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Abstract
To solve the modeling problem under the conditions where the measured data are insufficient but biased prior knowledge

from a simulator is available, we propose a novel multi-scale m-linear programming support vector regression (m-LPSVR)
called m-MPESVR. The proposed algorithm constructs a nested support vector regression model, which incorporates prior

knowledge into m-LPSVR, compensates for the errors between prior knowledge data and the measured data, and simul-

taneously achieves small training error for both the prediction model and the error compensation model. Considering that

measured data may exist in multiple feature spaces, we extend the algorithm to multi-scale m-LPSVR to achieve accurate

modeling for complex problems. In addition, a strategy for parameter selection for m-MPESVR is presented in this paper.

The performance of the proposed algorithm is estimated in a synthetic example and a practical application. The perfor-

mances of all models are evaluated with the root mean square error (RMSE), mean absolute error (MAE), and coefficient of

determination (R2). Taking the three groups of experiments in the synthetic example as an instance, we find that the m-
MPESVR performs better, and it can still maintain high accuracy when the biases of prior knowledge data change (RMSE

values of 0.1962, 0.1904, and 0.2261, MAE values of 0.1396, 0.1375, and 0.1623, and R2 values of 0.9919, 0.9923, and

0.9892 for the three groups of experiments, respectively). The experimental results indicate that the proposed algorithm can

obtain a satisfactory model with a finite amount of measured data, and the performance is better than that of existing

algorithms.
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1 Introduction

Support vector regression (SVR) is based on the theory of

structure risk minimization in statistical learning, which

has been proven to provide excellent performance in var-

ious applications [25, 26]. In general, the sequential min-

imal optimization method [21] is used to solve quadratic

programming problems in support vector regression

(QPSVR) [25]. In order to minimize the tube parameter e
automatically, Smola [23] incorporated parameter m into

the optimization objective (m-SVR) and proposed m-linear
programming support vector regression (m-LPSVR) to

solve the optimization problem fast and easily, and to

enforce sparseness in the solution [24]. All of the above

algorithms compute a nonlinear estimate in terms of kernel

functions. In addition, m-LPSVR is robust to local pertur-

bations of the training set’s target values [24], can use more

general kernel functions flexibly, and offers higher calcu-

lation efficiency [14, 15].

In nonlinear mapping function estimation, m-LPSVR has

proven to be able to adapt accuracy e to the noise level in

the data automatically, and to provide excellent perfor-

mance in various applications based on sufficient training

data [24]. However, in some practical applications, such as

performance prediction of small-batch aerospace compo-

nents, the production of these parts is small, and the

measuring methods are extremely limited and expensive

[27, 30]. This leads to scarcity in measured data samples.

For this reason, the accuracy and generalization perfor-

mance of the model obtained with these measured data

cannot meet the requirements. Moreover, a certain type and
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amount of prior knowledge, as with mathematical model or

simulation model, is generally available. Although these

models may not fully consider all the actual conditions and

input characteristics, and the output results may be biased,

prior models can still approximately build the main part of

the real model. Consequently, obtaining an accurate model

with only a few training samples and prior knowledge is

the key issue in applying artificial intelligence technology

to the industrial field.

In related works, a literature review of incorporating

prior knowledge into SVC was presented in [10]. Prior

knowledge was defined as knowledge about class-invari-

ance and knowledge about data. Methods for incorporating

prior knowledge into SVC were classified into three cate-

gories: sample methods, kernel methods, and optimization

methods. In [9], the author introduced equality and

inequality constraints to the SVR optimization problem by

utilizing prior knowledge of particular points, derivatives,

prior models, and the correlation between outputs. Con-

sidering that prior knowledge provided by simulators or

prior models may be biased, Bloch [3] incorporated a

vector m of positive slack variables bounding the error on

this knowledge, and the author also showed the importance

of adding potential support vectors of knowledge samples

to the model. In [5], Chen built a new feature according to

prior distribution knowledge of data to improve the accu-

racy of prediction. Tahir [7] proposed a kernel function

construction method based on prior knowledge and Green’s

kernel. Because many complex functions comprise both

steep and smooth variations [31], Zhou [32, 33] proposed a

LPSVR incorporated with prior knowledge, and extended it

to multiple kernel LPSVR. In addition, Zhang [28] incor-

porated prior knowledge into SVM with sample confidence

and used weighted features to express prior knowledge.

However, all the aforementioned methods are based on

unbiased prior knowledge or only contain small noise error,

which is inaccurate in the actual applications.

In reality, biases between prior knowledge data and

measured data not only contain noise error but also the

deviation caused by coupling features, other unknown

properties, and the correlation between some factors is not

considered in the simulator. An accurate data-driven model

cannot be easily obtained by just incorporating positive

slack variables to bound errors without the correction of the

biased prior knowledge. In addition, the mapping function

in practical applications may contain uneven distributions

in high-dimensional feature spaces, and the express ability

of the decision function could be improved by using the

multi-scale kernel method. Compared with other multiple

kernel methods, the multi-scale kernel method is more

flexible and can provide a more complete scale selection.

To solve the above problem, we propose a multi-scale m-
LPSVR algorithm incorporated with prior knowledge and

error compensation (m-MPESVR). We first incorporate the

prior knowledge data, which may be biased from the

measured data into the m-LPSVR by modifying and adding

the inequality constraints (m-PSVR). By setting the appro-

priate punishment coefficients of the slack variables in the

objective function, we can adjust the tolerance of the

decision function on the error in both the measured data

and the prior data. Subsequently, we construct the error

compensation model based on measured data and corre-

sponding prior data. The two sets of data have the same

input, but the former is the measured output and the latter is

the output of the simulator. In order to improve the gen-

eralization ability of the obtained model, we incorporate

the error compensation model into the m-PSVR to make it

part of the m-PSVR optimization problem. In consequence,

the goal is to achieve a small training error in both the error

compensation model and the m-PSVR simultaneously; thus,

we call it m-PESVR. Finally, multi-scale feature spaces

have been utilized by incorporating multi-scale kernel

functions into the m-PESVR to adapt to the multi-scale

characteristic of the data. In addition, to find the global

optimum or a good approximation with high probability

[13], we use the chaotic particle swarm algorithm to find

the optimal parameters for the model.

The rest of the paper is organized as follows. Section 2

introduces m-LPSVR briefly. The proposed m-MPESVR

algorithm incorporated with compensated prior knowledge

data and multi-scale kernel functions is described in

Sect. 3. In Sect. 4, numerical experiments are performed on

a synthetic example and a practical application. Finally, we

conclude our work in Sect. 5.

