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Abstract
Social networks are known to be assortative with respect to many attributes, such as age, weight, wealth, level of education,

ethnicity and gender: Similar people according to these attributes tend to be more connected. This can be explained by

influences and homophily. Independently of its origin, this assortativity gives us information about each node given its

neighbors. Assortativity can thus be used to improve individual predictions in a broad range of situations, when data are

missing or inaccurate. This paper presents a general framework based on probabilistic graphical models to exploit social

network structures for improving individual predictions of node attributes. Using this framework, we quantify the

assortativity range leading to an accuracy gain in several situations, with various individual prediction profiles. We finally

show how specific characteristics of the network can enhance performances further. For instance, the gender assortativity in

real-world mobile phone data drastically changes according to some communication attributes. In this case, using the

network topology indeed improves local predictions of node labels and moreover enables inferring missing node labels

based on a subset of known vertices. In both cases, the performances of the proposed method are statistically significantly

superior to the ones achieved by state-of-the-art label propagation and feature extraction schemes in most settings.
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1 Introduction

Social networks currently drive an increasing attention in

the research community, as they are found in diverse sit-

uations and are described by huge amounts of data notably

collected through the web and mobile devices. Facebook,

Twitter, Google?, mobile phone networks and other large-

scale social graphs are nowadays largely studied for pre-

dicting and analyzing individual demographics [1, 23, 46].

This type of information is indeed a key input for the

establishment of economic and social policies, health

campaigns or market segmentation [12, 23, 37]. Never-

theless, especially (but not exclusively) in developing

countries, such statistics are often scarce or even lacking,

as local censuses are costly, rough, time-consuming and

hence rarely up to date [25, 43]. This is the reason why

recent researches address this problem by inferring demo-

graphics from large social networks [7, 12], in order to

ease the access of policy makers and NGO’s toward more

reliable information.

Social networks contain individual information about

their users (e.g., generated tweets for Twitter), in addition
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to a graph topology information. These graphs present

specific structures carrying many different characteristics,

such as small-worldness or heterogeneous degree distri-

bution [32]. The assortativity of social networks, defined as

the nodes tendency to be linked to others which are similar

in some sense [2], with respect to various demographics of

their individuals such as gender, age, weight, income level,

education, race, religion is well documented in the litera-

ture [22, 24, 31, 42, 48]. This property has been theorized

to come from either influences or homophily or a combi-

nation of both [2]. For instance, Rosenquiest et al. [36]

showed that social influence can enhance the spreading of

alcohol consumption and Madan et al. [22] found that

weight changes in an individual can be influenced by

exposure to overweight peers with unhealthy habits or

inactive lifestyles. On the other hand, the concept of

homophily is easily understood as the saying goes: ‘birds

of a feather flock together,’ which means that people

sharing some characteristics tend to more communicate.

For instance, we observe more connections between people

of the same age and gender [24].

Independently of its cause, this assortativity can be used

for individual prediction purposes when some labels are

missing or uncertain, e.g., for demographics prediction in

large networks. The task of predicting missing node labels

in networks, known as node classification, makes use of the

known labels and the graph structure [14], which embeds

some properties such as its assortativity. Different methods

of node classification, based either on feature extraction or

on random walks [5], were recently developed. On the one

hand, some feature extraction-based approaches aim at

exploiting network assortativity [1, 16]. The general idea

is, for each node, to build a feature vector summarizing

information from its neighborhood. A machine learning

algorithm can then be employed to predict the unknown

labels based on these extracted features. In this setting, the

neighborhood definition is highly important and can be

carried out in different ways [15]. To define feature vectors

describing each node’s neighborhood, graph embedding

techniques can be considered [14]. For instance, Grover

and Leskovec automated the feature extraction to preserve

neighborhoods reflecting the local structures and/or the

communities [15]. This approach is well suited for classi-

fication tasks as it can account for diverse node neighbor-

hoods which can be related to the node labels. However,

the feature extraction-based studies do not take the global

network structure into account and could hence further

benefit from its properties. Indeed, the feature extraction is

constrained by the subsequent classification algorithm that

is used: The fixed number of features and their ordering

cannot faithfully reflect complex relationships, observed in

social networks for instance, with diverse kinds of network

substructures related to the users’ labels [44]. Also, this

kind of approach is not intended to directly exploit

uncertain label predictions with confidence levels (i.e.,

class probabilities) [40].

On the other hand, random walk-based approaches allow

to account for the whole network structure by propagating

the labels through iterative updates [50, 51]. Several vari-

ants and adaptations of this principle were proposed to

solve diverse labeling tasks, such as video suggestions [3]

or demographics prediction in networks [38]. Although

these methods aim to model the network structure as a

whole, they are based on an implicit model of the joint

probability distribution of all the node labels [5]. As an

alternative, inference approaches using probabilistic

graphical models (PGMs) were developed as the PGM

modeling explicitly fully describes the interactions

between the nodes [10].

