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Abstract

This paper is concerned with an impulsive non-autonomous high-order Hopfield neural network with mixed delays. Under
proper conditions, we studied the existence, the uniqueness and the global exponential stability of asymptotic almost
automorphic solutions for the suggested system. Our method was mainly based on the Banach’s fixed-point theorem and
the generalized Gronwall-Bellman inequality. Moreover, four examples are presented to demonstrate the effectiveness of

the proposed findings.

Keywords High-order Hopfield neural networks - Asymptotic almost automorphic solutions - Impulses

Mathematics Subject Classification 34C27 - 37B25 - 92C20

1 Introduction

Low-order neural networks have attracted much attention
in the literature (see [6, 7, 16, 18-20, 22, 31, 34]). Hopfield
neural networks (HNNs) are a form of low-order neural
networks, introduced in 1982 by J. Hopfield (see
[44, 54, 68]). In order to increase the computational power
of neural networks, some investigators focused on high-
order neural networks which have stronger approximation
property, faster convergence rate, greater storage capacity
and higher fault tolerance than low-order ones (see
[15, 21, 49-51, 62]). One of the most typical high-order
neural networks is the high-order Hopfield neural networks
(HOHNNSs). They have been extensively applied in psy-
chophysics, robotics, vision and image processing. The
dynamic properties of HOHNNs have been deeply dis-
cussed; the reader may refer to [12—14, 48, 57, 63, 64] and
reference therein.

It is well known that time delay is ubiquitous in most
physical, chemical and other natural system due to finite
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propagation speeds of signals, finite processing times in
synapses and finite reaction times. In 1989, Marcus and
Westervelt proposed the first neural network model with
delay (see [41, 42]); since then, it has become important to
consider neural networks with time delay (see
[10, 17, 18, 23, 30, 37, 39, 45, 56, 59, 67, 69]). It is true that
time delays are difficult to handle but have a significant
impact on the dynamic behavior of neural networks.

Many phenomena process some regularity, but they are
not periodic. Therefore, there exist several concepts which
are more  sophisticated than periodicity (see
[2-4, 24-28, 32, 36, 46, 65]). The central tool in this work
is the concept of asymptotic almost automorphy (AAA)
which was introduced in the literature by N’Guérékata in
1980 as perturbations of almost automorphic functions by
functions vanishing at infinity (see [1, 35, 38, 47]). The
applications of asymptotic almost automorphy theory are
involved in various research fields, especially in the
domain of neural networks (see [33, 43, 55, 61]). In 2016,
Brahmi et al. established various criteria of the dynamics of
asymptotic almost automorphic solutions of the following
model (see [15]):
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where n > 2 denotes to the number of neurons in the sys-
tem, x;(.) corresponds to the membrane potential of the
the a; is a positive constant rate used to reset the
potential of the ith neuron to the conserve its state in iso-
lation when it is disconnected. In addition, f;(.), g(.), A;(.)
and ¢;(.) are the activation functions of signal transmis-

neuron i,

sion, bj;(.), ¢;(.), p;(.) are the connection weight of the
unit j on the unit i, Tj;(.) presents the second-order con-
nection weight of the neural networks, J;(.) is the input unit
i and 7; >0 is the transmission delay of unit j.

On the other hand, the theory of impulsive differential
equations is being recognized to be not only more impor-
tant than the corresponding theory of differential equations
without impulses, but also represents a more natural
framework for mathematical modeling of many real-world
phenomena, like population dynamic systems and neural
networks.

Naturally, more interesting neural network should take
into account the impulsive effects, that is to say the sea-
sonality = of the changing  environment (see
[1, 5, 810, 16, 17, 29, 37, 40, 44, 45, 48, 52, 54,
57-59, 64, 66]).

For instance, Aouiti et al. studied the piecewise pseudo-
almost periodic solutions for the following class of
impulsive generalized high-order Hopfield neural networks
with leakage delays (see [9]):
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in which n corresponds to the number of units in a neural
network, x;(.) corresponds to the state vector of the ith unit,
¢i(.) > 0 represents the rate with which the ith unit will
reset its potential to the resting state in isolation when
disconnected from the network and external inputs,
ai(.), by(.),%;(.), By(.) are the first- and the second-
order connection weights of the neural network,
7;i(.), 04(.), v;j(.) >0 correspond to the transmission
delays, p(.)>0 denotes the leakage delay, g;(.) is the
activation functions of signal transmission, dj(.), h(.)
and k;j(.) are the transmission delay kernels, J;(.) denotes
the external inputs. The sequence {7} has no finite accu-
mulation point and [ : R" — R, k € Z.

The impulsive HOHNNs have been the object of
intensive analysis by numerous authors. However, to the
best of our knowledge, there is no published paper con-
sidering the asymptotic almost automorphic solutions for
impulsive HOHNNs with continuously distributed delays
and variable asymptotic almost automorphic coefficients.
Inspired by the above discussions, in this manuscript, we
aim to challenge the analysis problem of the following
system:
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in which n corresponds to the number of units in a neural
network, x;(.) corresponds to the state vector of the ith unit,
c;;(.) represents the rate with which the ith unit will reset its
potential to the resting state in isolation when disconnected
from the network and external inputs, a;(.), by(.), di(.),
riji(.) are the first- and the second-order connection weights
of the neural network, ¢;, g;, v; >0, correspond to the

T
T

transmission delays, fi(.), g;(.), h;(.), k;(.) are continuous
representing the activation functions of signal transmission,
K;i(.), Pyji(.) and Qy(.) are the transmission delay kernels,
7:(.) denotes the external inputs, o; € R, I(.) €
C(R,R"), oy € R", A(x;(tx)) = xi(t;) — xi(z;) are impul-
ses at moments f#; such that 7 <fy<--- is a strictly
increasing sequence as lim, ., #; = +00.
The solution of (3) satisfying the initial conditions

Xi(S):¢i(S), i=1,--,n, SG(*O0,0]. (4)

where ¢ is real-valued piecewise continuous functions
defined on (—o0,0].

Our motivation for this article stems from the fact that it
can arise in many problems of science and engineering
either directly or indirectly and that the study of asymptotic
almost automorphic solutions for (3) does not exist until
now. Therefore, the main purpose of this paper is to present
some new criteria concerning the existence, the uniqueness
and the global exponential stability of asymptotic almost
automorphic solutions for a class of impulsive HOHNNs
by utilizing the Banach’s fixed-point theorem and the
generalized Gronwall-Bellman inequality.

