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Abstract
This paper is concerned with an impulsive non-autonomous high-order Hopfield neural network with mixed delays. Under

proper conditions, we studied the existence, the uniqueness and the global exponential stability of asymptotic almost

automorphic solutions for the suggested system. Our method was mainly based on the Banach’s fixed-point theorem and

the generalized Gronwall–Bellman inequality. Moreover, four examples are presented to demonstrate the effectiveness of

the proposed findings.
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1 Introduction

Low-order neural networks have attracted much attention

in the literature (see [6, 7, 16, 18–20, 22, 31, 34]). Hopfield

neural networks (HNNs) are a form of low-order neural

networks, introduced in 1982 by J. Hopfield (see

[44, 54, 68]). In order to increase the computational power

of neural networks, some investigators focused on high-

order neural networks which have stronger approximation

property, faster convergence rate, greater storage capacity

and higher fault tolerance than low-order ones (see

[15, 21, 49–51, 62]). One of the most typical high-order

neural networks is the high-order Hopfield neural networks

(HOHNNs). They have been extensively applied in psy-

chophysics, robotics, vision and image processing. The

dynamic properties of HOHNNs have been deeply dis-

cussed; the reader may refer to [12–14, 48, 57, 63, 64] and

reference therein.

It is well known that time delay is ubiquitous in most

physical, chemical and other natural system due to finite

propagation speeds of signals, finite processing times in

synapses and finite reaction times. In 1989, Marcus and

Westervelt proposed the first neural network model with

delay (see [41, 42]); since then, it has become important to

consider neural networks with time delay (see

[10, 17, 18, 23, 30, 37, 39, 45, 56, 59, 67, 69]). It is true that

time delays are difficult to handle but have a significant

impact on the dynamic behavior of neural networks.

Many phenomena process some regularity, but they are

not periodic. Therefore, there exist several concepts which

are more sophisticated than periodicity (see

[2–4, 24–28, 32, 36, 46, 65]). The central tool in this work

is the concept of asymptotic almost automorphy (AAA)

which was introduced in the literature by N’Guérékata in

1980 as perturbations of almost automorphic functions by

functions vanishing at infinity (see [1, 35, 38, 47]). The

applications of asymptotic almost automorphy theory are

involved in various research fields, especially in the

domain of neural networks (see [33, 43, 55, 61]). In 2016,

Brahmi et al. established various criteria of the dynamics of

asymptotic almost automorphic solutions of the following

model (see [15]):& Chaouki Aouiti
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_xiðtÞ ¼ � aixiðtÞ þ
Xn

j¼1

ðbijðtÞfjðxjðtÞÞÞ

þ
Xn

j¼1

cijðtÞgjðxjðt� sjÞÞ

þ
Xn

j¼1

pijðtÞ
Z t

�1

rijðt� sÞhjðxjðsÞÞ ds

þ
Xn

j¼1

Xn

k¼1

TijkðtÞ/kðxkðt� skÞÞ/jðxjðt� sjÞÞ þ JiðtÞ;

ð1Þ

where n� 2 denotes to the number of neurons in the sys-

tem, xið:Þ corresponds to the membrane potential of the

neuron i, the ai is a positive constant rate used to reset the

potential of the ith neuron to the conserve its state in iso-

lation when it is disconnected. In addition, fjð:Þ; gjð:Þ; hjð:Þ
and /jð:Þ are the activation functions of signal transmis-

sion, bijð:Þ; cijð:Þ; pijð:Þ are the connection weight of the

unit j on the unit i, Tijlð:Þ presents the second-order con-

nection weight of the neural networks, Jið:Þ is the input unit
i and sj � 0 is the transmission delay of unit j.

On the other hand, the theory of impulsive differential

equations is being recognized to be not only more impor-

tant than the corresponding theory of differential equations

without impulses, but also represents a more natural

framework for mathematical modeling of many real-world

phenomena, like population dynamic systems and neural

networks.

Naturally, more interesting neural network should take

into account the impulsive effects, that is to say the sea-

sonality of the changing environment (see

[1, 5, 8–10, 16, 17, 29, 37, 40, 44, 45, 48, 52, 54,

57–59, 64, 66]).

For instance, Aouiti et al. studied the piecewise pseudo-

almost periodic solutions for the following class of

impulsive generalized high-order Hopfield neural networks

with leakage delays (see [9]):

_xiðtÞ ¼ �ciðtÞxiðt � qðtÞÞ

þ
Pn

j¼1

aijðtÞgjðxjðt � sijðtÞÞÞ

þ
Pn

j¼1

Pn

l¼1

aijlðtÞgjðxjðt � rijðtÞÞÞ

�glðxlðt � tijðtÞÞÞ

þ
Pn

j¼1

bijðtÞ
R1
0

dijðuÞgjðxjðt � uÞÞ du

þ
Pn

j¼1

Pn

l¼1

bijlðtÞ
R1
0

hijlðuÞgjðxjðt � uÞÞ du

�
R1
0

kijlðuÞglðxlðt � uÞÞ duþ JiðtÞ; t 6¼ tk;

DðxiðtkÞÞ ¼ IkðxðtkÞÞ; k 2 Z; t 2 R; t ¼ tk;

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

ð2Þ

in which n corresponds to the number of units in a neural

network, xið:Þ corresponds to the state vector of the ith unit,
cið:Þ[ 0 represents the rate with which the ith unit will

reset its potential to the resting state in isolation when

disconnected from the network and external inputs,

aijð:Þ; bijð:Þ; aijlð:Þ; bijlð:Þ are the first- and the second-

order connection weights of the neural network,

sijð:Þ; rijð:Þ; tijð:Þ� 0 correspond to the transmission

delays, qð:Þ� 0 denotes the leakage delay, gjð:Þ is the

activation functions of signal transmission, dijð:Þ; hijlð:Þ
and kijlð:Þ are the transmission delay kernels, Jið:Þ denotes
the external inputs. The sequence ftkg has no finite accu-

mulation point and Ik : R
n ! R; k 2 Z:

The impulsive HOHNNs have been the object of

intensive analysis by numerous authors. However, to the

best of our knowledge, there is no published paper con-

sidering the asymptotic almost automorphic solutions for

impulsive HOHNNs with continuously distributed delays

and variable asymptotic almost automorphic coefficients.

Inspired by the above discussions, in this manuscript, we

aim to challenge the analysis problem of the following

system:
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_xiðtÞ ¼
Pn

j¼1

cijðtÞxjðtÞ þ
Pn

j¼1

aijðtÞfjðxjðt � 1jÞÞ

þ
Pn

j¼1

Pn

l¼1

bijlðtÞgjðxjðt � rjÞÞglðxlðt � tlÞÞ

þ
Pn

j¼1

dijðtÞ
R t
�1 Kijðt � sÞhjðxjðsÞÞ ds

þ
Pn

j¼1

Pn

l¼1

rijlðtÞ
R t
�1 Pijlðt � sÞkjðxjðsÞÞ ds

�
R t
�1 Qijlðt � sÞklðxlðsÞÞ dsþ ciðtÞ; t 6¼ tk;

DðxiðtkÞÞ ¼ akxðtkÞ þ IkðxðtkÞÞ þ xk; k 2 Z; t 2 R; t ¼ tk;

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

ð3Þ

in which n corresponds to the number of units in a neural

network, xið:Þ corresponds to the state vector of the ith unit,
cijð:Þ represents the rate with which the ith unit will reset its
potential to the resting state in isolation when disconnected

from the network and external inputs, aijð:Þ; bijlð:Þ; dijð:Þ;
rijlð:Þ are the first- and the second-order connection weights

of the neural network, 1j; rj; tl � 0; correspond to the

transmission delays, fjð:Þ; gjð:Þ; hjð:Þ; kjð:Þ are continuous

representing the activation functions of signal transmission,

Kijð:Þ;Pijlð:Þ and Qijlð:Þ are the transmission delay kernels,

cið:Þ denotes the external inputs, ak 2 R2n; Ikð:Þ 2
CðR;RnÞ; xk 2 Rn; DðxiðtkÞÞ ¼ xiðtþk Þ � xiðt�k Þ are impul-

ses at moments tk such that t1\t2\ � � � is a strictly

increasing sequence as limn�!1 tk ¼ þ1:

The solution of (3) satisfying the initial conditions

xiðsÞ ¼ /iðsÞ; i ¼ 1; � � � ; n; s 2 ð�1; 0�: ð4Þ

where / is real-valued piecewise continuous functions

defined on ð�1; 0�:
Our motivation for this article stems from the fact that it

can arise in many problems of science and engineering

either directly or indirectly and that the study of asymptotic

almost automorphic solutions for (3) does not exist until

now. Therefore, the main purpose of this paper is to present

some new criteria concerning the existence, the uniqueness

and the global exponential stability of asymptotic almost

automorphic solutions for a class of impulsive HOHNNs

by utilizing the Banach’s fixed-point theorem and the

generalized Gronwall–Bellman inequality.

