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Abstract
A novel optimization algorithm called hybrid sine–cosine algorithm with teaching–learning-based optimization algorithm

(SCA–TLBO) is proposed in this paper, for solving optimization problems and visual tracking. The proposed hybrid

algorithm has better capability to escape from local optima with faster convergence than the standard SCA and TLBO. The

effectiveness of this algorithm is evaluated using 23 benchmark functions. Statistical parameters are employed to observe

the efficiency of the hybrid SCA–TLBO qualitatively, and results prove that the proposed algorithm is very competitive

compared to the state-of-the-art metaheuristic algorithms. The hybrid SCA–TLBO algorithm is applied for visual tracking

as a real thought-provoking case study. The hybrid SCA–TLBO-based tracking framework is used to experimentally

measure object tracking error, absolute error, tracking detection rate, root mean square error and time cost as parameters.

To reveal the capability of the proposed algorithm, a comparison of hybrid SCA–TLBO-based tracking framework and

other trackers, viz. alpha–beta filter, linear Kalman filter and extended Kalman filter, particle filter, scale-invariant feature

transform, particle swarm optimization and bat algorithm, is presented.

Keywords Metaheuristic � Global optimization � Visual tracking � Population-based algorithm

1 Introduction

Global optimization problems are continually unavoidable

in current engineering and science fields. Mathematically,

an optimization problem can be expressed as

x 2 <n
Minimize

fiðxÞ; ði ¼ 1; 2; . . .;MÞ ð1Þ
s:t: hjðxÞ ¼ 0; ðj ¼ 1; 2; . . .; JÞ ð2Þ
gkðxÞ� 0; ðk ¼ 1; 2; . . .;KÞ ð3Þ

Here fiðxÞ; gkðxÞ and hj(x) are design vector functions

x ¼ x1; x2; . . .; xnð ÞT : ð4Þ

Here the factor xi of x is termed decision or design

variables, and they are real discrete, continuous or the

combination of two.

The fi(x) functions where i = 1, 2,…, M are termed the

cost or objective functions, and in M = 1 case, there is

only a single objective. The area covered by the design

variables is called the search space or design space <n,

while the area formed by the cost function results is termed

as the response or solution space. The inequalities for gk
and equalities for hj are termed as constraints.

Grouping of optimization method can be accomplished

in several ways. An uncomplicated way is to view the type

of the method, and this segregates the algorithms into two

groups: deterministic algorithms and stochastic algorithms.

Deterministic algorithms seek a complicated process, and

its value and paths of both decision variables and the

functions are repeatable. Hill climbing [1] is an example of

a deterministic algorithm, which follows the same path

every time it is executed for the same preliminary point.

The next set is stochastic algorithms, and it consistently has

some of the randomness values. Genetic algorithms (GAs)

[2] are the best example for stochastic algorithms, whose
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response to the population changes every time it is exe-

cuted since it uses various pseudorandom values, and yet,

there may not be any vast difference in the final solutions.

Also, there is a third group of algorithms which is a

hybrid or a mixture of the stochastic algorithm and deter-

ministic algorithm. The key idea is to start the deterministic

algorithm with different initial points. Hill climbing with a

random restart is the best example of this group.

Stochastic optimization algorithms are grouped into

three main classifications: evolutionary-based [3], physics-

based [4] and swarm intelligence-based [5] algorithms.

Physics-based methods are divided into two categories:

population-based and individual-based algorithms. Evolu-

tionary-based methods are motivated by the laws of a

natural progression. The search action begins with a ran-

domly engender population which is going forward over

consequent generations. The strong point of these algo-

rithms is that the best entity is consistently joined to form

the following generation of the entity. It allows the popu-

lation to be optimized in the way of generations. GA is the

best important evolution motivated method that replicates

the Darwinian evolution. Evolution strategy (ES) [6],

genetic programming (GP) [7], probability-based incre-

mental learning (PBIL) [8] and biogeography-based opti-

mizer (BBO) [9] are other evolution-based algorithms.

Physics-based algorithms impersonate the physical

guidelines in the space. Gravitational search algorithm

(GSA) [10], simulated annealing (SA) [11, 12], small

world optimization algorithm (SWOA) [13], ray opti-

mization (RO) [14] algorithm, central force optimization

(CFO) [15], artificial chemical reaction optimization

algorithm (ACROA) [16], galaxy-based search algorithm

(GbSA) [17], colliding bodies optimization (CBO) [18] and

charged system search (CSS) [19] are the physics-based

algorithms.

The third classification of nature-inspired algorithms has

swarm-based techniques that mimic the social behavior of

groups of animals. Particle swarm optimization (PSO) [20],

ant colony optimization (ACO) [21] and animal migration

optimization (AMO) [22] are some of the swarm-based

algorithms.

In the literature, there are also more metaheuristic

algorithms motivated by human behaviors in the literature.

Harmony search [23] (HS), teaching–learning-based opti-

mization [24, 25] (TLBO), group search optimizer [26]

(GSO), tabu (taboo) search [27] (TS), imperialist compet-

itive algorithm [28] (ICA), group counseling optimization

[29] (GCO) algorithm, colliding bodies optimization [18]

(CBO), league championship algorithm (LCA) [30], soccer

league competition [31] (SLC) algorithm, exchange mar-

ket algorithm [32] (EMA), mine blast algorithm [33]

(MBA), social-based algorithm [34] (SBA), firework

algorithm [35] and seeker optimization algorithm [36]

(SOA) are some of the popular algorithms.

The research in general in the present area may be

divided into three key directions: coming up with novel

algorithms, improving the existing algorithms and

hybridizing different algorithms. The third research direc-

tion deals with hybridizing or mixing different algorithms

to reform the achievement or solve distinct problems [37].

Recently, hybridization of algorithms is getting more

popular due to their efficiency in handling many real-world

issues affecting uncertainty, intricacy, imprecision, noisy

habitat and ambiguity.

Despite the symbolic amount of newly recommended

algorithms in optimization field, there is an essential query

here as to why we need other optimization algorithms. This

query can be answered referring to no free lunch (NFL)

[38] theorem. It logically substantiates that no one can

recommend a method for solving all optimization prob-

lems. In other words, it cannot be assured that the

achievement of an algorithm in solving a definitive set of

problems could solve every optimization problem with

different nature and type.

