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Abstract
The main focus of this paper is to develop a new safety-based restricted fixed charge solid transportation problem with type-2

fuzzy parameter thatminimizes both cost and time.Herewe developmainly twomodels, the first one has cost and time as type-

2 fuzzy variables and the second one has cost, time and all the other parameters of the solid transportation problem as type-2

fuzzy variables. We also consider restrictions on the amount of transport goods. Both of these models are solved by two

different techniques. First is using the usual credibilitymeasure, and second is the generalized credibilitymeasure. For the first

technique,we use critical value (CV)-based reductionmethod to reduce a type-2 fuzzy set into a type-1 fuzzy set and then apply

the centroid method to this reduced fuzzy set to find the corresponding crisp value. In the second case, a chance constrained

programming model based on generalized credibility has been developed with the help of CV-based reduction method. The

equivalent parametric programming problem in deterministic form is then solved under the weighted mean programming

technique framework, the global criteriamethod andwith the help of LINGO13.0 software. Lastly, we have provided two real-

life-based numerical examples to illustrate the models and also validate the results with the existing work. Some sensitivity

analyses for the models are also presented with some logical comments. Finally the effects of total cost and time due to the

changes of credibility levels of cost, time, demand, source, conveyance and safety are discussed.

Keywords Solid transportation problem � Type-2 fuzzy variable � Credibility measure � Critical value � Weighted mean

programming technique � Safety constraint

1 Introduction

Transportation problem (TP) was formulated as a problem

of linear programming problem (LPP), first by Hitchock [1]

and then Balinski [2]. It is one of the most important and

practical applications-based areas of operations research.

The objective of TP is to transport various amounts of a

single homogenous commodity, initially stored in different

sources (or origins), to different destinations in such a way

that the total cost of transporting is minimized. For this

problem, the following information is needed.

• Available amounts of the commodity at different

origins.

• Amounts demanded at different destinations.

• The transportation costs of a unit of commodity from

various origins to various destinations.

Mathematically the transportation problem is stated as

Minimize z ¼ Cx

Subject toAx ¼ b; x� 0

where C is a row vector, x is a column vector. A ¼
a11; a12; . . .; amn½ � the coefficient matrix in which aij the

column vector associated with the variable xij and b a

& Amrit Das

das.amrit12@gmail.com

Uttam Kumar Bera

uttam.math@nita.ac.in

Manoranjan Maiti

mmaiti2005@yahoo.co.in

1 Department of Mathematics, National Institute of

Technology, Agartala, Barjala, Jirania, West Tripura 799046,

India

2 Department of Applied Mathematics, Vidyasagar University,

Midnapore, WB 721102, India

3 Present Address: Department of Mathematics, School of

Advanced Sciences, VIT University, Vellore, India

123

Neural Computing and Applications (2019) 31:4903–4927
https://doi.org/10.1007/s00521-018-03988-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-2586-8370
http://orcid.org/0000-0001-5426-7614
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-03988-8&amp;domain=pdf
https://doi.org/10.1007/s00521-018-03988-8


column vector that consists of mþ nð Þ components. Here

the constraint is of equal type constraint, but it can be less

or greater than type, and with these types of constraint, the

problem is called unbalanced transportation problem.

A transportation problem with three constraints viz.

source, destination and conveyance constraints is called a

solid transportation problem (STP), which was introduced

by Haley [3]. Recently STP has gained much attention to

the researchers for modeling in both fuzzy and crisp

environments. The data related to an STP may not be all

the time crisp in nature, it can be fuzzy due to the data

collected from multiple sources, absence of any informa-

tion about the data, fluctuating financial market, imperfect

statistical analysis. For this situation in STP, the fuzzy set

is appropriate to handle the fuzziness. Such type of STPs is

called fuzzy STP (FSTP). Kundu et al. [4], Liu [5], Ammar

et al. [6], Bit et al. [7], Ojha et al. [8] investigated different

models of FSTP. Recently, Kundu et al. [9] presented a

multi-item STP with type-2 fuzzy parameters. Mahapatra

et al. [10] investigated the transportation problem in

stochastic environment. For a TP considering safety factor

has now become an important issue. While transporting the

items from sources to destinations via different con-

veyances, it is natural to have some amounts of goods/

items lost/stolen, if there is no proper safety arrangement.

Regarding this recently Baidya et al. [11] presented a

multi-item interval valued STP with the safety measure

under fuzzy-stochastic environment, where they considered

a safety constraint in the mathematical model. Also by the

same authors in [12], different solution techniques for a

multi-item interval valued STP with safety measure have

been discussed. Sometimes in a transportation system, it

was found that, for a particular destination/route, a smaller

quantity of goods/items is available for transportation. This

transportation consumes some time, which brings an effect

in the total transportation time. Moreover, the decision

makers (DM) sometimes face problems like as traffic jams,

damage of transport items, extra tool cost. In such a situ-

ation for optimizing the total transportation time, DM can

put a restriction on the transported amount along a route.

This means that DM considers those destination/routes

where the transported amount is greater than or equal to the

desired amount p; otherwise, DM does not transport the

amount through that destination/route.

In transportation problem, ‘‘fixed charge’’ is charged for

different reasons, such as tax for interstate border crossing,

road permit fees, toll charges. These extra costs are totally

different from the unit transportation cost. Adlakha et al.

[13, 14], Xie et al. [15] and Raj et al. [16] presented fixed

charge transportation problems (FCTP). Yang et al.

[17, 18] and Ojha et al. [19] also presented fixed charge

STP. Recently Kundu et al. [20] investigated a fixed charge

transportation problem with type-2 fuzzy parameters. In

most of the fixed charge transportation problems,

researchers have considered fixed charge without any

restriction on it. But in real life, sometimes there may be a

case where fixed charges are restricted, for example,

restriction due to vehicles types, restriction for nature of

transported items, government concession rule for inter-

state transport policy, etc. So study of restricted fixed

charge in transportation problem will be definitely useful.

When a fixed charge is charged in a TP, then the corre-

sponding objective function may be stated as

Minimize z ¼ C þ Fð Þx

where F is an m� n row vector. Like fixed charge, many

factors can also be considered in the objective function,

e.g., safety cost, processing charge, different type of pen-

alty cost.

There are some classical methods such as northwest

corner method, row-minima method, column-minima

method, matrix-minima method, Vogel’s approximation

method to solve a TP. But for the three-dimensional for-

mulation, solution of STP using classical methods is not

possible in most cases. Normally a researcher depends on

soft computing to solve the STP. Here, we depict a scenario

of the literature development and solution procedures of TP

and STP in Table 1.

Therefore, the main issues related to real-life situation

which motivated us to make this research/study can be

identified as follows.

• Solid transportation problem, where different vehicles

are available for transportations of goods from sources

to destinations, is a common phenomenon in real-life

TPs.

• Transportation models with fixed charge are available

in the literature, where fixed charge is considered

without any kind of restriction. But in real-life situation,

there are some cases where this fixed charge is

restricted due to vehicle types, following Government

concession rule for interstate transport policy. For

example, two wheelers, Govt. vehicles, are normally

exempted from toll taxes (fixed charges). So consider-

ation of this restricted fixed charge in TP is a real-life

phenomenon.

• Time is an important factor in TPs. In some cases, less

transportation time saves/minimizes the wastage/break-

ability of items/dissatisfaction of customers, etc. So,

minimization of time along with the transportation cost

should be considered.

• In some real-life problems, transportation of little

amount of goods (less than a certain fixed amount)

through the routes is not feasible/beneficial in terms of

time or other factors. So, the restriction on the amounts
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of the transported goods is required for minimum total

transportation time.

• Safety is another important issue for the smooth

functioning of the transportation system. This is very

much relevant in the case of developing countries, like

Pakistan, India, and Afghanistan, where terrorism/

insurgency prevails. Hence in TPs, minimum safety

for transportation is required.

• In real-life TPs, along a particular route, all types of

vehicles cannot be used. For example, in a narrow path,

big vehicles cannot move. Hence, restrictions on some

vehicles along some particular routes are required.

• Moreover, the occurrence of impreciseness in trans-

portation system is often observed. On this matter, a

number of research works are available in the literature.

They have used different tools to handle this impre-

ciseness, for example, fuzzy, stochastic, random fuzzy,

uncertainty, type-2 fuzzy. Among these, type-2 fuzzy

furnishes more impreciseness. So use of triangular type-

2 fuzzy sets in transportation may be considered.

The above lacunas prompted us to consider the present

models in which the above factors have been taken into

account.

This paper mainly presents an easy and efficient

defuzzification method of general type-2 fuzzy sets and

introduces a new solid transportation problem based on

type-2 fuzzy sets that can handle uncertainty in a large

scale. For the first time, such a type of solid transportation

problem is investigated in this paper. Here we consider two

models with costs and times as type-2 fuzzy in one and in

another, time, cost and all other parameters are type-2

fuzzy. A two-stage defuzzification method of general type-

2 fuzzy sets is introduced with the help of CV-based

reduction method for type-2 fuzzy variable and centroid

method for type-1 fuzzy sets. We apply the usual and

general credibility to the models and then using the CV-

based reduction method and chance constrained program-

ming method, we completely defuzzify the type-2 fuzzy

parameters. The deterministic STPs are solved to get the

optimal solution by a nonlinear optimization technique—

generalized reduced gradient (GRG) method using LINGO

13.0 software. Four different numerical experiments are set

to illustrate the problems and techniques. Finally, sensi-

tivity analyses on the basis of different generalized credi-

bility levels are presented.

The organization of this paper is as follows. Section 1 is

introduction. Next in Sects. 2 and 3 both the models are

formulated. The solution techniques are defined in Sect. 4.

In Sect. 4 numerical experiments also are done for the

proposed models. The optimal results of numerical exper-

iments are given in Sect. 5. With two subsections named as

‘‘verification with the earlier works’’ and ‘‘sensitivity

analysis,’’ Sect. 6 named as ‘‘Discussions,’’ validates the

proposed methodology and the logical correctness.

Table 1 Some remarkable research works on TP/STP

Author(s),

references

Objective Nature Additional function Environments Solution

Yang et al. [17] Single-cost min STP Fixed charge Fuzzy HIA

Xie et al. [15] Single-cost min TP Fixed charge Crisp GA

Raj et al. [16] Two stage-cost min TP Fixed charge Crisp GA

Yang et al. [18] Multi-cost and time min STP Fixed charge Stochastic LINGO

Ojha et al. [8] Multi-cost and time min STP Entropy Fuzzy LINGO

Mahapatra et al. [10] Multi-choice TP – Stochastic LINGO

Ojha et al. [19] Single-cost min STP Entropy, fixed charge Fuzzy GA

Baidya et al. [11] Single-cost min STP Multi-item, safety factor Fuzzy-stochastic LINGO

Baidya et al. [12] Single-cost min STP Multi-item, safety factor Crisp, fuzzy, stochastic,

interval

LINGO

Kundu et al. [4] Multi-cost min STP Multi-item Fuzzy LINGO

Kundu et al. [20] Single-cost min TP Fixed charge Triangular type-2 fuzzy LINGO

Kundu et al. [9] Single-cost min STP Multi-item Triangular type-2 fuzzy LINGO

Dalman [39] Multi-cost min STP Multi-item Uncertain theory Maple

Chen et al. [40] Multi-cost and time min STP – Uncertain theory LINGO

Das et al. [41] Single-profit max STP – Rough interval LINGO

Das et al. [42] Single-cost min STP Multi-stage Gaussian type-2 fuzzy GA

Proposed Multi-cost and time min STP Restricted fixed charge and safety factor Triangular type-2 fuzzy LINGO
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Application to a real-life problem is discussed in Sect. 7.

Last Sect. 8 gives the conclusion and future scope.

Appendix is enclosed, which provides theorems and their

proofs with numerical examples. At the end a reference list

is attached.

2 Model-I formulation with type-2 fuzzy
parameters (time and cost are type-2
fuzzy variable)

Type-2 fuzzy sets generalize the type-1 fuzzy sets so that

more uncertainties can be handled. This concept was first

proposed by Zadeh [21] in 1975. A type-2 fuzzy set

incorporates uncertainty about the membership function

(MF) of the primary fuzzy set, called type-1 fuzzy set.

Thus, for type-2 fuzzy sets, the membership grades them-

selves are fuzzy sets in [0, 1]. So many research works

have been done based on the theory of type-2 fuzzy set.

Yager [22] applied the type-2 fuzzy sets to decision mak-

ing. Coupland and John [23] presented the geometric type-

1 and type-2 fuzzy logic system. Mendel [24] pointed out

the advances of type-2 fuzzy sets and systems. Important

properties and operations on triangular type-2 fuzzy sets

are investigated in [25, 26]. In most of our real-life situa-

tions, we often face the uncertain condition for different

causes, like some inaccuracies in information, lack of

observed data about the unknown state of nature, bad sta-

tistical analysis. Sometimes it is not easy to define the exact

membership grades to the member of a fuzzy set. For this

situation of difficulty, we are unable to define the problem.

But in that case, if we use type-2 fuzzy set instead of type-1

fuzzy set, then we can formulate the problem more real-

istically. Now a days type-2 fuzzy set are widely used by

many researchers in their different research works to han-

dle the fuzziness.

2.1 Representation of real-world transportation
scenario as type-2 fuzzy problems

The state ‘Agartala, Tripura’ is in the corner of ‘India’

having boundary with foreign country ‘Bangladesh’. The

mainland like ‘Delhi’, ‘Kolkata’, etc., of India is connected

via the plain and hilly tracks through forests, deserts, rivers

etc. At any time of journey, a mishap like landslides, hill

slides, road caving, terrorist attacks, forcible collection,

etc., may happen. The transportation of goods to ‘Agartala’

from ‘Delhi’ (say) is a risky trouble-some and time-con-

suming task, only the expert and previous experienced

drivers can run the vehicles. Thus, in such a situation, the

transportation time is completely uncertainly estimated by

the different drivers from their own experiences. Suppose

for the journey from ‘Delhi’ to ‘Agartala’, journey time by

different experts, may be about 6, 6.5, 6.8, 7.2 days (say)

each of which is a fuzzy number represented by a crisp

membership function. Thus, this membership functions can

again be expressed by a membership function of a fuzzy

number. Hence, the travel time is again represented by a

type-2 fuzzy number. Similar may be the case for ‘fixed

charge’ as the forcible collections by the different insurgent

groups are unpredictable in addition to fixed highway toll

collection. No one knows how many such forcible collec-

tions, of what amounts will be faced in one journey. Here

again, in the beginning of a trip, if a guess about the ‘fixed

charge’ is made by the experts, it becomes a type-2 fuzzy

number as illustrated for transportation time. Similar is the

case for transportation costs. Thus, in the present investi-

gation, transportation cost, transportation time and fixed

charge are assumed to be fuzzy type-2 numbers.