Remark 1 1In this work, we take into account the impul-
sive effects, so our results are more general than the results
in [15].

Remark 2 1In this work, the conditions on impulses are
different from that presented in [8, 9]. Note that our model
is more general than in [1, 6, 14, 15, 19, 53, 57, 60].

Remark 3 Our findings generalized some of the results
reported in the literature (see [1, 16, 52, 57]) and so on,
since the class of asymptotically almost automorphy

contain the class of periodicity, almost periodicity,
asymptotic almost periodicity and automorphy.

The rest of this paper is organized as follows: In Sect. 2,
we will establish some useful assumptions, definitions and
lemmas for impulsive non-autonomous dynamic systems
with asymptotic almost automorphic coefficients, which
will be used to obtain our main results. Section 3 is devoted
to establishing some criteria for the existence, the
uniqueness and the global exponential stability of asymp-
totic almost automorphic solution for system (3). In Sect. 4,
four numerical examples are given to illustrate the feasi-
bility of the obtained results. At last, we draw some
remarks and conclusion in Sect. 5.

2 Assumptions, definitions and some new
lemmas

The main aim of this article is to establish some sufficient
conditions for the existence, the uniqueness and the global
exponential stability of asymptotic almost automorphic
solutions of (3).

Throughout this paper, the following notations were
adapted:

for 1<i,j,I<n, suplc;(t)]=cy, supla;(1)|=ag,

teR teR

*

sup |bin(1)| = by, sup |dy(1)] = dij, - sup ()] = ri,

teR

sup [7;(1)| = 7; -

teR
In order to make the paper self-contained, we introduce the

following class of spaces, assumptions and definitions (for
more details, see [1, 5, 11, 15, 29, 32, 38, 40, 47]).

e C(R,R") is the set of continuous functions from R to
R".

e BC(R,R") denotes the set of bounded continued func-
tions from R to R". Note that (BC(R,R"), || . ||~) is a
Banach space where || . || denotes the sup norm
| f [loc:= sup,ep maxi <i<n | fi(?) | -

e PC(J,R") is the space of piecewise continuous func-
tions from J C R to R" with points of discontinuity of
the first kind #;, k = +1,£2... and which are contin-
uous from the left, i.e., x(; ) = x(%).

e PCy(R" x R", R”):{d) € PC(RT x R",R") such that
lim, o ||¢(2,x)|| =0 in ¢ uniformly in x € [Ri"}.

o BZ{{l‘k}Zcocllk S R, l‘k<l‘k_._1,liIIllc_>iool‘/(=:|:00}7

denote the set of all sequence unbounded and strictly
increasing.

@ Springer
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Now, we consider the following impulsive linear dynamic
system:

{Z’(r) = P(OZ(1), 1 # 1, k€ Z, s
AZ([) = PkZ(t), t=t, k.

If Uy(z,s) is the Cauchy matrix for the system

Z'(t) = P()Z(t), ti1<t<t, {ti} €B, k€ Z, (6)

then the Cauchy matrix for system (5) is in the form
Ui(t,5), i1 <s <t <,

U1 (8,1 + 0)(I + Pr) Ui (2, ),

b1 <s <t <t <tryy,

Uit1 (8, ti+0) (I4Pi) Uy (te, tx+0), - - - (1 + Pi)
xUi(ti,8), tio1 <s<t; <ty <t <tpy1.

W(t,s) =

Remark 4 U,(t,s) is a the Cauchy matrix for system (6),
meaning that for k € Z, the following condition is fulfilled:
a[Jk (t7 S)

= P()U(t,s), i1 <s<t<t, ke Z.

We also assume that the following conditions (H1)—-(H8)
hold.

(H1) The function P(t) = (¢;(t)),<;;<, € C(R,R") is
asymptotically almost automorphic.

det(I 4+ Py) # 0, the sequence Py, and #; are
asymptotically almost automorphic.

The Cauchy matrix W(t, s) satisfies that there exist
a positive constant K and J such that |[W(¢t,s)| <K
e~°0=5) this further implies that:

\W(t+ 1,5+ 1,) — W(t, )| < Mee 50 for any
&> 0 and positive constant M.

(H2)

(H3)

(H4)  The functions a;;, by, djj, rj are almost automorphic.
(HS)  There exist positive constant numbers l}, b, b, b, e,
M’ such that for all u,v € R, | fi(u) = fi(v) | <¥ |
u—vl,
| gi(u) — gi(v) | <E u—v | | hi(u) = h(v) |
< 1;1 | u—v |7
| Ki(w) =k () | <BJu—v], [gu)| <, |
(u) | <M.

We suppose that f;(0) = g;(0) = h;(0) = k;(0) = 0.
Foralli,j,l € {1,2,...,n}, the delay kernels K;;, Py,
Qjjr : [0,+00) — R are continuous, integrable and
there exist nonnegative constants K, P*, QT vK,

vP @ such that |K;(1)] < KTe ™", |Py(1)] < P*
e, |Qu(n| < @re™.

The function y; is asymptotic almost automorphic.

(H6)

(H7)
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(H8) The sequence I; is asymptotic almost automorphic
and there exists a positive constant L such that:

| L(u) —L(v) | <L|u—v]|, k€Z, u,veR.

Let us recall some definitions which will be useful later.

Definition 1 A bounded piecewise continuous function
f € PC(R,R") is called almost automorphic if

e The sequence of impulsive moments {#}, k € Z is an
almost automorphic sequence,

e For every real sequence (s,),., there exists a subse-

quence (Sy),cn such that g(r) = lim, . f(t +s,) is

well defined for each r € R and lim,_ g(t —s,) =

f(zr) for each r € R.
Denote by AA(R, R") the set of all such functions.

Definition 2 A bounded piecewise continuous function
f€PC(R x R",R")is called almost automorphic in t
uniformly for x in compact subsets of R” if

e Sequence of impulsive moments {#}, k € Z is an
almost automorphic sequence,

e For every compact K of R” and for every real sequence
(8),),eny» there exists a subsequence (s,),y such that
g(t,x) = lim,_,» f(¢ 4 sn,x) is well defined for each
t € R, x € K and lim,,_, g(¢ — s,,x) = f(¢,x) for each
teR, xeKk.