A novel optimization algorithm called hybrid sine–

cosine algorithm with teaching–learning-based optimiza-

tion algorithm (SCA–TLBO) is proposed in this paper, for

solving optimization problems and visual tracking. The

performance of hybrid SCA–TLBO is benchmarked in

following three test phases. In the first phase, a set of

eminent test functions comprising of unimodal, multimodal

and fixed-dimension multimodal functions is used to verify

convergence, exploitation, exploration and local optima

avoidance of hybrid SCA–TLBO. In the second phase,

performance metrics (the best solutions and average fitness

of solution during optimization) are employed to qualita-

tively observe and substantiate the performance of hybrid

SCA–TLBO on shifted two-dimensional test functions. In

the final phase, the hybrid SCA–TLBO algorithm is applied

for visual tracking as a real thought-provoking case study

to demonstrate and verify the performance of this algo-

rithm in practice. The hybrid SCA–TLBO-based tracking

framework is used to experimentally measure object

tracking error, absolute error, tracking detection rate, root

mean square error and time cost as parameters. A com-

parison of hybrid SCA–TLBO-based tracking framework

and three probability-based trackers, viz. alpha–beta (a–b)

filter, linear Kalman filter (LKF) and extended Kalman

filter (EKF), particle filter (PF), scale-invariant feature

transform (SIFT), particle swarm optimization (PSO) and

bat algorithm (BA), is presented to unveil the capability of

proposed algorithm.

The organization of this paper is as follows. The basics

of SCA and TLBO are briefly introduced in Sect. 2. The

proposed algorithm is presented in Sect. 3. Section 4 deals
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with the evaluation of proposed algorithm using twenty-

three well-known benchmark functions. Application of

hybrid SCA–TLBO for visual tracking is proposed in

Sect. 5. Finally, the conclusion is given in Sect. 6.

2 SCA and TLBO

In this section, basic theories of SCA and TLBO are

introduced, followed by a detailed introduction of hybrid

SCA–TLBO algorithm in the next section.

2.1 Basic of SCA

The sine–cosine algorithm (SCA) is a new metaheuristic

algorithm [39], and the solutions are updated based on the

sine or cosine function as in Eqs. (5) or (6), respectively:

X
gþ1
i ¼ X

g
i þ r1 � sin r2ð Þ � r3 P

g
i �X

g
ij j ð5Þ

X
gþ1
i ¼ X

g
i þ r1 � cos r2ð Þ � r3P

g
i � X

g
ij j ð6Þ

In general, the above two functions are combined into

one function as in the following equation [39]:

X
gþ1
i ¼ X

g
i þ r1 � sin r2ð Þ � r3 P

g
i �X

g
ij j; r4 \0:5

X
g
i þ r1 � cos r2ð Þ � r3 P

g
i �X

g
ij j; r4 � 0:5

(

ð7Þ

where Xi
g?1 is the location of the present solution with ith

dimension and gth generation or iteration, Pi is the desti-

nation solution with ith dimension, |�| specifies the absolute

cost and r1, r2, r3 and r4 are random variables. The effects

of sine and cosine on Eqs. (5) and (6) are shown in Fig. 1;

it shows how the equations describe a space amidst two

solutions in the search area.

The parameter r1 is a random variable which responsible

for determining the area of the next solution; this area may

be either outside space between Xi and Pi or inside them. In

[39], the authors update the parameter r1 using Eq. (8) to

balance exploration and exploitation [40].

r1 ¼ a� a
g

G

� �
ð8Þ

where a is constant defined by the user, G is the maximum

number of generations and g is the current generation.

The r2 is a random variable which used to find the

direction of the movement of the next solution (i.e., if it

toward or outwards Pi). Also, the r3 is a random variable

which gives random weights for Pi in order to stochasti-

cally de-emphasize (r3\ 1) or emphasize (r3[ 1) the

effect of desalination in defining the distance. The r4 is

used to switch between the sine and cosine functions as in

Eq. (7). A theoretical model of the things of the sine and

cosine functions with the range in [- 2, 2] is shown in

Fig. 2.

2.2 Basic of TLBO

Rao et al. [24, 25] proposed a new population-based opti-

mization algorithm called TLBO, inspired by the philoso-

phy of teaching and learning, for the optimization of

mechanical design problems. The main idea behind TLBO

is the imitation of a traditional learning process consisting

of a teacher phase and a learner phase. In the teacher phase,

the teacher distributes his knowledge to all students (i.e.,

students learn from the teacher), whereas in the learner

phase, students learn with the help of fellow students (i.e.,

students learn through interaction with other students).

Under TLBO, the population is considered to be a group or

class of learners. In optimization algorithms, the population

consists of different design variables. A detailed descrip-

tion of TLBO can be found in [24, 25]. In this paper, only

the two most important phases of the algorithm are

considered.

2.2.1 Teacher phase

The teacher can be considered to be the most educated

individual in the society. Hence, the student with the

highest marks acts as a teacher during the teacher phase.

The teacher tries to build up the mean of the class to her

level. This, however, depends on the learning efficiency of

the class. This is expressed as

Xitemp
¼ Xi þrandom � Teacher � TF � meanð Þ ð9Þ

where TF is the teaching factor that decides the value of

mean to be changed and mean is the average of the class.

TF can be either 1 or 2, (1 means student learns nothing

from the teacher, and 2 means student learns everything

from the teacher) which is again a heuristic step and

decided randomly with equal probability as

TF ¼ ceil ½0:5 þ random�. The new solution, Xitemp
is

X (Solution)

Next Position region when r
1
<1

P (Destination)

Next Position region when r
1
>1

Fig. 1 Effects of sine and cosine in Eqs. (5) and (6) on the next

position
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accepted only if it is better than the previous solution, that

is,

Xi ¼ Xitemp
; f Xitemp

� �
[ f Xið Þ

Xi; otherwise

�
: ð10Þ

2.2.2 Learner phase

Teaching is not the only education students receive, but

they also learn by interacting with each other. This is

simulated in the learner phase. In each generation, two

students Xm and Xn interact with each other, with the

smarter one enhancing the others marks. It can be formu-

lated as

Xmtemp
¼ Xm þrandom � Xm �Xnð Þ; f Xmð Þ[ f Xnð Þ

Xm þrandom � Xn �Xmð Þ; f Xnð Þ[ f Xmð Þ

(

ð11Þ

In Eq. (11), (Xm - Xn) is taken as a step. The temporary

solution is accepted only if it is better than the previous

solution, that is,

Xm ¼ Xmtemp
; f Xmtemp

� �
[ f Xmð Þ

Xm; otherwise

�
: ð12Þ

3 Proposed algorithm

The hybridizing SCA with TLBO (hybrid SCA–TLBO) is

introduced in detail in this section. Both SCA and TLBO

are population-based algorithms with individuals being

considered as positions in SCA and learners in TLBO. In

SCA, the way algorithm moves toward the next position is

based on random and adaptive variables; therefore, the

satisfactory solution cannot always be found every time.