Nevertheless, none of the current approaches investi-

gates the improvement of uncertain predictions, which can

be obtained by a classical machine learning algorithm

predicting the labels based on individual profiles, while

modeling the network structure as a whole. Instead, the

current studies focus on the propagation of known labels

through a network. In addition, to the best of our knowl-

edge, no research quantifies how the performances of label

predictions in a network evolve as a function of the

assortativity strength.

In this work, we propose a general framework based on

probabilistic graphical models (PGMs) to exploit the social

network structure to improve uncertain individual predic-

tions and infer missing labels. The method can be applied

while only knowing the labels of a limited number of pairs

of connected users in order to evaluate the assortativity.

Then, the inference process is based on class probability

estimates for each user. These initial class probabilities

may be obtained (1) by considering a subset of labeled

users or (2) from a machine learning algorithm applied on

the node-level individual features. A loopy belief propa-

gation algorithm is afterward applied on a Markov random

field modeling the network to improve the accuracy of the

class probability estimates. The model is able to benefit

from the strength of the links, quantified for example by the

number of contacts. The estimation of the network assor-

tativity allows to optimally tune the model parameters, by

defining synthetic graphs. The latter simulations permit (1)

to prevent overfitting a given (real) network structure, (2)

to perform the parameter tuning off-line and (3) to avoid

requiring the labeled users to form a connected graph.

These simulations also allow to quantify the assortativity

range leading to an accuracy gain over an approach

ignoring the network structure. The methodology is vali-

dated on real-world mobile phone data to predict gender.

As the assortativity required to significantly improve the

quality of the prior class probabilities might not always be
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reached in practice, we show that the assortativity signifi-

cantly changes according to some communication attri-

butes, which can in turn be exploited to improve the

predictions by appropriately adapting the model parameters

in different parts of the network. Experiments on a real-

world mobile phone network suggest the statistically sig-

nificant superiority of our methodology over state-of-the-

art algorithms, namely the reaction–diffusion label propa-

gation method [38] and three machine learning classifiers

relying on features extracted by the Node2vec graph

embedding technique [15].

The paper is organized as follows. Section 2 introduces

the framework of probabilistic graphical models (PGMs)

and the notations. The readers who are already familiar

with this field can safely skip this part. Then, the general

methodology to improve attribute predictions in a network

is detailed in Sect. 3. Its key parameters are highlighted,

and their tuning based on simulated assortative networks is

detailed. In Sect. 4, we introduce the real-world data sets

which are studied, analyze their underlying gender homo-

phily and assess the performances of our method compared

to state-of-the-art algorithms, based on feature extraction

using Node2vec [15] and on label propagation using the

reaction–diffusion algorithm [38]. Section 5 then discusses

the results and describes the related work more extensively.

Conclusions are drawn in Sect. 6.

2 Background and notations

This section introduces undirected graphical models and

how they can be used to perform inference about the

variables they model. Uppercase and lowercase letters

denote, respectively, random variables and observed val-

ues. The probability distribution of a random variable (or a

set of random variables) X is denoted by pX . It corresponds

to the probability density (resp. mass) function for a con-

tinuous (resp. discrete) random variable X. For instance,

the probability for a discrete random variable X to be equal

to x is pXðxÞ :¼ PðX ¼ xÞ.

2.1 Probabilistic graphical models (PGMs)

A probabilistic graphical model is a graph GM ¼ ðS;AÞ,
where S :¼ f1; . . .;Ng and A � S � S denote, respec-

tively, the set of nodes and edges, in which each node i 2 S
is associated with a random variable Xi and each edge

e 2 A represents a direct statistical dependency between

the random variables it links. Any pair of nodes which are

not connected can only statistically depend on each other

through some other variables on the path relating

them [13]. Let X denote the concatenation of all the Xi’s

for i ¼ 1; . . .;N. A given PGM models a family of

probability distributions over X which, importantly, admit

a particular factorization according to the graph structure.

Graphical models aim to represent compactly distributions

over interacting variables, allowing to decrease the com-

plexity of inference processes. There exist mainly three

kinds of PGMs: undirected graphical models (also called

Markov random fields (MRFs) or Markov networks),

directed acyclic graphical models (DAGs or Bayesian

networks) and factor graphs [20]. MRFs are employed in

this work and are defined as follows.

Definition 1 (Markov random field (MRF)) An undirected

graphical model, or MRF, represents a family of proba-

bility distributions over X using an undirected graph GM .

The implied variables satisfy the graph separation prop-

erty: For any three sets of nodes H, B and D � S in the

PGM and their associated vectors of random variables XH,
XB and XD, XH is independent from XB conditionally to XD
(XH??XBjXD) when any path in the graph from one node in

H to one node in B contains a node in D.