Denote by AA(R x R", R") the set of all such functions.

Definition 3 A piecewise continuous function

f € PC(R",R") is called asymptotically almost auto-
morphic if and only if it can be written as f = f] + f, where
fi €AA(RT,R") and f> € PCo(R™, R").

The space of these kinds of functions is denoted by

AAA(RT,R").

Definition 4 A piecewise continuous function
f e PC(R" x R",R") is called asymptotically almost
automorphic if and only if it can be written as f = f; + f>
where
fi €AA(RT x R",R") and f> € PCy(R* x R", R").
The space of these kinds of functions is denoted by
AAA(R' x R",R").

Example 1 Consider the function defined by
1G] ( ! ) + ! reR
= cos , .
sint + sin /2t 141t

It can be easily checked that the function f is asymptoti-
cally almost automorphic.
: 1
Indeed, the function r— cos(m) belongs to

AA(R, R), while the function 1 — {1 is in PCy(R, R).

The function fis an example of an asymptotically almost
automorphic function, which is not almost automorphic.
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Definition 5 A bounded sequence x : 7" — R is called
almost automorphic if for every real sequence (s),),cn.
there exists a subsequence (s,),cn Such that y(m) =
lim, oo x(m +s,) is well defined for each m € Z* and
lim,, . y(m — s,) = x(t) for each m € 7.

The collection of all almost automorphic sequence
which go from 7" to R is denoted by AAS(Z", R).

Definition 6 A bounded sequence 7 : Z+ — RY is called
asymptotically almost automorphic if it can be written as
z=121+2 where 71 € AAS(ZT,R
sequence.
The space of these kinds of sequences is denoted by
AAAS(ZT,R).

) and zp is a null

Now, we propose some lemmas which will be helpful in
proving the main results of this paper.

Lemma 1 If ¢(.) € AAA(R,R), then o¢(.—h)¢€
AAA(R,R).
Proof (See “Appendix 17 section). O
Lemma 2 If ¢,y € AAA(R,R), then ¢ Xy €
AAA(R,R).
Proof (See “Appendix 2” section). O

Lemma 3 If f(.) € C(R,R") satisfies the l}-Lipschitz
condition, ¢(.) € AAA(R,R") and ¢ € R*, then f(¢(. —
¢)) in

AAA(R, R").

Proof Appendix 3” section). O

Lemma 4 Assume that assumptions (HS5) and (H6) hold.
Forall 1<i,j<n,if ¢;(.) € AAA(R, R") then the function

Dy tH— / (1 = $)hi(¢;(s)) ds

belongs to AAA(R, R").
Proof (See “Appendix 4” section). O

Corollary 1 Assume that assumptions (H5) and (H6)
hold. For all 1 <i,j,1<n, if ¢;(.) € AAA(R, R") then the
function:

t
t— /P,»j,(t—s)k,(
—00

belongs to AAA(R, R").

¢;(s))ds

Corollary 2 Assume that assumptions (H5) and (H6)
hold. For all 1 <i,j,I<n, if x;(.) € AAA(R, R") then the
function:

s)ki(i(s)) ds

I / Qljl

belongs to AAA(R, R").

Lemma 5 (Generalized Gronwall-Bellman inequality)
Let a nonnegative function x(.) € PC(R, R") satisfy for
>t

t

x(t) <C(r) + / u(s)x(s)

fo

ds + Z ﬂi‘x(ti>7

o<ty <t

with C(t) a positive non-decreasing function for t > ty,

P; >0, u(t) >0 and t; are the first kind discontinuity
points of the function x(.). Then the following estimate
holds for the function x(.) :

x(t) < C(1) H (1+ /gi)ef,; u(s)ds

3 Main results

First, we begin by studying the existence and the unique-
ness of asymptotic almost automorphic solutions. The
results are based on the Banach’s fixed-point theorem.

Lemma 6 Suppose that all assumptions hold.
Define the nonlinear operator O as follows,

Vd)z(q’)l,...,tj))EAAA([R{ R™),

(U)i(s) = D ag(s)fj((s — )

j=1

+ZZ%I )g(¢

s

+Zd,, /

—00

+ZZW / Pit(s — m)ky(¢;(m)) dm

(s — a)gi(dy(s — v))

— m)hi(¢;(m)) dm

x / Qi — mlk(py(m)) dom -+ 7,(s),

then © maps AAA(R, R") into itself.

@ Springer
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Proof (See “Appendix 5” section). ] In(1 + KL)

e B D W CURS LR
Theorem 1 Under the conditions (HI)—(H8) and Lemma =1 j=
6 : assume that there exist nonnegative constants r and 1 Pt ot
such that + d* Z] "‘Z”zﬂ N (IIMZ+ZIM])] —0<0

K *
= [z +zzbywe
+Zdljh VK ZZ’UI WP Q A ]

KL
+m<1, (9)

flé(lm?gn[z i’y +Zzbm l/e Jrll
+ZZ l], v l’MI+llM’)}

(10)

then system (3) has a unique asymptotic almost automor-

g

phic solution in the region

Sﬂ:fwmnz{¢eAmMRRﬂm¢—¢N§

where

R lJr 1 )
0 1 —e9”
t

W) ds+ X W noy

<t

[ W(t,s)p,(s)ds + > W(t, 1) o

—00 n<t

Proof (See “Appendix 6 section). O

Second, we study the global exponential stability of
asymptotic almost automorphic solutions of system (3) by

using the generalized Gronwall-Bellman inequality.

Theorem 2 Suppose the conditions of Theorem 1 hold.
Assume further that

@ Springer

(11)

then the unique asymptotic almost automorphic solution of
system (3) is global exponential stable.

Proof (See “Appendix 7” section). O

4 Numerical examples and simulations

In this section, we present some examples to illustrate the
feasibility of our findings derived in the previous sections.

