 40 45 50 55 60 65 70 75
L

0.0669

0.067

0.0671

0.0672

0.0673

0.0674

0.0675

Te
st

in
g 

E
rr

or

(b)

Fig. 4 The relation between the error and the hidden neuron number L
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experiments based on different hidden neuron number

when we used a priori type-2 fuzzy sets, although the

weighting and bias parameters are randomly generated.

4.3 Real-world regression problems

In this section, four real-world regression problems are

considered. Auto-Mpg is a data set which collects miles per

gallon data from different automobile brand. The bank data

set simulates the customers’ levels of patience who choose

their preferred bank depending on eight factors, such as

residential areas, distances, fictitious temperature control-

ling bank choice, et al. Diabetes is to investigate the

dependence of the level of serum C-peptide (to measure the

patterns of residual insulin secretion) on the various fac-

tors. Triazines is a data set which is usually used to learn a

regression equation or rules to predict the activity from the

descriptive structural attributes. User-defined parameters of

the four data sets are tabulated in Table 4, these data sets

include three small-scale data sets and one moderate-scale

data set. Table 5 shows the mean and standard deviation on

auto-Mpg, bank, diabetes and triazines with 1000 experi-

ment results. Five algorithms, ELM, RELM, WRELM, LS-

SVM [30] and PLS [31], are adopted in the algorithm

comparisons. TT2-ELM outperforms the other five algo-

rithms on auto-Mpg and diabetes with respect to testing

error, and outperforms the ELM, RELM, WRELM and LS-

SVM on bank data set with respect to the training error.

PLS achieves the best training error on three data sets, that

is auto-Mpg, bank and diabetes, and achieves best testing

error on bank. To the data set triazines, PLS fails to obtain

the training error or testing error due to the occurrence of

matrix singularity problem, reciprocal condition number is

near 0. LS-SVM has the best training error on triazines, and

WRELM performs relatively better than the other three

variants of ELM, TT2-ELM has a comparable performance

with ELM and RELM.

Table 4 User-defined parameters of the data sets

Data set #Attributes #Train set #Test set

Auto-Mpg 7 300 92

Bank 9 4000 4192

Diabetes 2 576 192

Triazines 61 100 86

Table 5 Training and testing

error on auto-Mpg, bank,

diabetes and triazines

Data set Algorithm Training (RMSE) Testing (RMSE)

Mean SD Mean SD

Auto-Mpg ELM 4.35e-01 2.41e?0 4.34e-01 2.55e?0

RELM 1.35e?0 1.61e?0 1.31e?0 1.61e?0

WRELM 1.34e?0 1.62e?0 1.35e?0 1.61e?0

LS-SVM 1.83e?0 1.65e-02 3.89e?0 8.50e-02

TT2-ELM 2.94e-01 7.12e-01 2.93e-01 6.84e-01

PLS 1.08e-06 5.93e-21 1.50e?00 1.00e-14

Bank ELM 3.24e-02 5.87e-02 3.21e-02 5.84e-02

RELM 3.32e-02 5.83e-02 3.09e-02 5.86e-02

WRELM 3.12e-02 5.83e-02 3.22e-02 5.86e-02

LS-SVM 8.51e-02 2.80e-03 6.62e-02 1.05e-03

TT2-ELM 3.10e-02 6.01e-02 3.50e-02 5.86e-02

PLS 1.62e-02 9.37e-17 3.48e-02 3.33e-16

Diabetes ELM 1.52e-01 1.55e-01 1.57e-01 1.37e-01

RELM 1.50e-01 1.34e-01 1.57e-01 1.40e-01

WRELM 1.50e-01 1.47e-01 1.57e-01 1.34e-01

LS-SVM 1.07e?0 2.82e-02 2.22e?0 3.59e-01

TT2-ELM 1.52e-01 1.31e-01 1.57e-01 1.35e-01

PLS 2.43e-02 3.33e-16 1.62e-01 2.30e-15

Triazines ELM 9.83e-02 2.41e-01 1.09e-01 1.66e-01

RELM 9.94e-02 2.10e-01 1.07e-01 1.67e-01

WRELM 1.05e-01 2.00e-01 1.04e-01 1.66e-01

LS-SVM 4.04e-02 6.55e-03 1.50e-01 1.39e202

TT2-ELM 9.78e-02 2.00e-01 1.10e-01 1.59e-01

PLS – – – –
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4.4 Parameters sensitivity and stability analysis

