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Abstract
This paper proposes an intelligent active fault-tolerant system based on deep neural network. That is, an active fault-

tolerant integrated navigation system is established by adding neural network to the fault-tolerant integrated navigation

system based on one-class support vector machine fault detection algorithm. When there is no fault, the neural network

trains each sub-filter; when there is a fault, the neural network which has been in the training state will predict the fault time

data and use the neural network prediction data to replace the fault data into the main filter for fusion. It can be seen from

the simulation analysis that the system can detect the fault of the navigation sub-filtering system well, and when the fault

occurs, the prediction data of the neural network is used for information fusion. Simulation results show that the system can

provide stable and reliable navigation under the condition of time-varying system and observation noise and complex

environment.
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1 Introduction

With the development of technology, the requirements for

reliability, accuracy, and robustness of multi-sensor navi-

gation systems are getting higher and higher in the recent

years [1], and the navigation systems must be developed

toward integration and being fault-tolerant, that is, to

develop various integrated navigation systems and fault-

tolerant navigation systems based on inertial navigation

system [2]. For fault-tolerant integrated navigation, there

are many subsystems inside. Once a subsystem fails, the

information fusion feedback may affect each subsystem,

resulting in inaccurate or unusable navigation and

positioning information. Therefore, in order to improve the

reliability and accuracy of fault-tolerant navigation sys-

tems, fault detection and diagnosis are essential.

The common fault detection methods include Chi-

square detection methods, autonomous integrity monitored

extrapolation (AIME), optimal fault detection (OFD),

multiple solution separation (MSS) and so on. The Chi-

square test method is simulated and validated in paper [3],

but this method is based on model, and the accurate real-

time system model, measurement model, and noise model

are always difficult to get, which will affect the detection

effect of failure. The AIME and OFD are used for fault

detection, respectively, in paper [4] and paper [5]. How-

ever, due to the error tracking effect of integrated naviga-

tion system filter, these two methods have low sensitivity to

faults and large fault delays. In recent years, the rise of

artificial intelligence has provided a new method for fault

diagnosis. In [6, 7], BP neural network is used for fault

detection. However, the convergence speed of neural net-

work is slow and there is a problem of local optimization,

and the training samples of neural network needs are large.

In multi-source integrated navigation systems, accurate

and effective state assessment methods and theories are
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playing an increasingly important role. When using the

INS/GPS integrated navigation system for precise posi-

tioning, the traditional classical Kalman filtering method

has been very maturely applied in integrated navigation

[8, 9] and can achieve good results in its state estimation.

The volume filtering proposed in paper [10] solves the

nonlinear and non-Gaussian problems of the system. Now,

besides Kalman filtering and other traditional methods for

state estimation, neural network is also proposed for state

estimation. For example, in paper [11], the state estimation

of integrated navigation system using Elman neural net-

work is proposed. The paper [12] proposes the state esti-

mation of integrated navigation using BP neural network.

As an intelligent deep learning model, deep neural net-

work (DNN) has been widely used in pattern recognition

and accurate classification [13, 14]. According to the

navigation characteristics of inertia, terrain and geomag-

netism in the environment that multi-source integrated

navigation system needs to face, this paper proposes a new

navigation state estimation by combining Laplace feature

map (LE) with deep neural network model. It is to perform

stable navigation state estimation when the model is not

accurate enough and the system and observation noise are

time-varying and the surrounding environment is complex.

Then, a system fault diagnosis method based on one-class

support vector machine is proposed. The simulation results

show that the proposed method can detect the abrupt and

slow change faults of the navigation sub-filtering system

with short delay, strong real-time performance and analy-

sis. Compared with the comparison, it shows that the

method has better detection performance in small samples.

Based on the above, this paper proposes an active fault-

tolerant integrated navigation system, in which the neural

network is added to the fault-tolerant integrated navigation

system based on one-class SVM fault detection algorithm.

2 Problem description and the proposed
method

2.1 Intelligent active fault-tolerant strategy
and scheme design for multi-source
integrated navigation system

Figure 1 shows the block diagram of intelligent active

fault-tolerant integrated navigation. This navigation system

is based on the Federal Kalman structure and includes sub-

filters and main filters. The inertial navigation system (INS)

is used as a common reference system, and the sub-filters

are composed of GPS, synthetic aperture radar (SAR), and

terrain-aided navigation (TAN), respectively [15–17]. Each

sub-filter works independently and is input to the main

filter after one-class SVM fault diagnosis. At the same

time, INS and other three sub-navigation systems will be

input into their respective Laplacian eigenmaps deep neural

network (LE-DNN) neural networks in addition to the input

into the sub-filter for training [18].