4.1 Example 1

Consider the following impulsive high-order Hopfield
neural networks (n = 2) :

(0 = Sy (0500 + 3 a0 51— )
2
>

;))& (xi(t — vr))

MN

+ bij(1)g;(x;(t —

1=

—_

J
t

£X A0 ] K= (o) b W)

S rat) | Palt — s)k(xy(s)) ds

11=1 —0
} Qyir(t — s)ki(xi(s)) ds + ,(1), t # 1,

A(xi(te)) = oux(te) + Le(x(te)) + on, t =1,

—_

Mm

+

X

S“T"‘

8

where gj:v,:q:L:%,

Kij(1) = Py(t) = Qiu(t) = e
Forte R, 1<i,j<2, let
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[t+1] =]t —1|
50) = g(0) = hy(0) = 1) === 53—,
. . . . . . Kt
(;:1g:1{1:1£:el:M/:V_K
Pt Q" R
:TP:TQ:K:o:L
44 cos(r)* 0
i) <iicn = ,
( U( ))1§1J§2 <4+%in( )2 0
a’l 1<lj<2
27
00351n ) 0.07 +0.03¢™*
2+€1nt+91n\/_t
27 ’
0.05 sin 0.05+40.05¢™"
2+COS\/—t>
(B1()) 1 <jp<2
1 .01
0 003cos >+ 002
2+§1nt+§m\/—t 1+,
0

bZ/l(t 1<ji<2

003%1n ! >+% 0
2+cost+sm\/—t 1+1¢ )
0 0

dl](t 1<ij<2

1 1
0.04 sin 0.04cos( ————
2+cost+005\/_t> <2+sint+sin\/§t>
1 )
005+0— 0
141t

(rp() 1 <ju<2

0 0. 0251n ! O—

2+smt+sm\/—t 141
0

A

rZﬂ(t 1<ji<2

0 004§m ! O—
2+smt+smft 141

0
0.7 sin( )
(/(t)) Lrer = 2+smt+smft
0-7cos <2 + cost+cos ft>
and
Ax; (2Kk) = — hx1 (2K) + 0 05in(x1(2K)) + 55,
Axy(2k) = — z5x2(2K) + g5c08(x2(2K)) + 5.

Then, after all calculation done we have

r= max{0.319 033} <1, 7 = max{0.359,0.379} <1,

2
In(1 +55) +ZZZ{¢: +2byy +dj+ 21 | — 6 <0.

i=1 j=1 I=1

According to Theorems 1 and 2, system (12) has a unique
asymptotic almost automorphic solution, which is globally
exponentially stable.

The simulation results can be seen in the following
figures:

0.4+

0.2

0 5 10 15 20 25 30 35 40 45 50
Time(t)

Fig. 1 Transient response of state variables x; and x;, for system (12)
when ¢ in [0; 50]

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 2 Orbit of x;,x; for system (12)

Figure 1 depicts the numeric simulation of (x;,x,) for
system (12); Fig. 2 depicts the orbit of (x;,x;) for system
(12).

4.2 Example 2

Consider the following high-order Hopfield neural net-
works without impulses (n = 2):

@ Springer
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05} depicts the response of state variables (x,x,) for system
04f —; (13); Fig. 4 represents the orbit of (x,x;) for system (13).
03} X2
02f 4.3 Example 3
01t

N ol Consider the following impulsive high-order Hopfield
T on neural networks (n = 3):
_02 . 3 3
8() = 3 g0 () + S a0 (1 - 5)
' j= j=
-04 33
ost + 222 bin(1)g;(x;(t — a7))gi(xi(r — vr))
0 5 10 15 20 25 30 35 40 45 50 j=11=1
Time(t) 3 :
d;; Kii(t — s)hi(x; d
Fig. 3 Transient response of state variables x; and x, for system (13) + J; ( ) _L U( 2 J(xj (s)) ds (14)
when ¢ in [0; 50] 303 P
+ ”Z; ra(t) [ Pyt — s)ki(x;(s)) ds
j=11= —00
02 t
<[ Qui(t = $)ki(x(s)) ds +9,(t), t #
0.1 | %
ol | A(x(tr)) = oax(te) + I (x(te)) + o, t = 1,
o ] where 51—1)]_JJ_L_%, .
o Ku(t) = ljl( )= Qul( )= :
-0.2} E ForteR, i,j=1,2,3
03l ] fi(t) = gj(r) = hj(t) = k;(¢) = sin(r)
. Kt
U=ll=ll=ll=d=M="¢
-04} ] y
P+ B Q+ B o
-05 v ~he ~K=o=1
S02 0.1 0 0.1 02 03 0.4 05

X

Fig. 4 Orbit of x;, x, for system (13)

1) =Y ci(tx(0) + > ag(0fi(x(t — )
=

2 2
+ Zzbiﬂ( )8 (x( ))gi(xi(t —vp))
j=1 =1
2 t
+;d,»j(t) _Z Kij(t — s)hi(x;(s)) ds 13)

t

[ Pata = otts) as

—00

2 2
+2 2 rul)

j=1 I=1
x / it — $)ki(als)) ds + 3;(0).

System (13) has exactly one asymptotic almost automor-
phic solution. The asymptotic almost automorphic solution
is globally exponentially stable. The results are verified by
the numerical simulations in the following figures: Fig. 3
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2+cos(r) 0 0O
(Cij(’))lgi.jg3: 2+sin(t) 0 O [,
3+cos(r) 0 O

(“ij(f))lgi,fgs

T
0.02sin| ——— 0.01 0.07
(2 + sin t\/§t>
2
= 0.02sin (—”) 0.05sin7 +0.03cos 2t 0.05 |,
2 + cos \/§t
2n
0.05 cos v/3t 0.04cos( ——————} 0.01
<2 + sint + sin \/Et)
(b11(1)) 1 <j1<3
0.01 sin <L> 0.05 sin v/5¢ 0.04
2 + sintv/5¢
= 0.04 4+ ¢! 0.01 cos v/2t 0.05 |,
2n
0.07 cos V2t 0.01cos| ——————) 0.02
(2 + sint + sin \/it)

0.05 cos(t) 0.05
0 0.02 0.08

0
(bon(D) <jy<3 = (o 0.02cos v/2¢  0.08 sin v/5¢

0 0.02sin(r)+e” 002
(b)) <jucs=1 0 0.01cosv2r  0.03¢~ |,
0.01 0.01¢ 0
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(dij(t))lgijg3