For some cases, SCA is well capable of making full use of

the population knowledge and has proved good perfor-

mance on some benchmark functions. However, some-

times, SCA may not proceed to the optimal solutions to

some complex problems. In order to overcome these dis-

advantages, the SCA method is hybridized with TLBO

algorithm to form a novel hybrid SCA–TLBO method. In

general, a hybrid metaheuristic method attempts to com-

bine two or more metaheuristic methods. This can fully

exert the useful features from the original algorithms. In

the proposed hybrid SCA–TLBO, the idea of TLBO is

introduced into the SCA in order to improve its search

ability.

In hybrid SCA–TLBO, standard SCA algorithm is uti-

lized to search globally for the purpose of making most

solution move toward a more promising area. After

exploration stage, TLBO algorithm is utilized to search

locally with a small step to get the final best solution.

Based on the mainframe of hybrid SCA–TLBO, the SCA

emphasizes the diversification at the beginning of the

search with a big step to explore the search space exten-

sively and evade trapping into local optima, while later

TLBO algorithm focuses on the intensification and lets the

individuals move toward the best solution at the later stage

of the optimization process. Also, this method can cope

with the conflict global and local search effectively.

Initially, it evaluated the fitness of each learner and

obtained the best solution (teacher). Assign the best solu-

tion to SCA as the position of the destination point in

Eq. 7. The process might be better understood by the

pseudocode, and the flow chart of hybrid SCA–TLBO is

shown in Figs. 3 and 4.

Fig. 2 Sine and cosine functions with the range in [- 2, 2] tolerate a solution to go beyond (outside the space among them) or around (inside the

space among them) the destination
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3.1 Steps of hybrid SCA–TLBO algorithm

The clear steps of the proposed hybrid SCA–TLBO algo-

rithm are presented below. Moreover, the detailed pseu-

docode and flow chart of hybrid SCA–TLBO are also

outlined in Figs. 3 and 4.

Step 1 Initialize the parameters of the algorithm, such as

maximum iteration or generation (G), number of search

agents (N), a, r2, r3, r4. The initial population is defined

as follows:

Fig. 3 Pseudocode of hybrid

SCA–TLBO
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Xi ¼ XMin þrand � XMax �XMinð Þ ð13Þ

where XMin and XMax are the lower bound and upper

bound of the variables, rand generates random numbers

uniformly between zero and one.

Step 2 Evaluate the fitness of all search agents (learners)

X, i.e., calculate the function values of X for all N and

choose the best fitness value to be the teacher (destina-

tion position) of the present generation.

Step 3 Generate r1 and teaching factor (TF) as follows:

Start

Initialize search agents (learners) 

Evaluate fitness of each agent (learner)

Update Teacher; r1, r2,  r3 and r4

r4 < 0.5 ( ) XrTeacherrrXX g
i

g
i

g
i −⋅+=+

321
1 *sin*( ) XrTeacherrrXX g

i
g
i

g
i −⋅+=+

321
1 *cos* YesNo

Select the best learner as teacher                   and calculate

Calculate            for learner i using Eq. (16);X newi ,

( ) ( )XfXf inewi <, XX newii ,=XX ii =

Perform neighborhood search using the Eq. (17) and update the learner

Select search agents randomly from the whole class                   ( )XX nm &

( ) ( )XfXf nm < ( )XXrandXX nmoldinewi −∗+= ,,( )XXrandXX mnoldinewi −∗+= ,,

Yes

Yes

No

No

( ) ( )XfXf inewi <, XX newii ,=XX ii = YesNo

Termination
criteria satisfied

Stop

Yes

No

( )X Teacher X g
mean

SCA 

Teacher Phase

Learner Phase 

Fig. 4 Flow chart of proposed hybrid SCA–TLBO algorithm
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r1 ¼ a� a
g

G

� �
ð14Þ

TF ¼ ceil ½0:5 þ random� ð15Þ

where g is the current generation.

Step 4 During the SCA, all the search agents are updated

according to Eq. (7), and the search agent solutions

which are accepted are passed to the teacher phase.

Step 5 For each search agent Xi, the teacher phase is

implemented as follows:

Xi;new ¼ Xi;old þrand � XTeacher �TF � Xg
mean

� �
ð16Þ

where Xi,old and Xi,new are the old and new positions of

the ith learner, rand is a random number, the search

agent or learner with the value of best fitness in the

present generation is chosen as XTeacher. If the ith search

agent’s new solution (or position) is best, then it will be

accepted; otherwise, the old one is unchanged.

Step 6 In case of the learner phase, each learner or

search agent can learn from their neighbors or the entire

class. The primary learning process ensures excellent

local search ability, and the next assures good global

searching characteristic. In case of neighborhood search,

choose a best search agent neighbor (Teacher(i)), select

a neighboring search agent (Xm) randomly and update

the search agents according to the following equation:

Xi;new ¼ Xi;old þrand � TeacherðiÞ � Xi;old

� �
þ rand

� Xm �Xi;old

� �
ð17Þ

Accept fitness value of Xi,new if it is enhanced; other-

wise, the position of learner’s remnant unchanged.