The process that completely defuzzifies a type-2 fuzzy

set consists of two steps. At first, type reduction, i.e., in this

step, a type-2 fuzzy set is reduced to a type-1 fuzzy set,

known as type-reduced set (TRS). After that this TRS can

be turned into a crisp value by using several easy methods

like centroid method, expected value method. Many

researchers have developed different methods to defuzzify

a type-2 fuzzy set. Karnik and Mendel [27] studied centroid

of a type-2 fuzzy set. Greenfield, John and Coupland [28]

introduced a novel sampling method for type-2 defuzzifi-

cation. Liu [29] have proposed an efficient centroid type-

reduction strategy for general type-2 fuzzy logic system.

Geometric defuzzification method proposed by Coupland

and John [23] transforms a type-2 fuzzy set into a geo-

metric type-2 fuzzy set. Qin et al. [30] introduced an

effective defuzzification method based on critical values of

regular fuzzy variable (RFV) which is CV-based reduction

method.

For a TP, the total transportation cost and total trans-

portation time play an important role. Our main objective is

to minimize these values. In different real-life situations,

these two parameters become uncertain in nature; then

decision makers are in difficulty to make the optimal

decision. This situation can be handled with type-2 fuzzy

variables. In this model, we consider time and cost as type-

2 fuzzy variables. Here we formulate a STP model with m

sources, n destinations and l conveyances. The model is as

follows:

Min z1 ¼
Xm

i¼1

Xn

j¼1

Xl

k¼1

~cijkxijkzijk þ ~f eijkm
e
ijk

� �
ð1aÞ

Min z2 ¼
Xm

i¼1

Xn

j¼1

Xl

k¼1

~tijkyijk ð1bÞ

subject to;
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Xn

j¼1

Xl

k¼1

xijk � ai; i ¼ 1; 2; 3; . . .;m; ð1cÞ

Xm

i¼1

Xl

k¼1

xijk � bj; j ¼ 1; 2; 3; . . .; n; ð1dÞ

Xm

i¼1

Xn

i¼1

xijk � ek; k ¼ 1; 2; 3; . . .; l; ð1eÞ

Xm

i¼1

Xn

j¼1

Xl

k¼1

sijkyijk [B ð1fÞ

xijk � 0; and yijk ¼
1; if xijk [ 0;
0; otherwise:

�
for all i; j; k:

ð1gÞ

If in a particular destination, the negligible amount of

quantity (p, say) is transported, then the DM cannot deliver

commodities in the particular destination. This means if

xijk � p, a desired real number is imposed, then we consider

the restriction for this route as a part of the transportation.

Thus, for the expediency of modeling, the following

notation is introduced:

zijk ¼
1 for xijk � p

0 otherwise

�

The second term of objective function defines the restricted

fixed charge for some particular conveyances used in

transportation. Here ~f eijk is the restricted fixed charge, and it

is multiplied by a decision variable me
ijk, which defined as

follows

me
ijk ¼

1 if xijk 2 ek
0 otherwise

�
for k ¼ 1; 2; 3; . . .; l;

and used to decide, if a restricted conveyance suppose the

k-th conveyance is used to transport the goods (xijk) from

the ith source to the jth destination, then the corresponding

restricted fixed charge (~f eijk) will be multiplied by 1 and

added to the total cost; otherwise it will be zero. Here ~cijk is

the type-2 fuzzy penalty cost for transporting goods from

source i to j destinations by means of l conveyances; ~tijk is

the type-2 fuzzy time associated with the route where the

transport has been made. Here we consider the trans-

portation time for a route i; jð Þ only if any transportation

activity is assigned to that route. So yijk is defined such that

if xijk � 0 then yijk ¼ 1; otherwise it will be zero.

ai; bj and ek are the crisp amount of available products at i

sources, demand of the products at j destination and con-

veyances capacities of l different conveyances,

respectively.

Here the constraints (1c)–(1g) are defined as follows.

• The first constraint (1c) of the above model implies that

the total amount transported from source i must not

exceed its supply capacity ai.

• The second constraint (1d) implies that total amount

transported from all the source should satisfy the

demand of destinations j.

• The third constraint (1e) implies that the transported

amount from source to destinations by conveyance must

not exceed its conveyance capacity.

• The fourth constraint (1g) means the total safety

measure should be greater than the desired safety

measure (B) for the whole transportation problem. Here

sijk is the per unit safety factor for the route ði, jÞ using l

conveyance.

• The last constraint (1f) is the non-negativity restriction

for transported amount with a binary function.

And xijk is the decision variable representing the amount

of product transported from source i to destinations j by k

conveyances for all i; j; k.

2.2 Case-I: STP with type-2 fuzzy cost and time
based on usual credibility

In this model, we take transportation costs and times as

type-2 fuzzy variables. To defuzzify these type-2 fuzzy

variables, we apply CV-based reduction method based on

usual credibility measure to them and derive the type-re-

duced form i.e., type-1 fuzzy set. Next we apply the cen-

troid method to these type-reduced sets to get the

corresponding crisp values. The mathematical model is

same as (1a)–(1g).

2.3 Case-II: STP with type-2 fuzzy cost and time
based on generalized credibility

Since the type-reduced set (TRS) obtained using the CV-

based reduction method, may or may not be normalized, so

we cannot use the usual credibility, in that case we have to

use the generalized credibility measure. As the problem is a

minimization problem, we develop a chance constrained

programming model as follows:

subject to

fCr
Xm

i¼1

Xn

j¼1

Xl

k¼1

~cijkxijkzijk þ ~f eijkm
e
ijk

� �
� ~f

( )
� ac ð2aÞ
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fCr
Xm

i¼1

Xn

j¼1

Xl

k¼1

~tijkyijk � ~f

( )
� at ð2bÞ

fCr
Xn

j¼1

Xl

k¼1

xijk � ai

( )
� ai i ¼ 1; 2; 3; . . .;m; ð2cÞ

fCr
Xm

i¼1

Xl

k¼1

xijk � bj

( )
� bj j ¼ 1; 2; 3; . . .; n; ð2dÞ

fCr
Xm

i¼1

Xn

j¼1

xijk � ek

( )
� ck k ¼ 1; 2; 3; . . .; l; ð2eÞ

fCr
Xm

i¼1

Xn

j¼1

Xl

k¼1

sijkyijk [B

( )
� ds s ¼ 1; 2; 3; . . .; t;

ð2fÞ

and the constraint (1g).

Here Min ~f states the minimum value that the objective

functions achieve with at least generalized credibility ac 2
0; 1ð �; at 2 0; 1ð �; ai; bj; ck and ds 2 0; 1ð � are predeter-

mined generalized credibility levels of satisfaction of the

sources, destinations, conveyances and safety, respectively.

ac and at have been used for cost and time objectives,

respectively.

2.4 Type reduction and defuzzification of type-2
fuzzy sets

All the preliminaries including theorems and numerical

examples in connection with type-2 fuzzy sets, their

reduction and defuzzification are given in ‘‘Appendx’’.

2.5 Defuzzification

As the unit transportation cost and the transportation time

in the above model are type-2 fuzzy variables, we have to

defuzzify these variables. To do this, we use the CV-based

reduction method, which are presented in ‘‘Appendix’’. In

this method, we use usual credibility and generalized

credibility for the defuzzification process. After that, we

apply the centroid method to the TRS to find the corre-

sponding crisp values.

2.6 Crisp equivalences

Suppose ~cijk ¼ c1ijk; c
2
ijk; c

3
ijk; h

0
l;ijk; h

0
r;ijk

� �
; ~tijk ¼ t1ijk; t

2
ijk;

�

t3ijk; h
00
l;ijk; h

00
r;ijkÞ and ~f eijk ¼ f 1ijk; f

2
ijk; f

3
ijk; h

000
l;ijk; h

000
r;ijk

� �
are type-2

fuzzy variables. Also ~c0ijk; ~t
0
ijk and

~f 0eijk are the corresponding

type-reduced forms by CV-based reduction method. Then

by ‘‘Theorem (Qin et al. [30])’’ in Appendix section and its

‘‘Corollary‘‘ in Appendix section’’, the chance constrained

model (2a)–(2f) can take the form of crisp equivalent

parametric programming problems as:

Case 1 0 < a £ 0.25: Then the equivalent parametric pro-

gramming problem for the model representation (2a)–(2b)

is

Min
Pm

i¼1

Pn

m¼1

Pl

k¼1

1� 2acð Þ þ 1� 4acð Þh0r;ijk
� �

c1ijkxijkzijk þ 2acc2ijkxijkzijk

1þ 1� 4acð Þh0r;ijk
þ

1� 2acð Þ þ 1� 4acð Þh000r;ijk
� �

f 1ijkxijkm
e
ijk þ 2acf 2ijkxijkm

e
ijk

1þ 1� 4acð Þh000r;ijk

0
BBBBB@

1
CCCCCA

Min
Pm

i¼1

Pn

m¼1

Pl

k¼1

1� 2atð Þ þ 1� 4atð Þh0r;ijk
� �

t1ijkyijk þ 2att2ijkyijk

1þ 1� 4atð Þh0r;ijk
subject to the constraints 1cð Þ� 1gð Þ:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð3Þ

Case 2 0.25 < a £ 0.5: Then the equivalent parametric

programming problem for the model representation is

Min
Pm

i¼1

Pn

j¼1

Pl

k¼1

1� 2acð Þc1ijkxijkzijk þ 2ac þ ð4ac � 1ð Þh0l;ijk
� �

c2ijkxijkzijk

1þ 4ac � 1ð Þh0l;ijk
þ

1� 2acð Þf 1ijkxijkme
ijk þ 2ac þ ð4ac � 1ð Þh000l;ijk

� �
f 2ijkxijkm

e
ijk

1þ 4ac � 1ð Þh000l;ijk

0

BBBBB@

1

CCCCCA

Min
Pm

i¼1

Pn

j¼1

Pl

k¼1

1� 2atð Þt1ijkyijk þ 2at þ ð4at � 1ð Þh0l;ijk
� �

t1ijkyijk

1þ 4at � 1ð Þh0l;ijk
subject to the constraints 1cð Þ� 1gð Þ:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð4Þ

Case 3 0.5 < a £ 0.75: Then the equivalent parametric

programming problem for the model representation is

Min
Pm

i¼1

Pn

j¼1

Pl

k¼1

2ac � 1ð Þc3ijkxijkzijk þ 2 1� acð Þ þ 3� 4acð Þh0l;ijk
� �

c2ijkxijkzijk

1þ 3� 4acð Þh0l;ijk
þ

2ac � 1ð Þf 3ijkxijkme
ijk þ 2 1� acð Þ þ 3� 4acð Þhl;ijk

� �
f 2ijkxijkm

e
ijk

1þ 3� 4acð Þh000l;ijk

0
BBBB@

1
CCCCA

Min
Pm

i¼1

Pn

j¼1

Pl

k¼1

2at � 1ð Þt3ijkyijk þ 2 1� atð Þ þ 3� 4atð Þh0l;ijk
� �

t2ijkyijk

1þ 3� 4atð Þh0l;ijk

0
@

1
A

subject to the constraints 1cð Þ� 1gð Þ:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð5Þ

Case 4 0.75 < a £ 1: Then the equivalent parametric

programming problem for the model representation is

Min
Pm

i¼1

Pn

j¼1

Pl

k¼1

2ac � 1þ 4ac � 3ð Þh0r;ijk
� �

c3ijkxijkzijk þ 2 1� acð Þc2ijkxijkzijk
1þ 4ac � 3ð Þh0r;ijk

þ

2ac � 1þ 4ac � 3ð Þhr;ijk
� �

f 3ijkxijkm
e
ijk þ 2 1� acð Þf 2ijkxijkme

ijk

1þ 4ac � 3ð Þh0r;ijk

0

BBBB@

1

CCCCA

Min
Pm

i¼1

Pn

j¼1

Pl

k¼1

2at � 1þ 4at � 3ð Þh0r;ijk
� �

t3ijkyijk þ 2 1� atð Þt2ijkyijk
1þ 4at � 3ð Þh0

r;ijk

subject to the constraints 1cð Þ� 1gð Þ:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

:

ð6Þ
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3 Model-II formulation with type-2 fuzzy
parameters (time, cost, restricted fixed
charge, supplies, demand conveyances
and safety are type-2 fuzzy variables)

Here we formulate a STP model with m sources, n desti-

nations and l conveyances, i.e., mode of transport and unit

transportation cost, time, supplies, demand and con-

veyances are as type-2 fuzzy variables. Mathematically

MODEL-II can be stated as MODEL-I, i.e., Eqs. (1a)–(1g),

replacing ai; bj; ek and sijk by the corresponding type-2

fuzzy variables. Here in MODEL-II, the constraints of

MODEL-I are type-2 fuzzy in nature. The reason is

described shortly below.

Sometimes in transportation problem, it has been

observed that the capacity of source, demands from the

destinations and the capacity of different vehicles become

inexact due to the different experts’ opinions, weather

conditions, insurgency, bad condition of roads. In such a

situation, it is not possible to express the values of

ai; bj and ek in crisp numbers, we have to use fuzzy

concept.