In order to improve the adaptive ability of active fault-

tolerant integrated navigation, the information distribution

coefficient is constructed by extracting the traces of the

covariance matrix in real time, as shown in the following

formula:

bi ¼
tr Pið Þ

tr P1ð Þ þ tr P2ð Þ þ � � � þ tr Pnð Þ þ tr Pmð Þ : ð1Þ

2.2 State estimation based on LE-DNN and fault
detection based on one-class SVM

2.2.1 System state estimation based on LE-DNN

It is assumed that the system equation of the navigation

system can be represented by the following formula:

X k þ 1ð Þ ¼ €O k þ 1; kð ÞX kð Þ þ G kð Þw kð Þ ð2Þ
Z kð Þ ¼ H kð ÞX kð Þ þ v kð Þ ð3Þ

where w kð Þ is the process noise of the system and v kð Þ is
the measurement noise of the system.

When using the model for simulation, we assume that

the statistical properties of process noise A and measure-

ment noise B are known. In the multi-source integrated

navigation system mentioned in this paper, in practical

applications, especially in complex environments, system

noise, especially measurement noise, may be affected by

many strong external conditions, such as temperature,

humidity, electric waves, geomagnetic changes, etc. The

actual statistical characteristics of the noise will be greatly

different from the assumed characteristics. In this case, if

the fixed statistical model is used to estimate the navigation

state, the positioning accuracy will be greatly reduced, the

accuracy of the system cannot be met, and even the filter

may diverge in serious cases.

Under this application background, a variety of adaptive

online modification parameter methods have been pro-

posed, and even some people have proposed Kalman fil-

tering method combined with fuzzy control theory.

Although these methods can reduce the influence of the

above situation on filtering to some extent, these methods

have limited application range and are not suitable for

strong disturbance environment. The effect is very limited

in complex environments. The method in this paper is

designed based on this consideration. The neural network

not only has the ability to process information in parallel

and store information in a distributed manner, but also has

the advantages of self-organization, adaptability, and fault
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tolerance. It also has strong learning and association

functions for different environments. The state estimation

method in this paper is based on this, and the deep neural

network based on Laplacian feature map is used to estimate

the state of the navigation system in a strong disturbance

environment.

Step 1: Original features extraction

Data preprocessing, such as moving out the abnormal

data form the original signal dataset, is an essential pro-

cedure before feature extraction, and more precise out-

comes require more meticulous preprocessing. Since the

original signal doped with much messy interference

information is unsuitable for analyzing directly, it is a good

choice to extract the features of the signal data for further

analysis. Both classical and contemporary methods for

feature extraction were employed in this paper.

1. Time and frequency analysis

Time and frequency domain feature analysis is one of

the main methods of system state estimation. The time

domain signal has the characteristics of containing large

information, intuitive and easy to understand. It is the

initial basis of system state estimation. The frequency

domain characteristic parameters describe signal through

the change in frequency band in signal spectrum and the

dispersion of spectrum energy.

In this paper, 11 characteristic parameters in time

domain and 13 characteristic parameters in time domain

displayed in the literature are adopted [19].

2. WPT

When wavelet packet transform (WPT) is decomposing the

lowfrequencypart of the signal, it canalsodecompose thehigh-

frequency partmoremeticulously at the same time, and there is

neither redundancy nor omission in the decomposition.