In this section, parameters sensitivity and stability analysis

are carried out for different iteration number. The param-

eter C is chosen from the parameter set f2�kjk ¼
5; 10; 15; 20; 25; 30g for RELM and WRELM. Hidden

layer number L is varied from 10 to 80 and the best result is

recorded. All the data sets use 100 iteration steps, except

auto-Mpg uses 50. Figure 5a shows TT2-ELM achieves the

smallest value among the five algorithms, the mean is

0.4529 and standard deviation is 0.0076. While RELM and

WRELM stabilized around 1.7593. Figure 5b shows that

the algorithms ELM, RELM and WRELM all vary along

0.0664, while TT2-ELM’s curve presents the mean 0.0436

and standard deviation 9.01e-4. To the data set bank, PLS

is the best algorithm, as is shown in Fig. 5b. Figure 5c

shows the testing error on diabetes. Figure 5d shows the

testing error on triazines. Figure 5c shows that numerical

results of PLS flow flatly than other algorithms, as is shown

in Table 5, while PLS meets the singularity problem on

triazines. The test results show that PLS is not suitable for

data sets when linear relation between input and output is

not strong. TT2-ELM obtains the best performance on the

diabetes, and worst on the triazines, this may partially due

to RELM and WRELM utilized the regularization and

weighted optimization method, TT2-ELM uses no further

technique to the object function (see Table 1). Considering

that TT2-ELM explores the input–output relation by tensor

structure, the overall performance shows that TT2-ELM

can perform better if more design parameters are consid-

ered in the mathematical model.

100 200 300 400 500 600 700 800 900 1000
Iter

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Te
st

in
g 

er
ro

r

ELM
RELM
WRELM
TT2-ELM
PLS

100 200 300 400 500 600 700 800 900 1000
Iter

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

Te
st

in
g 

er
ro

r
ELM
RELM
WRELM
TT2-ELM
PLS

100 200 300 400 500 600 700 800 900 1000
Iter

0.158

0.159

0.16

0.161

0.162

0.163

0.164

0.165

0.166

0.167

0.168

Te
st

in
g 

er
ro

r

ELM
RELM
WRELM
TT2-ELM
PLS

100 200 300 400 500 600 700 800 900 1000

Iter

0.125

0.13

0.135

0.14

0.145

0.15

0.155

T
es

tin
g 

er
ro

r

ELM
RELM
WRELM
TT2-ELM

(a) (b)

(c) (d)

Fig. 5 Performance of ELM, RELM, WRELM, TT2-ELM and PLS by varying iteration number for regression data sets: a auto-Mpg, b bank,

c diabetes and d triazines (PLS fails due to matrix singularity problem)
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5 Conclusions and future work

Tensor regression is a new topic for fuzzy system mod-

elling, it can be inferred as a high-dimensional case of the

classical matrix regression problem. In this paper, we

introduce the tensor regression to the type-2 fuzzy extreme

learning machine scheme, the type-reduction step is avoi-

ded since the tensor structure can incorporate the infor-

mation of the secondary membership function directly.

Experimental results show that TT2-ELM outperforms

ELM, RELM and WRELM on most of the data set.

However, it should be noted that TT2-ELM has an inherit

drawback which came from the tensor itself, the algorithm

is not efficient for large-scale problem since it is time-

consuming to solve a large-scale tensor regression prob-

lem. The batch training method which is proposed in this

paper is space demanding for large-scale problem, an

alternative way to avoid this problem is to design an

incremental tensor decomposition algorithm to iteratively

obtain the inverse of the tensor, it means that new theory on

tensor operations is needed. Although we think that would

be a great research, it is a different approach and might be

more suitable for a different paper.

In this paper, a special tensor structure is constructed for

the purpose of type-2 fuzzy set which is used in extreme

learning machine scheme. There still exists much more

work to be done. One direction is to design an extreme

learning machine for general fuzzy sets, such as type-2

trapezoidal fuzzy sets, spiked type-2 fuzzy sets, et al. To

the tensor regression, a sequential regression algorithm is

more appreciated for online training or learning purpose.

Generalized M–P inverse is essential for the tensor

regression, the tensor operation should be redefined to

endow the generalized M–P inverse more convenient to use

for tensor regression.
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