In this study, all the vectors are assumed to be column

vectors. Lowercase symbols like xij; y refer to scalars,

lowercase bold symbols like x; a refer to vectors, and

uppercase bold symbols like K;G refer to matrices. For any

two matrices A and B, the scalar or matrix AT � B is the

inner product of the matrices, where AT denotes the

transpose of A. For x; y 2 Rd, X 2 Rd�m, and Y 2 Rd�n, the

kernel function kðx; yÞ is a scalar, and the kernel matrix

KðX;YÞ is an Rm�n matrix that maps Rd�m � Rd�n into

Rm�n. The identity matrix is denoted by E, and 0 is a matrix

of appropriate dimensions with all components equal to 0.

2 Review of m-LPSVR

Given a dataset fðxi; yiÞ; i ¼ 1; 2; 3; . . .;Ng, where xi 2 Rd

denotes the d-dimension input vector, yi 2 R denotes the

real-valued output, i is the i-th training sample, and N is the

number of training samples. The regression task amounts to

finding a linear function in the feature space by using the
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kernel trick. The estimate equation can be described as

follows:

yi ¼ f ðxiÞ ¼ x � /ðxiÞ þ b ð1Þ

where x is the normal vector, b is a bias term, and /ðxÞ is a
nonlinear mapping function [18–20].

Because the normal vector x can be considered a linear

combination of the training patterns by using the dual

representation, i.e., x ¼
PN

j¼1ðaj � a�j Þ � /ðxjÞ, one can

obtain the following kernel expansion of the regression

function as

yi ¼ f ðxiÞ ¼
XN

j¼1

�
aj � a�j

�
k
�
xj; xi

�
þ b ð2Þ

where kðxj; xiÞ ¼ /ðxjÞ � /ðxiÞ is the kernel function;

Gaussian kernel and wavelet kernel are the two most

widely used kernel functions in practical engineering [17].

Moreover, as for LPSVR, the non-Mercer kernel is avail-

able [14].

Unlike the standard SVR, which uses 1
2
kxk2 to make the

function as flat as possible, LPSVR seeks a x that can be

represented as the smallest combination of training patterns

by using the coefficient parameter að�Þ, so it minimizes

min
XN

i¼1

ðai þ a�i Þ þ C
XN

i¼1

Lðyi � f ðxiÞÞ ð3Þ

where the first term determines the complexity of the

model, and the penalty parameter C[ 0 is introduced to

tune the trade-off between the error minimization and the

maximization of the function flatness. Lðyi � f ðxiÞÞ refers

to the e-insensitive loss function as follows, and it penalizes
any deviations larger than the precision e for all the training
data.

Lðyi � f ðxiÞÞ ¼
0 jyi � f ðxiÞj � e

jyi � f ðxiÞj � e otherwise

�

ð4Þ

By introducing slack variables ni; ni
� � 0 for each sample

point ðxi; yiÞ, and using an e-insensitive loss function, the

LPSVR can be formulated as

find að�Þ; nð�Þ; b

min
XN

i¼1

ðai þ a�i Þ þ C
XN

i¼1

ðni þ n�i Þ

s:t: að�Þi ; nð�Þi � 0

XN

i¼1

ðai � a�i Þkðxi; xjÞ þ b� yi � eþ ni

yi �
XN

i¼1

ðai � a�i Þkðxi; xjÞ � b� eþ n�i

ð5Þ

Here (*) is shorthand referring to both the variables with

and without asterisks. In order to overcome problems with

jaij in the objective function, ai is substituted by the two

positive variables ai and a�i [24]. By solving the coefficient

parameter að�Þ in Eq. (5), the decision function Eq. (2) can

be expressed as

yi ¼ f ðxiÞ ¼
XN

j¼1

�
aj � a�j

�
k
�
xj; xi

�
þ b ð6Þ

The tube width parameter e determines the number of

support vectors and errors in the model, which means that

we must choose the optimal e to ensure the accuracy of the

data-driven model. For this reason, Bernhard [23] achieved

automatic accuracy control by making the parameter e part
of the optimization problem. As a consequence, we obtain

a solution with small training error and small e by rewriting

Eq. (5) as

find að�Þ; nð�Þ; e; b

min
1

N

XN

i¼1

ðai þ a�i Þ þ
C

N

XN

i¼1

ðni þ n�i Þ þ Cme

s:t: að�Þi ; nð�Þi ; e� 0

XN

i¼1

ðai � a�i Þkðxi; xjÞ þ b� yj � eþ nj

yj �
XN

i¼1

ðai � a�i Þkðxi; xjÞ � b� eþ n�j

ð7Þ

where m 2 ð0; 1� is an upper bound on the fraction of

training errors and a lower bound of the fraction of support

vectors. In addition, with probability 1, m asymptotically

equals both the fraction of SVs and the fraction of margin

errors [4], and the decision function of the m-LPSVR is the

same as Eq. (6).

3 Proposed algorithm

In this section, to improve the prediction performance of

the regression model developed with insufficient measured

data and biased prior knowledge data, a novel constrained

optimization-based multi-scale m-LPSVR algorithm

implemented with prior knowledge and error compensation

is proposed.

3.1 Incorporating prior knowledge into m-LPSVR

In this work, prior knowledge is defined as the samples

generated by the mathematical models or the simulation

models, which are called the prior knowledge dataset.
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Consider a prior knowledge dataset Sp ¼ fðxpk; y
p
kÞ; k ¼

1; 2; 3; . . .;Npg and a measured dataset Sr ¼ fðxrt ; yrt Þ; t ¼
1; 2; 3; . . .;Nrg, where xpk; x

r
t 2 Rd are the d-dimension

prior knowledge input vector and measured input vector,

y
p
k ; y

r
t 2 R are the corresponding target output, and Np;Nr

are the number of prior knowledge samples and measured

samples, respectively. It is obvious that prior knowledge

samples satisfy the mapping relationship constructed in the

simulator

y
p
k ¼ T

�
xpk
�

ðk ¼ 1; 2; 3. . .;NpÞ ð8Þ

When prior knowledge is absolutely accurate, we would

like the model to yield an exact value for these prior points

rather than an approximation. The solution to this problem

is to impose hard constraints on these prior points, such as

y
p
k ¼ f

�
xpk
�
¼

XN

j¼1

�
aj � a�j

�
k
�
xj; x

p
k

�
þ b ð9Þ

However, in practical engineering, prior knowledge is

always biased, and the equality constraints will lead to an

exact fit to the prior points, which may not be advised. All

these constraints may result in unsolvable problems if they

cannot be satisfied simultaneously [3]. To manage this

situation, we change the hard constraints to soft constraints

by introducing the positive slack variable uð�Þ ¼
½uð�Þ1 ; u

ð�Þ
2 ; u

ð�Þ
3 ; . . .; u

ð�Þ
Np
� in constraints to bound the upper

and lower deviations between the prior data ðxp; ypÞ and the
regression function f ðxpÞ. Moreover, in order to include

almost exact or biased prior knowledge, we use the e-in-
sensitive loss function (4) on the prior knowledge errors