Step 7 Otherwise, select search agents randomly from

the total class, and update the search agents according to

the following Equations:

If Xm is better than Xn, then

Xi;new ¼ Xi;old þrand � Xm �Xnð Þ ð18Þ

Else

Xi;new ¼ Xi;old þrand � Xn �Xmð Þ ð19Þ

Step 8 If the new position or solution Xi,new is better than

the old one Xi,old, Xi,new will be accepted; otherwise, the

position of the ith search agent is unchanged. The

accepted search agent solutions are passed to the next

generation.

Step 9 If the stopping criteria are satisfied, then

terminate the process and print the final value of the

solution. Otherwise, go to Step 3.
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4 Experimental results and discussion

To check the efficiency of the proposed algorithm, the

hybrid SCA–TLBO algorithm is benchmarked with

twenty-three popular and classical benchmark functions

employed by many researchers [39, 41, 42]. The twenty-

three benchmark functions (shown in Table 1) can be

classified into three groups: unimodal, multimodal and

fixed-dimension multimodal benchmark functions. Hybrid

SCA–TLBO, SCA, PSO, DE and TLBO algorithms have

several parameters that should be initialized before run-

ning. Table 2 shows the initial values of the basic param-

eters for these algorithms. For SCA, TLBO and hybrid

SCA–TLBO, the same parameters are used.

The hybrid SCA–TLBO algorithm and other algorithms

(SCA, PSO, DE and TLBO) are simulated with the initial

population size NP = 30, 50 and 100 on each twenty-three

benchmark functions for comparison. The experimental

results are comprised of several statistical parameters, such

as average, standard deviation, median and worst of the

best-so-far solution in the last generation are reported.

Statistical parameter results are presented in

Tables 3, 4, 5, 6, 7 and 8. To check the efficiency of the

proposed algorithm, the same maximum number of gen-

erations and the same population size are set for all algo-

rithms. In the present work, the initial population size

NP = 30, 50 and 100 is selected. The outcomes are aver-

aged over initial population size, and the best outcomes are

shown in bold type in tables.

According to Derrac et al. [43], to improve the evalua-

tion of evolutionary algorithms achievement, statistical

tests should be conducted. A statistical analysis is essential

to verify that a proposed novel algorithm is offering a

significant advancement over other existing algorithms for

a particular problem.

4.1 Unimodal functions

The unimodal functions have no local solution, and there is

only one global solution. Consequently, they are used to

examine heuristic optimization algorithms in terms of

convergence rate. Functions F1–F7 are unimodal functions,

and the results for these unimodal functions are shown in

Tables 3, 4, 5, 6, 7 and 8. As given in these tables, the

hybrid SCA–TLBO outperforms the other algorithms on

the unimodal benchmark functions regarding the mean,

standard deviation, median and worst value of the results.

Therefore, this is evidence that the proposed algorithm has

high performance in finding the global solution of uni-

modal benchmark functions. Figure 5 shows the graphical

analysis results of the ANOVA tests.

4.2 Multimodal high-dimensional functions

For multimodal functions F8–F13 with many local minima,

the final results are more important because this function

can reflect the algorithm’s ability to escape from poor local

optima and obtain the near-global optimum. We have tes-

ted the experiments on F8–F13 where the number of local

minima increases exponentially as long as the dimension of

the function increases. As the results of mean, standard

deviation, median and the worst value are shown in

Tables 3, 4, 5, 6, 7 and 8, the hybrid SCA–TLBO per-

forms better than the other algorithms on the multimodal

high-dimensional benchmark functions.

Table 2 Initial parameters for hybrid SCA–TLBO, SCA, PSO, DE and TLBO (rand: random number between [0, 1])

SCA PSO DE TLBO

Parameters Values Parameters Values Parameters Values Parameters Values

Number of search

agents (NP)

30, 50, 100 Number of

particles (NP)

30, 50, 100 Number of search

agents (NP)

30, 50, 100 Population

size (NP)

30, 50, 100

r2 2p 9 rand w Varies linearly

0.9–0.4

Scaling factor (beta) 0.2–0.8 TF 1 or 2

r3 2 9 rand C1 2 Crossover

probability (pCR)

0.2 Random e [0,1]

r4 Rand C2 2 Max generation 1000 Max

generation

1000

Max generation 1000 Vmax 4 Stopping criterion Max

generation

Stopping

criterion

Max

generation

a 2 Stopping

criterion

Max generation

Stopping criterion Max

generation
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4.3 Multimodal low-dimensional functions

For F14–F23 with only a few local minima, the dimension

of the function is also small. The significant difference

compared with functions F8–F13 is that functions F14–F23

appear to be simpler than F8–F13 due to their low dimen-

sionalities and a lower number of local minima. As the

results of mean, standard deviation, median and the worst

value are shown in Tables 3, 4, 5, 6, 7 and 8, the hybrid

SCA–TLBO performs better than the other algorithms on

the multimodal low-dimensional benchmark functions.

4.4 Convergence behavior analysis

To confirm the convergence of the hybrid SCA–TLBO

algorithm, two metrics are employed: convergence rate and

average fitness of all search agents.

Figure 6 show the convergence rate of the of the hybrid

SCA–TLBO, SCA, PSO, DE and TLBO algorithms for func-

tionsF1–F23. The fitness of the best solution in each generation is

saved and drawn as the convergence curves in Fig. 6. As evident

from the Fig. 6, the proposed hybrid SCA–TLBO algorithm

gives optimum solution for functions F1, F2, F3, F4 at the end of

first iteration itself. The descending trend is quite evident in the

convergence curves of hybrid SCA–TLBO on many of the test

functions investigated. This strongly proves the ability of the

hybrid SCA–TLBO algorithm in obtaining a better approxi-

mation of the global optimum over the course of generations.

Figure 7a, b shows a quantitative measure and averages the

fitness of all search agents in each generation. If an algorithm

improves its candidate solutions, apparently, the average of

fitness should be enhanced over the course of generations. As

the average fitness curves in Fig. 7a, b suggest, the hybrid

SCA–TLBO algorithm shows degrading fitness on all of the

test functions. Another fact worth mentioning here is the

accelerated decrease in the average fitness curves, which

shows that the improvement of the candidate solutions

becomes faster and better over the course of generations.