0.04 cos;
2 4 sinf + sin V/2¢
0.03 cos(v/51)
0.02¢7*
(ri(®)), <ji<3
0.07 cost

0.01

0.02 cos /2t
0.01

0.05 cos \/§t

0.05 sin v/5¢
0.07 cos \/—it

0.03 cos(r) 0
0.05 .
m 0 sin \/gt 5

0 0.01e~" 0
0 0.01sin(r) 0
0 0.08sinv5t 0.02

= | 0.05cos(r) +

(VZjl(t))lgj,lgs =

0.08 ’
0 0.02+ 0
1+
0.01 0 0
(rn()y<jy<3=| 0 0  0.0lsinV5t+e™ |,
0 0.08¢71 0
1
05+—
+ 1+41¢
v, =11 1
(/l(t))lgtSS —Sil'l( - - ) +0.1€_[
5 2+ sint + sin v/5¢
1
and
1 1o 1
Ax1(2k) = — g0 (2k) + @sm(xl (2k)) + 30

Axy(2k) = —%xg(Zk) + %cos(xz(ﬂc)) + %,
Ax3(2k) = — g5x3(3k) + g5 cos(x3(2k)) + 55 -
Then, after all calculation done we have

r =max{0.2,0.27,0.15} <1, 7 = max{0.6,0.6,0.14} < 1,

11’1(1—{-%) 3 3 3 * * * *
TJFZZZ aj,+ 2bjy + dj + 21y | — 8 <0.
i=1 j=1 =1

According to Theorems 1 and 2, system (14) has a unique
asymptotic almost automorphic solution, which is globally
exponentially stable.

The simulation results can be seen in the following
figures.

Figure 5 depicts the numeric simulation of (x;,xs,x3)
for system (14); Fig. 6 depicts the orbit of (xj,x;) for
system (14); Fig. 7 shows the orbit of (xj,x3) for system
(14); Fig. 8 shows the orbit of (x,x3) for system (14);
Fig. 9 depicts the orbit of (x1,x;,x3) for system (14).

4.4 Example 4

Consider the following high-order Hopfield neural net-
works without impulses (n = 3):

-0.5E. . . . . . . . . . .
0 5 10 15 20 25 30 35 40 45 50
Time(t)

Fig. 5 Transient response of state variables xj,x; and x3 for system
(14) when t in [0; 50]

0.6

Fig. 6 Orbit of x|, x, for system (14)

Fig. 7 Orbit of x;, x3 for system (14)
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0.45 0.35}F
X4
X2
04l | 03 x
0.25
0.35 J
0.2
0.3 1 x® 0.15
3l N
x X 04
0.25 1 <
0.05
0.2 1
0,
0.15 1 -0.05}
o -0.1E, . . . . . . . . . .
iy 5 o7 02 03 02 oE o6 0 5 0 15 20 25 30 35 40 45 50
%, Time(t)

) .
020 008 X

Fig. 9 Orbit of x|, x, and x3 for system (14)

5(0) = 3 esOhe) + iam)ﬁ(xj(r )

j=

~.

Il
—_
—

Il

i) | Kl — $)hys)) ds (15)

j=1 —00
£ ml) [ Pule = )ho(s) o

t

x| Qulr = s)ki(a(s)) ds + (1)

System (15) has one and only one asymptotic almost
automorphic solution which is globally exponentially
stable.

The results are verified by the numerical simulations in
the following figures:

Figure 10 depicts the response of state variables
(x1,x2,x3) for system (15); Fig. 11 represents the orbit of
(x1,xz) for system (15); Fig. 12 depicts the orbit of (xy,x3)
for system (15); Fig. 13 shows the orbit of (x,x3) for
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Fig. 10 Transient response of state variables x|, x, and x3 for system
(14) without impulses for ¢ in [0; 50]

0.02 0.04 0.06 0.08 0.1 012 0.14 0.6 018 02

Fig. 11 Orbit of x|, x, for system (14) without impulses

0.35

0.3+

0.251

0.2+

0.151

0.1
0 0.02 0.04 006 008 01 012 0.14 016 018 02

X4

Fig. 12 Orbit of x|, x3 for system (14) without impulses

system (15); Fig. 14 shows the orbit of (xi,xy,x3) for
system (15).
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0.35

031

025}

021

0.15¢1

Fig. 13 Orbit of x,, x3 for system (14) without impulses

Fig. 14 Orbit of x;, x, and x3 for system (14) without impulses

Descriptions From Examples 1 and 3, we have the fol-
lowing descriptions:

e From the orbital figures: Fig. 2 of system (12) and
Figs. 6, 7, 8 and 9 of system (14), the orbits in two- and
three-dimensional spaces of the asymptotic almost
automorphic solutions of both systems are subject to
instantaneous perturbations and change of the state
abruptly. The dynamic behavior of the asymptotic
almost automorphic solutions for both systems has a
chaos due to the effects of the impulse.

e The orbital figures of the two systems are good since
they highlight the effect of impulse on the dynamic
behavior of the asymptotic almost automorphic solu-
tion. The impulse stress the asymptotic almost auto-
morphic solution of each system.

From Examples 2 and 4, we have

descriptions:

the following

e By observing Figs. 3, 4 of system (13) and Figs. 10, 11,
12, 13 and 14 of system (15) we can see that the
dynamic behavior of the asymptotic almost automor-
phic solution of both systems is rhythmic since we

notice the absences of chaos and points of discontinuity
in the behavior of the both solutions.

Roughly speaking:

e If we do not take into account the impulsive effects
then: system (12) is reduced to system (13) and system
(14) is reduced to system (15).

e Underlining a very remarkable difference between the
figures of the orbits of system (12), system (14) and the
figures of the orbits of system (13), system (15). The
effects of the impulsion are quite profound.

Remark 5

e Many natural phenomena cannot be accurately
described as “periodic phenomena”. For examples:
the time intervals of a round for a celestial body
motion, the tidal flood that is a disaster for mankind, the
weather during a week or a month, the earthquake
which is difficult to be predicted and so on, then the
concept of asymptotic almost automorphy should be
adopted.

e Our manuscript offers a theoretical basis for the design
of the second-order class of neural networks with
mixed time delays more effective in the resolution of
optimization calculation and the control robotic manip-
ulator thanks to the second-order synaptic terms b;; and
riji-

e In light of Theorems 1 and 2, the existence, the
uniqueness and the global exponential stability of
asymptotic almost automorphic solution of system (3)
are obtained, indicating that the sufficient conditions in
Theorems 1 and 2 can be used to solve the optimization
problem by converting object function into energy
function.

e The global exponential stability of HOHNNs can be
guaranteed for the global optimal solutions. The
numerical algorithms are less effective than the method
of neural networks for solving the optimization
problems.

e OQur criteria are of prime importance. They could be
further utilized for many problems such as the control
and the filtering, the non-fragile state estimation, the
distributed state estimation for sensor networks and can
be also extended into social networks.