uð�Þ with threshold ep to authorize violations of the equality

constraints (9). Therefore, by applying the e-insensitive

loss function to the positive slack variables uð�Þ, we can

obtain the following inequality constraints

�ep � u�k � y
p
k � f

�
xpk
�
� ep þ uk ðk ¼ 1; 2; 3; . . .;NpÞ

ð10Þ

The l1-norm of the slack vectors uð�Þ is incorporated into

the objective function of Eq. (7) with a trade-off parameter

Cp to minimize the error uð�Þ, and the trade-off parameter

Cp allows for tuning the influence of the prior data on the

regression function. In addition, like m-LPSVR , we make

ep part of the objective function with the parameter mp to

tune ep automatically. By consequence, approximate prior

knowledge is incorporated by modifying the optimization

problem (7). The modified algorithm, called m-PSVR, is
expressed as

find að�Þ; nð�Þ; uð�Þ; er; ep; b

min
1

N

XN

i¼1

ðai þ a�i Þ þ
Cr

Nr

XNr

t¼1

ðnt þ n�t Þ

þ Cp

Np

XNp

k¼1

ðuk þ u�kÞ þ Crmrer þ Cpmpep

s:t: að�Þi ; nð�Þt ; u
ð�Þ
k ; er; ep � 0

XN

i¼1

ðai � a�i Þk
�
xi; x

r
t

�
þ b� yrt � er þ nt

yrt �
XN

i¼1

ðai � a�i Þk
�
xi; x

r
t

�
� b� er þ n�t

XN

i¼1

ðai � a�i Þk
�
xi; x

p
k

�
þ b� y

p
k � ep þ uk

y
p
k �

XN

i¼1

ðai � a�i Þk
�
xi; x

p
k

�
� b� ep þ u�k

ð11Þ

where the two last sets of inequality constraints stand for

the incorporation of prior knowledge. In this equation, N ¼
Nr þ Np is the total number of input training samples, and

x ¼ xr
S
xp. Cr [ 0 and Cp [ 0 are the trade-off parame-

ters for the slack variables nð�Þ and uð�Þ. Cr tunes the trade-

off between the error minimization and the maximization

of the function flatness, and Cp can tune the influence of the

prior knowledge on the model. By using linear program-

ming to solve the optimization above, we can obtain the

coefficient parameter að�Þ and the bias term b; thus, we

obtain the decision function as Eq. (6).

3.2 Compensating errors for prior knowledge

As we mentioned in Sect. 1, the biases between prior

knowledge and actual mapping function are caused by

noise error and the simplification of the simulator. During

the construction of the simulator, some hard-to-measure,

difficult-to-compute features, and complex coupling rela-

tionships between different features could not fully be

considered. Alternatively, the simulator can build an

approximation of the main part of the real model, implying

that biases tend to be a relatively low-order mapping

relationship.

Considering that the biased prior knowledge cannot be

incorporated directly, we build a model developed by the m-
LPSVR to compensate the biased prior knowledge data

obtained from the simulator based on all measured data

samples and corresponding prior data samples. As we have

defined before, Sr ¼ fðxrt ; yrt Þ; t ¼ 1; 2; 3; . . .;Nrg is the

measured dataset, and Sp ¼ fðxpk; y
p
kÞ; k ¼ 1; 2; 3; . . .;Npg is

the prior dataset. Here, we add an error compensation

dataset Se ¼ fðxrt ; z
p
t Þ; t ¼ 1; 2; 3; . . .;Nrg generated by the
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simulator, where the input of Se is consistent with the

measured data input, and z
p
t ¼ Tðxrt Þ 2 R is the corre-

sponding target output from the simulator. Thus, similar to

m-LPSVR described above, the optimization problem of

error compensation can be formulated as

find bð�Þ; lð�Þ; ee; be

min
1

Nr

XNr

t¼1

ðbt þ b�t Þ þ
Ce

Nr

XNr

t¼1

ðlt þ l�t Þ þ Cemeee

s:t: bð�Þt ; lð�Þt ; ee � 0

XNr

j¼1

ðbj � b�j Þke
�
xrj ; x

r
t

�
þ be � yrt þ zpt � ee þ lt

yrt � zpt �
XNr

j¼1

ðbj � b�j Þke
�
xrj ; x

r
t

�
� be � ee þ l�t

ð12Þ

where bð�Þ are the coefficient parameters, lð�Þ are the

positive slack variables, ee is the tube width, Ce [ 0 is the

penalty parameter to penalize nonzero coefficients lð�Þ.
Hence, the decision function of the error compensation

model can be expressed as

D ¼ y
pec
k � y

p
k ¼ fe

�
xpk
�
¼

XNr

i¼1

ðbi � b�i Þkeðxri ; x
p
kÞ þ be

ð13Þ

where ypec is the output of the compensated prior knowl-

edge data samples. Thus, the compensated sample points

can be written as ðxpk; y
pec
k Þ.

We use the sample set ðxpk; y
pec
k Þ instead of ðxpk; y

p
kÞ in the

optimization equation (11); then, we obtain the data-driven

model based on the corrected prior knowledge. This

method of sequential model construction we call m-
PESVRsq. However, one disadvantage of this method is

that the measured data will be used twice, which may result

in overfitting of the measured data.

In order to avoid this problem and ensure the general-

ization performance of the data-driven model, we improve

the above method by incorporating an error compensation

model into the optimization problem (11) of the m-PSVR.
That is, the overall optimal solution is obtained by solving

the optimization problem only once. According to the

above analysis, the algorithm called m-PESVR can be

solved by the following optimization problem

find að�Þ; nð�Þ; bð�Þ; lð�Þ; uð�Þ; er; ee; ep; b; be

min
1

N

XN

i¼1

ðai þ a�i Þ þ
Cr

Nr

XNr

t¼1

ðnt þ n�t Þ

þ 1

Nr

XNr

t¼1

ðbt þ b�t Þ þ
Ce

Nr

XNr

t¼1

ðlt þ l�t Þ

þ Cp

Np

XNp

k¼1

ðuk þ u�kÞ þ Crmrer þ Cemeee

þ Cpmpep

s:t: að�Þi ; nð�Þt ; bð�Þt ; lð�Þt ; u
ð�Þ
k ; er; ee; ep � 0

XN

i¼1

ðai � a�i Þk
�
xi; x

r
t

�
þ b� yrt � er þ nt

yrt �
XN

i¼1

ðai � a�i Þk
�
xi; x

r
t

�
� b� er þ n�t

XNr

j¼1

ðbj � b�j Þke
�
xrj ; x

r
t

�
þ be � yrt þ zpt � ee þ lt

yrt � zpt �
XNr

j¼1

ðbj � b�j Þke
�
xrj ; x

r
t

�
� be � ee þ l�t

XN

i¼1

ðai � a�i Þk
�
xi; x

p
k

�
þ b� y

p
k

�
XNr

t¼1

ðbt � b�t Þke
�
xrt ; x

p
k

�
� be � ep þ uk

y
p
k þ

XNr

t¼1

ðbt � b�t Þke
�
xrt ; x

p
k

�
þ be

�
XN

i¼1

ðai � a�i Þk
�
xi; x

p
k

�
� b� ep þ u�k

ð14Þ

where we substitute the decision function of the error

compensation model into the constraint formulas of prior

knowledge in Eq. (11). The parameter Cr penalizes those

measured samples with errors greater than er, Ce controls

the intensity of the error compensation, and Cp tunes the

influence of prior knowledge. In order to improve the

generalization performance, we can structure the 3rd and

4th sets of inequality constraints with only a part of the

measured samples and the corresponding prior samples.