Remark 1 In this work, we take into account the impul-

sive effects, so our results are more general than the results

in [15].

Remark 2 In this work, the conditions on impulses are

different from that presented in [8, 9]. Note that our model

is more general than in [1, 6, 14, 15, 19, 53, 57, 60].

Remark 3 Our findings generalized some of the results

reported in the literature (see [1, 16, 52, 57]) and so on,

since the class of asymptotically almost automorphy

contain the class of periodicity, almost periodicity,

asymptotic almost periodicity and automorphy.

The rest of this paper is organized as follows: In Sect. 2,

we will establish some useful assumptions, definitions and

lemmas for impulsive non-autonomous dynamic systems

with asymptotic almost automorphic coefficients, which

will be used to obtain our main results. Section 3 is devoted

to establishing some criteria for the existence, the

uniqueness and the global exponential stability of asymp-

totic almost automorphic solution for system (3). In Sect. 4,

four numerical examples are given to illustrate the feasi-

bility of the obtained results. At last, we draw some

remarks and conclusion in Sect. 5.

2 Assumptions, definitions and some new
lemmas

The main aim of this article is to establish some sufficient

conditions for the existence, the uniqueness and the global

exponential stability of asymptotic almost automorphic

solutions of (3).

Throughout this paper, the following notations were

adapted:

for 1� i; j; l� n; sup
t2R

jcijðtÞj ¼ c�ij; sup
t2R

jaijðtÞj ¼ a�ij;

sup
t2R

jbijlðtÞj ¼ b�ijl; sup
t2R

jdijðtÞj ¼ d�ij; sup
t2R

jrijlðtÞj ¼ r�ijl;

sup
t2R

jciðtÞj ¼ c�i :

In order to make the paper self-contained, we introduce the

following class of spaces, assumptions and definitions (for

more details, see [1, 5, 11, 15, 29, 32, 38, 40, 47]).

• CðR;RnÞ is the set of continuous functions from R to

Rn:

• BCðR;RnÞ denotes the set of bounded continued func-

tions from R to Rn. Note that ðBCðR;RnÞ; k : k1Þ is a
Banach space where k : k1 denotes the sup norm

k f k1:¼ supt2R max1� i� n j fiðtÞ j :
• PCðJ;RnÞ is the space of piecewise continuous func-

tions from J 	 R to Rn with points of discontinuity of

the first kind tk; k ¼ 
 1;
 2. . . and which are contin-

uous from the left, i.e., xðt�k Þ ¼ xðtkÞ:

• PC0ðRþ �Rn;RnÞ¼
�
/ 2 PCðRþ �Rn;RnÞ such that

limt!1 jj/ðt;xÞjj ¼ 0 in t uniformly in x 2Rn

�
.

• B¼
�
ftkg1k¼�1 : tk2R; tk\tkþ1; limk!
1 tk¼
1

�
;

denote the set of all sequence unbounded and strictly

increasing.
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Now, we consider the following impulsive linear dynamic

system:

Z 0ðtÞ ¼ PðtÞZðtÞ; t 6¼ tk; k 2 Z;

DZðtÞ ¼ PkZðtÞ; t ¼ tk; k 2 Z:

�
ð5Þ

If Ukðt; sÞ is the Cauchy matrix for the system

Z 0ðtÞ ¼ PðtÞZðtÞ; tk�1\t\tk; ftkg 2 B; k 2 Z; ð6Þ

then the Cauchy matrix for system (5) is in the form

Wðt; sÞ ¼

Ukðt; sÞ; tk�1\s� t� tk;

Ukþ1ðt; tk þ 0ÞðI þ PkÞUkðt; sÞ;
tk�1\s� tk\t� tkþ1;

Ukþ1ðt; tkþ0ÞðIþPkÞUkðtk; tkþ0Þ; � � � ðI þ PiÞ
�Uiðti; sÞ; ti�1\s� ti\tk\t� tkþ1:

8
>>>>>><

>>>>>>:

Remark 4 Ukðt; sÞ is a the Cauchy matrix for system (6),

meaning that for k 2 Z, the following condition is fulfilled:

oUkðt; sÞ
ot

¼ PðtÞUkðt; sÞ; tk�1\s� t� tk; k 2 Z:

We also assume that the following conditions (H1)–(H8)

hold.

(H1) The function PðtÞ ¼ ðcijðtÞÞ1� i;j� n 2 CðR;RnÞ is
asymptotically almost automorphic.

(H2) detðI þ PkÞ 6¼ 0; the sequence Pk; and tk are

asymptotically almost automorphic.

(H3) The Cauchy matrix W(t, s) satisfies that there exist

a positive constant K and d such that jWðt; sÞj �K

e�dðt�sÞ; this further implies that:

jWðt þ tnk ; sþ tnkÞ �Wðt; sÞj � ~Mee�
d
2
ðt�sÞ; for any

e[ 0 and positive constant ~M:

(H4) The functions aij; bijl; dij; rijl are almost automorphic.

(H5) There exist positive constant numbers l
j
f ; l

j
g; l

j
h; l

j
k; e

j;

Mj such that for all u; v 2 R; j fjðuÞ � fjðvÞ j � l
j
f j

u� v j;
j gjðuÞ � gjðvÞ j � ljg j u� v j; j hjðuÞ � hjðvÞ j
� l

j
h j u� v j;

j kjðuÞ � kjðvÞ j � l
j
k j u� v j; j gjðuÞ j � ej; j

kjðuÞ j �Mj:

We suppose that fjð0Þ ¼ gjð0Þ ¼ hjð0Þ ¼ kjð0Þ ¼ 0:

(H6) For all i; j; l 2 f1; 2; . . .; ng; the delay kernels Kij; Pijl;

Qijl : ½0;þ1Þ �! R are continuous, integrable and

there exist nonnegative constants Kþ;Pþ;Qþ; mK ;

mP; mQ such that jKijðtÞj �Kþe�tmK ; jPijlðtÞj �Pþ

e�tmP ; jQijlðtÞj �Qþe�tmQ :

(H7) The function ci is asymptotic almost automorphic.

(H8) The sequence Ik is asymptotic almost automorphic

and there exists a positive constant L such that:

j IkðuÞ � IkðvÞ j � L j u� v j; k 2 Z; u; v 2 R:

Let us recall some definitions which will be useful later.

Definition 1 A bounded piecewise continuous function

f 2 PCðR;RnÞ is called almost automorphic if

• The sequence of impulsive moments ftkg; k 2 Z is an

almost automorphic sequence,

• For every real sequence ðs0nÞn2N; there exists a subse-

quence ðsnÞn2N such that gðtÞ ¼ limn!1 f ðt þ snÞ is

well defined for each t 2 R and limn!1 gðt � snÞ ¼
f ðtÞ for each t 2 R.

Denote by AAðR;RnÞ the set of all such functions.

Definition 2 A bounded piecewise continuous function

f 2 PCðR� Rn;RnÞis called almost automorphic in t

uniformly for x in compact subsets of Rn if

• Sequence of impulsive moments ftkg; k 2 Z is an

almost automorphic sequence,

• For every compact K of Rn and for every real sequence

ðs0nÞn2N, there exists a subsequence ðsnÞn2N such that

gðt; xÞ ¼ limn!1 f ðt þ sn; xÞ is well defined for each

t 2 R; x 2 K and limn!1 gðt � sn; xÞ ¼ f ðt; xÞ for each
t 2 R; x 2 K:

Denote by AAðR� Rn;RnÞ the set of all such functions.

Definition 3 A piecewise continuous function

f 2 PCðRþ;RnÞ is called asymptotically almost auto-

morphic if and only if it can be written as f ¼ f1 þ f2 where

f1 2 AAðRþ;RnÞ and f2 2 PC0ðRþ;RnÞ:
The space of these kinds of functions is denoted by

AAAðRþ;RnÞ:

Definition 4 A piecewise continuous function

f 2 PCðRþ � Rn;RnÞ is called asymptotically almost

automorphic if and only if it can be written as f ¼ f1 þ f2
where

f1 2 AAðRþ � Rn;RnÞ and f2 2 PC0ðRþ � Rn;RnÞ:
The space of these kinds of functions is denoted by

AAAðRþ � Rn;RnÞ:

Example 1 Consider the function defined by

f ðtÞ ¼ cos
1

sin t þ sin
ffiffiffi
2

p
t

� �
þ 1

1þ t
; t 2 R:

It can be easily checked that the function f is asymptoti-

cally almost automorphic.