The type-2 fuzzy sets have the ability to deal with

uncertainty especially when the choice of a decision has to

be decided by many experts. Modelling a word by fuzzy set

is considered difficult since a word can be analyzed in

different ways by many experts, and sometimes it is not

easy to determine the exact MF. In these cases, each

expert’s opinion is a MF of type-1 and thus, this MF again

becomes fuzzy. The final opinion of all experts’ is

expressed by a type-2 fuzzy set. In such cases, as we are

dealing with uncertainty, type-2 fuzzy sets are supposed to

be very useful. Also type-2 fuzzy set is a second-order

approximation to uncertainty, whereas type-1 fuzzy is of

first order. This is the reason for which we adopt the type-2

fuzzy in this problem.

3.1 Case-I: Using the usual credibility

In this model, we take transportation cost, time, source,

demand and conveyance capacities as type-2 fuzzy vari-

ables. To defuzzify these type-2 fuzzy variables, we apply

CV-based reduction method based on usual credibility

measure to them and derive the type-reduced form, i.e.,

type-1 fuzzy set. Next we apply the centroid method to

these type-reduced sets to get the corresponding crisp

values. The mathematical model is same as MODEL-II.

3.2 Case-II: Using the generalized credibility

In this method, we discuss how the MODEL-II can be

solved using the generalized credibility technique. Suppose

~c0ijk,~t
0
ijk,~a

0
i,
~b0j and ~e0k are the reduced type-1 fuzzy sets(may

not be normalized) of the type-2 fuzzy sets ~c0ijk, ~t
0
ijk, ~ai,

~bj

and ~ek, respectively, according to CV-based reduction

method. Now to solve the above problem, we formulate a

chance constrained programming model with these reduced

fuzzy parameters. Chance constrained programming with

fuzzy (type-1) parameters was developed by Liu and

Iwamura [31].

So we develop a chance constrained programming

model and the model is

subject to

fCr
Xn

j¼1

Xl

k¼1

xijk � ~ai

( )
� ai i ¼ 1; 2; 3; . . .;m; ð7Þ

fCr
Xm

i¼1

Xl

k¼1

xijk � ~bj

( )
� bj j ¼ 1; 2; 3; . . .; n;

fCr
Xm

i¼1

Xn

j¼1

xijk � ~ek

( )
� ck k ¼ 1; 2; 3; . . .; l;

with constraints (1g), (2a), (2b) and (2f).

Here Min ~f states the minimum value that the objective

function achieves with at least generalized credibility ac 2
0; 1ð �; at 2 0; 1ð �; ai; bj and ck 2 0; 1ð � is predetermined

generalized credibility levels of satisfaction of the sources,

destinations and conveyances, respectively, for all i; j; k.

3.3 Crisp equivalences

Suppose that ~cijk; ~tijk; ~f
e
ijk; ~ai;

~bj; ~ek and ~sijk are all mutually

independent type-2 triangular fuzzy variables defined by

~cijk ¼ c1ijk; c
2
ijk; c

3
ijk; h

0
l;ijk; h

0
r;ijk

� �
, ~tijk ¼ t1ijk; t

2
ijk; t

3
ijk; h

0
l;ijk;

�

h0r;ijkÞ, ~f eijk ¼ f 1ijk; f
2
ijk; f

3
ijk; h

000
l;ijk;

�
h000r;ijkÞ ~ai ¼ a1i ; a

2
i ; a

3
i ; h

0
l;i;

�

h0r;iÞ, ~bj ¼ b1j ; b
2
j ; b

3
j ; h

0
l;j; h

0
r;j

� �
; ~ek ¼ e1k ; e

2
k ; e

3
k ; h

0
l;k;

�
h0r;kÞ

and ~sijk ¼ s1ijk;
�

s2ijkk; s
3
ijk; h

0v
l;ijk; h

0v
r;ijkÞ are type-2 fuzzy vari-

ables. Also let ~c0ijk; ~t
0
ijk;

~f 0ijk; ~a
0
i;
~b0j and ~e

0
k are the correspond-

ing type-reduced form obtained by (‘‘Defuzzification of a

type-2 fuzzy variable by CV-based reduction method sec-

tion in Appendix’’) CV-based reduction method. Then by

‘‘Theorem (Qin et al. [30])in Appendix section ’’ and its

‘‘Corollary in Appendix section,’’ the chance constrained

model can take the form of crisp equivalent parametric

programming problems as:
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Case-I: 0 < a £ 0.25: Then the equivalent parametric

programming problem for the model representation (7) is

Min
Xm

i¼1

Xn

m¼1

Xl

k¼1

1� 2acð Þ þ 1� 4acð Þh0r;ijk
� �

c1ijkxijkzijk þ 2acc2ijkxijkzijk

1þ 1� 4acð Þh0r;ijk
þ

1� 2acð Þ þ 1� 4acð Þh000r;ijk
� �

f 1ijkxijkm
e
ijk þ 2acf 2ijkxijkm

e
ijk

1þ 1� 4acð Þh000r;ijk

0
BBBBBB@

1
CCCCCCA

ð8aÞ

Min
Xm

i¼1

Xn

m¼1

Xl

k¼1

1� 2atð Þ þ 1� 4atð Þh0r;ijk
� �

t1ijkyijk þ 2att2ijkyijk

1þ 1� 4atð Þh0r;ijk

ð8bÞ

subject to

Xn

j¼1

Xl

k¼1

xijk �Fai ; i ¼ 1; 2; 3; . . .;m ð8cÞ

Xn

i¼1

Xl

k¼1

xijk �Fbj ; j ¼ 1; 2; 3. . .; n ð8dÞ

Xn

i¼1

Xl

k¼1

xijk �Fek ; k ¼ 1; 2; 3. . .; l ð8eÞ

Xm

i¼1

Xn

j¼1

Xl

k¼1

1� 2acð Þ þ 1� 4acð Þh000r;ijk
� �

f 1ijkxijkm
e
ijk þ 2acf 2ijkxijkm

e
ijk

1þ 1� 4acð Þh000r;ijk
[B

ð8fÞ

with constraint (1g). Where Fai , Fbj , Fek are given by the

following (12), (13) and (14), respectively.

Case-II: 0.25 < a £ 0.5: Then the equivalent parametric

programming problem for the model representation (7) is

Min
Pm

i¼1

Pn

j¼1

Pl

k¼1

1� 2acð Þc1ijkxijkzijk þ 2ac þ ð4ac � 1ð Þh0l;ijk
� �

c2ijkxijkzijk

1þ 4ac � 1ð Þh0l;ijk
þ

1� 2acð Þf 1ijkxijkme
ijk þ 2ac þ ð4ac � 1ð Þh000l;ijk

� �
f 2ijkxijkm

e
ijk

1þ 4ac � 1ð Þh000l;ijk

0

BBBBB@

1

CCCCCA

Min
Pm

i¼1

Pn

j¼1

Pl

k¼1

1� 2atð Þt1ijkyijk þ 2at þ ð4at � 1ð Þh0l;ijk
� �

t1ijkyijk

1þ 4at � 1ð Þh0l;ijk
subject to the constraints 8cð Þ � 8fð Þand 1gð Þ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð9Þ

where Fai , Fbj , Fek are given by the following (12), (13) and

(14), respectively.

Case-III: 0.5 < a £ 0.75: Then the equivalent parametric

programming problem for the model representation (7) is

Min
Pm

i¼1

Pn

j¼1

Pl

k¼1

2ac � 1ð Þc3ijkxijkzijk þ 2 1� acð Þ þ 3� 4acð Þh0l;ijk
� �

c2ijkxijkzijk

1þ 3� 4acð Þh0l;ijk
þ

2ac � 1ð Þf 3ijkxijkme
ijk þ 2 1� acð Þ þ 3� 4acð Þhl;ijk

� �
f 2ijkxijkm

e
ijk

1þ 3� 4acð Þh000l;ijk

0

BBBB@

1

CCCCA

Min
Pm

i¼1

Pn

j¼1

Pl

k¼1

2at � 1ð Þt3ijkyijk þ 2 1� atð Þ þ 3� 4atð Þh0l;ijk
� �

t2ijkyijk

1þ 3� 4atð Þh0l;ijk
subject to the constraints 8cð Þ� 8fð Þand 1gð Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð10Þ

where Fai , Fbj , Fek are given by the following (12), (13) and

(14), respectively.

Case-IV: 0.75 < a £ 1: Then the equivalent parametric

programming problem for the model representation (7) is

Min
Pm

i¼1

Pn

j¼1

Pl

k¼1

2ac � 1þ 4ac � 3ð Þh0r;ijk
� �

c3ijkxijkzijk þ 2 1� acð Þc2ijkxijkzijk
1þ 4ac � 3ð Þh0r;ijk

þ

2ac � 1þ 4ac � 3ð Þhr;ijk
� �

f 3ijkxijkm
e
ijk þ 2 1� acð Þf 2ijkxijkme

ijk

1þ 4ac � 3ð Þh0r;ijk

0
BBBB@

1
CCCCA

Min
Pm

i¼1

Pn

j¼1

Pl

k¼1

2at � 1þ 4at � 3ð Þh0

r;ijk

� �
t3ijkyijk þ 2 1� atð Þt2ijkyijk

1þ 4at � 3ð Þh0r;ijk
subject to the constraints 8cð Þ� 8fð Þand 1gð Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð11Þ

where Fai , Fbj , Fek are given by the following (12), (13) and

(14), respectively.where

Fai ¼
1� 2ai þ 1� 4aið Þhl;i
� �

a3i þ 2aia2i
1þ 1� 4aið Þhl;i

; if 0\ai � 0:25;

1� 2aið Þa3i þ 2ai þ 4ai � 1ð Þhr;i
� �

a2i
1þ 4ai � 1ð Þhr;i

; if 0:25\ai � 0:5;

2ai � 1ð Þa1i þ 2 1� aið Þ þ 3� 4aið Þhr;i
� �

a2i
1þ 3� 4aið Þhr;i

; if 0:5\ai � 0:75;

2ai � 1þ 4ai � 3ð Þhl;i
� �

a1i þ 2 1� aið Þa2i
1þ 4ai � 3ð Þhl;i

; if 0:75\ai � 1;

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð12Þ
Fbj ¼

1� 2bj þ 1� 4bj
� �

hr;j
� �

b1j þ 2bjb
2
j

1þ 1� 4bj
� �

hr;j
; if 0\bj � 0:25;

1� 2bj
� �

b1j þ 2bj þ 4bj � 1
� �

hl;j
� �

b2j

1þ 4bj � 1
� �

hl;j
; if 0:25\bj � 0:5;

2bj � 1
� �

b3j þ 2 1� bj
� �

þ 3� 4bj
� �

hl;j
� �

b2j

1þ 3� 4bj
� �

hl;j
; if 0:5\bj � 0:75;

2bj � 1þ 4bj � 3
� �

hr;j
� �

b3j þ 2 1� bj
� �

b2j

1þ 4bj � 3
� �

hr;j
; if 0:75\bj � 1;

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð13Þ
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Fek ¼
1� 2ck þ 1� 4ckð Þhl;k
� �

e3k þ 2cke
2
k

1þ 1� 4ckð Þhl;k
; if 0\ck � 0:25;

1� 2ckð Þe3k þ 2ck þ 4ck � 1ð Þhr;k
� �

e2k
1þ 4ck � 1ð Þhr;k

; if 0:25\ck � 0:5;

2ck � 1ð Þe1k þ 2 1� ckð Þ þ 3� 4ckð Þhr;k
� �

e2k
1þ 3� 4ckð Þhr;k

; if 0:5\ck � 0:75;

2ck � 1þ 4ck � 3ð Þhl;k
� �

e1k þ 2 1� ckð Þe2k
1þ 4ck � 3ð Þhl;k

; if 0:75\ck � 1;

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð14Þ

4 Solution with numerical data

Here all the problems (3)–(6) and (8a–8f)–(11) after

defuzzification are linear in decision variable xijk’s and the

above models are multi-objective optimization problem,

which can be solved by weighted sum method. So the

reduced problem can be solved using LINGO 13.0 solver,

based upon a gradient-based operation method—general-

ized reduced gradient (GRG) method.

LINGO is a comprehensive tool designed to make

building and solving linear, nonlinear (convex and non-

convex/Global), and Quadratic, Quadratically Constrained,

Second-Order Cone, Stochastic, and Integer optimization

models faster, easier and more efficient. This procedure is

one of a class of techniques called reduced gradient or

gradient projection methods which is based on extending

methods for linear constraints to apply to nonlinear con-

straints. They adjust the variables so the active constraints

continue to be satisfied. In our research investigation, we

use Hyper Lingo 13.0. Using this software we can solve a

model having 8000 variables, 800 integers, 800 nonlinear

variables, 20 global variables and 4000 constraints. Since

LINGO 13.0 software package, consists of exact method

and also faster than any other meta-heuristic algorithm, we

use it to get the global exact optimal solutions.

4.1 Techniques to solve a crisp multi-objective
linear/nonlinear problem

As the proposed problem is a multi-objective problem we

cannot solve this problem directly. Hence to solve the

problem we use the weighted sum method and the fuzzy

programming technique. Here the steps are discussed as

followed:

4.1.1 Weighted sum method

The weighted sum method secularizes a set of objectives

into a single objective by multiplying each objective with

user’s supplied weights. The weights of an objective are

usually chosen in proportion to the objective’s relative

importance in the problem. However setting up an appro-

priate weight vector depends on the scaling of each

objective function. It is likely that different objectives take

different orders of magnitude. When such objectives are

weighted to form a composite objective function, it would

be better to scale them appropriately so that each objective

possesses more or less the same order of magnitude. This

process is called normalization of objectives. After the

objectives are normalized, a composite objective function

F is formed by summing the weighted normalized objec-

tives and the MOSTP is then converted to a single-objec-

tive optimization problem as follows:

Minimize F ¼
XL

l¼1

xlfl;xl 2 0; 1½ �:

Here, xl is the weight of the lth objective function. Since

the minimum of the above problem does not change if all

the weights are multiplied by a constant, it is the usual

practice to choose weights such that their sum is one, i.e.,PL
l¼1 xl ¼ 1.