Equation (14) finds the corresponding overall optimal

solution by setting the value of penalty parameters Cr;Ce,

and Cp. Compared with the sequential execution method,
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this method is more efficient, and it has higher accuracy

and better generalization performance.

The above m-PESVR algorithm can be solved easily with

linear programming.

3.3 Extending m-PESVR to multi-scale space

If the unknown mapping function we need to fit is non-flat

and comprises both the steep variations and the smooth

variations, it would not be appropriate to estimate this

mapping function using the SVR algorithm of a single

kernel [31]. The small-scale kernels may lead to overfitting

of training samples, and the large-scale kernels may lead to

underfitting of training samples. As for multi-scale kernel

SVR, the kernels with small scale can deal with the steep

variations and the kernels with large scale can deal with the

smooth variations. Thus, to adapt to the input space for

each local area, we extend the m-PESVR algorithm to

multi-scale space(m-MPESVR).

The decision function of multi-scale LPSVR can be

expressed as

f ðxÞ ¼
XL

m¼1

XN

i¼1

ðami � a�miÞkmðxi; xÞ þ b ð15Þ

where L is the number of the scale kernels used in the

regression, the kernel function kmðxi; xÞ denotes the m-th

scale kernel. Taking the Gaussian kernel as an example,

kmðxi; xÞ ¼ expð� kxi�xk2
2r2m

Þ, and að�Þmi are the dual variables of

the corresponding kernel function. Similar to the target

function of LPSVR in (3), we can obtain the optimization

objective of the multi-scale m-LPSVR as

min
XL

m¼1

Cm

XN

i¼1

ðami þ a�miÞ þ C
Xl

i¼1

Lðf ðxiÞ; yiÞ ð16Þ

where the parameter Cm penalizes nonzero dual variables

að�Þmi and C determines the trade-off between the model

complexity and the training error. In order to avoid over-

fitting the smooth variations by the small-scale kernels,

generally, a decreasing penalty sequenceðC1 [ � � �
[Cm [ � � � [CLÞ should be given for the kernel

sequence with increasing scale ðr1\ � � �\rm\ � � �\rLÞ.
Because the deviation mapping function between mea-

sured data and simulation data is relatively smooth, and to

reduce the amount of calculation, we use a single kernel in

the error compensation model. Based on the basic princi-

ples and solution of m-PESVR, the optimization problem of

m-MPESVR can be formulated as

find am
ð�Þ; nð�Þ; bð�Þ; lð�Þ; uð�Þ; er; ee; ep; b; be

ðm ¼ 1; 2; . . .; LÞ

min
1

N

XL

m¼1

Cm

XN

i¼1

ðami þ a�miÞ þ
Cr

Nr

XNr

t¼1

ðnt þ n�t Þ

þ 1

Nr

XNr

t¼1

ðbt þ b�t Þ þ
Ce

Nr

XNr

t¼1

ðlt þ l�t Þ

þ Cp

Np

XNp

k¼1

ðuk þ u�kÞ þ Crmrer þ Cemeee

þ Cpmpep

s:t: að�Þmi ; n
ð�Þ
t ; bð�Þt ; lð�Þt ; u

ð�Þ
k ; er; ee; ep � 0

XL

m¼1

XN

i¼1

ðami � a�miÞkm
�
xi; x

r
t

�
þ b� yrt � er þ nt

yrt �
XL

m¼1

XN

i¼1

ðami � a�miÞkm
�
xi; x

r
t

�
� b� er þ n�t

XNr

j¼1

ðbj � b�j Þke
�
xrj ; x

r
t

�
þ be � yrt þ zpt � ee þ lt

yrt � zpt �
XNr

j¼1

ðbj � b�j Þke
�
xrj ; x

r
t

�
� be � ee þ l�t

XL

m¼1

XN

i¼1

ðami � a�miÞkm
�
xi; x

p
k

�
þ b� y

p
k

�
XNr

t¼1

ðbt � b�t Þke
�
xrt ; x

p
k

�
� be � ep þ uk

y
p
k þ

XNr

t¼1

ðbt � b�t Þke
�
xrt ; x

p
k

�
þ be

�
XL

m¼1

XN

i¼1

ðami � a�miÞkm
�
xi; x

p
k

�
� b� ep þ u�k

ð17Þ

In order to facilitate the optimization solution of the

problem, we reformulate Eq. (17) in the following matrix

form for standard linear programming

find s

min cTs

s:t: s� l

Gs� h

ð18Þ

where

s ¼ a1
ð�Þ; . . .; aL

ð�Þ; nð�Þ; bð�Þ; lð�Þ; uð�Þ; er; ee; ep; b; be
h iT

c ¼ C1

N
; . . .;

CL

N
;
Cr

Nr

;
1

Nr

;
Ce

Nr

;
Cp

Np

;Crmr;Ceme;Cpmp; 0; 0

� �T

l ¼ ½0; . . .; 0; 0; 0; 0; 0; 0; 0; 0;�1;�1�T
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In the optimization, the matrices s; c; l denote ð2L � N þ
6Nr þ 2Np þ 5Þ � 1 column vector, G represents the

ð4Nr þ 2NpÞ � ð2L � N þ 6Nr þ 2Np þ 5Þ matrix, and h is

a ð4Nr þ 2NpÞ � 1 column vector. The coefficient vector

am
ð�Þ ¼ ½am1; am2; . . .; amN ; a�m1; a

�
m2; . . .; a

�
mN �

T
denotes a

2N � 1 column vector. Similar to að�Þ, nð�Þ; bð�Þ; lð�Þ are

2Nr � 1 column vectors, and uð�Þ represents a 2Np � 1

column vector. 	Kr
m ¼ ½Kr

m;�Kr
m� and 
Kr

m ¼ ½�Kr
m;K

r
m�

are Nr � 2N matrices. Similarly, 	Ke
r and 
Ke

r are Nr �
2Nr matrices, 	Kp

m and 
Kp
m are Np � 2N matrices, and

	Ke
p and 
Ke

p are Np � 2Nr matrices. In addition, the

kernel matrix Kr
m ¼ Kmðx; xrÞ, Ke

r ¼ Keðxr; xrÞ,
Kp
m ¼ Kmðx; xpÞ, and Ke

p ¼ Keðxr; xpÞ. Moreover, in ½�E; 0�
and ½0;�E�, E is the identity matrix and 0 is the zero

matrix.