Therefore, WPT can provide better time–frequency analysis

than wavelet transform for the measured value containing both

medium- and high-frequency information. The steps to extract

wavelet packet energy features mainly include [20]:

1. Extract signals in each sub-band

Recorded the wavelet function W kð Þ and scaling func-

tion u kð Þ as l1 ¼ W kð Þ and l0 ¼ u kð Þ, respectively, then

l2nðtÞ ¼
ffiffiffi

2
p

P

k2Z
hðtÞlnð2t � kÞ

l2nþ1ðtÞ ¼
ffiffiffi

2
p

P

k2Z
gðtÞlnð2t � kÞ

8

>

<

>

:

ð4Þ

where gk ¼ �1ð Þkh1�k is a biorthogonal filter, n ¼ 2l or

n ¼ 2lþ1, l ¼ 0; 1; 2; . . .. The recursively defined function

INS

GNSS

SAR

TAN

sub-filter 1

sub-filter 2

sub-filter 3

one-class SVM 
fault diagnosis

one-class SVM 
fault diagnosis

one-class SVM 
fault diagnosis

main filter

time update

op�mal fusion

1Z

2Z

3Z

4Z

LE-DNN1

LE-DNN2

LE-DNN3

CNS sub-filter 4 one-class SVM 
fault diagnosis5Z

LE-DNN4

Fig. 1 Block diagram of intelligent active fault-tolerant integrated navigation system
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ln denotes the wavelet packet defined by orthonormal

scaling function l0 ¼ u kð Þ.

2. Calculate the energy of each sub-band

Set the signal energy corresponding to the regenerated

signal cjk of the jth frequency band of the kth layer after the

wavelet packet decomposition as Ejk, then

Ejk ¼
Z

cjkðtÞ
�

�

�

�

2
dt ¼

X

N

m¼1

xjm: ð5Þ

Here m is the discrete point of the regenerated signal cjk
of the jth frequency band of the kth layer, while xjm stands

for the amplitude of the discrete points of the regenerated

signal cjk.

3. Constructing wavelet packet feature vector

The feature vector of the wavelet packet can be obtained

through normalizing the characteristic parameters calcu-

lated by the following formula:

e ¼ fEj0;Ej1; . . .;Ejlg=E; l ¼ 2 j � 1 ð6Þ

where E ¼
Pl

K¼1 Ejk is the total energy of the whole signal

that equals to the sum of the energy of each sub-band.

Step 2: LE feature space transformation

The sample data of high-dimensional spaces is actually

in a low-dimensional manifold, of which the structure

contains the geometric characteristics and the intrinsic

dimensionality information of the original data [21]. The

sample data in high-dimensional space (D dimension)

actually can be projected into a low-dimensional manifold

(L dimension, L B D) which can accurately reflect the

geometric characteristics of the original data. As a non-

linear space dimensionality transformation technique, LE

builds a graph from neighborhood information of the data

set, and each data point serves as a node on the graph and

connectivity between nodes is governed by the proximity

of neighboring points [22], which can be generally repre-

sented as:

MD )
LE

ML; L�Dð Þ ð7Þ

where MD and ML stand for the original features in D-

dimensional space and projected features in L-dimensional

space, respectively. The steps can be summarized as fol-

lows [23]:

(A) Constructing the graphs

Given k points x1; . . .; xk in MD, construct a weighted

graph with k nodes, one for each point and a set of edges

connecting neighboring points to each other. For this pur-

pose, put an edge between nodes i and j that are close. In

this work, the n-nearest neighbors algorithm is adopted to

find the nodes that are close to each other. In this method,

nodes of i and j are connected by an edge if i is among n-

nearest neighbors of node j.

(B) Choosing weights

The heat kernel algorithm described in previous section

was introduced to calculate the weights of the edges in the

constructed graph. If nodes i and j are connected, put

Wi;j ¼ e�
xi�x2

j
4t : ð8Þ

(C) Eigenmaps

As for a constructed graph G, to obtain the connected

components, we should compute the eigenvalues and

eigenvectors for the generalized eigenvector problem as:

Ay ¼ dBy ð9Þ

where B is the diagonal weight matrix, of which the entries

are columns sums of W, Bii¼
P

j Wji and A ¼ B�W is the

Laplacian matrix.

Therefore, an N � 18 feature array composed of 18

original features extracted from the measured values is

acquired in high-dimensional feature space. And before the

high-dimensional feature array is projected to lower

dimensional space by LE, maximum likelihood estimation

(MLE) was adopted to calculate the intrinsic dimension of

the array; then, an n� m ðm\38Þ low-dimensional fea-

ture array was obtained.

Step 3: DNN construction and training

(A) Deep neural network

Hinton et al. [24] proposed a feasible scheme to con-

struct deep structure neural network. The key point of this

method is to use some restricted Boltzmann machines

(RBM) to generate the pre-training without supervision and

tack up these RBMs layer by layer to construct a DBN.