4.1.2 Global criteria method

The multi-objective nonlinear programming (MONLP)

problems may be solved by global criteria method con-

verting it to a single-objective optimization problem. The

solution procedure is as follows:

Step 1 Solve the multi-objective programming problem

as a single-objective problem using one objective at a

time ignoring the others.

Step 2 From the results of Step 1, determine the ideal

objective vector, say (fmin
1 ; fmin

2 ; fmin
3 ; . . .; fmin

k ) and the

corresponding values of (fmax
1 ; fmax

2 ; fmax
3 ; . . .; fmax

k ). Here

the ideal objective vector is used as a reference point.

The problem is then to solve the following auxiliary

problem:

Find x ¼ x1; x2; . . .; xnð ÞTwhich minimizes GCSubject

to

gj xð Þ� 0; j ¼ 1; 2; 3; . . .;m

xi � 0; i ¼ 1; 2; . . .; n

where

GC ¼ Minimize
Xk

i¼1

fi xð Þ � fmin
i

fmax
i � fmin

i

� �p
( )1

p

;

or
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GC ¼ Minimize
Xk

i¼1

fi xð Þ � fmin
i

fmin
i

� �p
( )1

p

;

where 1� p\1: An usual value of p is 2. This method

is also sometimes called compromise programming.

Step 3 Now, solve the above single-objective problem

described in Step 2 by GRG method to obtain the

compromise solution.

Here four real-life numerical experiments are pre-

sented to illustrate the models and methods. After

defuzzification, these models are solved using the

standard optimizer LINGO 13.0 software.

4.2 Real-life data

A manure merchant of Tripura, Shreeram Fertilizers &

Agro Chemicals, has three branches at Dharmanagar,

Agartala and Belonia of Tripura and sells Urea from these

branches. This agency purchases Urea from the suppliers of

Guwahati and Silchar of Assam and transports using

Trucks and Dumpers. From the available data of this

Agency, the fluctuating unit transportation cost, fixed

charges and transportation time are represented as type-2

fuzzy numbers with the help of experts/experienced busi-

ness men. These data are presented in Tables 2 and 3. Here

the requirements at the three destinations, availabilities at

two sources and two conveyance’s capacities and safety

measures are deterministic. The values of the safety mea-

sures are taken following expert’s opinion.

4.2.1 MODEL-I (Case-I)

To illustrate the first model, we consider a problem with

two sources, thee destinations and two conveyances, i.e.,

i ¼ 1; 2; j ¼ 1; 2; 3; k ¼ 1; 2. Here the corresponding type-

2 fuzzy cost and time are given. We minimize the total cost

(in $) and time (in hour).

And the corresponding crisp source availability, demand

and conveyances capacities are as a1 ¼ 21; a2 ¼ 29; b1 ¼
20; b2 ¼ 13; b3 ¼ 17; e1 ¼ 26; e2 ¼ 24: Also here we

consider the restricted amount of goods by 3 unit, i.e., here

p ¼ 3. The total desire safety measure is taken as 15, i.e.,

B ¼ 15 for both the models.

To solve the problem we first convert the type-2 fuzzy

cost, fixed charge and time into its corresponding crisp

value and for that we use the CV-based reduction method,

using this crisp valued cost, fixed charge and time so

obtained, we solved the problem and the optimum results

are given in Table 10.

4.3 MODEL-I (Case-II)

Now using the generalized credibility, we solved the

MODEL-I and the data for transportation cost, time and

restricted fixed charge are presented in Table 4.

And the corresponding crisp source availability,

demand, conveyances capacities restricted amount of

goods and per unit safety are the same as MODEL-I (Case-

I).

All the predetermined general credibility levels are

chosen for our problem as 0.85, i.e., ac; at and af are equal
to 0.85. The equivalent parametric programming problem

is as follows.

Since here we take the predetermined general credibility

level as 0.85 so here we consider Case-IV to formulate the

parametric programming problem

4.4 MODEL-II (Case-I)

To illustrate the secondmodel, we consider a problemwith two

sources, three destinations and two conveyances where all the

transportation parameters are type-2 fuzzy numbers. Here the

corresponding type-2 fuzzy costs, times and restricted fixed

charge are same as MODEL-I (cf. Table 2). Also we assume

the safety cost, available source, demand, conveyances

capacities as type-2 fuzzy numbers given in Tables 5, 6, 7.

Here we consider the restricted amount of goods by 3

unit, i.e., here p = 3. To solve the problem, we first convert

all the type-2 fuzzy parameters into its corresponding crisp

value and for that we use the CV-based reduction method,

and then solved.

Min
P2

i¼1

P3

j¼1

P2

k¼1

0:70þ 0:40 hr;ijk
� �

c3ijk þ 0:30c2ijk

� �
xijkzijk

1þ 0:40h0r;ijk
þ

0:70þ 0:40 hr;ijk
� �

f 3ijk þ 0:30c2ijk

� �
xijkm

e
ijk

1þ 0:40 h0r;ijk

Min
P2

i¼1

P3

j¼1

P2

k¼1

0:70þ 0:40 h0r;ijk

� �
t3ijkyijk þ 0:30t2ijkyijk

1þ 0:40 h0r;ijk
subject to the constraints 1cð Þ� 1gð Þ

8
>>>>>>><

>>>>>>>:
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The results are given in Table 10.

4.5 MODEL-II (Case-II)

Now using the generalized credibility, we solve the

MODEL-II and for that, the data are taken as follows:

The type-2 fuzzy cost, restricted fixed charge and time

are the same as in Table 4 and the corresponding type-2

fuzzy per unit safety cost and the different type-2 fuzzy

parameters of transportation, i.e., available source, demand

and conveyance capacities, are given in Tables 8 and 9,

respectively.

All the predetermined general credibility levels are

chosen for our problem as 0.85, i.e.,

ac; af ; at; ai; bj; ck and ds are equal to 0.85 for all i; j; k. Here

we consider the restricted amount of goods by 3 unit, i.e.,

here p ¼ 3. The equivalent parametric programming

problem is as follows.

Since here we take the predetermined general credibility

level as 0.85, so here we consider Case-IV to formulate the

parametric programming problem as

Table 2 Type-2 fuzzy unit transportation cost, time and restricted fixed charge for MODEL-I (case-I)

Type-2 fuzzy unit transportation cost

~c111 ¼
5with ~l~c111 5ð Þ ¼ 0:8; 0:9; 1:0ð Þ
8with ~l~c111 8ð Þ ¼ 0:5; 0:7; 0:9ð Þ

10with ~l~c111 10ð Þ ¼ 0:4; 0:6; 0:8ð Þ

8
<

: ~c211 ¼
5with ~l~c211 5ð Þ ¼ 0:1; 0:5; 0:7ð Þ
8with ~l~c211 8ð Þ ¼ 0:2; 0:4; 0:7ð Þ
9with ~l~c211 9ð Þ ¼ 0:7; 0:8; 0:9ð Þ

8
<

: ~c221 ¼
8with ~l~c221 8ð Þ ¼ 0:6; 0:7; 0:8ð Þ
9with ~l~c221 9ð Þ ¼ 0:3; 0:4; 0:7ð Þ
11with ~l~c211 11ð Þ ¼ 0:2; 0:6; 0:9ð Þ

8
<

:

~c121 ¼
7with ~l~c121 7ð Þ ¼ 0:2; 0:4; 0:8ð Þ
8with ~l~c121 8ð Þ ¼ 0:6; 0:7; 0:8ð Þ

10with ~l~c121 10ð Þ ¼ 0:4; 0:5; 0:8ð Þ

8
<

: ~c131 ¼
5with ~l~c131 5ð Þ ¼ 0:2; 0:7; 0:8ð Þ
8with ~l~c131 8ð Þ ¼ 0:6; 0:7; 0:9ð Þ
12with ~l~c131 12ð Þ ¼ 0:2; 0:4; 0:6ð Þ

8
<

: ~c231 ¼
6with ~l~c231 6ð Þ ¼ 0:3; 0:7; 0:8ð Þ
8with ~l~c231 8ð Þ ¼ 0:1; 0:2; 0:5ð Þ
9with ~l~c231 9ð Þ ¼ 0:2; 0:4; 0:7ð Þ

8
<

:

~c112 ¼
8with ~l~c112 8ð Þ ¼ 0:5; 0:8; 1:0ð Þ
9with ~l~c112 9ð Þ ¼ 0:4; 0:7; 0:9ð Þ

11with ~l~c112 11ð Þ ¼ 0:2; 0:7; 0:8ð Þ

8
<

: ~c212 ¼
8with ~l~c212 8ð Þ ¼ 0:2; 0:6; 0:8ð Þ
9with ~l~c212 9ð Þ ¼ 0:2; 0:4; 0:5ð Þ
10with ~l~c212 10ð Þ ¼ 0:7; 0:9; 1:0ð Þ

8
<

: ~c122 ¼
7with ~l~c122 7ð Þ ¼ 0:2; 0:4; 0:7ð Þ
8with ~l~c122 8ð Þ ¼ 0:3; 0:5; 0:6ð Þ
11with ~l~c122 11ð Þ ¼ 0:3; 0:4; 0:7ð Þ

8
<

:

~c222 ¼
6with ~l~c222 6ð Þ ¼ 0:2; 0:4; 0:6ð Þ
7with ~l~c222 7ð Þ ¼ 0:1; 0:4; 0:5ð Þ

10with ~l~c222 10ð Þ ¼ 0:2; 0:8; 1:0ð Þ

8
<

: ~c132 ¼
8with ~l~c132 8ð Þ ¼ 0:3; 0:5; 0:9ð Þ
9with ~l~c132 9ð Þ ¼ 0:2; 0:7; 0:8ð Þ
12with ~l~c132 12ð Þ ¼ 0:1; 0:5; 0:6ð Þ

8
<

: ~c232 ¼
8with ~l~c232 8ð Þ ¼ 0:6; 0:7; 0:9ð Þ
9with ~l~c232 9ð Þ ¼ 0:3; 0:7; 0:9ð Þ
11with ~l~c232 11ð Þ ¼ 0:2; 0:6; 0:8ð Þ

8
<

:

Type-2 fuzzy transportation time

~t111 ¼
2with ~l~t111 2ð Þ ¼ 0:6; 0:7; 0:9ð Þ
3with ~l~t111 3ð Þ ¼ 0:5; 0:6; 0:8ð Þ
4with ~l~t111 4ð Þ ¼ 0:2; 0:5; 0:7ð Þ

8
<

:
~t211 ¼

2with ~l~t211 2ð Þ ¼ 0:6; 0:7; 0:9ð Þ
4with ~l~t211 4ð Þ ¼ 0:3; 0:4; 0:7ð Þ
5with ~l~t211 5ð Þ ¼ 0:3; 0:6; 0:8ð Þ

8
<

:
~t221 ¼

3with ~l~t221 3ð Þ ¼ 0:3; 0:5; 0:7ð Þ
4with ~l~t221 4ð Þ ¼ 0:3; 0:6; 0:9ð Þ
7with ~l~t221 7ð Þ ¼ 0:2; 0:7; 0:8ð Þ

8
<

:

~t121 ¼
2with ~l~t121 2ð Þ ¼ 0:3; 0:4; 0:8ð Þ
4with ~l~t121 4ð Þ ¼ 0:4; 0:7; 0:9ð Þ
6with ~l~t121 6ð Þ ¼ 0:2; 0:4; 0:6ð Þ

8
<

:
~t131 ¼

1with ~l~t131 2ð Þ ¼ 0:3; 0:4; 0:8ð Þ
3with ~l~t131 4ð Þ ¼ 0:2; 0:7; 0:9ð Þ
5with ~l~t131 6ð Þ ¼ 0:3; 0:7; 0:9ð Þ

8
<

:
~t231 ¼

3with ~l~t231 2ð Þ ¼ 0:4; 0:7; 0:8ð Þ
5with ~l~t231 4ð Þ ¼ 0:3; 0:4; 0:9ð Þ
6with ~l~t231 6ð Þ ¼ 0:1; 0:7; 0:9ð Þ

8
<

:

~t112 ¼
1with ~l~t112 1ð Þ ¼ 0:6; 0:7; 0:9ð Þ
4with ~l~t112 4ð Þ ¼ 0:2; 0:6; 0:9ð Þ
6with ~l~t112 6ð Þ ¼ 0:1; 0:5; 0:8ð Þ

8
<

:
~t212 ¼

1with ~l~t212 1ð Þ ¼ 0:2; 0:6; 0:7ð Þ
4with ~l~t212 4ð Þ ¼ 0:3; 0:9; 1:0ð Þ
5with ~l~t212 5ð Þ ¼ 0:3; 0:5; 1:0ð Þ

8
<

:
~t122 ¼

1with ~l~t122 1ð Þ ¼ 0:6; 0:8; 1:0ð Þ
3with ~l~t122 4ð Þ ¼ 0:5; 0:8; 1:0ð Þ
6with ~l~t122 6ð Þ ¼ 0:3; 0:8; 0:9ð Þ

8
<

:

~t222 ¼
3with ~l~t222 3ð Þ ¼ 0:2; 0:8; 1:0ð Þ
5with ~l~t222 5ð Þ ¼ 0:1; 0:7; 0:9ð Þ
8with ~l~t222 8ð Þ ¼ 0:3; 0:8; 0:9ð Þ

8
<

:
~t132 ¼

1with ~l~t132 1ð Þ ¼ 0:6; 0:7; 0:9ð Þ
4with ~l~t132 4ð Þ ¼ 0:3; 0:9; 1:0ð Þ
9with ~l~t132 9ð Þ ¼ 0:1; 0:6; 0:8ð Þ

8
<

:
~t232 ¼

3with ~l~t232 3ð Þ ¼ 0:4; 0:6; 0:9ð Þ
6with ~l~t232 6ð Þ ¼ 0:2; 0:7; 0:9ð Þ
9with ~l~t232 9ð Þ ¼ 0:1; 0:5; 0:8ð Þ

8
<

:

Type-2 fuzzy restricted fixed charge for conveyance-1

~f 1111 ¼
5with ~l~f 1111

5ð Þ ¼ 0:4; 0:5; 0:8ð Þ
7with ~l~f 1111

7ð Þ ¼ 0:1; 0:2; 0:4ð Þ
9with ~l~f 1111

9ð Þ ¼ 0:1; 0:3; 0:4ð Þ

8
><

>:
~f 1211 ¼

7with ~l~f 1211
7ð Þ ¼ 0:2; 0:4; 0:5ð Þ

8with ~l~f 1211
8ð Þ ¼ 0:1; 0:2; 0:4ð Þ

9with ~l~f 1211
9ð Þ ¼ 0:2; 0:3; 0:4ð Þ

8
><

>:
~f 1221 ¼

6with ~l~f 1221
6ð Þ ¼ 0:1; 0:3; 0:4ð Þ

8with ~l~f 1221
8ð Þ ¼ 0:2; 0:3; 0:6ð Þ

9with ~l~f 1221
9ð Þ ¼ 0:3; 0:4; 0:6ð Þ

8
><

>:

~f 1121 ¼
4with ~l~f 1121

4ð Þ ¼ 0:2; 0:4; 0:8ð Þ
6with ~l~f 1121

6ð Þ ¼ 0:2; 0:3; 0:5ð Þ
8with ~l~f 1121

8ð Þ ¼ 0:1; 0:3; 0:6ð Þ

8
><

>:
~f 1131 ¼

6with ~l~f 1131
6ð Þ ¼ 0:1; 0:3; 0:6ð Þ

7with ~l~f 1131
7ð Þ ¼ 0:1; 0:3; 0:7ð Þ

9with ~l~f 1131
9ð Þ ¼ 0:2; 0:6; 0:9ð Þ

8
><

>:
~f 1231 ¼

7with ~l~f 1231
6ð Þ ¼ 0:1; 0:5; 0:8ð Þ

8with ~l~f 1231
7ð Þ ¼ 0:2; 0:5; 0:6ð Þ

9with ~l~f 1231
9ð Þ ¼ 0:1; 0:5; 0:7ð Þ

8
><

>:
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We solve the problem and get the optimal solution.

5 Results

Optimal solution under the above-mentioned different

methods for MODEL-I and II is given in Table 10.

In Table 10, Z1 indicates the total transportation cost

and Z2 stands for total transportation time. The variable

x231 ¼ 17:0 means that, from the source point named as 2

to the destination named as 3 using the conveyance named

as 1, the transported amount is 17.0 units (may be weight).

Similar meaning is applicable for other variables also.

5.1 Comparison between the results obtained
using weighted sum and global criteria
method

We solve both models using two different techniques and

the respective solutions are given in Table 10. Here we

observe that when we use the global criteria method to

solve the problem, then the total cost of transportation for

MODEL-I and II is greater than the cost obtained using the

weighted sum method for both cases. So in that case we

conclude that the weighted sum method is more acceptable,

as it gives us the minimum cost 1.

But in case of total transportation time minimization,

except the MODEL-I (Case-I) all the models give mini-

mum time when the weighted sum method is compared

with the global criteria method. Also it can be observed

that for the MODEL-I (Case-I), the difference between the

total time is 0.88 h. which can be tolerable with a certain

degree, although global criteria method gives the minimum

cost in that case. So overall it can be concluded here that

the weighted sum method is the best compared to the

global criteria method for solving this type of multi-ob-

jective decision-making optimization problem.

From Table 10, it can be observed that the total amount

of transported goods from its different source points to the

destinations are as follows, for MODEL-I (Case-I),

Table 3 Crisp penalty for per

unit safety MODEL-I (case-I)
i J k

Safety (s)

1 2 3

1 2.50 1.80 2.20 1

2.60 3.20 3.00 2

2 1.80 3.50 3.10 1

2.00 2.50 1.50 2

Table 4 Type-2 fuzzy unit transportation cost, restricted fixed charge and time for MODEL-I (case-II)

Type-2 Fuzzy unit transportation cost Type-2 Fuzzy transportation time

~c111 ¼ 4; 6; 8; 0:1; 0:2ð Þ ~c131 ¼ 4; 7; 9; 0:2; 0:6ð Þ ~t111 ¼ 1:0; 3; 4:0; 0:2; 0:4ð Þ ~t211 ¼ 1; 2; 3:5; 0:1; 0:2ð Þ
~c211 ¼ 5; 6; 9; 0:1; 0:4ð Þ ~c231 ¼ 7; 9; 11; 0:4; 0:6ð Þ ~t121 ¼ 1:0; 2; 4:5; 0:2; 0:5ð Þ ~t221 ¼ 1; 2:5; 5; 0:1; 0:2ð Þ
~c121 ¼ 7; 8; 10; 0:4; 0:7ð Þ ~c112 ¼ 3; 7; 10; 0:2; 0:9ð Þ ~t131 ¼ 2:0; 3:5; 4; 0:4; 0:5ð Þ ~t231 ¼ 1:2; 2; 3; 0:2; 0:5ð Þ
~c221 ¼ 5; 7; 8; 0:5; 0:6ð Þ ~c212 ¼ 5; 7; 9; 0:5; 0:6ð Þ ~t112 ¼ 2:0; 2:5; 5; 0:2; 0:4ð Þ ~t212 ¼ 2; 4; 5:5; 0:1; 0:8ð Þ
~c122 ¼ 5; 8; 9; 0:2; 0:5ð Þ ~c232 ¼ 3; 5; 9; 0:4; 0:7ð Þ ~t122 ¼ 2:0; 4; 5:0; 0:2; 0:5ð Þ ~t232 ¼ 3; 3:5; 6; 0:2; 0:9ð Þ
~c222 ¼ 3; 7; 8; 0:4; 0:9ð Þ ~c132 ¼ 3; 5; 8; 0:7; 0:9ð Þ ~t222 ¼ 1:5; 2; 3:5; 0:4; 0:6ð Þ ~t132 ¼ 1; 3; 4:5; 0:3; 0:8ð Þ

Type-2 Fuzzy restricted fixed charge for vehicle-1

~f 1111 ¼ 3; 5; 6; 0:5; 0:7ð Þ ~f 1121 ¼ 4; 7; 8; 0:4; 0:8ð Þ
~f 1211 ¼ 4; 7; 8; 0:4; 0:8ð Þ ~f 1131 ¼ 5; 7; 8; 0:4; 0:8ð Þ
~f 1221 ¼ 5; 6; 9; 0:2; 0:4ð Þ ~f 1231 ¼ 1; 5; 7; 0:6; 0:8ð Þ

Min
P2

i¼1

P3

j¼1

P2

k¼1

0:70þ 0:40 hr;ijk
� �

c3ijk þ 0:30c2ijk

� �
xijkzijk

1þ 0:40h0r;ijk
þ

0:70þ 0:40 hr;ijk
� �

f 3ijk þ 0:30c2ijk

� �
xijkm

e
ijk

1þ 0:40 h0r;ijk

Min
P2

i¼1

P3

j¼1

P2

k¼1

0:70þ 0:40 hr;ijk
� �

t3ijkyijk þ 0:30t2ijkyijk

1þ 0:40 hr;ijk
subject to the constraints 9cð Þ� 9fð Þand 1gð Þ

8
>>>>>><

>>>>>>:
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MODEL-II (Case-I and Case-II) it is 50 units and for

MODEL-I (Case-II) it is 49.99 units, where the solution has

been obtained using the weighted sum method. In case of

global criteria method we observe that the total transported

goods is 50 unit for the MODEL-I (Case-I and Case-II),

MODEL-II (Case-I), but in case of MODEL-II (Case-II) it

is 49.98 units. Using these total transported goods, we have

calculated the average transportation cost for each model,

dividing the total transportation cost by the total trans-

ported amounts of goods. The average costs of the different

models are presented in Table 11.

One can observe from Table 11 that the average cost for

each model is minimum when the solution is obtained

using the weighted sum method compared to the global

criteria method. Although the difference is very small, it

can make a large impact on a big business management. In

this regard, the use of weighted sum method is fruitful

compare to the global criteria method.

6 Some particular cases

6.1 Verification with the earlier works

In [20], Kundu et al. developed a traditional transportation

model with fixed charge in type-2 fuzzy environment. They

have taken the fixed charge without any restriction. Hence,

not considering the conveyances and safety factors, omit-

ting the restrictions on transported amount and fixed

charge, the present problem reduces to the problem of

Kundu et al. [20]. With their numerical data for MODEL-I

(data from section 8.1 of [20]), we obtained almost the

same result of Kundu et al. [20] which is presented in

Table 12.

Recently Das et al. [32] developed the defuzzification

method for trapezoidal type-2 fuzzy variable and success-

fully applied to STP. Here to make a comparison, we have

considered there problem, in which they have considered

two objectives to optimize, one is cost and another is time.

Table 5 Type-2 fuzzy per unit safety cost for MODEL-II (case-I)

~s ¼
3with ~l~s111 3ð Þ ¼ 0:1; 0:4; 0:5ð Þ
4with ~l~s111 4ð Þ ¼ 0:2; 0:4; 0:7ð Þ
7with ~l~s111 7ð Þ ¼ 0:4; 0:5; 1:0ð Þ

8
<

: ~s211 ¼
2with ~l~s211 2ð Þ ¼ 0:1; 0:6; 0:7ð Þ
3with ~l~s211 3ð Þ ¼ 0:4; 0:7; 0:9ð Þ
5with ~l~s211 5ð Þ ¼ 0:2; 0:5; 0:7ð Þ

8
<

: ~s221 ¼
2with ~l~s221 2ð Þ ¼ 0:1; 0:5; 0:6ð Þ
5with ~l~s221 5ð Þ ¼ 0:4; 0:5; 0:7ð Þ
7with ~l~s221 7ð Þ ¼ 0:2; 0:6; 0:7ð Þ

8
<

:

~s121 ¼
3with ~l~s121 3ð Þ ¼ 0:2; 0:6; 0:8ð Þ
4with ~l~s121 4ð Þ ¼ 0:1; 0:3; 0:4ð Þ
7with ~l~s121 7ð Þ ¼ 0:2; 0:3; 0:4ð Þ

8
<

: ~s131 ¼
3with ~l~s131 3ð Þ ¼ 0:2; 0:4; 0:6ð Þ
5with ~l~s131 5ð Þ ¼ 0:3; 0:5; 0:8ð Þ
6with ~l~s131 6ð Þ ¼ 0:1; 0:2; 0:3ð Þ

8
<

: ~s231 ¼
3with ~l~s231 3ð Þ ¼ 0:1; 0:2; 0:5ð Þ
6with ~l~s231 6ð Þ ¼ 0:2; 0:6; 0:7ð Þ
9with ~l~s231 9ð Þ ¼ 0:6; 0:9; 1:0ð Þ

8
<

:

~s112 ¼
4with ~l~s112 4ð Þ ¼ 0:2; 0:4; 0:5ð Þ
5with ~l~s112 5ð Þ ¼ 0:6; 0:8; 0:9ð Þ
8with ~l~s112 8ð Þ ¼ 0:2; 0:6; 0:7ð Þ

8
<

: ~s212 ¼
3with ~l~s212 3ð Þ ¼ 0:2; 0:3; 0:7ð Þ
6with ~l~s212 6ð Þ ¼ 0:1; 0:4; 0:7ð Þ
8with ~l~s212 8ð Þ ¼ 0:2; 0:5; 0:6ð Þ

8
<

: ~s122 ¼
2with ~l~s122 2ð Þ ¼ 0:2; 0:6; 0:8ð Þ
4with ~l~s122 4ð Þ ¼ 0:1; 0:6; 0:7ð Þ
8with ~l~s122 8ð Þ ¼ 0:2; 0:4; 0:5ð Þ

8
<

:

~s222 ¼
3with ~l~s222 3ð Þ ¼ 0:4; 0:7; 0:9ð Þ
7with ~l~s222 7ð Þ ¼ 0:3; 0:6; 0:7ð Þ
9with ~l~s222 9ð Þ ¼ 0:1; 0:5; 0:8ð Þ

8
<

: ~s132 ¼
3with ~l~s132 3ð Þ ¼ 0:2; 0:4; 0:7ð Þ
5with ~l~s132 5ð Þ ¼ 0:3; 0:7; 0:8ð Þ
7with ~l~s132 7ð Þ ¼ 0:5; 0:6; 0:9ð Þ

8
<

: ~s232 ¼
5with ~l~s232 5ð Þ ¼ 0:6; 0:8; 1:0ð Þ
6with ~l~s232 6ð Þ ¼ 0:4; 0:8; 1:0ð Þ
7with ~l~s232 7ð Þ ¼ 0:3; 0:6; 0:9ð Þ

8
<

:

Table 6 Type-2 fuzzy available

sources and conveyance

capacities for MODEL-II (case-

I)

Available fuzzy sources

~a1 ¼
21with ~l~a1 21ð Þ ¼ 0:3; 0:7; 0:9ð Þ
22with ~l~a1 22ð Þ ¼ 0:7; 0:8; 0:9ð Þ
29with ~l~a1 29ð Þ ¼ 0:2; 0:5; 0:7ð Þ

8
<

: ~a2 ¼
23with ~l~a2 23ð Þ ¼ 0:4; 0:7; 0:9ð Þ
26with ~l~a2 26ð Þ ¼ 0:2; 0:4; 1:0ð Þ
30with ~l~a2 30ð Þ ¼ 0:4; 0:8; 0:9ð Þ

8
<

:

Fuzzy conveyance capacities

~e1 ¼
28with ~l~e1 28ð Þ ¼ 0:6; 0:7; 0:9ð Þ
23with ~l~e1 23ð Þ ¼ 0:5; 0:7; 0:8ð Þ
19with ~l~e1 19ð Þ ¼ 0:1; 0:2; 0:7ð Þ

8
<

: ~e2 ¼
26with ~l~e2 26ð Þ ¼ 0:8; 0:9; 0:9ð Þ
24with ~l~e2 24ð Þ ¼ 0:7; 0:8; 1:0ð Þ
28with ~l~e2 28ð Þ ¼ 0:7; 0:7; 0:9ð Þ