Indeed, the function t ! cosð 1

sin tþsin
ffiffi
2

p
t
Þ belongs to

AAðR;RÞ, while the function t ! 1
1þt

is in PC0ðR;RÞ:
The function f is an example of an asymptotically almost

automorphic function, which is not almost automorphic.
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Definition 5 A bounded sequence x : Zþ ! R is called

almost automorphic if for every real sequence ðs0nÞn2N,
there exists a subsequence ðsnÞn2N such that yðmÞ ¼
limn!1 xðmþ snÞ is well defined for each m 2 Zþ and

limn!1 yðm� snÞ ¼ xðtÞ for each m 2 Zþ.
The collection of all almost automorphic sequence

which go from Zþ to R is denoted by AASðZþ;RÞ:

Definition 6 A bounded sequence z : Zþ ! Rþ is called

asymptotically almost automorphic if it can be written as

z ¼ z1 þ z2 where z1 2 AASðZþ;RÞ and z2 is a null

sequence.

The space of these kinds of sequences is denoted by

AAASðZþ;RÞ:

Now, we propose some lemmas which will be helpful in

proving the main results of this paper.

Lemma 1 If uð:Þ 2 AAAðR;RÞ, then uð:� hÞ 2
AAAðR;RÞ:

Proof (See ‘‘Appendix 1’’ section). h

Lemma 2 If u;w 2 AAAðR;RÞ, then u� w 2
AAAðR;RÞ:

Proof (See ‘‘Appendix 2’’ section). h

Lemma 3 If f ð:Þ 2 CðR;RnÞ satisfies the l
j
f -Lipschitz

condition, /ð:Þ 2 AAAðR;RnÞ and 1 2 Rþ, then f ð/ð:�
1ÞÞ in

AAAðR;RnÞ:

Proof Appendix 3’’ section). h

Lemma 4 Assume that assumptions (H5) and (H6) hold.

For all 1� i; j� n; if /jð:Þ 2 AAAðR;RnÞ then the function

Uij : t�!
Z t

�1

Kijðt � sÞhjð/jðsÞÞ ds

belongs to AAAðR;RnÞ:

Proof (See ‘‘Appendix 4’’ section). h

Corollary 1 Assume that assumptions (H5) and (H6)

hold. For all 1� i; j; l� n; if /jð:Þ 2 AAAðR;RnÞ then the

function:

t�!
Z t

�1

Pijlðt � sÞkjð/jðsÞÞ ds

belongs to AAAðR;RnÞ:

Corollary 2 Assume that assumptions (H5) and (H6)

hold. For all 1� i; j; l� n; if xjð:Þ 2 AAAðR;RnÞ then the

function:

t�!
Z t

�1

Qijlðt � sÞklð/lðsÞÞ ds

belongs to AAAðR;RnÞ:

Lemma 5 (Generalized Gronwall–Bellman inequality)

Let a nonnegative function xð:Þ 2 PCðR;RnÞ satisfy for

t� t0

xðtÞ�CðtÞ þ
Z t

t0

uðsÞxðsÞ dsþ
X

t0\tk\t

bixðtiÞ;

with C(t) a positive non-decreasing function for t� t0;

bi � 0; uðtÞ� 0 and ti are the first kind discontinuity

points of the function x(.). Then the following estimate

holds for the function x(.) :

xðtÞ�CðtÞ
Y

t0\tk\t

ð1þ biÞe
R t

t0
uðsÞ ds

:

3 Main results

First, we begin by studying the existence and the unique-

ness of asymptotic almost automorphic solutions. The

results are based on the Banach’s fixed-point theorem.

Lemma 6 Suppose that all assumptions hold.

Define the nonlinear operator H as follows,

8/ ¼ ð/1; . . .;/nÞ 2 AAAðR;RnÞ;

ðH/ÞiðtÞ :¼
Z t

�1

Wðt; sÞðU/ÞiðsÞ ds

þ
X

tk\t

Wðt; tkÞðIkð/iðtkÞÞ þ xkÞ;
ð7Þ

where

ðU/ÞiðsÞ ¼
Xn

j¼1

aijðsÞfjð/jðs� 1jÞÞ

þ
Xn

j¼1

Xn

l¼1

bijlðsÞgjð/jðs� rjÞÞglð/lðs� tlÞÞ

þ
Xn

j¼1

dijðsÞ
Zs

�1

Kijðs� mÞhjð/jðmÞÞ dm

þ
Xn

j¼1

Xn

l¼1

rijlðsÞ
Zs

�1

Pijlðs� mÞkjð/jðmÞÞ dm

�
Zs

�1

Qijlðs� mÞklð/lðmÞÞ dmþ ciðsÞ;

ð8Þ

then H maps AAAðR;RnÞ into itself.
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Proof (See ‘‘Appendix 5’’ section). h

Theorem 1 Under the conditions (H1)–(H8) and Lemma

6 : assume that there exist nonnegative constants r and ~r
such that

r ¼K

d
max

1� i� n

�Xn

j¼1

a�ijl
j
f þ

Xn

j¼1

Xn

l¼1

b�ijll
j
ge

l

þ
Xn

j¼1

d�ijl
j
h

Kþ

mK
þ
Xn

j¼1

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
l
j
kM

l

�

þ KL

1� e�d
\1; ð9Þ

~r ¼K

d
max

1� i� n

�Xn

j¼1

a�ijl
j
f þ

Xn

j¼1

Xn

l¼1

b�ijlðljgel þ llge
jÞ

þ
Xn

j¼1

d�ijl
j
h

Kþ

mK
þ
Xn

j¼1

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
ðljkMl þ llkM

jÞ
�

þ KL

1� e�d
\1;

ð10Þ

then system (3) has a unique asymptotic almost automor-

phic solution in the region

S� ¼ S�ð/0; rÞ ¼
�
/ 2 AAAðR;RnÞ;k/�/0k�

r

1� r
�R

�
;

where

�R ¼ K�cð1
d
þ 1

1� e�d
Þ;

/0ðtÞ ¼

Rt

�1
Wðt; sÞc1ðsÞ dsþ

P
tk\t

Wðt; tkÞxk

..

.

Rt

�1
Wðt; sÞcnðsÞ dsþ

P
tk\t

Wðt; tkÞxk

0
BBBBBB@

1
CCCCCCA
:

Proof (See ‘‘Appendix 6’’ section). h

Second, we study the global exponential stability of

asymptotic almost automorphic solutions of system (3) by

using the generalized Gronwall–Bellman inequality.

Theorem 2 Suppose the conditions of Theorem 1 hold.

Assume further that

lnð1þ KLÞ
#

þ K
Xn

i¼1

Xn

j¼1

�
a�ijl

f
j þ

Xn

l¼1

b�ijlðljgel þ llge
jÞ

þ d�ij
Kþ

mK
l
j
h þ

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
ðljkMl þ llkM

jÞ
�
� d\0

ð11Þ

then the unique asymptotic almost automorphic solution of

system (3) is global exponential stable.

Proof (See ‘‘Appendix 7’’ section). h

4 Numerical examples and simulations

In this section, we present some examples to illustrate the

feasibility of our findings derived in the previous sections.

4.1 Example 1

Consider the following impulsive high-order Hopfield

neural networks ðn ¼ 2Þ :

_xiðtÞ ¼
P2

j¼1

cijðtÞxjðtÞ þ
P2

j¼1

aijðtÞfjðxjðt � 1jÞÞ

þ
P2

j¼1

P2

l¼1

bijlðtÞgjðxjðt � rjÞÞglðxlðt � tlÞÞ

þ
P2

j¼1

dijðtÞ
Rt

�1
Kijðt � sÞhjðxjðsÞÞ ds

þ
P2

j¼1

P2

l¼1

rijlðtÞ
Rt

�1
Pijlðt � sÞkjðxjðsÞÞ ds

�
Rt

�1
Qijlðt � sÞklðxlðsÞÞ dsþ ciðtÞ; t 6¼ tk;

DðxiðtkÞÞ ¼ akxðtkÞ þ IkðxðtkÞÞ þ xk; t ¼ tk;

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð12Þ

where 1j ¼ tj ¼ rj ¼ L ¼ 1
40
;

KijðtÞ ¼ PijlðtÞ ¼ QijlðtÞ ¼ e�t:

For t 2 R; 1� i; j� 2; let
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fjðtÞ ¼ gjðtÞ ¼ hjðtÞ ¼ kjðtÞ ¼
jtþ 1j � jt� 1j

2
;

l
j
f ¼ l jg ¼ l

j
h ¼ l

j
k ¼ ej ¼Mj ¼ Kþ

mK

¼ Pþ

mP
¼ Qþ

mQ
¼ K ¼ d¼ 1;

ðcijðtÞÞ1� i;j�2 ¼
4þ cosðtÞ2 0

4þ sinðtÞ2 0

 !
;