RBM is a probabilistic model that can be represented by

a kind of undirected graph models. The undirected graph

model has two layers, of which one is a visible layer used

to describe the characteristics of the input data, while

another is a hidden layer, and each layer is composed of a

plurality of probability units. All the visible layer elements

are connected with the random binary hidden layer ele-

ments by undirected weights; however, there is no con-

nection between the elements in the same visible or hidden

layer.

DBN is built through stacking a number of RBMs from

bottom to top layer by layer, of which the rules are avail-

able in the literature [25]. Since the input features of this

paper are continuous variables, the first two layers are built

as Gaussian–Bernoulli RBM model, while other hidden

layers are built as Bernoulli–Bernoulli RBM models. The
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output values of lower layer are used as inputs of the higher

one between two binary RBM layers, through repeating

which the network structure with desired hidden layer

number can be obtained at last.

(B) Construct and fine-tune DNN

In this paper, a linear output layer is added at the top of

the DBN to form deep neural network (DNN) that is used

to study the mapping relationship between the measured

value features and the system state information; the

architecture of DNN is shown in Fig. 2. The input of DNN

is the characteristic parameters of each navigation sensor

measured value, and the output is a state estimation value

of the system. Firstly, acquire the parameters of each layer

with the help of the pre-training DBN and then initialize

these parameters that correspond to each layer of DNN, so

that we can get a deep network structure with almost

optimal parameters. Finally, the error back propagation

(BP) algorithm is adopted to fine-tune the parameters of the

DNN network. The details of DNN training can be studied

in the literature [26].

As for the DNN models, the quantities of input nodes,

hidden nodes, hidden layers and output nodes are the most

significant parameters. In this paper, the architectures of

DNN models are defined as follows:

DNN param1; param21; . . .param2j; param3
� �

ð10Þ

where param1 represents the number of input nodes,

param2i denotes the number of hidden nodes of ith hidden

layer, while param3 stands for the number of output nodes.

To obtain a DNN network which can be used for system

state estimation, set the first 2500 min data of the projected

dataset ML as NL, of which all the data are collected from

the sensors that is under normal conditions, then NL was

adopted for training and fine-tuning to obtain a normal

DNN model, that is

NL ¼

p1
p2

..

.

pN

2

6

6

6

4

3

7

7

7

5

¼
p11 . . . pL1
..
. . .

. ..
.

p1N . . . pLN

2

6

4

3

7

5

: ð11Þ

Step 4: Assessment

Deep neural network that contains more neuron nodes

and a number of hidden layers has better ability of

expression than the shallow network, besides, the most

important advantage of DNN is that it can express

numerous function sets in a more compact and concise

way, which make it very suitable for DNN to obtain the

essential characteristics of massive data. Hence the entire

dataset ML composed of feature data of the measured

values collected under normal condition as well as abnor-

mal condition is used as the testing data that would be input

into DNN model to estimate the system state, that is testing

data:

ML ¼

p1
p2

..

.

pM

2

6

6

6

4

3

7

7

7

5

¼
p11 . . . pL1
..
. . .

. ..
.

p1M . . . pLM

2

6

4

3

7

5

ð12Þ

where NL 2 ML.

Figure 3 exhibits the main procedures of the proposed

method for state estimation of navigation systems by

integrating LE into deep neural network.

2.2.2 System fault detection based on one-class SVM

It can be known from the block diagram of intelligent

active fault-tolerant integrated navigation system that for

any sub-filter system, the navigation information should be

detected before enter the main filter. While the subsystem

is running normally, one-class SVMs are trained on normal

data. When the system fails, the already trained SVM will

automatically detect the fault data and isolate it to avoid

entering the main filter. To improve the accuracy and real-

time performance of the fault-tolerant integrated navigation

system, aiming at the timing signal of navigation system,

the training samples need to be preprocessed: phase space

reconstruction and support vector preselection to improve

modeling efficiency. The preprocessing steps are as fol-

lows: phase space reconstruction and support vector

preselection.