Using linear programming to solve the above opti-

mization formulation, we can obtain a decision function in

Eq. (15). Overall, m-MPESVR can be summarized as shown

in Algorithm 1.

3.4 Parameter selection strategy for m-MPESVR

The generalization performance and accuracy of the

support vector machine (SVM) are greatly influenced by its

model parameters, both the error penalty parameter C and

the kernel parameter, such as r. Recently, intelligent

optimization methods like simulated annealing (SA) [22],

genetic algorithm (GA) [1], and particle swarm optimiza-

tion (PSO) [11, 12] have became very popular in solving

optimization problems. In the practical engineering appli-

cation, the PSO can be programmed easily and produces

superior performance [11, 12, 16]. Reference [8] demon-

strates that in the parameter selection of SVM, PSO con-

verges faster and has higher accuracy than other

algorithms. Additionally, in order to avoid the problem of

premature convergence, Liu [13] improved PSO by com-

bining it with an adaptive inertia weight factor and chaotic

local search, which is called chaotic particle swarm opti-

mization (CPSO). It has been proved in [13] that CPSO is

much faster than other meta-heuristics and can enable the

search to escape from the local optima trap. Thus, to find

the global optimal parameters in m-MPESVR efficiently, in

this section, we present an intelligent parameter selection

strategy that uses expert knowledge for initial value

screening of the CPSO to reduce the search space.

3.4.1 Expert knowledge about SVR parameters

Generally, the number L of kernel functions set to 2 or 3

may be sufficient for dealing with most practical problems,

and a large L (L� 4) may be necessary for some complex

problems [31]. The kernel parameter of the m-th kernel

function is defined as rm. To avoid overfitting, we choose

Cm ¼ 1=rm. As for the error penalty parameter C (Cr, Ce,

and Cp in m-MPESVR), it is closely related to the statistical

G ¼

	Kr
1 � � � 	 Kr

L ½�E; 0� 0 0 0 � 1 0 0 1 0


Kr
1 � � � 
 Kr

L ½0;�E� 0 0 0 � 1 0 0 � 1 0

0 � � � 0 0 	 Ke
r ½�E; 0� 0 0 � 1 0 0 1

0 � � � 0 0 
 Ke
r ½0;�E� 0 0 � 1 0 0 � 1

	Kp
1 � � � 	 Kp

L 0 	 Ke
p 0 ½�E; 0� 0 0 � 1 1 � 1


Kp
1 � � � 
 Kp

L 0 
 Ke
p 0 ½0;�E� 0 0 � 1 � 1 1

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

T

h ¼ yrt ;�yrt ; y
r
t � zpt ; z

p
t � yrt ; y

p
k ;�y

p
k

� �T
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characteristics of the training data, and Cherkassky [6]

proposed the prescription for penalty parameter C as

C ¼ maxðj�yþ 3syj; j�y� 3syjÞ ð19Þ

where �y and sy are the mean and standard deviation of the

output values in the training dataset. Moreover, it is well

accepted that the kernel parameter should be associated

with the distribution characteristics of the training data.

The kernel parameter r is set to the following form in [29]

as

r�ð0:1� 0:5Þ � rangeðxÞ ð20Þ

where rangeðxÞ ¼ jmaxðxÞ �minðxÞj; thus, we get the

initial value ðCr;Cp;Ce; re;C1; . . .;CL; r1; . . .; rLÞinit.

3.4.2 Parameter selection with CPSO

PSO is a population-based optimization technique, where

each solution is a ‘‘particle’’ and multiple candidate solu-

tions coexist and collaborate simultaneously to find the

optimal solution in the problem search space. The state of

the particle in the search space is characterized by its

position and velocity, which can be updated by following

equations

vi ¼ wvi þ c1 � randomð0; 1Þ � ðpi � xiÞ
þ c2 � randomð0; 1Þ � ðpg � xiÞ

ð21Þ

xi ¼ xi þ vi ð22Þ

where the column vectors vi; xi; pi; pg 2 Rnp, np is the

number of particles. vi is the velocity of particle i, xi rep-

resents the position of particle i, pi denotes the best pre-

vious position of particle i, pg denotes the best position

among all particles, w is the inertia factor that controls the

impact of the velocity of the previous particle on its current

particle. c1 and c2 are acceleration coefficients that control

the maximum step size of the particle, and random(0, 1) is

a random number between 0 and 1.

The inertia factor w in (21) controls the momentum of

the current particle. A large w may cause the particle to

miss the optimal region and make the algorithm unable to

converge, while a small w may cause particles to become

trapped in a local optimum. Thus, Liu [13] proposed the

adaptive inertia weight factor (AIWF) as follows

w ¼ wmin þ
ðwmax � wminÞðf � fminÞ

favg � fmin

f � favg

wmax f [ favg

8
<

:

ð23Þ

where wmax and wmin are the maximum and minimum of

w respectively, f is the evaluation value of the current

particle, and favg and fmin are the average and minimum

evaluation values of all particles, respectively.

In order to enable the particles to escape from the local

optima trap, Liu [13] incorporated chaotic dynamics into

the above PSO with AIWF. By using the logistic equation,

the process of the chaotic local search could be defined as

cxi
ðkÞ ¼ xi

ðkÞ � xmin;i

xmax;i � xmin;i
; ði ¼ 1; 2; . . .; npÞ ð24Þ

cxi
ðkþ1Þ ¼ 4cxi

ðxÞð1� cxi
ðkÞÞ ð25Þ

xi
ðkþ1Þ ¼ xmin;i þ cxi

ðkþ1Þðxmax;i � xmin;iÞ ð26Þ

where cxi is the i-th chaotic variable, and k is the current

iteration number. The iteration stops if the new solution is

better than xð0Þ and the difference between two iterations is

smaller than the set threshold, or if it reached the prede-

fined maximum iteration.

By using fivefold cross-validation as the evaluation

function in CPSO, the m-MPESVR algorithm based on the

above parameter selection strategy can be summarized as

Fig. 1.

As Fig. 1 shows, we first obtain the training dataset Sr
and the test dataset Stest from the real world, and build an

error compensation dataset Se and an additional prior

knowledge dataset Sp through the simulation model. We

input Sr, Se and Sp into the m-MPESVR model as the final

training dataset. Before training the model, we need to

specify the number of kernel functions km and the type of

kernel functions km and ke. Then, we initialize the model

parameters C (Cr;Cp;Ce;C1; . . .;CL) and r (r1; . . .; rL)
according to the expert knowledge in Sect. 3.4.1, and

specify the parameters of CPSO (inertia factor, acceleration

coefficients, search scope, and maximum iteration).