5 Application of hybrid SCA–TLBO for visual
tracking

The computer vision is the advancement of science and

technology that include methods for acquiring, processing,

analyzing and understanding images. As a scientific

Table 5 Minimization results of twenty-three benchmark functions with initial population size NP = 50

Function SCA–TLBO SCA PSO DE TLBO

Ave SD Ave SD Ave SD Ave SD Ave SD

F1 0 0 3.49E-32 6.90E-32 0.90315 1.1512 6.96E-42 1.08E-41 2.99E-219 0

F2 0 0 3.41E-21 9.41E-21 0.3673 0.27514 1.63E-24 9.17E-25 1.26E-109 1.14E-109

F3 0 0 7.20E-15 1.29E-14 37.2915 33.5569 0.22967 0.11196 1.93E-96 4.90E-96

F4 0 0 3.95E-11 4.50E-11 3.5424 1.8715 2.26E-07 1.16E-07 3.00E-92 3.26E-92

F5 4.3248 0.16152 6.7985 0.36179 91.5765 74.5071 1.5134 1.5438 0.028543 0.077837

F6 0 0 0.32168 0.17546 1.0488 1.0618 6.88E-23 8.17E-22 6.16E-34 1.30E-33

F7 0.00022126 6.03E205 0.000683 0.000561 0.005534 0.006057 0.00278 0.0008253 0.0021902 1.10E-03

F8 - 3620.1876 91.3188 - 2302.54 93.9009 - 3986.04 1688.182 - 4189.83 0 - 3682.985 180.3579

F9 0 0 0.000288 0.000912 22.448 11.5368 0 0 1.99 2.2494

F10 3.02E216 0 4.80E-15 1.12E-15 3.0004 1.1084 4.44E-15 0 4.44E-15 0

F11 0 0 4.17E-10 1.32E-09 0.67802 0.16914 0 0 0.0025027 0.0077556

F12 4.63E-08 2.17E-08 0.062079 0.019957 2.4396 1.1245 4.71E-32 1.15E-47 4.76E-32 1.21E-33

F13 2.19E-07 1.09E-07 0.20168 0.080588 0.31852 0.34653 1.35E-32 2.89E-48 1.35E-32 2.89E-48

F14 0.998 0 1.3935 0.75823 1.1964 0.62743 0.998 0 0.998 0

F15 0.00038276 1.29E-06 0.000792 0.000468 0.000647 0.000488 0.000605 7.84E-05 0.0003079 0.00023803

F16 - 1.0316 0 - 1.0316 1.25E-05 - 1.0316 0.00E?00 - 1.0316 0 - 1.0316 0

F17 0.39789 0 0.39838 0.00041 0.39789 0 0.39789 0 0.39789 0

F18 3 0 3 1.91E-06 3 3.63E-16 3 6.10E-16 3 2.96E-16

F19 - 3.8628 0 - 3.8546 0.000291 - 3.8628 8.50E-16 - 3.8628 9.36E-16 - 3.8628 9.36E-16

F20 - 3.322 1.03E204 - 3.0678 0.060446 - 3.2982 0.050136 - 3.322 0.0013901 - 3.2483 0.08567

F21 - 10.1532 0 - 3.5548 2.4856 - 5.8911 3.1247 - 10.1532 3.08E-15 - 10.1532 1.18E-15

F22 - 10.4029 1.18E215 - 3.7603 2.5092 - 5.9614 3.9106 - 10.4029 2.37E-15 - 10.4029 1.32E-15

F23 - 10.5364 1.78E215 - 4.6381 0.77997 - 5.9094 3.3467 - 10.5364 1.79E-15 - 10.5364 2.13E-15

Bold values represent best results
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discipline, computer vision is fretful with the theory behind

artificial systems that excerpt information from images.

The image data can take various forms, such as video

sequences, views from many cameras or multi-dimensional

data from a medical scanner. As a scientific discipline,

computer vision pursues to relate its theories and models to

the design of computer vision systems. Many applications

include: uses in security and surveillance, video commu-

nication and compression, navigation, display technology,

high-level video analysis, traffic control, metrology, video

editing, augmented reality and human–computer interfaces

to medical imaging [44, 45]. Given the most important

state (e.g., position and velocity) of a target object in the

leading image, the objective of visual tracking is to esti-

mate the states of the target in the subsequent frames. Even

though visual tracking has been studied for more than a few

decades and significant evolution has been made in recent

years [46–51], it remains a challenging problem.

5.1 Optimization-based tracking system

Essentially, the tracking of an object in video sequences or

the issue of tracing the target in every frame can be inferred

as an optimization problem. The observation distance

amidst the candidate and target forms a similarity function

(fitness function). Tracing the target can be inferred as

maximizing or minimizing the similarity function in the

candidate solution. In this view, visual tracking, as an

optimization problem, can be accomplished using opti-

mization methods.

In order to compare the tracking achievement of opti-

mization-based trackers, a general optimization-based

tracking framework is designed to which other optimizers

could also be applied. Tracking framework using the

proposed hybrid SCA–TLBO algorithm is designed as

shown in Fig. 8.

The target is preferred by the user or detected by some

distinct object detectors in the first frame. Then, the state

vector is initialized. The state vector in our work is defined

as X = [x, y, s], where x, y is the target position in pixel

coordinates and s represents the scale parameter that

restraints the size of the object. Then, after the target is

selected in the first frame the state vector is initialized as

X0 = [x0, y0, 1], where x0, y0 is the target’s initial location

and s = 1 specifies that there is no scale variation in the

first frame.

After selection of target and initialization of state vector,

a dynamic model produces new candidates’ state vectors.

Here, the random walk model is applied considering that

there is very little movement of the object among frames.

[Note: the vector can also be initialized using one of the

motion models like constant velocity (CV) model or con-

stant acceleration (CA) model, and in this instance, the

state vector is a 5D problem]. In this work, a simple motion

model is preferred to compare the novel method with the

KF, a–b filter, EKF and BA. The correlation between the

appearance and the state of the object is interpreted using

an observation model. As known to all, a good observation

model is essential to a tracker, but it is not easy to choose a

certain observation model for all tracking scenarios. In this

work, we are more concerned with the search performance,

so we selected a standard kernel-based spatial color his-

togram [47] as the observation model.