8
<

:

Table 7 Type-2 fuzzy demands for MODEL-II (case-I)

~b1 ¼
19with ~l~b1

19ð Þ ¼ 0:4; 0:6; 0:8ð Þ
14with ~l~b1

14ð Þ ¼ 0:5; 0:8; 1:0ð Þ
16with ~l~b1

16ð Þ ¼ 0:3; 0:6; 0:7ð Þ

8
<

:
~b2 ¼

8with ~l~b2
8ð Þ ¼ 0:3; 0:6; 0:7ð Þ

10with ~l~b2
10ð Þ ¼ 0:4; 0:5; 0:8ð Þ

11with ~l~b2
11ð Þ ¼ 0:4; 0:8; 0:9ð Þ

8
<

:
~b3 ¼

17with ~l~b3
17ð Þ ¼ 0:3; 0:7; 0:8ð Þ

16with ~l~b3
16ð Þ ¼ 0:2; 0:3; 0:4ð Þ

20with ~l~b3
20ð Þ ¼ 0:6; 0:7; 0:9ð Þ

8
<

:
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Table 8 Type-2 fuzzy safety

cost/unit for MODEL-II (case-

II)

Type-2 fuzzy per unit safety cost

~s111 ¼ 2:0; 3; 4; 0:5; 0:7ð Þ ~s131 ¼ 2; 7; 9; 0:5; 0:8ð Þ ~s132 ¼ 3:0; 4; 5; 0:4; 0:6ð Þ ~s122 ¼ 2; 4; 5; 0:8; 0:9ð Þ
~s211 ¼ 2:5; 3; 4; 0:3; 0:7ð Þ ~s231 ¼ 3; 4; 5; 0:3; 0:5ð Þ ~s121 ¼ 4:6; 6:5; 5; 0:5; 0:7ð Þ ~s221 ¼ 3; 4; 8; 0:3; 0:5ð Þ
~s222 ¼ 4:5; 5; 6; 0:5; 0:5ð Þ ~s112 ¼ 1; 2; 3; 0:5; 0:7ð Þ ~s212 ¼ 2:0; 4; 8; 0:5; 0:8ð Þ ~s232 ¼ 2; 3; 5; 0:2; 0:3ð Þ

Table 9 Type-2 fuzzy available

sources and conveyance

capacities for MODEL-II (case-

II)

Source Demand Conveyance

~a1 ¼ 22; 25; 27; 0:2; 0:3ð Þ ~b1 ¼ 12; 16; 19; 0:4; 0:9ð Þ ~e1 ¼ 20; 23; 26; 0:1; 0:2ð Þ
~a2 ¼ 19; 22; 24; 0:3; 0:8ð Þ ~b2 ¼ 10; 14; 17; 0:2; 1:0ð Þ ~e2 ¼ 15; 19; 27; 0:2; 0:3ð Þ

~b3 ¼ 12; 13; 16; 0:1; 0:7ð Þ

Table 10 Optimal solution for both models

MODEL-I (case-I) with the usual credibility MODEL-I (case-II) with the generalized credibility

Optimal allocation of transported goods Total cost Total time Optimal allocation of transported goods Total cost Total time

Solution obtained using weighted sum method

i=j 1 2 3 k 460.68 $ 22.87 h i=j 1 2 3 k 501.80 $ 23.30 h

1 9.00 0.00 0.00 1 1 13.22 0.00 0.00 1

7.96 4.04 0.00 2 3.55 0.00 4.22 2

2 0.00 8.96 17.0 1 2 0.00 0.00 12.78 1

3.04 0.00 0.00 2 3.22 13.0 0.00 2

MODEL-II (Case-I) with the usual credibility MODEL-II (case-II) with the generalized credibility

Optimal allocation of transported goods Total cost Total time Optimal allocation of transported goods Total cost Total time

Solution obtained using weighted sum method

i=j 1 2 3 k 580.03 $ 19.17 h i=j 1 2 3 k 505.43 $ 18.73 h

1 0.00 0.00 13.78 1 1 9.84 0.00 0.00 1

0.00 9.77 0.00 2 8.50 8.11 0.00 2

2 0.00 6.01 4.25 1 2 0.00 0.00 15.30 1

16.19 0.00 0.00 2 0.00 8.25 0.00 2

MODEL-I (case-I) with the usual credibility MODEL-I (case-II) with the generalized credibility

Optimal allocation of transported goods Total cost Total time Optimal allocation of transported goods Total cost Total time

Solution obtained using global criteria method

i=j 1 2 3 k 470.06 $ 21.99 h i=j 1 2 3 k 503.57 $ 23.70 h

1 3.00 6.00 0.00 1 1 15.00 0.00 0.00 1

5.00 7.00 0.00 2 0.00 0.00 6.00 2

2 0.00 0.00 17.0 1 2 0.00 0.00 11.00 1

12.00 0.00 0.00 2 5.00 13.00 0.00 2

MODEL-II (case-I) with the usual credibility MODEL-II (case-II) with the generalized credibility

Optimal allocation of transported goods Total cost Total time Optimal allocation of transported goods Total cost Total time

Solution obtained using global criteria method

i=j 1 2 3 k 580.04 $ 19.17 h i=j 1 2 3 k 530.31 $ 20.75 h

1 0.00 0.00 13.78 1 1 14.96 0.00 3.00 1

0.00 9.77 0.00 2 0.00 0.00 8.48 2

2 0.00 6.01 4.25 1 2 3.37 0.00 3.81 1

16.19 0.00 0.00 2 0.00 16.36 0.00 2
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In the following, we have presented a discussion on the

conversion of trapezoidal membership to triangular form.

A trapezoidal MF is represented by the four points on

the axis line where the four points are a lower limit, a lower

support limit, an upper support limit and an upper limit,

respectively, whereas the triangular MF represents using a

lower limit, a mean value and an upper limit. For a

trapezoidal MF, the value of membership is 1 between the

lower support and upper support limit and in case of tri-

angular MF the value of membership is 1 at mean value

point. Whenever the lower support limit and upper support

limit equal, then a trapezoidal MF becomes a triangular

MF, and using this property we have converted the trape-

zoidal type-2 fuzzy variable to triangular type-2 fuzzy

variable keeping the same foot print of uncertainty for the

type-2 fuzzy set. In [32] Das et al. solved a multi-objective

STP in trapezoidal type-2 fuzzy environment where they

have considered all the parameters are as trapezoidal type-2

fuzzy. To make a comparison of our proposed methodol-

ogy with their methodology first, we convert the different

parameters presented in Tables 1 and 2, section. 5.3,

p. 2442 of Das et al. [32] and then defuzzify them using the

triangular defuzzification formula proposed in this paper.

With these defuzzified parameters, we solved their problem

and the results are presented in Table 13. Here we find the

mean value for triangular MF using the average of lower

support limit and upper support limit.

From Table 13, we observed that the present investi-

gation gives the lowest average cost as well as the lowest

average time when we solved their problem with our

methodology, and this happened due to the conversion of

different parameters from trapezoidal to triangular. This

conversion reduced the region of the footprint of uncer-

tainty for the MF and hence the defuzzified values of

parameters also become smaller compared to the values of

Das et al. [32]. From which we can conclude that our

methodology is working as good as we expected.

We have also made a comparative analysis with the

defuzzification process proposed in this paper to the well-

known Karnik–Mendel (KM) algorithm [27]. The results of

the KM type reducer are obtained by first calculating the

generalized centroid [cl; cr] of an IT2FS and then taking

the average, i.e., the centroid xc ¼ clþcr
2
, where [cl; cr] are

the lower and upper bound of the type-reduced set obtained

using the KM algorithm. But the KM algorithm is designed

to deal with the interval type-2 fuzzy sets (IT2FS), and

hence we have converted the each fuzzy inputs of our

proposed MODEL-I to IT2FS inputs using the property that

any number can be represented as an interval number by

introducing the lower and upper limit of the interval as

same. We solved the problem using the KM algorithm, and

our proposed defuzzification method and the results are

presented in Table 14.

Table 14 shows the optimal allocation, i.e., the solution

in both methods is same, but their cost and transportation

time are not same. In case of KM algorithm, it is higher

than the proposed method and the reason is the defuzzifi-

cation method. The proposed defuzzification is based on

critical value, whereas the KM algorithm is mainly based

on the centroid which is calculated by using the average of

lower and upper bound of the type-reduced set.

Table 11 Average

transportation cost for different

models

MODEL-I (case-I) MODEL-I (case-II) MODEL-II (case-I) MODEL-II (case-II)

Average transportation cost using weighted sum method

9.20 $ 10.04 $ 11.60 $ 10.11 $

Average transportation cost using global criteria method

9.40 $ 10.07 $ 11.60 $ 10.61 $

Table 12 Optimal solution for

MODEL-I (data from

section 8.1 of [20])

Defuzzified cost by CV-based Fixed charge (fij) Transported amount (xijÞ Min cost

Optimal result solution for proposed MODEL-I

cij i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 1 i ¼ 2 i ¼ 3 272.34

j ¼ 1 3:61 5:25 4:75 1:85 2:73 2:42 12:00 8:00 16:00

j ¼ 2 7:10 7:51 9:11 4:05 3:68 4:52 0:00 14:00 0:00

Optimal result of Kundu et al. [20]. Model-I (Sect. 8.1 of [20])

cij i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 1 i ¼ 2 i ¼ 3 283.32

j ¼ 1 3.70 5.46 4.85 fij ¼ 0:5� cij 13.00 7.00 15.00

j ¼ 2 8.12 7.36 9.05 0.00 14.00 0.00
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6.2 A particular form of proposed MODEL-I
(Case-I)

Models without (1) restrictions on transported amount and

fixed charge; (2) deprived of conveyance and safety factor.

Here we present the results of total cost and time of

MODEL-I (Case-I) only in Table 15.

6.3 Discussion and managerial insights

Discerning the optimal result of both models in Table 10, it

is found that for transporting the same amount of goods

(here it is 50 unit) with the same per unit transportation

cost, restricted fixed charge, per unit time and per unit

safety cost, the total transportation cost of MODEL-I

(Case-I) becomes less compared to the MODEL-II (Case-

I). Here the MODEL-I (Case-I) differs from MODEL-II

(Case-I) by the source, demand and conveyance parameters

where in MODEL-I, all these parameters are exactly

known (crisp) and in MODEL-II, they are type-2 fuzzy in

nature. But for time, it is the opposite. When generalized

credibility is used for defuzzification of the fuzzy amount,

we have the same observations. Also as we put restriction

on the transported amount by 3 units, we noticed that the

optimal transported amounts in each case are greater than

this restricted amount, which reflected in Table 10. This is

as per normal expectation.

This analysis is helpful for the managers of the transport

agencies, especially for the trouble/disturbed area. In the

northeast regions of India and similar regions of the other

countries where insurgency prevails, managers of the

transport agencies can restrict themselves to have a mini-

mum total safety taking some risks and in that case, the

present analysis gives the appropriate decisions. Changing

the values of B (desired safety measure), the decision

maker (DM) can find out the appropriate values.

If a manager decides to have a high safety factor (with

large B) for his/her goods transportation, he/she can choose

the value of B accordingly and select the corresponding

routes for transportation form this analysis.

Again in real-life problems, amount of transportation of

goods less than a certain quantity is not profitable.

Unnecessarily, it involves more routes and increase total

transportation time. For this reason, minimum amount of

transported goods in each route is normally mentioned. For

more economical decisions, DM may decide the appro-

priate minimum amount depending upon the practical sit-

uation following the present analysis.

Table 13 Result comparison between our proposed method and the method from Das et al. [32]

Optimal allocation of transported goods ðxijkÞ Total Average

i=j 1 2 k Cost Time Transported goods Cost Time

1 5.64 0.00 1 524.47 $ 120.25 h 30.53 17.18 $ 3.94 h

3.32 5.33 2

2 3.99 6.41 1

2.31 3.53 2

Optimal result of Das et al. [32], Table 3, Sect. 5.3, page 2442

1 1.85 10.25 1 793.52 $ 276.65 h 34.87 22.756 7.91

0.00 0.00 2

2 1.15 6.68 1

14.94 0.00 2

Table 14 Optimal solution for MODEL-I (case-I) obtained using proposed method and KM algorithm

Proposed method KM algorithm

i=j 1 2 3 k i=j 1 2 3 k

Cost = 460.68 $ 1 9.00 0.00 0.00 1 Cost = 465.21 $ 1 9.00 0.00 0.00 1

7.96 4.04 0.00 2 7.96 4.04 0.00 2

Time = 22.87 h 2 0.00 0.00 17.00 1 Time = 23.29 h 2 0.00 0.00 17.00 1

3.04 8.96 0.00 2 3.04 8.96 0.00 2

Average cost = 9.21 $ Average time = 0.46 h Average cost = 9.30 $ Average time = 0.47 h
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Generally, imprecise values of the system parameters

are assumed on the basis of experts’ opinions when suffi-

cient past data of the system are not available. Here, type-2

fuzzy values give more precise values than the general

type-1 fuzzy values, because the type-2 fuzzy set is a

second-order approximation of uncertainty and the type-1

fuzzy is of the first order. Also it has been observed that in

different experts’ opinions, uncertainty exists and hence

each experts’ opinion becomes a type-1 MF, i.e., type-1

fuzzy value. Here the final opinion of all experts’ is

expressed as type-2 fuzzy set. Thus, DM is able to take

more appropriate precise decisions with the help of present

analysis.

6.4 Sensitivity analysis

In this section, we provide sensitivity analysis to observe

the efficiency and logically correctness of the method that

we use to develop our proposed model with type-2 fuzzy

sets. For different level of predetermined credibility levels

for the objective functions and the constraints, the results

are given in Table 16 and 17.