Because the supply of data for training and testing is lim-

ited, we use fivefold cross-validation to find the optimal

parameters of the model [2]. In each iteration of CPSO, we

divide the training dataset Sr into five groups (Se is also

divided into five groups corresponding to Sr). Four of the

groups are used to train a set of models that are then

evaluated on the remaining group. This procedure is then

repeated for all five possible choices for the held-out group,

and the performance scores from the five runs are then

averaged to represent the estimation of the model perfor-

mance (fitness evaluation of CPSO) under these model

parameters. CPSO will update the parameters and proceed

to the next iteration until the stopping condition is satisfied

or the maximum number of iterations is reached. Finally,

we use the final optimized model parameters and all of the

Sr, Se, and Sp to train the m-MPESVR, and run the model on

Stest to get the final model prediction.
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4 Experimental results

In this section, we validate the efficiency of our proposed

algorithm by using an artificial example and a practical

example. Root mean squared error (RMSE), mean absolute

error (MAE), and coefficient of determinations (R(2)) are

used as indicators to evaluate the accuracy and general-

ization performance of the obtained data-driven model. As

known in statistical analysis, the best prediction perfor-

mance for R2 is one and will be zero for other indices [18].

4.1 Complex function estimation

We consider the following complex piecewise function

as the base function of the real model and the simulation

model.

f ðxÞ ¼
� 4x� 8 � 3� x\� 1

�3x3 � 5x2 þ 5xþ 3 �1� x\1

2 sinðe1:2xÞ þ 0:3552 1� x\3

8
><

>:
ð27Þ

We generated the measured dataset Sr with 15 samples, the

error compensation dataset Se with 15 samples, the prior

knowledge dataset Sp with 35 samples, and the testing

dataset Stest with 1000 samples from the above function

randomly in the range of [- 3,3]. We should have applied

the error term to Sr and Stest on the basis of base function

Eq. (27). However, for the convenience of the comparison

and display of the predicted results, we apply the error term

on Sp and Se instead.

In order to validate the performance of our proposed

algorithm, we designed three groups of experiments. In the

first group of experiments, we modified the mapping

function of the simulation model as fp1ðxÞ ¼ f ðxÞ þ fnoise,

where fnoise is the Gaussian noise Nð0:1; 0:22Þ. In the sec-

ond group of experiments, we added the error term with a

simple mapping relationship to the mapping function of the

simulation model as fp2ðxÞ ¼ f ðxÞ þ fnoise þ 0:7x. In the

third group of experiments, we added the error term with a

high-order mapping relationship to the mapping function of

the simulation model as fp3ðxÞ ¼ f ðxÞ þ fnoise þ 0:7xþ
0:1x4. Figure 2 shows the Sr, Se, Sp, and Stest in the three

groups of experiments.

For each group of experiments, we constructed five

models using different algorithms, including MKPLPSVR,

MSSVR, m-PESVR, m-MPESVRsq, and m-MPESVR. The

MKPLPSVR was proposed in [33], MSSVR denotes

standard multi-scale support vector regression [31], and m-
PESVR, and m-MPESVR are proposed above. The m-
MPESVRsq algorithm is the multi-scale extension of the m-
PESVRsq algorithm proposed in Sect. 3.2 that first con-

structs the error compensation model to correct the prior

samples and then builds the prediction model to output the

final results. Using the training data samples and setting the

Fig. 1 Flowchart of m-MPESVR parameters optimization and model constructing procedure
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model parameters appropriately, we build the models

separately using the above five algorithms.

For these three groups of experiments, the single-kernel

algorithm exploited only a Gaussian kernel, and the multi-

kernel algorithms employed three Gaussian kernels. In m-
PESVR, we chose Cr ¼ 100;Cp ¼ 100;Ce ¼ 100;

vr ¼ vp ¼ ve ¼ 0:5, and the kernel parameters r ¼ 0:1118,

and re ¼ 2:2361. In m-MPESVRsq and m-MPESVR, we

chose C1 ¼ 0:6071;C2 ¼ 0:3141;C3 ¼ 2:0707;Cr ¼ 150;

Cp ¼ 100;Ce ¼ 100, and vr ¼ vp ¼ ve ¼ 0:5, and the ker-

nel parameters r1 ¼ 0:7071; r2 ¼ 0:2041; r3 ¼ 0:0707;

re ¼ 2:2361. Moreover, the parameters in MKPLPSVR

and MSSVR are the same as those in m-MPESVRsq and m-
MPESVR, except for the parameters related to error

compensation.

Figure 3 shows the comparison between the prediction

of each algorithm and the actual results in the first group of

experiments. It shows that all of the algorithms fit the curve

accurately. However, compared with Fig. 3a, b, we can

find that the multi-kernel algorithms like m-MPESVR,

MKPLPSVR, and MSSVR have better performance for

fitting functions with steep variations and smooth varia-

tions than the single-kernel algorithm m-PESVR and m-
MPESVRsq. One possible explanation is that the m-PESVR
with a small kernel parameter caused overfitting of the

smooth variations, and that the m-MPESVRsq utilizing the

measured samples Sr twice to compensate for the random

Gaussian noise may have led to the overfitting of the

training data.

Figures 4 and 5 show the estimation results in the sec-

ond and third group of experiments. We can see that the

algorithms with error compensation, like m-PESVR, m-
MPESVRsq, and m-MPESVR, fit the practical curve more

accurately than other algorithms. When the error of the

prior data is large, those algorithms without error com-

pensation cannot estimate the mapping function very well

by only incorporating slack variables, and with the growing

number of prior samples, the prediction curve will

increasingly approximate the simulation curve, which is

not what we expected.

In order to show the performance of the proposed

algorithm more intuitively, Table 1 lists the predicted

RMSE, MAE, R(2), the number of SVs and iterations, and

the training time of all the algorithms in each group of

experiments. From Table 1, we can see that for those

algorithms without error compensation, RMSE and MAE

become larger, and R(2) becomes smaller with an increase

in the value and complexity of the error term. However,

those algorithms with error compensation still maintain the

approximation accuracy. Owing to the increased com-

plexity of the algorithms with error compensation, their

training time is relatively long. In addition, we found that

the model generated by m-MPESVR had the best RMSE,

MAE, and R(2) of all the models.

(a)

(b)

(c)

Fig. 2 Data samples Sr , Se, Sp, and Stest in three groups of experiment
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It can be seen from the results of the three groups of

experiments that the data-driven model constructed by m-
MPESVR obtained the most accurate predictive perfor-

mance when only a few pieces of measured data were

available. The multi-kernel algorithm obtained better gen-

eralization performance and accuracy when estimating a

complex function with both steep and smooth variations

than did the single-kernel algorithm. Incorporating the

error compensation optimization formula into the solution

process of the prediction model prevented the need to use

the dataset Sr twice, and thus improved the generalization

performance and accuracy of the obtained model. As a

consequence, the m-MPESVR solved the problem of devi-

ation in prior knowledge data and scarcity in the measured

data.