1. Phase space reconstruction

One-class SVM has a faster speed for system modeling,

which can be directly used for system data samples with

v1 v2 vi

h1 h2 h3 hj
Hidden 
layer 1

Input

Output

h1 h2 h3 hk

h1 h2 hn

Visible 
layer

Hidden 
layer m-1

Hidden 
layer m

DBN

Fig. 2 Structure diagram of DNN
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several dimensional features, but for time series navigation

signals, the need for phase space reconstruction [16] and

then establish fault forecast model using one-class SVM

model [17]. The phase space reconstruction method is a

method that reconstructs the attractor based on the limited

measured data to study the dynamic behavior of the sys-

tem. The evolution of any component in the system is

determined by other components interacting with it.

Therefore, the information of these related components is

hidden in the development of any component, so that it can

be extracted from a set of time series data of a component

and restore the original rules of the system; this kind of law

is a kind of trajectory of high-dimensional space, and this

rule is a kind of track in high-dimensional space. The

equivalent state space can be reconstructed by taking the

time delay values of some fixed points as the new dimen-

sional coordinates in a certain multidimensional state

space. Repeating this process and measuring the amount of

delay relative to different time, we can generate many such

points. It can keep many properties of attractors, that is,

using a system’s observation, we can reconstruct the

motivity system model. The time sequence from a navi-

gation subsystem is x tð Þ t ¼ 1; 2; . . .;Nð Þ, the dimension of

the phase space is m, and the fixed time delay is called the

embedding delay s. The point of the phase space is

X tð Þ ¼ x tð Þ; x t � sð Þ; . . .; x t � m� 1ð Þsð Þð ÞT ð13Þ

where t ¼ 1; 2; . . .;NP;NP ¼ N � m� 1ð Þs.

2. Support vector preselection
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One-class SVM has the sparsity, that is, the final form is

only determined by the support vector, so the complexity

of the algorithm can be reduced by reducing the training

sample set, which can effectively improve the efficiency of

fault detection and improve the real-time performance of

the fault-tolerant integrated navigation system. Sample set

D ¼ xi 2 Rdji ¼ 1; 2; . . .; l
��

, the sample set in the center

of the high-dimensional feature space

m ¼ 1

l

X

l

i¼1

u xið Þ ð14Þ

cos m; xð Þ ¼
u xð Þ � 1l

Pl
i¼1 u xið Þ

� 	

u xð Þk k u 1
l

Pl
i¼1 u xið Þ

� 	


















: ð15Þ

In the high-dimensional space, the angle between the

vector x and the vector m formed by the center point is

h m; xð Þ. For the sample point x, the larger the h m; xð Þ is, the
smaller the cos m; xð Þ and the smaller the u xð Þk k, the more

likely x becomes the support vector. Calculate si for each

sample point x in the sample set D, and select a smaller

sample point si from the sample D to form a new training

sample set.

si ¼ u xð Þ �
X

l

j¼1

u xið Þ
 !

¼ 1

l

X

l

j¼1

k xi; xj
� �

: ð16Þ

3. Fault detection algorithm

In order to improve the success rate of fault detection

and ensure the real-time performance of the fault-tolerant

integrated navigation system, the one-class SVM model

uses fourfold cross-validation. The kernel function uses

radial basis function RBF

k xi; xj
� �

¼ e� xi�xjk k2
=2r2 : ð17Þ

Select the statistical detection amount is

F xð Þ ¼
X

i2ISV
aik xi; xð Þ � q: ð18Þ

Ideally, the fault can be judged according to whether

F xð Þ is less than 0 or not. In the actual situation, however, a
threshold J need to be set, and when the F xð Þ is greater

than J, the test point is normal; when the F xð Þ is less than J,
the test point is a fault point.

3 Simulation and analysis

3.1 Simulation and analysis based on LE-DNN
state estimation

Figures 4, 5 and 6 show the position, velocity and attitude

errors of the state estimation of the single LE-DNN neural

network, respectively. Figures 7, 8 and 9 show the com-

parison of LE-DNN neural network estimation error and

particle filter estimation error, including the mean error of

the multi-group particle filter.

The comparison of the root mean square error (RMSE)

of the system state estimation is shown in Table 1.

As can be seen from the figures below, the estimation

accuracy of the LE-DNN network filter is higher than that

of the single filter and higher than the average estimation of

all the filters. However, when selecting LE-DNN network

for training, only one noise value can be obtained if the

object is a static object with zero speed; therefore, this

paper takes the average of the estimated values of the

multi-filter, so in this LE-DNN network training, it is not

simply to use the true value of zero as the prior data. At this

time, the velocity and position of the output sample con-

trast deviate from the true value. It can be found that the

former will have a much greater relativity, because the

latitude and precision values are much larger than the

measurement noise. Of course, the neural network of

training will have some influence on the accuracy of

estimation.