5 Conclusions

The low-order Hopfield neural networks have many
shortcomings. Consequently, it is indispensable to add
high-order interactions to these neural networks. This
motivated the extensively study on the high-order Hopfield
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neural networks with and/or without impulses. In this work,
by using the fixed-point theorem and the generalized
Gronwall-Bellman inequality, we obtain some new results
of the existence, the uniqueness and the global exponential
stability of asymptotic almost automorphic solutions for
impulsive non-autonomous high-order Hopfield neural
networks with mixed delays. Finally, four examples are
given to demonstrate the effectiveness of our obtained
results.
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Appendix 1: Proof of the Lemma 1

Proof Let ¢(.) € AAA(R, R), it can be written as ¢(.) =
@1(.) + @2(.) where ¢,(.) €AA(R,R) and ¢,(.) €
PCy(R, R).

First, we know that the space AA(R,R) is translation
invariant, then for 7 € R, we have ¢,(. — h) € AA(R, R).

Second, we prove that ¢,(. — h) € PCy(R, R).

For ¢,(.) € PCy(R, R), we have: ¢,(.) € PC(R,R),
such that ¢,(¢) is continuous at ¢ for any ¢ & {#;,i € Z},

@2(17), @a(177) exists and o, (1) = @, ().
Therefore, for h € R, ¢, (¢ — h) is continuous at (¢ — h)

for any (r—h) & {11 € Z}, oy((ti— b)), ool — ) )
exist and ¢@,((t; —h)") = @,(t; —h). Then, ¢,(r—h) €
PC(R,R).

On the other hand, we have lim,_, ||¢,(?)|| =0, then
for h in R,lim,_ . ||@,(t — h)|| = 0. This completes the
proof. O

Appendix 2: Proof of Lemma 2

Proof By definition, we can write ¢ = @ + ¢,, Y = V| +
¥, where @, Y, € AA(R, R), @5,, € PCo(R, R).
Obviously, ¢ Xy =@ X+ @ X Y+ ¢y x Yy +
@y X Yy, we have @; X ¥, € AA(R, R).
On the other hand, @ X Y, + @, X Y| + @y X Y, €
PC(R, R), and

|01 X Wy 4+ @2 X Wy + @y X |

Sloillae X MWl + lloall X ¥4l + l@alloe > W],

which implies that
Y, € PCy(R, R).
Then, ¢ X ¥ € AAA(R, R). This completes the proof. (]

©1 X Yy + @y X Yy + Pyx
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Appendix 3: Proof of Lemma 3

Proof By definition, we have ¢(.) = ¢(.) + ¢,(.) where
61() € AA(R,R"), dy(.) € PCo(R, R"). Let
G(t) =f(dp(t = <))

=f(¢1(t—¢))

f((t =) + ¢t —0))
=G (1) + Gy(t)

—f(d1(1=9))

(16)

First, let (s}), ., be a sequence of real numbers. By
hypothesis we can extract a subsequence (s,),cn Of
(s;)neN such that lim, . o ¢ (t —¢ +5,) = ¢ (t —¢),
Vi€ R and lim, . o ¢)(t —c—5) =, (t — <), V1 € R.
Obviously,

Gy (t + 5) = f(D1(1 = <))
= [f(d1(t = c +54)) = f(1 (£ = 2))]|
<Blgi(t—c+s0) = it =) =0, n — +o0.

Therefore, lim, .. f(¢;(t — ¢ +5,)) = (P} (t — ¢)).
By the same way, we have: lim, .. f($](t — ¢ — 5,)) =

f($i(t=29)).
Then G,(.) € AA(R, R").
Second, we prove that G,(.) € PCy(R, R").
It is clear that G,(.) € PC(R, R"), also we have:

(.

Ga(t) = f(p1(t — ) + pa(t — <)) —f(y(t — <))

1G2(1)| = [f (1 (t = ) + ¢t = ¢)) = f(y (1 —9))]
<Zl|¢2t— <)l

since ¢,(.) € PCyo(R, R"), we have lim,_. |¢p,(t — ¢)| =
0, then G,(.) € PCO( R"). The proof is completed. [

Appendix 4: Proof of Lemma 4

Proof Let ¢;(.) € AAA(R,R"), from Lemma 3 we obtain
hi()(.)) € AAA(R, RY).

Let hj(¢;(.)) = ui(.) +v;(.), where u;(.) € AA(R, R")
and vj(.) € PCy(R, R"), then

0= [ Kylt- 9@,

(5)) ds

= / Kij(t — s)u;(s) ds + / Kij(t — s)vi(s)ds
= ;:ilj(t) + ®5(1) h
(17)
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First, let us show that (Dilj(t) € AA(R, R™).

For each sequence (s],) there exists a subsequence (s,)
such that 0(r) = lim, .. u;(t +s,) is well defined for
every 1 € R and 0(r — s,) = lim,_. u;(¢) is well defined
for every t € R.

In addition, we have

t+s,

@}j(tJrsn): / Kij(t + s, — s)uj(s) ds
B t

= / Kij(t — s)uj(s + s,) ds

One has [[K;(t — )y (s + 5,)[| < K+ 0y (1) it fol-
lows that [*__ K;j(t — s)u;(s + 5,) ds < Kz [[u; (1) .

Then using the Lebesgue- dommated convergence theo-
rem, we obtain L+ sn) = 1 Kyt —s)
0;(s) ds.

Analogously, we  get dil!j(t) =1im, . f:i K;
(t — s, — 5)0;(s) ds.

Second, let us show that dﬁizj(t) € PCy(R,R").