ðaijðtÞÞ1� i;j�2

¼
0:03 sin

�
2p

2þ sin tþ sin
ffiffiffi
3

p
t

�
0:07þ 0:03e�t

0:05 sin

�
2p

2þ cos
ffiffiffi
5

p
t

�
0:05þ 0:05e�t

0

BBB@

1

CCCA;

ðb1jlðtÞÞ1� j;l�2

¼ 0 0:03cos
1

2þ sin tþ sin
ffiffiffi
2

p
t

� �
þ 0:01

1þ t2

0 0

0

@

1

A;

ðb2jlðtÞÞ1� j;l�2

¼ 0:03 sin
1

2þ cos tþ sin
ffiffiffi
5

p
t

� �
þ 0:01

1þ t
0

0 0

0
@

1
A;

ðdijðtÞÞ1� i;j�2

¼
0:04 sin

1

2þ cos tþ cos
ffiffiffi
2

p
t

� �
0:04cos

1

2þ sin tþ sin
ffiffiffi
2

p
t

� �

0:05þ 0:1

1þ t
0

0

BB@

1

CCA;

ðr1jlðtÞÞ1� j;l�2

¼ 0 0:02sin
1

2þ sin tþ sin
ffiffiffi
2

p
t

� �
þ 0:01

1þ t

0 0

0

@

1

A;

ðr2jlðtÞÞ1� j;l�2

¼ 0 0:04sin
1

2þ sin tþ sin
ffiffiffi
2

p
t

� �
þ 0:01

1þ t

0 0

0

@

1

A;

ðciðtÞÞ1� i�2 ¼
0:7 sin

1

2þ sin tþ sin
ffiffiffi
2

p
t

� �
þ 0:3

1þ t

0:7cos
1

2þ cos tþ cos
ffiffiffi
5

p
t

� �
þ 0:3

1þ t

0

BBB@

1

CCCA

and

Dx1ð2kÞ ¼ � 1
40
x1ð2kÞ þ 1

80
sinðx1ð2kÞÞ þ 1

20
;

Dx2ð2kÞ ¼ � 1
40
x2ð2kÞ þ 1

80
cosðx2ð2kÞÞ þ 1

30
:

Then, after all calculation done we have

r ¼ maxf0:319; 0:33g\1; ~r ¼ maxf0:359; 0:379g\1;

ln 1þ 1
40

	 


#
þ
X2

i¼1

X2

j¼1

X2

l¼1

�
a�ij þ 2b�ijl þ d�ij þ 2r�ijl

�
� d\0:

According to Theorems 1 and 2, system (12) has a unique

asymptotic almost automorphic solution, which is globally

exponentially stable.

The simulation results can be seen in the following

figures:

Figure 1 depicts the numeric simulation of ðx1; x2Þ for

system (12); Fig. 2 depicts the orbit of ðx1; x2Þ for system
(12).

4.2 Example 2

Consider the following high-order Hopfield neural net-

works without impulses ðn ¼ 2Þ:

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time(t)

x 1, x
2

x1
x2

Fig. 1 Transient response of state variables x1 and x2 for system (12)

when t in [0; 50]
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Fig. 2 Orbit of x1; x2 for system (12)
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_xiðtÞ ¼
X2

j¼1

cijðtÞxjðtÞ þ
X2

j¼1

aijðtÞfjðxjðt � 1jÞÞ

þ
X2

j¼1

X2

l¼1

bijlðtÞgjðxjðt � rjÞÞglðxlðt � tlÞÞ

þ
X2

j¼1

dijðtÞ
Z t

�1

Kijðt � sÞhjðxjðsÞÞ ds

þ
X2

j¼1

X2

l¼1

rijlðtÞ
Z t

�1

Pijlðt � sÞkjðxjðsÞÞ ds

�
Z t

�1

Qijlðt � sÞklðxlðsÞÞ dsþ ciðtÞ:

ð13Þ

System (13) has exactly one asymptotic almost automor-

phic solution. The asymptotic almost automorphic solution

is globally exponentially stable. The results are verified by

the numerical simulations in the following figures: Fig. 3

depicts the response of state variables ðx1; x2Þ for system

(13); Fig. 4 represents the orbit of ðx1; x2Þ for system (13).

4.3 Example 3

Consider the following impulsive high-order Hopfield

neural networks ðn ¼ 3Þ:

_xiðtÞ ¼
P3

j¼1

cijðtÞxjðtÞ þ
P3

j¼1

aijðtÞfjðxjðt � 1jÞÞ

þ
P3

j¼1

P3

l¼1

bijlðtÞgjðxjðt � rjÞÞglðxlðt � tlÞÞ

þ
P3

j¼1

dijðtÞ
Rt

�1
Kijðt � sÞhjðxjðsÞÞ ds

þ
P3

j¼1

P3

l¼1

rijlðtÞ
Rt

�1
Pijlðt � sÞkjðxjðsÞÞ ds

�
Rt

�1
Qijlðt � sÞklðxlðsÞÞ dsþ ciðtÞ; t 6¼ tk;

DðxðtkÞÞ ¼ akxðtkÞ þ IkðxðtkÞÞ þ xk; t ¼ tk;

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð14Þ

where 1j ¼ tj ¼ rj ¼ L ¼ 1
80
;

KijðtÞ ¼ PijlðtÞ ¼ QijlðtÞ ¼ e�t:

For t 2 R; i; j ¼ 1; 2; 3

fjðtÞ ¼ gjðtÞ ¼ hjðtÞ ¼ kjðtÞ ¼ sinðtÞ

l
j
f ¼ l jg ¼ l

j
h ¼ l

j
k ¼ ej ¼ Mj ¼ Kþ

mK

¼ Pþ

mP
¼ Qþ

mQ
¼ K ¼ d ¼ 1;

ðcijðtÞÞ1� i;j� 3 ¼
2þ cosðtÞ 0 0

2þ sinðtÞ 0 0

3þ cosðtÞ 0 0

0

B@

1

CA;

ðaijðtÞÞ1� i;j� 3

¼

0:02 sin
p

2þ sin t
ffiffiffi
5

p
t

� �
0:01 0:07

0:02 sin
2p

2þ cos
ffiffiffi
5

p
t

� �
0:05 sin t þ 0:03 cos

ffiffiffi
2

p
t 0:05

0:05 cos
ffiffiffi
3

p
t 0:04 cos

2p

2þ sin t þ sin
ffiffiffi
2

p
t

� �
0:01

0

BBBBBBB@

1

CCCCCCCA

;

ðb1jlðtÞÞ1� j;l� 3

¼

0:01 sin
p

2þ sin t
ffiffiffi
5

p
t

� �
0:05 sin

ffiffiffi
5

p
t 0:04

0:04þ e�t 0:01 cos
ffiffiffi
2

p
t 0:05

0:07 cos
ffiffiffi
2

p
t 0:01 cos

2p

2þ sin t þ sin
ffiffiffi
2

p
t

� �
0:02

0

BBBBB@

1

CCCCCA
;

ðb2jlðtÞÞ1� j;l� 3 ¼
0 0:05 cosðtÞ 0:05

0 0:02 cos
ffiffiffi
2

p
t 0:08 sin

ffiffiffi
5

p
t

0 0:02 0:08

0

B@

1

CA;

ðb3jlðtÞÞ1� j;l� 3 ¼
0 0:02 sinðtÞ þ e�t2 0:02

0 0:01 cos
ffiffiffi
2

p
t 0:03e�t

0:01 0:01e�t 0

0
B@

1
CA;
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−0.5

−0.4

−0.3
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0.3

0.4

0.5

Time(t)

x 1, x
2

x 1
x 2

Fig. 3 Transient response of state variables x1 and x2 for system (13)

when t in [0; 50]
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Fig. 4 Orbit of x1; x2 for system (13)
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ðdijðtÞÞ1� i;j� 3

¼
0:04 cos

1

2þ sin t þ sin
ffiffiffi
2

p
t

0:01 0:05 cos
ffiffiffi
3

p
t

0:03 cosð
ffiffiffi
5

p
tÞ 0:02 cos

ffiffiffi
2

p
t 0:05 sin

ffiffiffi
5

p
t

0:02e�t 0:01 0:07 cos
ffiffiffi
2

p
t

0

BBB@

1

CCCA;