Let {ci}i=1,…,n be the normalized pixel locations of the

target candidate, centered at c in the present frame.

r = (hx, hy), where hx and hy, respectively, denote the

width and the height of the target’s rectangle. The kernel-

based spatial color histogram is given by

Fig. 5 ANOVA tests of the global minimum values, which are computed by using the SCA–TLBO, SCA, PSO, DE and TLBO for functions F1,

F4, respectively

Neural Computing and Applications (2019) 31:5497–5526 5513

123



F1 F2 F3 F4

F5 F6 F7 F8

F9 F10 F11 F12

F13 F14 F15 F16

F17 F18 F19 F20

F21 F22 F23 

200 400 600 800 1000

10
-200

10
-100

10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000

10
-100

10
-50

10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000

10
-50

10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000

10
-50

10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000

10
0

10
2

10
4

10
6

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000

10
-30

10
-20

10
-10

10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000
10

-4

10
-2

10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000

-10
4

-10
3 Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000

10
-10

10
-5

10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000
10

-15

10
-10

10
-5

10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000

10
-15

10
-10

10
-5

10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000
10

-30

10
-20

10
-10

10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000

10
-30

10
-20

10
-10

10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000
10

0

10
1

10
2

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1
Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000
-1

-0.5

0

0.5

1

1.5

2

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r
SCATLBO

SCA

DE

TLBO

PSO

10 20 30
-1

0

1

2

200 400 600 800 1000
10

-0.4

10
-0.2

10
0

10
0.2

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000

10
1

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO

SCA

DE

TLBO

PSO

10 20 30
0

10

20

30

200 400 600 800 1000

-10
0.54

-10
0.55

-10
0.56

-10
0.57

-10
0.58

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000

-10
0.2

-10
0.3

-10
0.4

-10
0.5

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000
-10

1

-10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000
-10

1

-10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

200 400 600 800 1000
-10

1

-10
0

Convergence curve

Iteration

B
es

t v
al

ue
 o

bt
ai

ne
d 

so
 fa

r

SCATLBO
SCA
DE
TLBO
PSO

Fig. 6 Comparison between convergence curves of the SCA–TLBO, SCA, PSO, DE and TLBO algorithms for functions F1–F23, respectively

5514 Neural Computing and Applications (2019) 31:5497–5526

123



100 200 300 400 500 600 700 800 900 1000

10
-300

10
-200

10
-100

10
0

F1

A
ve

ra
ge

 v
al

ue
 o

bt
ai

ne
d 

in
 e

ac
h 

Ite
ra

tio
n

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000

10
-300

10
-200

10
-100

10
0

F2

A
ve

ra
ge

 v
al

ue
 o

bt
ai

ne
d 

in
 e

ac
h 

Ite
ra

tio
n

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000

10
-300

10
-200

10
-100

10
0

F3

A
ve

ra
ge

 v
al

ue
 o

bt
ai

ne
d 

in
 e

ac
h 

Ite
ra

tio
n

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000

10
-300

10
-200

10
-100

10
0

F4

A
ve

ra
ge

 v
al

ue
 o

bt
ai

ne
d 

in
 e

ac
h 

Ite
ra

tio
n

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000

10
0

10
5

10
10

F5

Iteration

A
ve

ra
ge

 v
al

ue
 o

bt
ai

ne
d 

in
 e

ac
h 

Ite
ra

tio
n

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000

10
-30

10
-20

10
-10

10
0

F6

Iteration

A
ve

ra
ge

 v
al

ue
 o

bt
ai

ne
d 

in
 e

ac
h 

Ite
ra

tio
n

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000

10
0

10
5

F7

Iteration

A
ve

ra
ge

 v
al

ue
 o

bt
ai

ne
d 

in
 e

ac
h 

Ite
ra

tio
n

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000
-4000

-3000

-2000

-1000

0

1000

F8

Iteration

A
ve

ra
ge

 v
al

ue
 o

bt
ai

ne
d 

in
 e

ac
h 

Ite
ra

tio
n

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

F9

Iteration

A
ve

ra
ge

 v
al

ue
 o

bt
ai

ne
d 

in
 e

ac
h 

Ite
ra

tio
n

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000

10
-10

10
-5

10
0

F10

Iteration

A
ve

ra
ge

 v
al

ue
 o

bt
ai

ne
d 

in
 e

ac
h 

Ite
ra

tio
n

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

4 F11

Iteration

A
ve

ra
ge

 v
al

ue
 o

bt
ai

ne
d 

in
 e

ac
h 

Ite
ra

tio
n

SCATLBO
SCA
DE
TLBO
PSO

100 200 300 400 500 600 700 800 900 1000

10
-20

10
0

F12

Iteration

A
ve

ra
ge

 v
al

ue
 o

bt
ai

ne
d 

in
 e

ac
h 

Ite
ra

tio
n

SCATLBO
SCA
DE
TLBO
PSO

IterationIteration

Iteration Iteration

(a)

Fig. 7 Comparison of average fitness of search agents during optimization of the SCA–TLBO, SCA, PSO, DE and TLBO algorithms
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pðuÞ
c Xkð Þ ¼ C

XM
i¼1

k
c� ci

r

��� ���2
 �

d b cið Þ � u½ �;

u ¼ 1; . . .;m

ð20Þ

where d is the Kronecker delta function. The function

b:R2 ? {1, …, m} associates with the pixel at the location

ci and the index b(ci) of its bin in the quantized feature

space. k(x) is an isotropic kernel assigning a smaller weight

to pixels farther from the center. C ¼ 1=
PM

i¼1 k
c�ci
r

�� ��2
� �

is the normalization constant.

When the state vector is described, a similarity (fitness)

function is employed to calculate the observation distance

between the candidate and target. Generally, the Bhat-

tacharyya coefficient is employed to calculate the similarity

between two histograms [47, 52]. It is given by,

B h1; h2ð Þ ¼ 1 �
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1ðiÞ h2ðiÞ

p
ð21Þ

where N is the number of bins in the histograms and h1 and

h2 are the histograms being compared. The coefficient

B(h1, h2) is big when the histograms are alike and small

when they are very unlike.

The dashed box in Fig. 8 represents the optimization

process. This is the core part of the optimization-based

visual tracking algorithm. In this part, an optimizer is

adopted to select the candidate solution. This way can be

carried out by maximizing or minimizing the similarity

function. Each time the optimizer is queried for the target

position, and the frame is displayed to indicate the position

of the target. The entire loop extends until no other frame is

available.