4.2 Coordinator gyro rotor performance
prediction

The coordinator gyro rotor is the core component of the

infrared missile and small spacecraft. It can search, cap-

ture, and track the target in the field of view, and then

adjust the flight direction and attitude of the missile.

Therefore, the quality of the coordinator gyro rotor directly

determines the tactical performance of the infrared missile.

In this section, in order to improve productive efficiency,

we use the above method to predict the gyro drift with the

assembly process parameters and adjustment parameters to

guide product assembly.

As shown in Fig. 6, a two-degree-of-freedom gyro is

primarily composed of the rotor, the inner-ring and the

outer-ring. We take the inertial coordinate system as

oxiyizi, the outer-ring coordinate system as oxwywzw, the

inner-ring coordinate system as oxnynzn, and the rotor

coordinate system as oxhyhzh. Then, the gyro dynamic

equation considering the assembly error can be expressed

as

dHhz
h

dt
¼ 0

dðHny
n þ H

ny
h þ H

ny
h eÞ

dt
þ ðHnz

n þ Hnz
h þ Hnz

h aeÞðxnz
n

þxnz
w Þ � ðHnx

n þ Hnx
h þ Hnx

h eÞðxnz
n þ xnz

w Þ ¼ My

dðHwx
w þ Hwx

h þ Hwx
h e þ Hwx

n þ Hwx
n eÞ

dt
¼ Mx

8
>>>>>>>>><

>>>>>>>>>:

ð28Þ

where Hhz
h is the projection of the rotor angular momentum

on the z-axis of the rotor coordinates. Hnx
n ;Hny

n ;Hnz
n denote

the projection of the inner-ring angular momentum on the

x-, y-, and z-axis of the inner-ring coordinates, respectively.

Hwx
w is the projection of the outer-ring angular momentum

on the x-axis of the outer-ring coordinates.

Hh e;Hn e;Hw e denote the angular momentums of the

rotor, the inner-ring, and the outer-ring caused by assembly

errors. xnz
n ;x

nz
w represent the projection of the angular

velocity of the inner and outer-rings on the z-axis of the

inner-ring coordinates, respectively. Moreover, Mx;My are

the torque of the outer-ring shaft and the inner-ring shaft,

respectively.

In order to solve Eq. (28), we calculate the angular

momentum of each component in the corresponding

moving coordinate system. In the rotor coordinates

oxhyhzh:

Hhz
h ¼ Jhz � ðX� _hw � sin hnÞ ð29Þ

where Jh denotes the moment of inertia about the rotor. hn
is the rotation angle of the inner-ring, and hw is the rotation

angle of the outer-ring.

(a)

(b)

Fig. 3 Comparison of predicted results in the first group of

experiment. a Results of measurement,m-MPESVR, MKPLPSVR,

and MSSVR. b Results of measurement,m-MPESVR,m-PESVR, and m-
MPESVRsq
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In the inner-ring coordinates oxnynzn:

Hnx
n ¼ Jnx � _hw � cos hn
Hny

n ¼ Jny � _hn

Hnz
n ¼ �Jnz � _hw � sin hn

8
><

>:
ð30Þ

Hnx
hw e ¼ mhvcwðdhy cos a cos hn � dhx sin a sin hnÞ

H
ny
hw e ¼ �mhvcwdhx cos a cos hn

Hnz
hw e ¼ �mhvcwðdhy cos a sin hn � dhx sin a cos hnÞ

8
><

>:

ð31Þ

Hnx
hn e ¼ �mh � dhy � dhx � _hn

H
ny
hn e ¼ mh � d2hx � _hn

Hnz
hn e ¼ mh � dhy � dhz � _hn

8
>><

>>:
ð32Þ

Hn
h ¼ Hh

h ð33Þ

Hn
h e ¼ Hn

hw e þ Hn
hn e ð34Þ

where

vcw ¼ _hw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdhx sin hn � dhz cos hnÞ2 þ ðdn þ dhyÞ2
q

cos a ¼ dn þ dhy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdn þ dhyÞ2 þ ðd2hx þ d2hzÞ sin c2

q

c ¼ arctanðdhz
dhx

Þ � hn

In the above equations, mh is the mass of the rotor, J is the

moment of inertia, X is the rotor speed, and dhx; dhy; dhz are
the offsets of the rotor barycenter position on the x-, y-, and

(a) (b)

Fig. 4 Comparison of predicted results in the second group of experiment. a Results of measurement,m-MPESVR, MKPLPSVR, and MSSVR.

b Results of measurement,m-MPESVR,m-PESVR, and m-MPESVRsq

(a) (b)

Fig. 5 Comparison of predicted results in the third group of experiment. a Results of measurement,m-MPESVR, MKPLPSVR, and MSSVR.

b Results of measurement,m-MPESVR,m-PESVR, and m-MPESVRsq
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z-axis, respectively. Hn
hw e;H

n
hn e are the projection of the

angular momentum of the rotor in the inner-ring coordi-

nates caused by assembly error under the effect of _hw and
_hn, respectively.
In the outer-ring coordinates oxwywzw:

Hwx
w ¼ Jwx � _hw ð35Þ

Hwx
h ¼ �JhzðX� _hw � sin hnÞ sin hn þ Jhx _hw cos

2 hn ð36Þ

Hwx
hw e ¼ mh

_hw½ðdn þ dhyÞ2 � dhx sin c sin hn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2hx þ d2hz

q
�
ð37Þ

Hwx
hn e ¼ �½mh

_hnðdn þ dhyÞ�ðdhz sin hn þ dhx cos hnÞ ð38Þ

Hwx
h e ¼ Hwx

hw e þ Hwx
hn e ð39Þ

Hwx
n ¼ _hwðJnz sin2 hn þ Jnx cos

2 hnÞ ð40Þ

Hwx
n e ¼ mnd

2
n
_hw þ mndndnz _hn sin hn ð41Þ

where mn is the mass of the inner-ring, dn; dnz are the

offsets of the center of mass of the inner-ring on the y- and

z-axis, respectively. Hw
hw e;H

w
hn e are the projection of the

angular momentum of the rotor in the outer-ring coordi-

nates caused by assembly error under the effect of _hw and
_hn, respectively, and Hw

nw e;H
w
nn e are the projection of the

angular momentum of the inner-ring in the outer-ring

coordinates caused by assembly error under the effect of _hw
and _hn, respectively. According to Eqs. (28)–(41), we can

get an approximate dynamic formula of gyro drift as

d ¼ DðMx;My;X; dhx; dhy; dnÞ ð42Þ

According to the model construction method proposed in

Seciton3, we first obtained 30 pieces of measured data Sr
collected by adept operators. Second, we obtained 70

samples as the input features of the prior dataset Sp, and

calculated the drift performance by Eq. (42) as the objec-

tive value. In addition, the error compensation dataset Se
was constructed from the input in Sr, and the corresponding