It is not difficult to see that ®;(r) € PC(R,R"). W

have
t
= / K;j(t —s)vi(s)ds

limn—>oc

= /O Kij(t—S)Vj(S)dS+/KU(I_S)Vj(S)dS
A 0

since v; € PCy(R, R"), for every ¢ > 0 there exist a con-
stant N > 0 such that ||v;(s)|| <& for all s> N and for all
t>2N, we obtain

1230

Kij(t = s)vi(s)ds + [ Kij(z = s)v;(s) ds

f=}
ST

+ Kl]([ —

$)vj(s) ds]|

\~ é\o

< [ KTyl ds + [ KTe ()]l ds

é \ S .-
o\w

t
— K (1
bRy as
%

+

Tk Kt _x K
—e t||VjHoo+v_[(e 2t||Vch>c+v_[(8' (18)

where [|vj[., = sup,eg [[v;(s)]]-
Consequently (155() € PCy(R,R"). The proof is com-
pleted. O

Appendix 5: Proof of Lemma 6

Proof Step 1 Noting (¥y,);(s) := ' W(t,5)(Ug);(s) ds.
First, by Lemmas 1-4, the functlon (Ug); belongs to

AAA(R, R). This ensures the existence of two functions A;

in AA(R,R) and €; in PCy(R,R) such that for all

1 <i,j<n, it can be expressed as (Uy),(.) = A;(.) + Qi(.).
One can write ¥ as follows:

(Pu,)(t

Let us study the almost automorphlclty of

= ths i(s) ds—l—thsQ()ds.

Dt ft W(t,s)Ai(s) ds.

—00

(PA;)

Let (sfl)n oy be a sequence of real numbers. By
hypothesis we can extract a subsequence (s,),cn Of
(s;)neN such that: lim,—, 1o A;(t + 5,) = /1141 (1), VteR,
and limn_>+oo Al(t sn) = Ai(1), Vi e R.
Let (P'4,)(t) = [*_ W(t,s)A} (s) ds, it follows that
I(‘P/h)(tﬂn) - (‘1’ A:)(1))]

1+,

y / Wt + s, 5) As(s) ds — / W(t,s) AL (s) ds|

<|/Wts

) ds—/Wts 1(s)ds]

< / W (e, )] Ai(t + 52) — AL(s)|ds
B t
< / Ke U9 Ai(t 4 5,) — Al (s)| ds. (19)

—00

Based on the Lebesgue-dominated convergence theorem,
we have for all t € R

lim, oo (PA) (24 5,) = (P A)(2).
By a similar way, we prove that
lim,, oo (P A) (2 = 5,) = (P A;)(2),

which implies that (¥ 4;) € AA(R, R").

Second, we turn our attention to (VQ;):n—

f W(t,s)Q:(s)ds. It is easy to prove that (¥Q;) €

PC(R, R).
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We have lim,_ fr W(t,s)Q2i(s)ds = 0. Since Q; €
PCy(R,R), then lim,_, | [ W(t,5)Qi(s)|ds =

By the Lebesgue-dominated convergence theorem, we
have

t
tlifrn | W(t,5)Qi(s)ds = 0.

Hence, the function ¥Q; belongs to PCy(R, R).
Step 2 Proving that > W(t, 1) (Le(¢; (1)) + wi)

<t
belongs to AAA(R, R).
From the assumption (H7), Ii($;(t)) € AAA(R,R). B
definition, it can be expressed as

L(i(t)) = T (1) + Lo (i)
such that Iy (¢;(#)) € AA(R, R), Iia(¢;(#x)) = 0. Then:

Z W (e, 1) (L (¢ (8) + x)
= Wt 1) (ha (i) + x) +ZW (1, 1) (ha(i(10)))-

For every real sequence (1), there exists a subsequence
(tnk)n eN such that ml_ig_lx I (d)i(tk + t"k)) = 11:1(¢i(tk)) and

lim I} (i(te — 1)) = T (¢:(1e)).

ng—+00

Now, we have

D WAty 1) (i (i (1) + )

t <ty

= Z Wt + tgs e+ t) (T (@ (0 + 1)) + ),

<t
then

lim W(t + to, te + t) (I (& (tx + 1)) + o)

np—-+00

= W) (1} ($i(tx)) + )
(20)
Similarly
Z W(t = tu, 1) (I (i (1) + @)
- ZW R nk)(llll(qsi(tk —t”lk)) +wk)7
then
nklirw{loo W(t - tnky ty — tnk)(llll (¢i(tk - tﬂk)) + wk)
=D Wt 1) (a (i) + ).
(21)
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Then, Z W(l, tk)(1k1(¢i(tk)) + (Uk) S AA(R, R)

On the other hand,
Jim Z (Wt 1)l (¢:(1)] = lim {7 S IW(tn)| =0,

<t n<t

as Ztk<, |W (2, 1)| < 0.

By Steps 1 and 2 we have:

0,401 / W (e, ) (Ug) () ds + 3 Wt 1) Ty 1)) + on)

<t
—00 k

maps AAA(R, R) into itself. O

Appendix 6: Proof of the Theorem 1

Proof Let us calculate the norm of ¢,. One has

1ol
:sup{ max {| / W (t,5)||7:(s \ds+Z\thk ||wk\}
eR L 1<isn <t
< su max Ke™0t=9)], ds+ ) Ke0t=1)|g }
t6£{1<’<"{/ / ‘ ; | k‘}
<Kje+— ) —R
SRS T e T
(22)
7> .
such that § > max{ max ly:(0)], max || ¢-
After, [|§ll, < ll¢ = doll + llboll < 5 R + R_IL
Set 5 = {6 € AR R 19 - ol < 15,8}

Clearly, S* is a closed convex subset of AAA(R, R").
Therefore, for any ¢ € §* by using the estimate just
obtained, we see that
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€4 = doll +ZK€‘5(”)L}| il

<sp{ max [ (W91 S a0 5 - ) C .
rhem (ol S [

£33 g6 — o)) lli(ils — o) 7 ZPI o (23)
j=1 I=1 *
) . +Zdyth+ZZruz P QFM[}

3k / K5 — m) ()| am e

KL
e o=l 0l
+ ij Pt k d
ZZ| s>|/ IPyi(s = m) k(6 (m))] dm hen, 0, <5
s Now our aim is to prove that @ is a contraction. For any
X / |Qijl(s — m)|\kl((/),(m))|dm} dS) (l’)l y d)z (S S*, we haVe
- H@¢1 - @4)2H
+ 3 W) o900 |
< sup{ max, /\Wz I|Us, () = Ugy ()] )
/ n teR
< sup { max. ( / Ke=00=9) [Za;lﬁ(d’j(v =)l
A + 3 W) (6 () — ()]
+ Zzbuzl& ai)llgi(¢i(s — vi))l
j=1 I=1