5.2 Experiments and discussion

5.2.1 Experimental setup details

In this work, we implemented our tracker in MATLAB

R2013a software on PC machine with Intel i7-3770 CPU

(3.4 GHz) with 2 GB memory, which runs 29 fps on this

platform. The self-made video for the experiment consists

of JPEG image sequence with 720 9 1280 pixels per frame

resolution. The environment for the bad light condition is

created by switching off all the lights in the room (im-

proper illumination), while the environment is considered

as a normal light condition when the room is properly

illuminated. The distance considered for tracking the target

object is approximately 6 m with target objects being balls

of different sizes (small, medium and big) whose radii are

3.325, 4.9 and 8.5 cm, respectively.

5.2.2 Performance measures

5.2.2.1 Absolute error (AE) AE is the magnitude of the

difference between the true value and the tracked value of

the object.

AE ¼ xtrue � xtrackedj j ð22Þ

where xtrue is the true value of object parameters and xtracked

is the tracked value of the object parameters.

5.2.2.2 Root mean square error (RMSE) RMSE is one of

the most widely used full-reference quality assessment

metrics, which are computed by the square root of the

average of squared intensity differences between tracked

xtracked and true image pixels xtrue

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NM

XN
n¼1

XM
m¼1

xtracked � xtrueð Þ2

vuut ð23Þ

where N and M are the image dimensions.

5.2.2.3 Tracking detection rate (TDR) Tracking detection

rate is the ratio of a number of frames in which the object is

detected to the total number of frames in which the object

present

TDR ¼ Object detected in number of frames

Object present in number of frames
� 100:

ð24Þ

5.2.2.4 Object tracking error (OTE) Object tracking error

is the normal inconsistency in the centroid of the tracked

object from its true value. It is given by,

OTE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 xtrue � xtrackedð Þ2 � ytrue � ytrackedð Þ2

q
N

ð25Þ

where xtrue and ytrue are the actual 2D coordinates of the

object, and xtracked and ytracked are the tracked 2D coordi-

nates of the object.

The proposed hybrid SCA–TLBO-based tracking

framework is used to experimentally measure object tracking

error, absolute error, tracking detection rate, root mean

square error and time cost as parameters for hybrid SCA–

TLBO. To reveal the capability of tracker proposed in this

work, a comparison of hybrid SCA–TLBO-based tracker and

three probability-based trackers, viz. alpha–beta (a–b) filter

[53], linear Kalman filter (LKF) [54], extended Kalman filter

(EKF) [54] and bat algorithm (BA) [52], is presented. The a–

b, LKF, EKF and BA have several parameters that should be

initialized before tracking. Table 9 shows the initial values

of basic parameters for these algorithms.
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The RMSE, AE and OTEs of the hybrid SCA–TLBO,

a–b filter, LKF, EKF and BA for different-size balls’

dataset are given in Table 10 under normal light condition.

As observed in Table 10, under the normal light condition,

the average value of the RMSE was reduced after applying

the hybrid SCA–TLBO to small-, medium- and big-size

balls’ data. On average, the minimum RMSE reduction was

0.01, 0.01 and 0.02 for small-, medium- and big-size balls’

data, respectively, under normal light conditions for the

hybrid SCA–TLBO algorithm. The average value of AE

was reduced after applying the hybrid SCA–TLBO to

small-, medium- and big-size balls’ data. On average, the

minimum AE was 0.06, 0.10 and 0.14 for small-, medium-

and big-size balls’ data, respectively, under normal light

conditions for the hybrid SCA–TLBO algorithm. Also, the

average value of the OTE was reduced after applying the

hybrid SCA–TLBO to small-, medium- and big-size balls’

data. On average, the minimum OTE was 0.01, 0.02 and

0.04 for small-, medium- and big-size balls’ data, respec-

tively, under normal light conditions for the hybrid SCA–

TLBO algorithm.

The RMSE, AE and OTEs of the hybrid SCA–TLBO,

a–b filter, LKF, EKF and BA for only small-size balls’

dataset are given in Table 10 under bad light condition. As

Target/candidates representation based on the 
observation model.

Obtain the similarity function by calculating the 
observations distance between the target and the 

candidate.

Minimize or maximize the similarity function 
in the candidate solution using the 

Hybrid SCA-TLBO

Display the frame indicating the location of the 
target

Select the best candidate and return the 
corresponding location

The last frame?

Stop

Yes

No

The first frame? Choose the target, establish the initial state 
vector 

Acquire the candidate based on the motion 
model

Yes

No

Start

Image
Stream

Fig. 8 Proposed hybrid SCA–TLBO-based tracking framework
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observed in Table 10, under the bad light condition, the

average value of the AE, RMSE and OTE was reduced

after applying the hybrid SCA–TLBO to small ball data.

On average, the minimum AE, RMSE and OTE were 0.08,

0.01 and 0.01 for small ball data, respectively, under the

bad light condition for the hybrid SCA–TLBO algorithm.

The best average values are emphasized in Table 10.

bFig. 9 a Tracking result of hybrid SCA–TLBO for the small-size ball

(6, 10, 21, 25 and 31 frames) under normal light condition. b Tracking

result of hybrid SCA–TLBO for the medium-size ball (11, 15, 31, 36

and 52 frames) under normal light condition. c Tracking result of

hybrid SCA–TLBO for the big-size ball (16, 25, 39, 44 and 55

frames) under normal light condition. d Tracking result of hybrid

SCA–TLBO for the small-size ball (24, 28, 36, 40 and 52 frames)

under bad light condition

Table 11 Average time cost of

the five trackers for different

sizes of balls under normal and

bad light conditions

Image frames Time cost (ms) BA

SCA–TLBO a–b LKF EKF

Normal light condition Small-size ball 29.3 48.9 32.9 48.1 32.5

Medium-size ball 25.2 27.0 29.7 29.1 29.3

Bad light condition Big-size ball 24.7 30.0 28.7 28.4 27.8

Small-size ball 21.0 25.6 24.9 25.7 23.6

Bold values represent best results

Table 12 Description of the tracking examples

Video Frame

numbers

Challenging factors

David 252 Occlusion (OCC), background clutters (BC), out-of-plane rotation (OPR), deformation (DEF)