Table 1 Result comparisons of

MKPLPSVR, MSSVR, m-
PESVR, m-MPESVRsq, m-
MPESVR on the complex

function estimation example

Experimental group MKPLPSVR MSSVR m-PESVR m-MPESVRsq m-MPESVR

Group 1 RMSE 0.2039 0.2457 0.3417 0.2938 0.1962

MAE 0.1445 0.1646 0.2275 0.2087 0.1396

R(2) 0.9912 0.9872 0.9737 0.9831 0.9919

SVs 31 36 37 38 36

Time(s) 0.7164 0.6690 0.4802 0.9704 0.9197

Iter. 16 15 23 20 17

Group 2 RMSE 1.0320 1.1477 0.3408 0.2910 0.1904

MAE 0.7853 0.8924 0.2273 0.2045 0.1375

R(2) 0.8201 0.7843 0.9737 0.9835 0.9923

SVs 39 39 37 38 35

Time(s) 0.4673 0.5793 0.4761 0.5980 0.8060

Iter. 12 16 20 18 17

Group 3 RMSE 1.9805 2.6567 0.3844 0.3194 0.2261

MAE 1.2126 1.5804 0.2729 0.2346 0.1623

R(2) 0.5826 0.3811 0.9655 0.9799 0.9892

SVs 37 36 36 37 34

Time(s) 0.7902 0.6047 0.2805 0.6803 0.8238

Iter. 14 16 20 18 17

Bold values indicate the best ones

Fig. 6 Schematic diagram of two-degree-of-freedom gyro
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drift performance was calculated by Eq. (42). Thus, we

obtained a measured dataset Sr, a prior dataset Sp, and an

error compensation dataset Se. Finally, we used 20 sets of

testing data Stest to verify the models.

As in Sect. 4.1, we used MKPLPSVR, MSSVR, m-
PESVR, m-MPESVRsq, and m-MPESVR separately to build

the data-driven model, and 20 pieces of measured data,

Stest, were used to validate the accuracy and generalization

performance of the obtained model. In this example, the

single-kernel algorithm exploited only a Gaussian kernel,

and the multi-kernel algorithms employed three Gaussian

kernels. In m-PESVR, we chose Cr ¼ 150;Cp ¼ 140;

Ce ¼ 100, and vr ¼ vp ¼ ve ¼ 0:5, and the kernel param-

eters r ¼ 9:8058, and re ¼ 2:2361. In m-MPESVRsq and m-
MPESVR, we chose C1 ¼ 0:0126;C2 ¼ 2:1380;C3 ¼
23:1623;Cr ¼ 150;Cp ¼ 100; Ce ¼ 100, and vr ¼ vp ¼
ve ¼ 0:5, and the kernel parameters r1 ¼ 79:0569; r2 ¼
1:000; r3 ¼ 0:3162; and re ¼ 2:2361. Moreover, the

parameters in MKPLPSVR and MSSVR are the same as

those in m-MPESVRsq and m-MPESVR, except for the

parameters related to error compensation. Using the train-

ing data samples and the model parameters above, we built

the models separately using the five algorithms. Figure 7

shows the approximating results of the gyro drift. Table 2

shows the RMSE, MAE, and R(2) of the five predicted

functions.

As we can see in Fig. 7, the results estimated by m-
MPESVR are in good agreement with the measurements

from the five algorithms. As can be seen in Table 2,

compared with the single-kernel algorithm, the multi-ker-

nel algorithms have higher accuracy, especially those

implementing error compensation. The model developed

by m-MPESVR is more accurate than the others, and has the

best RMSE, MAE, and R(2) among the five algorithms.

The projected results indicate that m-MPESVR can effec-

tively compensate for the errors between the prior knowl-

edge data and the measured data, improve the accuracy of

the obtained model, and has good generalization perfor-

mance in the case of insufficient measured data.

5 Conclusion

For the purpose of building an accurate data-driven model

from an insufficient amount of measured data and biased

prior knowledge data, this paper proposed a nested multi-

scale m-LPSVR algorithm implementing prior knowledge

and error compensation. The m-MPESVR algorithm real-

ized the incorporation of prior knowledge and the com-

pensation of biased prior knowledge data by the addition of

constraints and objective function. The proposed algorithm

also used multi-scale kernel functions to incorporate mul-

tiple feature spaces into the process of modeling, which

achieved accurate modeling of non-flat, complex, and

(a) (b)

Fig. 7 Comparison of the gyro drift prediction results and the measurement result. a Results of measurement,m-MPESVR, MKPLPSVR, and

MSSVR. b Results of measurement,m-MPESVR,m-PESVR, and m-MPESVRsq

Table 2 Result comparisons of MKPLPSVR, MSSVR, m-PESVR, m-
MPESVRsq, m-MPESVR on the coordinator gyro rotor performance

prediction example

Algorithm RMSE MAE R(2)

MKPLPSVR 66.3795 54.5286 0.7237

MSSVR 69.8931 58.5169 0.7055

m-PESVR 66.7652 52.6081 0.7386

m-MPESVRsq 61.0216 46.9493 0.7472

m-MPESVR 57.4937 44.4290 0.7811

Bold values indicate the best ones
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changeful problems. Moreover, a strategy for hyper-pa-

rameter selection based on expert knowledge and CPSO

was presented to search the optimal parameters of the m-
MPESVR algorithm autonomously.

In a word, the major contributions of this study are

highlighted as follows: (1) m-MPESVR considers the errors

between the prior knowledge data and the measured data in

the modeling process, and incorporates the compensated

prior knowledge into the prediction model. Hence, the

estimation accuracy of m-MPESVR is significantly better

than MSSVR and MKPLPSVR, when there are biases

between the prior knowledge data and the measured data;

(2) unlike the method of sequentially executing error

compensation and prediction (m-MPESVRsq), m-MPESVR

simultaneously optimizes the prediction model and the

error compensation model, so the proposed algorithm has

better generalization performance; (3) the m-MPESVR

model is constructed automatically where the model

parameters are optimized autonomously with the use of the

expert knowledge based CPSO algorithm; (4) the results of

a synthetic example and a practical application demonstrate

that m-MPESVR can still maintain high accuracy when the

biases of prior knowledge data change, and it has higher

prediction accuracy and better generalization performance.

Accordingly, the proposed algorithm m-MPESVR shows

great potential in solving problems when only a few

measured samples can be obtained, but some approximate

and biased prior knowledge is available.

In the future research, the correlation between model

parameters will be considered to narrow the parameter

spaces that the intelligent optimization algorithm needs to

search, and integrating the prior knowledge within intelli-

gent searching processes will be explored to enhance the

stability of the algorithm.
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