From Table 16, we observe that for increase in the

credibility levels of cost (ac), the corresponding trans-

portation cost increases with a variation in the transporta-

tion time. This happens due to the increase in the

credibility levels of cost (ac). The defuzzified amount for

cost also increases. In case of time, we see when ac ¼ 0:78,

then the transportation time is more compared to the other

cases. This incident happens due to the restricted fixed

charge; here all the vehicles are free from this restriction.

Now when at increases and ac is fixed, there is an increase

in transportation time, but the transportation cost remains

almost same. The reason for this is that, due to increase in

the credibility levels of time (at), the defuzzified amount

also increases for time. Another thing when we increase the

credibility level of restricted fixed charge (af ), we find an

increase in the transportation cost, but it does not change

the transportation time at all. The explanation here is that

the fixed charge is a particular cost which to be adding with

the unit transportation cost and it is not related with time.

But in both cases, the total amount transported goods are

same. The graphical representation of this phenomenon is

shown in Fig. 1.

Table 15 Optimal solution for

specific form MODEL-I (Case-

I)

Min cost Min time Transported amount

393:79 $ 14:60 h x211 ¼ 20, x131 ¼ 8, x231 ¼ 9, x122 ¼ 13 and other variables are zero

Table 16 Changes in

transportation cost and time due

to different credibility levels for

MODEL-I (Case-II)

ac at af ai bj ck Transported amount Transportation cost Transportation time

0.78 0.85 0.85 0.85 0.85 0.85 50 486.97 23.89

0.80 50 491.01 22.82

0.85 50 501.80 23.30

0.90 50 510.40 23.30

0.85 0.78 0.85 0.85 0.85 0.85 50 501.83 21.80

0.80 50 501.77 22.27

0.85 50 501.80 23.30

0.90 50 501.57 23.48

0.85 0.78 0.85 0.85 0.85 50 499.45 23.30

0.80 50 500.20 23.30

0.85 50 501.80 23.30

0.90 50 503.03 23.30

Fig. 1 MODEL-I changes on cost and time for different credibility

levels
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Here we observe from Table 17 that, for an increase in

the credibility levels of cost (ac), the corresponding trans-

portation cost increases, but the time remains exactly the

same except one case. This is for restriction on the amount

of goods. For time (at), the corresponding transportation

costs do not differ much from each other and the total

transportation time follows an irregular distribution. The

reason can be explained as follows. Due to restriction on

amount of transported goods, DM considers those routes

where the amount of transported goods is more than or

equal to the restricted amount. In doing so, the resultant

total time is reduced. Same thing can be noticed in case of

af , where the cost and time change in an irregular form.

This is due to the restricted fixed charge and restriction on

transported amount. Now it is observed here that the source

capacity of each origin, demand of each destinations,

capacity of conveyance increase as the credibility levels of

source (ai), demand (bjÞ and conveyance (ck) increase,

which results a slight variation in the total transportation

cost and time, respectively. This is logically meaning full.

Because if sources are available in a large amount, then the

more number of transportation will take place in the system

and so the total cost and time will surely increase. Same

explanation can be given for demand and conveyance.

But in case of safety, we find a difference in time for the

credibility level ds ¼ 0:80; here it becomes lesser by 1.73

units than the other cases. The explanation of this thing can

be described; since there is a restriction on the amount of

transported goods, DM considers only that route where the

transported amounts of goods are greater than or equal to

the restricted amount and the restricted amount can be

adjusted through the routes through which goods are

actually transported. As a result, the corresponding cost

increases and the time decreases. This experiment with the

stated explanation strongly validates for our proposed

concept that restriction on the amount of transported goods

Table 17 Changes in transportation cost and time for different credibility levels for MODEL-II (case-II)

ac at af ai bj ck ds Transported amount Transportation cost Transportation time

0.78 0.85 0.85 0.85 0.85 0.85 0.85 49.99 489.98 18.73

0.80 49.99 493.58 22.89

0.85 49.99 505.43 18.73

0.90 49.99 514.12 18.73

0.85 0.78 0.85 0.85 0.85 0.85 0.85 49.99 504. 07 21.48

0.80 49.99 504.07 21.92

0.85 49.99 505.43 18.73

0.90 49.99 505.43 19.41

0.85 0.85 0.78 0.85 0.85 0.85 0.85 49.99 512.34 22.45

0.80 49.99 561.09 22.58

0.85 49.99 505.43 18.73

0.90 49.99 506.32 22.61

0.85 0.85 0.85 0.85 0.85 0.85 0.85 49.99 505.43 18.73

0.87 49.99 519.77 22.61

0.89 49.99 503.96 22.89

0.91 49.99 505.22 21.82

0.85 0.85 0.85 0.85 0.78 0.85 0.85 48.41 486.47 13.79

0.80 48.93 492.20 18.73

0.83 49.60 500.22 13.79

0.85 49.99 505.43 18.73

0.85 0.85 0.85 0.85 0.85 0.85 0.85 49.99 505.43 18.73

0.87 49.99 502.80 22.89

0.89 49.99 501.77 23.70

0.91 49.99 507.63 16.40

0.85 0.85 0.85 0.85 0.85 0.85 0.78 49.99 505.43 18.73

49.99 505.49 17.00

0.0.8085 49.99 505.43 18.73

0.90 49.99 505.43 18.73
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will optimize the time, satisfying all demands of the

system.

Here we present the pictorial representation for the

MODEL-II on sensitivity analysis to show the effect on

total transportation cost and time due to the change in

credibility levels by Figs. 2 and 3, respectively.

7 Real-life application: a third party logistics
of perishable product

Consider a third-party logistic (TPL) which is involved in

transportation of fresh vegetables, fish and fruit in the state

of Tripura from different source points to its respective

destinations. Supplier-1 provides fish from source point-1

(S-1), fresh vegetable is provided by supplier-2 source

point-2 (S-2) and fruit is provided by supplier-3 from

source point-3 (S-3). The TPL provides two types of

appropriate vehicles denoted as E-1 and E-2 to the different

source points for the delivery of the products. In this sys-

tem, there are three different demand points or destinations

which are basically wholesale market and denoted as

demand point-1 (D-1), demand point-2 (D-2), demand

point-3 (D-3), respectively. D-1 demands for fresh veg-

etables and fruit both, D-2’s demand is fish and D-3 wishes

to get fruit.

Since the products are perishable, its transportation on

time is important. So to minimize the time of transportation

along with transportation cost is the main objective for the

TPL. But the problem arises in the system when the source

availability becomes unstable due to the reason of geo-

graphical condition, weather problems, man-made prob-

lems (unavailability of labor, communal strike etc.). In

such a condition, parameters of the transportation problem

become uncertain. Therefore, the decision maker needs to

predefine these uncertain parameters using different

uncertain tools. In this study, the uncertain parameters are

defined using triangular type-2 fuzzy variables. The

respective inputs are provided in Table 18.

Here decision has to be made in favor of making the

transportation system stable in any crisis situation and for

that it requires to define an appropriate amount of products

to be stored in the sources so that system runs smoothly.

From the practical point of view, it is very important to

define such amount of storage because if the storage is

more, then the products will be no longer fresh and its

selling price will be down, which will produce an eco-

nomic loss.

Fish is a product which requires a storage van for

transportation, and therefore it needs a fixed cost to be

considered except the transportation cost. But in case of

vegetables and fruits, these two items do not require any

kind of storage van if the delivery is done on time.

Therefore, the respective fuzzy inputs for the numerical

model are given as follows.

The inputs are fitted to the MODEL-II (Case-II) of this

study. The model is a multi-objective model and its direct

solution will not optimize both the objective functions at a

time. Therefore, a compromise solution has to be obtained

using multi-objective solution techniques. In this study, we

have used the weighted sum method to find a compromise

solution for the multi-objective model. The LINGO solver

is used for coding and obtained the optimal solutions pre-

sented in Table 19 for the MODEL-II (Case-II). Inputs

related to safety measure are taken from Table 8, as the

study for both real-life-based numerical examples is same.

Fig. 2 MODEL-II changes on cost and time for different credibility levels
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In Table 19, solution of the MODEL-II (Case-II) is

presented where the type-2 fuzzy inputs are defined using

the experts opinion and real-life data. The total cost is

690.54 $ for the transportation and total transportation time

is 26.83 h. In Table 19, it can be observed that there are

four allocations in the transportation system. As S-1 is the

source for fish, so from S-1 only fish can be transported and

hence only one allocation is done in Table 19 from S-1. As

D-1 placed demands for fresh vegetables and fruit, we can

see in Table 19 two allocations have made from S-2 and

S-3. In this table, one can observe that there is one allo-

cation from S-3 to D-3 as D-3 has demand for fruit only

and S-3 provides the fruit. Another thing that can be

observed in Table 19 is that the conveyance E-2 is used

only for the transportation for fish and it requires fixed

charge. But in case of vegetables and fruits, the used

conveyance is E-1. These facts validate the model formu-

lation and its application to real life.

8 Conclusion and future scope

In this paper, several useful ideas were presented to deal

with a restricted fixed charge solid transportation problem

in uncertain environment involving type-2 fuzzy parame-

ters. The main contributions can be summarized through

the following four aspects:

1. Three different critical values (CVs) viz. optimistic

CV, pessimistic CV and CV for regular fuzzy variable

(RFV) as well as triangular fuzzy variable are

presented, and the several properties of triangular

RFV also are discussed. Also the generalized credibil-

ity measures of triangular type-2 fuzzy variable with

different properties are presented.

2. A new and efficient reduction method, i.e., the CV-

based reduction method proposed by Qin et al. [30], is

discussed and successfully applied to the proposed

model to find the equivalent deterministic form.

3. According to the literature survey, for the first time, a

restricted fixed charge, safety-based solid transporta-

tion problem with type-2 fuzzy parameters has been

Fig. 3 MODEL-II credibility level changes with respect to source, demand, conveyance and safety

4922 Neural Computing and Applications (2019) 31:4903–4927

123



developed and solved. With the use of CV-based

reduction method, the proposed model is solved by

establishing a chance constrained programming model

based on generalized credibility and taking the cred-

ibility levels on the objective function as well as on the

constraints.

4. By introducing the concept of restriction on amount of

transported goods, we have minimized the total

transportation time satisfying the demand of all

destinations.

The techniques and methodologies that used in this

paper are easy to understand and general. We provide

numerical experiments to show the easy application of the

proposed methodology and solution technique. The

methodologies proposed in this paper can be applied to the

decision-making problems in different areas with type-2

fuzzy parameters. This process of decision making in

which inputs are in imprecise/fuzzy in nature and the

corresponding outputs are crisp/known will definitely help

the DM to make the appropriate decisions when uncer-

tainty exists in the data. Also the proposed model can be

further extended to different types of solid transportation

problem like as multi-stage multi-item solid transportation

problem (STP) with type-2 fuzzy variable, STP in time

varying network.
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Table 18 Different type-2 fuzzy

inputs for the MODEL-II (case-

II) based on a real-life

application

Type-2 Fuzzy unit transportation cost Type-2 Fuzzy transportation time

~c111 ¼ 8; 9; 10; 0:3; 0:4ð Þ ~c222 ¼ 9; 11; 12; 0:3; 0:4ð Þ ~t111 ¼ 2; 3; 5; 0:2; 0:3ð Þ ~t222 ¼ 2; 5; 6; 0:3; 0:4ð Þ
~c112 ¼ 8; 10; 14; 0:4; 0:5ð Þ ~c231 ¼ 8; 10; 12; 0:2; 0:3ð Þ ~t112 ¼ 2; 4; 6; 0:3; 0:4ð Þ ~t231 ¼ 2; 5; 6; 0:3; 0:4ð Þ
~c121 ¼ 9; 11; 12; 0:3; 0:4ð Þ ~c232 ¼ 9; 11; 13; 0:3; 0:4ð Þ ~t121 ¼ 2; 5; 6; 0:3; 0:4ð Þ ~t232 ¼ 2; 3; 6; 0:2; 0:3ð Þ
~c122 ¼ 8; 9; 10; 0:3; 0:4ð Þ ~c311 ¼ 8; 12; 13; 0:3; 0:4ð Þ ~t122 ¼ 3; 5; 6; 0:1; 0:2ð Þ ~t311 ¼ 2; 4; 5; 0:2; 0:4ð Þ
~c131 ¼ 9; 11; 12; 0:5; 0:6ð Þ ~c312 ¼ 9; 11; 12; 0:3; 0:5ð Þ ~t131 ¼ 2; 5; 6; 0:2; 0:3ð Þ ~t312 ¼ 4; 5; 6; 0:2; 0:4ð Þ
~c132 ¼ 9; 12; 13; 0:6; 0:7ð Þ ~c321 ¼ 8; 11; 15; 0:1; 0:3ð Þ ~t132 ¼ 3; 5; 6; 0:3; 0:4ð Þ ~t321 ¼ 3; 5; 6; 0:2; 0:3ð Þ
~c211 ¼ 9; 13; 14; 0:3; 0:4ð Þ ~c322 ¼ 9; 11; 13; 0:2; 0:4ð Þ ~t211 ¼ 2; 4; 6; 0:2; 0:3ð Þ ~t322 ¼ 2; 4; 6; 0:3; 0:5ð Þ
~c212 ¼ 8; 11; 13; 0:2; 0:4ð Þ ~c331 ¼ 9; 10; 11; 0:3; 0:5ð Þ ~t212 ¼ 2; 5; 6; 0:3; 0:4ð Þ ~t331 ¼ 2; 4; 6; 0:1; 0:3ð Þ
~c221 ¼ 9; 12; 13; 0:3; 0:4ð Þ ~c332 ¼ 8; 12; 14; 0:3; 0:4ð Þ ~t221 ¼ 3; 4; 6; 0:3; 0:4ð Þ ~t332 ¼ 2; 5; 6; 0:2; 0:3ð Þ

Type-2 Fuzzy restricted fixed charge for vehicle-1

~f 1111 ¼ 20; 23; 25; 0:3; 0:4ð Þ
~f 1121 ¼ 21; 23; 25; 0:3; 0:4ð Þ
~f 1131 ¼ 22; 23; 24; 0:3; 0:5ð Þ

Source Demand Conveyance

~a1 ¼ 30; 31; 35; 0:8; 0:9ð Þ ~b1 ¼ 19; 21; 23; 0:7; 0:9ð Þ ~e1 ¼ 35; 38; 40; 0:3; 0:7ð Þ
~a2 ¼ 25; 27; 28; 0:5; 0:8ð Þ ~b2 ¼ 23; 25; 28; 0:5; 1:0ð Þ ~e2 ¼ 40; 42; 45; 0:7; 0:9ð Þ
~a3 ¼ 27; 29; 31; 0:4; 0:6ð Þ ~b3 ¼ 20; 24; 26; 0:4; 0:8ð Þ

Table 19 Optimal solution to a real-life application problem

Optimal allocation of

transported goods

Total cost Total time

D-1 D-2 D-3

S-1 0.00 0.00 0.00 E-1 690.54 $ 26.83 h

0.00 23.31 0.00 E-2

S-2 9.60 0.00 0.00 E-1

0.00 0.00 0.00 E-2

S-3 6.68 0.00 20.65 E-1

0.00 0.00 0.00 E-2
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Appendix: Details on type-2 fuzzy set

A type-1 fuzzy set is a set whose elements have degrees of

membership. In classical set theory, the membership of

elements in a set is assessed in binary terms according to a

bivalent condition—an element either belongs or does not

belong to the set. By contrast, fuzzy set theory permits the

gradual assessment of the membership of elements in a set;

this is described with the aid of a MF valued in the real unit

interval [0, 1]. In this whole paper the word ‘‘fuzzy’’

defines this fuzzy variable and denoted ~A.