ðr1jlðtÞÞ1� j;l� 3

¼

0:07 cos t 0:03 cosðtÞ 0

0:05 cosðtÞ þ 0:05

1þ t4
0 sin

ffiffiffi
3

p
t

0 0:01e�t2 0

0
BB@

1
CCA;

ðr2jlðtÞÞ1� j;l� 3 ¼

0 0:01 sinðtÞ 0

0 0:08 sin
ffiffiffi
5

p
t 0:02

0 0:02þ 0:08

1þ t2
0

0
BB@

1
CCA;

ðr3jlðtÞÞ1� j;l� 3 ¼
0:01 0 0

0 0 0:01 sin
ffiffiffi
5

p
t þ e�t

0 0:08e�t 0

0
B@

1
CA;

ðciðtÞÞ1� i� 3 ¼

0:5þ 1

1þ t

1

5
sin

1

2þ sin t þ sin
ffiffiffi
5

p
t

� �
þ 0:1e�t

1

0
BBBB@

1
CCCCA

and

Dx1ð2kÞ ¼ � 1
80
x1ð2kÞ þ 1

80
sinðx1ð2kÞÞ þ 1

80
;

Dx2ð2kÞ ¼ � 1
80
x2ð2kÞ þ 1

80
cosðx2ð2kÞÞ þ 1

40
;

Dx3ð2kÞ ¼ � 1
80
x3ð3kÞ þ 1

80
cosðx3ð2kÞÞ þ 1

20
:

Then, after all calculation done we have

r ¼ maxf0:2; 0:27; 0:15g\1; ~r ¼ maxf0:6; 0:6; 0:14g\1;

lnð1þ 1
80
Þ

#
þ
X3

i¼1

X3

j¼1

X3

l¼1

�
a�ij þ 2b�ijl þ d�ij þ 2r�ijl

�
� d\0:

According to Theorems 1 and 2, system (14) has a unique

asymptotic almost automorphic solution, which is globally

exponentially stable.

The simulation results can be seen in the following

figures.

Figure 5 depicts the numeric simulation of ðx1; x2; x3Þ
for system (14); Fig. 6 depicts the orbit of ðx1; x2Þ for

system (14); Fig. 7 shows the orbit of ðx1; x3Þ for system

(14); Fig. 8 shows the orbit of ðx2; x3Þ for system (14);

Fig. 9 depicts the orbit of ðx1; x2; x3Þ for system (14).

4.4 Example 4

Consider the following high-order Hopfield neural net-

works without impulses ðn ¼ 3Þ:
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Fig. 6 Orbit of x1; x2 for system (14)
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Fig. 7 Orbit of x1; x3 for system (14)
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Fig. 5 Transient response of state variables x1; x2 and x3 for system

(14) when t in [0; 50]
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_xiðtÞ ¼
P3

j¼1

cijðtÞxjðtÞ þ
P3

j¼1

aijðtÞfjðxjðt � 1jÞÞ

þ
P3

j¼1

P3

l¼1

bijlðtÞgjðxjðt � rjÞÞglðxlðt � tlÞÞ

þ
P3

j¼1

dijðtÞ
Rt

�1
Kijðt � sÞhjðxjðsÞÞ ds

þ
P3

j¼1

P3

l¼1

rijlðtÞ
Rt

�1
Pijlðt � sÞkjðxjðsÞÞ ds

�
Rt

�1
Qijlðt � sÞklðxlðsÞÞ dsþ ciðtÞ

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð15Þ

System (15) has one and only one asymptotic almost

automorphic solution which is globally exponentially

stable.

The results are verified by the numerical simulations in

the following figures:

Figure 10 depicts the response of state variables

ðx1; x2; x3Þ for system (15); Fig. 11 represents the orbit of

ðx1; x2Þ for system (15); Fig. 12 depicts the orbit of ðx1; x3Þ
for system (15); Fig. 13 shows the orbit of ðx2; x3Þ for

system (15); Fig. 14 shows the orbit of ðx1; x2; x3Þ for

system (15).

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x2

x 3

Fig. 8 Orbit of x2; x3 for system (14)
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Fig. 10 Transient response of state variables x1; x2 and x3 for system

(14) without impulses for t in [0; 50]
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Fig. 9 Orbit of x1; x2 and x3 for system (14)
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Fig. 11 Orbit of x1; x2 for system (14) without impulses
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Fig. 12 Orbit of x1; x3 for system (14) without impulses
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Descriptions From Examples 1 and 3, we have the fol-

lowing descriptions:

• From the orbital figures: Fig. 2 of system (12) and

Figs. 6, 7, 8 and 9 of system (14), the orbits in two- and

three-dimensional spaces of the asymptotic almost

automorphic solutions of both systems are subject to

instantaneous perturbations and change of the state

abruptly. The dynamic behavior of the asymptotic

almost automorphic solutions for both systems has a

chaos due to the effects of the impulse.

• The orbital figures of the two systems are good since

they highlight the effect of impulse on the dynamic

behavior of the asymptotic almost automorphic solu-

tion. The impulse stress the asymptotic almost auto-

morphic solution of each system.

From Examples 2 and 4, we have the following

descriptions:

• By observing Figs. 3, 4 of system (13) and Figs. 10, 11,

12, 13 and 14 of system (15) we can see that the

dynamic behavior of the asymptotic almost automor-

phic solution of both systems is rhythmic since we

notice the absences of chaos and points of discontinuity

in the behavior of the both solutions.

Roughly speaking:

• If we do not take into account the impulsive effects

then: system (12) is reduced to system (13) and system

(14) is reduced to system (15).

• Underlining a very remarkable difference between the

figures of the orbits of system (12), system (14) and the

figures of the orbits of system (13), system (15). The

effects of the impulsion are quite profound.

Remark 5

• Many natural phenomena cannot be accurately

described as ‘‘periodic phenomena’’. For examples:

the time intervals of a round for a celestial body

motion, the tidal flood that is a disaster for mankind, the

weather during a week or a month, the earthquake

which is difficult to be predicted and so on, then the

concept of asymptotic almost automorphy should be

adopted.

• Our manuscript offers a theoretical basis for the design

of the second-order class of neural networks with

mixed time delays more effective in the resolution of

optimization calculation and the control robotic manip-

ulator thanks to the second-order synaptic terms bijl and

rijl:

• In light of Theorems 1 and 2, the existence, the

uniqueness and the global exponential stability of

asymptotic almost automorphic solution of system (3)

are obtained, indicating that the sufficient conditions in

Theorems 1 and 2 can be used to solve the optimization

problem by converting object function into energy

function.

• The global exponential stability of HOHNNs can be

guaranteed for the global optimal solutions. The

numerical algorithms are less effective than the method

of neural networks for solving the optimization

problems.

• Our criteria are of prime importance. They could be

further utilized for many problems such as the control

and the filtering, the non-fragile state estimation, the

distributed state estimation for sensor networks and can

be also extended into social networks.

5 Conclusions

The low-order Hopfield neural networks have many

shortcomings. Consequently, it is indispensable to add

high-order interactions to these neural networks. This

motivated the extensively study on the high-order Hopfield
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Fig. 13 Orbit of x2; x3 for system (14) without impulses
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Fig. 14 Orbit of x1; x2 and x3 for system (14) without impulses
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neural networks with and/or without impulses. In this work,

by using the fixed-point theorem and the generalized

Gronwall–Bellman inequality, we obtain some new results

of the existence, the uniqueness and the global exponential

stability of asymptotic almost automorphic solutions for

impulsive non-autonomous high-order Hopfield neural

networks with mixed delays. Finally, four examples are

given to demonstrate the effectiveness of our obtained

results.
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Appendix 1: Proof of the Lemma 1

Proof Let uð:Þ 2 AAAðR;RÞ, it can be written as uð:Þ ¼
u1ð:Þ þ u2ð:Þ where u1ð:Þ 2 AAðR;RÞ and u2ð:Þ 2
PC0ðR;RÞ:

First, we know that the space AAðR;RÞ is translation

invariant, then for h 2 R; we have u1ð:� hÞ 2 AAðR;RÞ:
Second, we prove that u2ð:� hÞ 2 PC0ðR;RÞ:
For u2ð:Þ 2 PC0ðR;RÞ; we have: u2ð:Þ 2 PCðR;RÞ;

such that u2ðtÞ is continuous at t for any t 62 fti; i 2 Zg;
u2ðtþi Þ;u2ðt�i Þ exists and u2ðt�i Þ ¼ u2ðtiÞ:

Therefore, for h 2 R; u2ðt � hÞ is continuous at ðt � hÞ
for any ðt � hÞ 62 fti; i 2 Zg; u2ððti � hÞþÞ;u2ððti � hÞ�Þ
exist and u2ððti � hÞ�Þ ¼ u2ðti � hÞ: Then, u2ðt � hÞ 2
PCðR;RÞ:

On the other hand, we have limt�!1 ku2ðtÞk ¼ 0; then

for h in R; limt�!1 ku2ðt � hÞk ¼ 0: This completes the

proof. h

Appendix 2: Proof of Lemma 2

Proof By definition, we can write u ¼ u1 þ u2; w ¼ w1 þ
w2 where u1;w1 2 AAðR;RÞ; u2;w2 2 PC0ðR;RÞ:

Obviously, u� w ¼ u1 � w1 þ u1 � w2 þ u2 � w1 þ
u2 � w2; we have u1 � w1 2 AAðR;RÞ:

On the other hand, u1 � w2 þ u2 � w1 þ u2 � w2 2
PCðR;RÞ; and
ku1 � w2 þ u2 � w1 þ u2 � w2k

�ku1k1 � kw2k þ ku2k � kw1k1 þ ku2k1 � kw2k;

which implies that u1 � w2 þ u2 � w1 þ u2�
w2 2 PC0ðR;RÞ:

Then, u� w 2 AAAðR;RÞ: This completes the proof. h

Appendix 3: Proof of Lemma 3

Proof By definition, we have /ð:Þ ¼ /1ð:Þ þ /2ð:Þ where

/1ð:Þ 2 AAðR;RnÞ;/2ð:Þ 2 PC0ðR;RnÞ: Let
GðtÞ ¼ f ð/ðt � 1ÞÞ

¼ f ð/1ðt � 1ÞÞ

þ
�
f ð/1ðt � 1ÞÞ þ /2ðt � 1ÞÞ � f ð/1ðt � 1ÞÞ

�

¼ G1ðtÞ þ G2ðtÞ
ð16Þ

First, let s0n
	 


n2N be a sequence of real numbers. By

hypothesis we can extract a subsequence ðsnÞn2N of

s0n
	 


n2N such that limn!þ1 /1 t � 1þ snð Þ ¼ /1
1ðt � 1Þ;

8t 2 R and limn!þ1 /1
1 t � 1� snð Þ ¼ /1ðt � 1Þ; 8t 2 R:

Obviously,

jG1ðt þ snÞ � f ð/1
1ðt � 1ÞÞj

¼ jf ð/1ðt � 1þ snÞÞ � f ð/1
1ðt � 1ÞÞj

� l
j
f j/1ðt � 1þ snÞ � /1

1ðt � 1Þj ! 0; n ! þ1:

Therefore, limt�!1 f ð/1ðt � 1þ snÞÞ ¼ f ð/1
1ðt � 1ÞÞ:

By the same way, we have: limt�!1 f ð/1
1ðt � 1� snÞÞ ¼

f ð/1ðt � 1ÞÞ:
Then G1ð:Þ 2 AAðR;RnÞ:
Second, we prove that G2ð:Þ 2 PC0ðR;RnÞ.
It is clear that G2ð:Þ 2 PCðR;RnÞ, also we have:

G2ðtÞ ¼ f ð/1ðt � 1Þ þ /2ðt � 1ÞÞ � f ð/1ðt � 1ÞÞ
jG2ðtÞj ¼ jf ð/1ðt � 1Þ þ /2ðt � 1ÞÞ � f ð/1ðt � 1ÞÞj

� l
j
f j/2ðt � 1Þj;

since /2ð:Þ 2 PC0ðR;RnÞ; we have limt�!1 j/2ðt � 1Þj ¼
0; then G2ð:Þ 2 PC0ðR;RnÞ: The proof is completed. h

Appendix 4: Proof of Lemma 4

Proof Let /jð:Þ 2 AAAðR;RnÞ; from Lemma 3 we obtain

hjð/jð:ÞÞ 2 AAAðR;RnÞ:
Let hjð/jð:ÞÞ ¼ ujð:Þ þ vjð:Þ; where ujð:Þ 2 AAðR;RnÞ

and vjð:Þ 2 PC0ðR;RnÞ; then

UijðtÞ ¼
Z t

�1

Kijðt � sÞhjð/jðsÞÞ ds

¼
Z t

�1

Kijðt � sÞujðsÞ dsþ
Z t

�1

Kijðt � sÞvjðsÞ ds

¼ U1
ijðtÞ þ U2

ijðtÞ
ð17Þ
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First, let us show that U1
ijðtÞ 2 AAðR;RnÞ:

For each sequence ðs0nÞ there exists a subsequence ðsnÞ
such that hðtÞ ¼ limn�!1 ujðt þ snÞ is well defined for

every t 2 R and hðt � snÞ ¼ limn�!1 ujðtÞ is well defined

for every t 2 R:

In addition, we have

U1
ijðt þ snÞ ¼

Ztþsn

�1

Kijðt þ sn � sÞujðsÞ ds

¼
Z t

�1

Kijðt � sÞujðsþ snÞ ds

One has kKijðt � sÞujðsþ snÞk�Kþe�mK ðt�sÞkujðtÞk it fol-

lows that
R t
�1 Kijðt � sÞujðsþ snÞ ds� Kþ

mK kujðtÞk:
Then using the Lebesgue-dominated convergence theo-

rem, we obtain limn�!1 U1
ijðt þ snÞ ¼

R t
�1 Kijðt � sÞ

hjðsÞ ds:
Analogously, we get U1

ijðtÞ ¼ limn�!1
R t�sn
�1 Kij

ðt � sn � sÞhjðsÞ ds.
Second, let us show that U2

ijðtÞ 2 PC0ðR;RnÞ:
It is not difficult to see that U2

ijðtÞ 2 PCðR;RnÞ: We

have

U2
ijðtÞ ¼

Z t

�1

Kijðt � sÞvjðsÞ ds

¼
Z0

�1

Kijðt � sÞvjðsÞ dsþ
Z t

0

Kijðt � sÞvjðsÞ ds

since vj 2 PC0ðR;RnÞ; for every e[ 0 there exist a con-

stant N[ 0 such that kvjðsÞk� e for all s�N and for all

t� 2N, we obtain

kU2
ijðtÞk

¼ k
Z0

�1

Kijðt � sÞvjðsÞ dsþ
Z t

2

0

Kijðt � sÞvjðsÞ ds

þ
Z t

t
2

Kijðt � sÞvjðsÞ dsk

�
Z0

�1

Kþe�mK ðt�sÞkvjðsÞk dsþ
Z t

2

0

Kþe�mK ðt�sÞkvjðsÞk ds

þ
Z t

t
2

Kþe�mK ðt�sÞkvjðsÞk ds

� Kþ

mK
e�mK tkvjk1 þ Kþ

mK
e�

mK
2
tkvjk1 þ Kþ

mK
e: ð18Þ

where kvjk1 ¼ sups2R kvjðsÞk:
Consequently U2

ijð:Þ 2 PC0ðR;RnÞ: The proof is com-

pleted. h

Appendix 5: Proof of Lemma 6

Proof Step 1 Noting ðWU/ÞiðsÞ :¼
R t
�1 Wðt; sÞðU/ÞiðsÞ ds:

First, by Lemmas 1–4, the function ðU/Þi belongs to

AAAðR;RÞ: This ensures the existence of two functions Ki

in AAðR;RÞ and Xi in PC0ðR;RÞ such that for all

1� i; j� n; it can be expressed as ðU/Þið:Þ ¼ Kið:Þ þ Xið:Þ:
One can write W as follows:

ðWU/ÞiðtÞ :¼
Rt

�1
Wðt; sÞKiðsÞ dsþ

Rt

�1
Wðt; sÞXiðsÞ ds:

Let us study the almost automorphicity of

ðWKiÞ : t 7!
Rt

�1
Wðt; sÞKiðsÞ ds:

Let s0n
	 


n2N be a sequence of real numbers. By

hypothesis we can extract a subsequence ðsnÞn2N of

s0n
	 


n2N such that: limn!þ1 Ki t þ snð Þ ¼ K1
i tð Þ; 8 t 2 R;

and limn!þ1 K1
i t � snð Þ ¼ Ki tð Þ; 8 t 2 R:

Let ðW1KiÞðtÞ ¼
R t
�1 Wðt; sÞK1

i ðsÞ ds; it follows that

jðWKiÞðt þ snÞ � ðW1KiÞðtÞj

¼ j
Ztþsn

�1

Wðt þ sn; sÞKiðsÞ ds�
Z t

�1

Wðt; sÞK1
i ðsÞ dsj

� j
Z t

�1

Wðt; sÞKiðt þ snÞ ds�
Z t

�1

Wðt; sÞK1
i ðsÞ dsj

�
Z t

�1

jWðt; sÞjjKiðt þ snÞ � K1
i ðsÞj ds

�
Z t

�1

Ke�dðt�sÞjKiðt þ snÞ � K1
i ðsÞj ds: ð19Þ

Based on the Lebesgue-dominated convergence theorem,

we have for all t 2 R

limn!þ1ðWKiÞðt þ snÞ ¼ ðW1KiÞðtÞ:

By a similar way, we prove that

limn!þ1ðW1KiÞðt � snÞ ¼ ðWKiÞðtÞ;

which implies that ðWKiÞ 2 AAðR;RnÞ:
Second, we turn our attention to ðWXiÞ : t 7!
Rt