Panda 1000 Scale variation (SV), occlusion (OCC), deformation (DEF), in-plane rotation (IPR), out-of-plane rotation (OPR),

out of view (OV), low resolution (LR)

Subway 175 Occlusion (OCC), deformation (DEF), background clutters (BC)

Mountain

Bike

228 In-plane rotation (IPR), background clutters (BC), out-of-plane rotation (OPR)

Boy 602 Scale variation (SV), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-plane rotation (OPR)

Crossing 120 Scale variation (SV), background clutters (BC), deformation (DEF), fast motion (FM), out-of-plane rotation (OPR)

Car 1500 Illumination variation (IV), scale variation (SV), background clutters (BC)

Couple 140 Scale variation (SV), deformation (DEF), fast motion (FM), out-of-plane rotation (OPR), background clutters (BC)
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Fig. 10 Comparison of tracking performance with different population size NP
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PF SIFT PSO BA SCA-TLBO

Fig. 11 Tracking result of PF, SIFT, PSO, BA and hybrid SCA–TLBO trackers for David, Panda, Subway, Mountain Bike, Boy, Crossing, Car

and Couple Video sequences (from top to bottom)
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Fig. 12 Tracking accuracy comparisons of different trackers for David, Panda, Subway, Mountain Bike, Boy, Crossing, Car and Couple Video

sequences
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Figure 9a–c shows five frames out of the tracking results

for small-, medium- and big-size balls’ data under the

normal light condition, and Fig. 9d shows under the bad

light condition of the proposed hybrid SCA–TLBO algo-

rithm. The proposed approach was evaluated using a self-

made database, with the frame size being 720 9 1280.

Frames shown in the figure were selected from the video

while tracking the object continuously during its move-

ment. The target object is marked by the bounding box (red

circle). For normal light condition, in frames 25 and 31 of

Fig. 9a, the target object tracked using hybrid SCA–TLBO

is dominated by the red bounding box as the camera is

static and the size of the object is reduced with distance.

Even though the target object is small, the proposed

tracking algorithm can detect the object (small ball)

nevertheless.

For bad light condition, in frames 40 and 52 of Fig. 9d,

the target object tracked using hybrid SCA–TLBO is

dominated by the red bounding box as the camera is static

and the size of the object is reduced with distance. Even

though the target object is small, the proposed tracking

algorithm can detect the object (small ball) under bad light

condition.

To analyze the time complexity, the average time costs

of the five trackers in the tracking process are calculated,

and the comparative results are shown in Table 11.

Table 11 shows that in all tracking examples (e.g., small-,

medium- and big-size balls’ data), the average time cost of

hybrid SCA–TLBO is less than alpha–beta (a–b) filter,

linear Kalman Filter, extended Kalman filter and bat

algorithm.

To illustrate the efficiency of hybrid SCA–TLBO more

clearly, the proposed algorithm is also compared with four

other tracking algorithms including particle filter (PF) [55],

scale-invariant feature transform (SIFT) [56], particle

swarm optimization (PSO) [57] and bat algorithm (BA)

[52]. To carry on the comparison, some videos [58] which

cover all challenging factors are selected and used for

evaluation. (Note: the tracking examples are available on

the Web site http://visual-tracking.net.) The targets in these

cases are suffered from various challenging factors as

depicted in Table 12.

In hybrid SCA–TLBO, we used different population

sizes (NP) from 5 to 50 and found that it is sufficient to use

15–20 population sizes for most tracking problems. The

performance is evaluated using two measures, some of lost

targets, i.e., the number of frames where the overlap region

between its bounding box and the ground truth is less than

50%, and time complexity, i.e., the average time costs

(ms). Figure 10 shows the performance comparison using

different values of NP. Figure 10 shows that there is a

general trend that when NP increases, the number of lost

targets decreases and the time cost increases. This means

that the increasing population size enhances the tracking

accuracy and makes the tracker more time-consuming.

Therefore, we have used the fixed population size of

NP = 20 in all our experiments. Like in [47, 52], the

optimization process was ended by using three termination

conditions as follows:

• The fitness of fworst (the worst solution) is good enough.

• The fbest (best solution) is also good enough and the

Euclidean distance between the best and the lowest

solution (d) is below a certain threshold.

• A maximum number of iterations or generations

reached the algorithm ends and is set as 100 in this

work.

It is worth mentioning that the values used in the first

two conditions rely heavily on the fitness function, and in

this case, it is the Bhattacharyya coefficient as mentioned

in [47, 52]. Experimental results showed a general ten-

dency that a region with Bhattacharyya coefficient being

higher than 0.6 could mainly represent the target. There-

fore, to be on the safe side, in the first termination condi-

tion, the value of (fworst) is set as 0.6 to guarantee that all

the potential solutions are close to the actual target. To

ensure all candidates close together with the best candidate

near the target, we set (fbest) as 0.8 and the distance d is 5.

Same target model and motion model are used for fair

comparison.

Tracking result of hybrid SCA–TLBO for David, Panda,

Subway, Mountain Bike, Boy, Crossing, Car and Couple

Video sequences are shown in Fig. 11, and experimental

results depict that the hybrid SCA–TLBO-based tracker is

capable of tracking a random target in various challenging

situations. For evaluating the accuracy of trackers, by

identifying the center of the tracked target in each frame

visually, the videos have been manually labeled. Then, the

Euclidean distance between the center estimated by the

trackers and the actual center is calculated and is used as

accuracy measure. The results of the comparison are shown

in Fig. 12. Figure 12 shows that the hybrid SCA–TLBO-

based tracker performs better in all challenging conditions.

It is capable of successfully tracking the target during the

whole tracking process.

6 Conclusion

In this paper, a novel optimization algorithm called hybrid

SCA–TLBO is proposed, for solving optimization prob-

lems and visual tracking. This algorithm is tested using

twenty-three eminent test functions. The experimental

results show that the performance of the proposed algo-

rithm is superior to that of the other existing algorithms in

exploiting the optimum and it also has advantages in
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exploration. The performance measures show that the

hybrid SCA–TLBO algorithm possesses a better capability

to track an object as compared to other trackers.
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