Type-2 fuzzy set (T2 FS)

Type-2 fuzzy set ~A defined on a universe of discourse X,

which is denoted as ~A � X; is a set of pairs x; l ~A xð Þ
	 


;

where x an element of a fuzzy set is, and its grade of

membership l ~A xð Þ in the fuzzy set ~A is a type-1 fuzzy set

defined in the interval Jx 	 0; 1½ �; i.e., A T2 FS ~A defined

by Mendel and John [33] is

~A ¼ x; uð Þ; l ~A x; uð Þ
� �

: 8x 2 X; Jx 	 0; 1½ �
	 


;

where 0� l ~A x; uð Þ� 1 is the type-2 MF.

For numerical examples on type-2 fuzzy set readers are

referred to Kundu et al. [20].

Regular fuzzy variable (RFV)

For a possibility space [34] (u, p, Pos), a regular fuzzy

variable ~n is defined as a measurable map from u to [0, 1]

in the sense that for every t [ [0, 1], one has

c 2 uj~n cð Þ� t
n o

2 p:

A discrete RFV is represented as ~n
 r1 . . . rn
l1 . . . ln

� �
;

where ri 2 0; 1½ � and li [ 0; 8i andmaxi lif g ¼ 1.

If ~n ¼ r1; r2; r3ð Þ with 0 B r1\r2\r3 � 1; then ~n is

called a triangular RFV.

Critical values (CVs) for RFVs

Qin et al. [30] introduced three kinds of critical values

(CVs). Let ~n be a RFV. Then:

1. The optimistic CV of ~n, denoted by CV*[~n], is given
by,

ð15Þ

2. The pessimistic CV of ~n, denoted by CV�[~n], is given
by,

ð16Þ

3. The CV of ~n, denoted by CV[~n], is given by

ð17Þ

Numerical examples of critical values are available in

Kundu et al. [20].

The following theorems introduced the critical
values (CVs) of trapezoidal and triangular RFVs

Theorem (Qin et al. [30])

Let ~n ¼ r1; r2; r3; r4ð Þ be a trapezoidal RFV. Then we have

1. The optimistic CV of ~n is CV� ~n
h i

¼ r4= 1þ r4 � r3ð Þ.

2. The pessimistic CV of ~n is CV� ~n = r2= 1þ r2 � r1ð Þ.
3. The CV of ~n is

CV ~n
h i

¼

2r2 � r1

1þ 2 r2 � r1ð Þ ; if r2 [
1

2
1

2
; if r2 �

1

2
\r3

r4

1þ 2 r4 � r3ð Þð Þ if r3 �
1

2

8
>>>>><

>>>>>:

For numerical examples readers are referred to Qin et al.

[30].

Theorem (Qin et al. [30])

Let ~n ¼ r1; r2; r3ð Þ be a triangular RFV. Then we have:

1. The optimistic CV of ~n is CV� ~n
h i

¼ r3= 1þ r3 � r2ð Þ.

2. The pessimistic CV of ~n is CV� ~n
h i

¼ r2= 1þ r2 � r1ð Þ.

3. The CV of ~n is

CV ~n
h i

¼

2r2 � r1

1þ 2 r2 � r1ð Þ ; if r2 [
1

2
r3

1þ 2 r3 � r2ð Þ ; if r2 �
1

2

8
>><

>>:

For numerical examples readers are referred to Qin et al.

[30].
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CV-based reduction method for type-2 fuzzy
variable

In type-2 fuzzy set, the MF itself is a fuzzy set. So com-

putation related to type-2 fuzzy is a very difficult job. To

avoid this difficulty, some defuzzification methods and

methodologies have been used for defuzzification of type-2

fuzzy variable. Since we cannot apply the methodologies

that are related to type-1 fuzzy sets directly to the type-2

fuzzy sets, we reduce the type-2 fuzzy sets into type-1

fuzzy sets at first and then apply the methodologies. There

are several researchers who have developed different

methods to defuzzify a type-2 fuzzy sets. Recently Qin

et al. [30] introduced a new method named as CV-based

reduction method that reduces type-2 fuzzy variables into a

type-1 fuzzy variable which may or may not be normal.

This method is basically based to find out three critical

values and these are optimistic CV denoted as CV� ~n
h i

,

pessimistic CV denoted as CV� ~n
h i

and CV reduction

denoted as CV ~n
h i

. Using these critical values we easily

reduce a type-2 fuzzy variable into a type-1 fuzzy variable.

The detail explanation of CV reduction method with an

example is presented in Qin et al. [30].

Theorem (Qin et al. [30])

Let ~n ¼ r1; r2; r3; hl; hrð Þ be a type-2 triangular fuzzy

variables. Then we have:

1. Using the optimistic CV reduction method, the reduc-

tion n1 of ~n has the following possibility distribution

l~n1
xð Þ ¼

ð1þ hrÞðx� r1Þ
r2 � r1 þ hrðx� r1Þ

; if x 2 r1;
r1 þ r2

2

h i

1� hrð Þxþ hrr2 � r1

r2 � r1 þ hr r2 � r1ð Þ ; if x 2 r1 þ r2

2
; r2

� i

�1þ hrð Þx� hrr2 þ r3

r3 � r2 þ hr x� r2ð Þ ; if x 2 r2;
r2 þ r3

2

h i

1þ hrð Þðr3 � xÞ
r3 � r2 þ hr r3 � xð Þ ; if x 2 r2 þ r3

2
; r3

� i

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

2. Using the pessimistic CV reduction method, the

reduction n2 of ~n has the following possibility distri-

bution

ln2 xð Þ ¼

ðx� r1Þ
r2 � r1 þ hlðx� r1Þ

; if x 2 r1;
r1 þ r2

2

h i

ðx� r1Þ
r2 � r1 þ hl r2 � xð Þ ; if x 2 r1 þ r2

2
; r2

� i

ðr3 � xÞ
r3 � r2 þ hl x� r2ð Þ ; if x 2 r2;

r2 þ r3

2

h i

ðr3 � xÞ
r3 � r2 þ hl r3 � xð Þ ; if x 2 r2 þ r3

2
; r3

� i

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Using the CV reduction method, the reduction n3 of ~n
has the following possibility distribution

ln3 xð Þ ¼

ð1þ hrÞðx� r1Þ
r2 � r1 þ 2hrðx� r1Þ

; if x 2 r1;
r1 þ r2

2

h i

1� hrð Þxþ hrr2 � r1

r2 � r1 þ 2hl r2 � xð Þ ; if x 2 r1 þ r2

2
; r2

� i

�1þ hlð Þx� hlr2 þ r3

r3 � r2 þ 2hl x� r2ð Þ ; if x 2 r2;
r2 þ r3

2

h i

1þ hrð Þðr3 � xÞ
r3 � r2 þ 2hr r3 � xð Þ ; if x 2 r2 þ r3

2
; r3

� i

8
>>>>>>>>>><

>>>>>>>>>>:

It can be noted that type-1 fuzzy variable obtained by CV-

based reduction methods is not always normalized. For

such cases, we cannot use the usual credibility measure;

here we have to use generalized credibility measure eCr.

The following theorem finds the crisp equivalent forms

of constraints involving type-2 triangular fuzzy variables,

using generalized creditability measure for the reduced

fuzzy variable from type-2 triangular fuzzy variable by CV

reduction method.

Theorem (Qin et al. [30])

Suppose ni be the reduction of type-2 fuzzy variable ~ni ¼
~ri1; ~r

i
2; ~r

i
3; hl;i; hr;i

� �
obtained by the CV reduction method

for i ¼ 1; 2; :::; n and n1; n2; ::::; nn are mutually indepen-

dent, and ki � 0 for i ¼ 1; 2; :::; n.

1. Given the generalized credibility level a 2 0; 0:5ð �, if
a 2 0; 0:25ð �, then eCr

Pn
i¼1 kini � t

	 

� a is equivalent

to

Xn

i¼1

1� 2aþ 1� 4að Þhr;i
� �

kir
i
1 þ 2akiri2

1þ 1� 4að Þhr;i
� t;

and if a 2 0:25; 0:5ð �, then eCr
Pn

i¼1 kini � t
	 


� a is

equivalent to
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Xn

i¼1

1� 2að Þkiri1 þ 2aþ 4a� 1ð Þhl;i
� �

kir
i
2

1þ 4a� 1ð Þhl;i
� t;

2. Given the generalized credibility level a 2 0:5; 1ð �, if
a 2 0:5; 0:75ð �, then eCr

Pn
i¼1 kini � t

	 

� a is equiva-

lent to

Xn

i¼1

2a� 1ð Þkiri3 þ 2 1� að Þ þ 3� 4að Þhl;i
� �

kir
i
2

1þ 3� 4að Þhl;i
� t;

and if a 2 0:75; 1ð �, then eCr
Pn

i¼1 kini � t
	 


� a is

equivalent to

Xn

i¼1

2a� 1þ 4a� 3ð Þhr;i
� �

kir
i
3 þ 2 1� að Þkiri2

1þ 4a� 3ð Þhr;i
� t:

Corollary With the help of the above theorem, we can also

find an equivalent expression for eCr
Pn

i¼1 kini � t
	 


� a as

follows:

As we know,

fCr
Xn

i¼1

kini � t

( )
� a ) fCr

Xn

i¼1

�kini � � t

( )
� a

) fCr
Xn

i¼1

kin
0
i � t0

( )
� a;

where n0i ¼ �ni is the reduction of � ~ni ¼
� ~ri1;� ~ri2;� ~ri3; hr;i; hl;i
� �

and � t ¼ t0.

Now using [21] of the theorem (‘‘Regular fuzzy variable

(RFV)’’ section in Appendix ), given the generalized

credibility level a 2 0; 0:5ð �, if a 2 0; 0:25ð �, then

eCr
Pn

i¼1 kini � t
	 


� a is equivalent to

Xn

i¼1

1� 2aþ 1� 4að Þhl;i
� �

ki �ri3
� �

þ 2aki �ri2
� �

1þ 1� 4að Þhl;i
� t0

¼ �t;

which implies

Xn

i¼1

1� 2aþ 1� 4að Þhl;i
� �

ki r
i
3

� �
þ 2aki ri2

� �

1þ 1� 4að Þhl;i
� t;

and if a 2 0:25; 0:5ð �, then eCr
Pn

i¼1 kini � t
	 


� a is

equivalent to

Xn

i¼1

1� 2að Þki �ri3
� �

þ 2aþ 4a� 1ð Þhr;i
� �

ki �ri2
� �

1þ 4a� 1ð Þhr;i
� � t;

which implies

Xn

i¼1

1� 2að Þki ri3
� �

þ 2aþ 4a� 1ð Þhr;i
� �

ki r
i
2

� �

1þ 4a� 1ð Þhr;i
� t;

For different values of a, the similar equivalent expression

can be obtained.

Defuzzification of a type-2 fuzzy variable by CV-
based reduction method

The defuzzification process of a type-2 fuzzy variable has

two stages. In the first stage, the type-2 fuzzy variable is

reduced to its corresponding type-1 fuzzy variable and in

the second stage the crisp value is obtained by applying

different defuzzification methods like as centroid method

[35], expected value method [36, 37] to the reduced fuzzy

variables. In this paper, we first apply the CV-based

reduction method to the type-2 fuzzy variables, so that we

get type-reduced form, i.e., a type-1 fuzzy variable and

then we apply the centroid method to the type-1 fuzzy

variables, resulting a crisp value.

Centroid defuzzification technique

The centroid method is also known as center of gravity or

center of area defuzzification. It was first proposed by

Sugeno [38] in 1985. It is the most commonly used method

and is more accurate compared to other existing methods.

The method can be expressed as

x� ¼

Pn
i¼1 xiln xið ÞPn
i¼1 ln xið Þ ; for discrete case;

rxiln xið Þdx
rln xið Þ ; for continuous case:

8
>><

>>:

where n ¼ ðn1; n2; . . .; nnÞ is a fuzzy variable, x� is the

corresponding crisp value to be obtained, ln xið Þ is the

aggregated MF, and x is the output variable.

Numerical examples of crisp conversion of TRS using

the centroid method are available in Kundu et al. [20].

Here it should be mentioned that the CV-based reduc-

tion method gives the more centroid compromised crisp

value, compared to the optimistic CV� and pessimistic CV�
as these values are evaluated using the possibility and

necessity measures, respectively, whereas the CV reduction

method is based on the average of these two measures.

The entire defuzzification process of a type-2 fuzzy set

is depicted in Fig. 4.
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