�1
Wðt; sÞXiðsÞ ds: It is easy to prove that ðWXiÞ 2

PCðR;RÞ:
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We have limt!þ1
R t
�1 Wðt; sÞXiðsÞ ds ¼ 0: Since Xi 2

PC0ðR;RÞ; then limt!þ1 j
R t
�1 Wðt; sÞXiðsÞj ds ¼ 0:

By the Lebesgue-dominated convergence theorem, we

have

lim
t!þ1

Rt

�1
Wðt; sÞXiðsÞ ds ¼ 0:

Hence, the function WXi belongs to PC0ðR;RÞ:
Step 2 Proving that

P
tk\t

Wðt; tkÞðIkð/iðtkÞÞ þ xkÞ

belongs to AAAðR;RÞ:
From the assumption (H7), Ikð/iðtkÞÞ 2 AAAðR;RÞ: By

definition, it can be expressed as

Ikð/iðtkÞÞ ¼ Ik1ð/iðtkÞÞ þ Ik2ð/iðtkÞÞ;

such that Ik1ð/iðtkÞÞ 2 AAðR;RÞ; Ik2ð/iðtkÞÞ ¼ 0: Then:
X

tk\t

Wðt; tkÞðIkð/iðtkÞÞ þ xkÞ

¼
X

tk\t

Wðt; tkÞðIk1ð/iðtkÞÞ þ xkÞ þ
X

tk\t

Wðt; tkÞðIk2ð/iðtkÞÞÞ:

For every real sequence ðtnÞn2N, there exists a subsequence
ðtnkÞnk2N such that lim

nk!þ1
Ik1ð/iðtk þ tnkÞÞ ¼ I1k1ð/iðtkÞÞ and

lim
nk!þ1

I1k1ð/iðtk � tnkÞÞ ¼ Ik1ð/iðtkÞÞ:

Now, we have
X

tk\tþtnk

Wðt þ tnk ; tkÞðIk1ð/iðtkÞ þ xkÞ

¼
X

tk\t

Wðt þ tnk ; tk þ tnkÞðIk1ð/iðtk þ tnkÞÞ þ xkÞ;

then

lim
nk!þ1

X

tk\t

Wðt þ tnk ; tk þ tnkÞðIk1ð/iðtk þ tnkÞÞ þ xkÞ

¼
X

tk\t

Wðt; tkÞðI1k1ð/iðtkÞÞ þ xkÞ

ð20Þ

Similarly
X

tk\t�tnk

Wðt � tnk ; tkÞðI1k1ð/iðtkÞ þ xkÞ

¼
X

tk\t

Wðt � tnk ; tk � tnkÞðI1k1ð/iðtk � tnkÞÞ þ xkÞ;

then

lim
nk!þ1

X

tk\t

Wðt � tnk ; tk � tnkÞðI1k1ð/iðtk � tnkÞÞ þ xkÞ

¼
X

tk\t

Wðt; tkÞðIk1ð/iðtkÞÞ þ xkÞ:

ð21Þ

Then,
P
tk\t

Wðt; tkÞðIk1ð/iðtkÞÞ þ xkÞ 2 AAðR;RÞ:

On the other hand,

lim
t!þ1

X

tk\t

jWðt; tkÞjjIk2ð/iðtkÞÞj ¼ lim
t!þ1

jIk2j
X

tk\t

jWðt; tkÞj ¼ 0;

as
P

tk\t jWðt; tkÞj\1:

By Steps 1 and 2 we have:

H/ðtÞ :¼
Z t

�1

Wðt; sÞðU/ÞiðsÞ dsþ
X

tk\t

Wðt; tkÞðIkð/iðtkÞÞ þ xkÞ

maps AAAðR;RÞ into itself. h

Appendix 6: Proof of the Theorem 1

Proof Let us calculate the norm of /0. One has

k/0k

¼ sup
t2R

�
max

1� i� n

���
Z t

�1

jWðt; sÞjjciðsÞj dsþ
X

tk\t

jWðt; tkÞjjxkj
�

� sup
t2R

�
max

1� i� n

� Z
t

�1

Ke�dðt�sÞ��ciðsÞ
�� dsþ

X

tk\t

Ke�dðt�tkÞjxkj
�

�K�cð1
d
þ 1

1� e�d
Þ ¼ �R;

ð22Þ

such that �c� max

�
max

1� i� n
jciðtÞj; max

1� k� n
jxkj

�
:

After, k/k1 �k/� /0k þ k/0k� r
1�r

�Rþ �R ¼ �R
1�r

:

Set S� ¼
�
/ 2 AAAðR;RnÞ; k/� /0k� r

1�r
�R

�
:

Clearly, S� is a closed convex subset of AAAðR;RnÞ:
Therefore, for any / 2 S� by using the estimate just

obtained, we see that
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kH/ � /0k