3.2 Simulation and analysis of fault detection
algorithm based on one-class SVM

In order to verify the validity of the proposed fault detec-

tion algorithm, the proposed fault detection algorithm is

verified by MATLAB simulation. For the fault-tolerant

integrated navigation system, the redundancy is large and

the fault detection methods of each subsystem are similar.

Therefore, this paper verifies the validity of the one-class

SVM algorithm by detecting faults in GNSS and INS

subsystems.

The accuracy of the inertial navigation device is as

follows: the standard deviation of the gyroscope is

0.0058 rad/s, the static and dynamic drifts are 0.0524 rad/s

and 0.00012 rad/s, respectively; the standard deviation of

the accelerometer is 0.333 rad/s, and the static and

dynamic drifts are 0.49050 m/s2 and 0.002 m/s2, respec-

tively. The error of GNSS level measurement is 5 m, and

the height measurement error is 10 m [27]. The total

simulated flight time is 480 s, and the output frequency of

GNSS and INS is 5 Hz. Figure 10 is a simulation of the

motion trajectory.
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In this simulation, the real-time fault detection is carried

out for the abrupt and slow change fault. In order to reduce

the impact of initial alignment on fault detection, the data

in the middle stage of the trajectory are selected as training

samples and test samples. The Y-axis error of gyroscope

with 2 radians amplitude is added to twentieth sample

points. The X-axis error of accelerometer with 2 m/s2

amplitude is added to sixtieth sample points, and the

threshold J is set to - 0.05 based on empirical value. The

simulation results are shown in Fig. 11.

Fig. 4 LE-DNN position estimation error of multi-source integrated navigation system

Fig. 5 LE-DNN attitude estimation error of multi-source integrated navigation system
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As can be seen from Fig. 11, the algorithm proposed in

this paper has high sensitivity to abrupt fault and has little

delay. The slow change fault is an accelerometer error that

increases the amplitude to the 31st sample points to the

40th sample points. As shown in Fig. 11. It can be seen

from the figure that the algorithm can also detect the slow

change fault (Fig. 12).

In order to verify that the one-class SVM-based fault

detection algorithm is superior to the neural network-based

fault detection algorithm in training sample numbers, the

Fig. 6 LE-DNN speed estimation error of multi-source integrated navigation system

Fig. 7 Comparison of LE-DNN position estimation error of multi-source integrated navigation system
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Fig. 8 Comparison of attitude estimation error of multi-source integrated navigation system

Fig. 9 Comparison of speed estimation error of multi-source integrated navigation system
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Table 1 Comparison of the root

mean square error (RMSE) of

state estimation

Position error (m) Speed error (m/s) Attitude error (9 10-3 deg)

Multiple particle filter average 0.2038 0.0152 0.049

Single particle filter 0.1153 0.0086 0.064

LE-DNN 0.0692 0.0049 0.001

Fig. 10 Motion trajectory diagram

Fig. 11 Abrupt fault detection
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neural network and one-class SVM are trained with dif-

ferent numbers of identical training sample sets, and then,

the same test sample and error amplitude are used to

compare the fault detection rates of the two models. The

results are shown in Table 2.

As can be seen from Table 1, when the number of

samples is small, the correct detection rate of one-class

SVM model is obviously higher than that of the neural

network model. When the number of samples is large, both

models have good estimation performance. SVM is specific

to the finite sample case, and its goal is not only the optimal

value when the number of samples tends to infinity, but the

optimal solution under the existing information. SVM

replaces the empirical risk minimization with structural

risk minimization, which solves the learning problem of

small samples well. Theoretically, the SVM algorithm will

get the global optimum, which solves the local extremum

problem that neural network method cannot avoid. Fault is

a small probability event with fewer samples, so it can be

said that SVM can show better characteristics in the field of

fault diagnosis. The simulation of this section also shows

that one-class SVM is more suitable for fault detection in

integrated navigation.