IN

1
sup{ max (/Ke"s(”“'>
reR (1sisn

x [Za,,z’ bils— ) — dals — )

224, / Ky =)y (g 0m)) |

+ ZZbI,, 8i(¢1(s — )iy (s — a1))
n j=1 I=1
2 lgm / Pis(s = m)llk(¢;(m))] dm — (s = 77)gi( (s — )
. - +8i(a(s — 0))gi(hy (s — o)
x / 10u1(s — m) e (y(m >|dm} ds> ~ e als — 0))ai(hls — o1
_|_ZK6—(>I—S)‘wk(¢(tk))|} +Z ljh K — ¢y(s)
= r Piji(s — m)hij(¢p(m)) dm
Siﬁg{@g(/“ “{Za:;f , RN / o= mh (gl
S bl o |+Zdl]l’h < < [ Quls = mik(9, () am
j=1 I=1 =1 -0 )
+ZZ uzP o = LM ()\] ds) - / Pij(s — m)hj(d,(m)) dm
j=1 I=1 —oo
+ZKg—o(t—s>L‘(¢(fk))‘} % /le( m)ky(¢,(m)) dm
S?S[E{l e 1121'&?” Lzla;ljl‘—i_;;b;ll{gel —+ / Pji(s — m)hj(¢,(m)) dm
Z PTRSES ) P e l’Ml}ds

j=1 I=1
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x / 0ii(s — m)ku(hy (m)) dm

- / Pii(s —
X / Ql]l

+ZK€701 s

<t

—5(t—s) ~
m (] e[S
-+§:§:wa6-+ﬂ +>ah e
+erfﬁ —Q—+(Z7M’+l’Mj) ds
o2 il P 0 \k k

j=1
+ ZKef(S(lfS)

<t

Lo, -
n
* l l
< {5 max [t +zzbm
J

+Zduw+ZZ ,], F Q I’M’Jrlle)

j=1

5 61— 0all =l ~ ]

m)hj($(m)) dm

k(s | )

|

‘d’l (te) — a2 (te)

IN

KL

+1_

(24)

which prove that @ is a contraction mapping.

By virtue of the Banach’s fixed-point theorem, @ has a
unique fixed point which corresponds to the solution of (3)
in S*. O

Appendix 7: Proof of Theorem 2
Proof First, using Lemma 6, © has a fixed point ¢. Let
L (o(t) = I(dp(te)) + .

Hence, for all + € R, the fixed point ¢ satisfies the
following integral system:

/WISU¢, )ds + > W(t, 1) (I (1))

n<t

Fixed 1y, ty # t;, i € Z, we have

@ Springer

e E/Was% Yds+ > Wia, )1 ($(t)).

n<a

Therefore

/WHW yds + 7 W(T, 1) (1 (6(10))

n<a

+/WtsU¢ )ds + Z (t, 1) (I (o))
= W(t,a)p(a) +/W(t, $)Ug(s) ds
+ > W) (d(1)).
(25)

Second, by Theorem 1, we know that system (3) has an
asymptotically almost automorphic solution u(¢), by using
integral form of system (3),ift >0, o # 4, k€ Z

+/W(t,s)U (s)ds

t tk Ik )))a

u(t) = W(t,0)u(o)
W

o<t <t

(26)

Let u(t) = u(t,0,¢,;) and v(t) = v(t,0,¢,) be two solu-
tions of (3), then

+ Z (t, 1) (L (v(2))).-

o<t <t

Therefore,
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[lu(t) = v(@)| -
A Y <kyo) [T 1 +KN1)e[KN'd
<|IW(t, o)y — ]l + | / W(t,5)[Ua(s) — Us(s)] ds] (30)
o =Ky(o) J] (1+KN,)e M=)
1Y W)l (u(n) — ()] o Sh<t
’ . Ny =KL, N, = Z [Za]lj
<[IW(t,0)[¢) — dolll + / [W(t,5)|||Ua(s) — Uy ()| ds =1 Lj=1

+ D W () = B (v()|

o<ty <t

<Ke 7)) — o,

t
+/Kef‘3(’7“)z [Za;‘jl;—FZZbul (Be —|—ll
J i=1 Lj=1 =1 =

n Kt . n n pt Q+ o L
DA DA AT +sz1>}
j= =1 =
< u(s) — v ds+ 37 Ke CWLllu(t) — v

o<ty <t
(27)
Then

e u(r) — v(o)|
<Kegy - o]+ [ KD

n

a*
i
=

g

- Z Z byl(l;el = lfgef) + zn:d;‘jlj—;l’,'l
=1

* P Q7L i Aq! Y X
+;;rij,v—Pv—Q(l§(M + M) | € ||u(s) — v(s)|| ds
+ Z Ke™ L|u(te) — v(1e) |

o<t <t

(28)

Let y(1) = e |lu(r)
following form:

—v(1)||, Eq. (28) can be rewritten in the

y(t) <Ky(o

/ I
JrZZblﬂ(l’e Jrll ) Z
nn + Ot . ]
—l—ZZr;II:—P%—Q(l’kMI+liM’)]y(s)ds
=1 =1
+ ) KLy(n).

o< <t

By the generalized Gronwall-Bellman inequality, we have

+ZZblﬂ(l/e + e ) Z v (31)
+izrlﬂv—Q—Q l’MI—HfCMj)].

Since ¥ = infkez(tk+1 — tk) > 0, we have

y(£) < Ky(a)(1 + KNy ) 7 ekM0-0) =

C 1 +KL +Ki ZalJJ

+ZZ%1(€261 + 1 )Zdu . (33)

* P Q+ j j
+ Z Z g (EM' + l;Mf)] .
j=1 I=1

That is [lu(r) — v(1)| < K[|y — dyle~20=).

Since ({ — 0) <0, then system (3) has an exponential
stable asymptotically almost automorphic solution. This
completes the proof. O

= Ky(0)e ™7, (32)
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