� sup
t2R

�
max

1� i� n

Z t

�1

�
jWðt; sÞj

�Xn

j¼1

jaijðsÞjjfjð/jðs� 1jÞÞj

þ
Xn

j¼1

Xn

l¼1

jbijlðsÞjjgjð/jðs� rjÞÞjjglð/lðs� tlÞÞj

þ
Xn

j¼1

jdijðsÞj
Zs

�1

jKijðs� mÞjjhjð/jðmÞÞj dm

þ
Xn

j¼1

Xn

l¼1

jrijlðsÞj
Zs

�1

jPijlðs� mÞjjkjð/jðmÞÞj dm

�
Zs

�1

jQijlðs� mÞjjklð/lðmÞÞj dm
�
ds

�

þ
X

tk\t

jWðt; tkÞjjxkð/ðtkÞÞj
�

� sup
t2R

�
max

1� i� n

� Z t

�1

Ke�dðt�sÞ
�Xn

j¼1

a�ijjfjð/jðs� 1jÞÞj

þ
Xn

j¼1

Xn

l¼1

b�ijljgjð/jðs� rjÞÞjjglð/lðs� tlÞÞj

þ
Xn

j¼1

d�ij

Zs

�1

jKijðs�mÞjjhjð/jðmÞÞjdm

þ
Xn

j¼1

Xn

l¼1

r�ijl

Zs

�1

jPijlðs�mÞjjkjð/jðmÞÞjdm

�
Zs

�1

jQijlðs�mÞjjklð/lðmÞÞjdm
�
ds

�

þ
X

tk\t

Ke�dðt�sÞjxkð/ðtkÞÞj
�

� sup
t2R

�
max
1� i�n

� Z t

�1

Ke�dðt�sÞ
�Xn

j¼1

a�ijl
j
f j/jðs� 1jÞj

þ
Xn

j¼1

Xn

l¼1

b�ijll
j
ge

lj/jðs�rjÞjþ
Xn

j¼1

d�ijl
j
h

Kþ

mK
j/jðsÞj

þ
Xn

j¼1

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
l
j
kM

lj/jðsÞj
�
ds

�

þ
X

tk\t

Ke�dðt�sÞLjð/ðtkÞÞj
�

� sup
t2R

� Z t

�1

Ke�dðt�sÞ max
1� i�n

�Xn

j¼1

a�ijl
j
f þ
Xn

j¼1

Xn

l¼1

b�ijll
j
ge

l

þ
Xn

j¼1

d�ijl
j
h

Kþ

mþ
þ
Xn

j¼1

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
l
j
kM

l

�
ds

ð23Þ

þ
X

tk\t

Ke�dðt�sÞL

�
k /k

�
�
K

d
max

1� i� n

�Xn

j¼1

a�ijl
j
f þ

Xn

j¼1

Xn

l¼1

b�ijll
j
ge

l

þ
Xn

j¼1

d�ijl
j
h

Kþ

mK
þ
Xn

j¼1

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
l
j
kM

l

�

þ KL

1� e�d

�
k /k ¼ rk /k

ð23Þ

then, H/ 2 S�:
Now our aim is to prove that H is a contraction. For any

/1;/2 2 S�; we have

kH/1
�H/2

k

� sup
t2R

�
max

1� i� n
ð
Z t

�1

jWðt; sÞjjU/1
ðsÞ � U/2

ðsÞj dsÞ

þ
X

tk\t

jWðt; tkÞjjIkð/1ðtkÞÞ � Ikð/2ðtkÞÞj
�

� sup
t2R

�
max

1� i� n

� Z t

�1

Ke�dðt�sÞ

�
�Xn

j¼1

a�ijl
j
f

����/1ðs� 1jÞ � /2ðs� 1jÞ
����

þ
Xn

j¼1

Xn

l¼1

b�ijl

����gjð/1ðs� rjÞÞglð/1ðs� rlÞÞ

� gjð/2ðs� rjÞÞglð/1ðs� rlÞ
þ gjð/2ðs� rjÞÞglð/1ðs� rlÞ

� gjð/2ðs� rjÞÞglð/2ðs� rlÞ
����

þ
Xn

j¼1

d�ijl
j
h

Kþ

mK

����/1ðsÞ � /2ðsÞ
����

þ
Xn

j¼1

Xn

l¼1

r�ijl

����
Zs

�1

Pijlðs� mÞhjð/1ðmÞÞ dm

�
Zs

�1

Qijlðs� mÞklð/1ðmÞÞ dm

�
Zs

�1

Pijlðs� mÞhjð/2ðmÞÞ dm

�
Zs

�1

Qijlðs� mÞklð/1ðmÞÞ dm

þ
Zs

�1

Pijlðs� mÞhjð/2ðmÞÞ dm
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�
Zs

�1

Qijlðs� mÞklð/1ðmÞÞ dm

�
Zs

�1

Pijlðs� mÞhjð/2ðmÞÞ dm

�
Zs

�1

Qijlðs� mÞklð/2ðmÞÞ dm
����
�
ds

�

þ
X

tk\t

Ke�dðt�sÞL

����/1ðtkÞ � /2ðtkÞ
����
�

� max
1� i� n

� Z t

�1

Ke�dðt�sÞ
�Xn

j¼1

a�ijl
j
f

þ
Xn

j¼1

Xn

l¼1

b�ijlðljgel þ llge
jÞ þ

Xn

j¼1

d�ijl
j
h

Kþ

mK

þ
Xn

j¼1

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
ðljkMl þ llkM

jÞ
�
ds

þ
X

tk\t

Ke�dðt�sÞL

�
jj/1 � /2jj

�
�
K

d
max

1� i� n

�Xn

j¼1

a�ijl
j
f þ

Xn

j¼1

Xn

l¼1

b�ijlðljgel þ llge
jÞ

þ
Xn

j¼1

d�ijl
j
h

Kþ

mK
þ
Xn

j¼1

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
ðljkMl þ llkM

jÞ
�

þ KL

1� e�d

�
jj/1 � /2jj ¼ �rjj/1 � /2jj

ð24Þ

which prove that H is a contraction mapping.

By virtue of the Banach’s fixed-point theorem, H has a

unique fixed point which corresponds to the solution of (3)

in S�: h

Appendix 7: Proof of Theorem 2

Proof First, using Lemma 6, H has a fixed point /: Let
I�k ð/ðtkÞÞ ¼ Ikð/ðtkÞÞ þ xk:

Hence, for all t 2 R; the fixed point / satisfies the

following integral system:

/ðtÞ :¼
Z t

�1

Wðt; sÞU/ðsÞ dsþ
X

tk\t

Wðt; tkÞðI�k ð/ðtkÞÞÞ:

Fixed t0; t0 6¼ ti; i 2 Z; we have

/ðaÞ ¼
Za

�1

Wða; sÞU/ðsÞ dsþ
X

tk\a

Wða; tkÞðI�k ð/ðtkÞÞÞ:

Therefore

/ðtÞ ¼
Za

�1

Wðt; sÞU/ðsÞ dsþ
X

tk\a

WðT; tkÞðI�k ð/ðtkÞÞÞ

þ
Z t

a

Wðt; sÞU/ðsÞ dsþ
X

a\tk\t

Wðt; tkÞðI�k ð/ðtkÞÞÞ

¼ Wðt; aÞ/ðaÞ þ
Z t

a

Wðt; sÞU/ðsÞ ds

þ
X

a\tk\t

Wðt; tkÞðI�k ð/ðtkÞÞÞ:

ð25Þ

Second, by Theorem 1, we know that system (3) has an

asymptotically almost automorphic solution u(t), by using

integral form of system (3), if t[ r; r 6¼ tk; k 2 Z

uðtÞ ¼ Wðt; rÞuðrÞ þ
Z t

r

Wðt; sÞUuðsÞ ds

þ
X

r\tk\t

Wðt; tkÞðI�k ðuðtkÞÞÞ;
ð26Þ

Let uðtÞ ¼ uðt; r;/1Þ and vðtÞ ¼ vðt; r;/2Þ be two solu-

tions of (3), then

uðtÞ ¼ Wðt; rÞuðrÞ þ
Z t

r

Wðt; sÞUuðsÞ ds

þ
X

r\tk\t

Wðt; tkÞðI�k ðuðtkÞÞÞ

vðtÞ ¼ Wðt; rÞvðrÞ þ
Z t

r

Wðt; sÞUvðsÞ ds

þ
X

r\tk\t

Wðt; tkÞðI�k ðvðtkÞÞÞ:

Therefore,
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kuðtÞ � vðtÞk

�kWðt;rÞ½/1 �/2�k þ k
Z t

r

Wðt; sÞ½UuðsÞ �UvðsÞ� dsk

þ k
X

r\tk\t

Wðt; tkÞ½I�k ðuðtkÞÞ � I�k ðvðtkÞÞ�k

�kWðt;rÞ½/1 �/2�k þ
Z t

r

kWðt; sÞkkUuðsÞ �UvðsÞk ds

þ
X

r\tk\t

kWðt; tkÞkkI�k ðuðtkÞÞ � I�k ðvðtkÞÞk

�Ke�dðt�rÞk/1 � /2k

þ
Z t

r

Ke�dðt�rÞ
Xn

i¼1

�Xn

j¼1

a�ijl
f
j þ
Xn

j¼1

Xn

l¼1

b�ijlðljgel þ llge
jÞ

þ
Xn

j¼1

d�ij
Kþ

mK
l
j
h þ

Xn

j¼1

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
ðljkMl þ llkM

jÞ
�

� kuðsÞ � vðsÞk dsþ
X

r\tk\t

Ke�dðt�tkÞLkuðtkÞ � vðtkÞk

ð27Þ

Then

edtkuðtÞ � vðtÞk

�Kedrk/1 �/2k þ
Z t

r

K
Xn

i¼1

Xn

j¼1

a�ijl
f
j

"

þ
Xn

j¼1

Xn

l¼1

b�ijl ljge
l þ llge

j
� �

þ
Xn

j¼1

d�ij
Kþ

mK
l
j
h

þ
Xn

j¼1

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
l
j
kM

l þ llkM
j

	 

#
edskuðsÞ � vðsÞk ds

þ
X

r\tk\t

KedtkLkuðtkÞ � vðtkÞk

ð28Þ

Let yðtÞ ¼ edtkuðtÞ � vðtÞk; Eq. (28) can be rewritten in the

following form:

yðtÞ�KyðrÞ þ
Z t

r

K
Xn

i¼1

Xn

j¼1

a�ijl
f
j

"

þ
Xn

j¼1

Xn

l¼1

b�ijl ljge
l þ llge

j
� �

þ
Xn

j¼1

d�ij
Kþ

mK
l
j
h

þ
Xn

j¼1

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
l
j
kM

l þ llkM
j

	 

#
yðsÞ ds

þ
X

r\tk\t

KL yðtkÞ:

ð29Þ

By the generalized Gronwall–Bellman inequality, we have

yðtÞ�KyðrÞ
Y

r\tk\t

ð1þ KN1Þe
Rt
r

KN2 ds

¼ KyðrÞ
Y

r\tk\t

ð1þ KN1ÞeKN2ðt�rÞ
ð30Þ

N1 ¼ KL; N2 ¼
Xn

i¼1

Xn

j¼1

a�ijl
f
j

"

þ
Xn

j¼1

Xn

l¼1

b�ijl ljge
l þ llge

j
� �

þ
Xn

j¼1

d�ij
Kþ

mK
l
j
h

þ
Xn

j¼1

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
l
j
kM

l þ llkM
j

	 

#
:

ð31Þ

Since # ¼ infk2Zðtkþ1 � tkÞ[ 0, we have

yðtÞ�KyðrÞð1þ KN1Þ
t�r
# eKN2ðt�rÞ ¼ KyðrÞefðt�rÞ; ð32Þ

f ¼ lnð1þ KLÞ
#

þ K
Xn

i¼1

Xn

j¼1

a�ijl
f
j

"

þ
Xn

j¼1

Xn

l¼1

b�ijl ljge
l þ llge

j
� �Xn

j¼1

d�ij
Kþ

mK
l
j
h

þ
Xn

j¼1

Xn

l¼1

r�ijl
Pþ

mP
Qþ

mQ
ðljkMl þ llkM

jÞ
#
:

ð33Þ

That is kuðtÞ � vðtÞk�Kk/1 � /2keðf�dÞðt�rÞ:
Since ðf� dÞ\0; then system (3) has an exponential

stable asymptotically almost automorphic solution. This

completes the proof. h
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