The simulation results show that the one-class SVM

fault detection algorithm can detect the abrupt and slow

change faults of the navigation sub-filter system very well,

with short delay and strong real-time performance. Com-

pared with the fault detection algorithm based on neural

network, it is proved that the detection rate is higher and

the performance is better in small sample. These advan-

tages will help the multi-source information fault-tolerant

integrated navigation system to improve the adaptability

and accuracy.

3.3 System simulation and analysis

1. Simulation and analysis of single subsystem without

fault

Fig. 12 Slowly changing fault detection

Table 2 Properties of raw materials

Training sample size 50 100 150 200 250 1000

One-class SVM (%) 89 92 93 95 96 98.7

Neural network (%) 70 72 81 85 93 99

Fig. 13 Speed error of the INS/GPS subsystem
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Each sub-filter estimates one or several states of the

overall velocity, position, and attitude. The accuracy of the

estimated state will be improved, and the estimated state

error is large or even divergent. Therefore, the simulation

and analysis of a single subsystem will be based on the

measurement equation.

First analyze the INS/GPS subsystem. Figures 13 and 14

are plots of speed error and position error for the INS/GPS

subsystem.

Analyze the INS/SAR subsystem. Figure 15 is a graph

of longitude and latitude error curves.

Analyze the INS/TAN subsystem. Figure 16 is a graph

of height error.

Analyze the INS/CNS subsystem. Figure 17 is a roll and

pitch error graph and Fig. 18 is a yaw error graph.

1. Analysis of the overall system without failure

After analyzing the individual subsystems, the overall

active fault-tolerant integrated navigation is now analyzed.

When no fault occurs, the information of the sub-filter will

be sent to the main filter for information fusion to obtain an

estimate of position, velocity, and attitude.

Figures 19, 20, and 21 are error estimates for the state of

active fault-tolerant integrated navigation.

2. Simulation and analysis of active fault-tolerant inte-

grated navigation in case of failure

This section simulates the situation when a sub-navi-

gation system fails. For example, in the case of a TAN

fault, INS/TAN is a state estimate of the altitude. In order

to avoid the influence of initial alignment, the fault value of

TAN is added to the fault at 1500 s. After fault detection, it

can be obtained as shown in Fig. 22. It can be seen from

the figure that the height error increases sharply at 1500 s

and affects the accuracy of the next period of time.

When the one-class SVM detects a fault, it uses the LE-

DNN neural network that is always in the training state to

predict the data at the start of the fault and replace the fault

data. Figure 23 shows the overall prediction of the neural

network trained from the start time to 1499 s.

It can be seen that the error curve predicted by the LE-

DNN neural network will compensate well for the large

error caused by the fault. By replacing the fault data into

the main filter, a better estimate of the overall error will be

obtained.

Fig. 14 Position error curve of INS/GPS subsystem

Fig. 15 Longitude and latitude error graph of INS/SAR subsystem
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4 Conclusion

Accuracy and efficiency are key criteria for evaluating

navigation in navigation systems. This paper proposes an

active fault-tolerant integrated navigation system, that is,

adds neural network to help establish active fault-tolerant

integrated navigation in fault-tolerant integrated navigation

based on one-class SVM fault detection algorithm. During

the running of the active fault-tolerant integrated naviga-

tion system, each sub-filter enters the main filter for

information fusion, and the one-class SVM fault detection

algorithm detects the fault of the system and as the signal

for the neural network starts to predict. When there is no

fault, the neural network trains each sub-filter; when there

Fig. 16 Height error curve of INS/TAN subsystem

Fig. 17 Roll and pitch error curve of INS/CNS subsystem
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is a fault detected, the neural network that has been in the

training state will predict the fault time data and replace the

fault data with the data predicted by the neural network

into the main filter for fusion. Through the simulation of

the system failure and the state analysis of the subsystem. It

can be known that, compared with the general fault-toler-

ant integrated navigation, the active fault-tolerant inte-

grated navigation system can make each sub-filter work

Fig. 18 Yaw error curve of INS/CNS subsystem

Fig. 19 Position estimation error of active fault-tolerant integrated navigation
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Fig. 20 Speed estimation error of active fault-tolerant integrated navigation

Fig. 21 Attitude estimation error of active fault-tolerant integrated navigation
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Fig. 22 INS/TAN height estimation error with failure

Fig. 23 Error curves predicted by LE-DNN neural network
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uninterruptedly and the overall state can be optimally

estimated regardless of whether the sub-navigation system

fails.
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