The Hammersley–Clifford theorem relates this defini-

tion to the factorization of the joint distribution induced by

the graph:

Theorem 1 (Hammersley–Clifford) A strictly positive

distribution pX satisfies the graph separation property if

and only if it can be factored as

pXðxÞ ¼
1

Z

Y

C2C
wXC

ðxCÞ; ð1Þ

where C is the set of maximal cliques1 in the graph GM ,

Z ¼
P

x

Q
C2C wXC

ðxCÞ is termed as the partition function

and the wXC
’s are nonnegative functions, called clique

potentials.

The clique potentials define ‘compatibility’ functions

between the values taken by the variables XC. They do not

necessarily correspond to (conditional) probabilities over

the cliques. It can be noted that the potentials defined on

the maximal cliques may, in some cases, also be factored as

the product of potentials defined on nonmaximal cliques. In

particular, when the joint probability distribution pX is

unknown and needs to be modeled, any factorization based

on potentials defined on nonmaximal cliques can be con-

verted to one based on maximal cliques by defining the

maximal-clique potentials as being the product of a subset

of the nonmaximal-clique potentials [47].

1 A clique is a fully connected subgraph. A maximal clique is a

clique which cannot be increased in size with other nodes from the

graph.
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2.2 Inference on PGMs

Inference aims to compute marginal probabilities or

modes of a joint distribution [47]. Assuming that discrete

random variables are considered (otherwise, sums can be

replaced by integrals), computing a marginal such as

pX1
ðx1Þ consists in summing over all the remaining vari-

ables: pX1
ðx1Þ ¼

P
x2
� � �

P
xN

pX(x). When the joint dis-

tribution admits a factorization such as (1), it can be used

to reduce the computational cost of the inference. Indeed,

the sum over each variable can be performed on factors

defined on subsets of nodes. The book of Koller and

Friedman provides for some concrete examples [20]. This

reasoning leads to the loopy belief propagation (LBP)

algorithm which can be applied on any kind of PGM. If

the graph is a tree, LBP converges to the correct mar-

ginals in a limited number of iterations [29]. Otherwise,

the estimated marginals are optimal in the Bethe–Kikuchi

sense [47].

3 Method

Given an arbitrary social network G, the goal is to exploit

its assortativity to infer, for each user i, an individual scalar

attribute (or class) Yi taking values in a finite alphabet Y.
This class can be, for instance, the age or gender of each

individual. The graph G is defined as a pair ðV; EÞ, where V
and E are, respectively, the sets of nodes (one for each user)

and edges (connecting each pair of individuals who are in

contact), with jVj ¼ N. The available individual informa-

tion about user i is denoted by the random vector Xi. For

example, in the case of Twitter, xi could consist in the

tweets generated by user i and possibly in public profile

details (e.g., the user’s name). It is assumed that estimates

bpYijXi
ðyijxiÞ of the class membership probabilities

pYijXi
ðyijxiÞ are provided. These can be seen as ‘initial

predictions’ for each user i 2 V, which can encode deter-

ministic information (known labels) or which can be out-

putted by a machine learning algorithm applied on the

individual features xi to predict the class yi. If such infor-

mation is missing for some users, uniform class probabil-

ities of 1
jYj are used. In what follows, Y (resp. X) denotes the

concatenation of all the Yi’s (resp. Xi’s).

The rest of this section is structured as follows. Our

inference model is built in Sect. 3.1 based on the social

network, and the employed message-passing algorithm is

detailed in Sect. 3.2. Next, in Sect. 3.3, by simulating

individual predictions bpYijXi
ðyijxiÞ and synthetic networks,

we assess how the performance enhancement is related to

the network assortativity and to the quality of the initial set

of predictions, in terms of both accuracy and distribution.

This procedure permits to determine the best model

parameters.

3.1 Probabilistic graphical model

In order to improve the initial predictions bpYijXi
ðyijxiÞ, the

joint probability distribution pðY ;XÞ is modeled through an

undirected PGM GM (also called Markov random field,

MRF). The MRF has one node (resp. one edge) for each

user (resp. link) in the social network. The random vari-

ables Yi that we want to infer are assigned to the nodes of

the network; each link represents a conditional dependency

between two of them. As indicated in Fig. 1, the graphical

model GM contains N additional nodes associated with the

Xi’s, each one being linked to its corresponding Yi (as

in [49] for instance). The relationships between the indi-

vidual data Xi and the label Yi of each user i are hence

captured, as well as the direct mutual influence of adjacent

users. We choose an undirected graphical model to char-

acterize the statistical dependencies between the consid-

ered random variables, since there is no causal link

between the labels in the social network which could be

represented with a directed PGM. Also, the joint distribu-

tion pðY;XÞ does not admit a natural factorization through

conditional probabilities [47]. Instead, our MRF represents

conditional independencies. As a result, the graph separa-

tion property [20] indicates that the joint probability dis-

tribution pðY ;XÞ modeled by the PGM admits the

factorization

pY ;Xðy; xÞ ¼ pYðyÞ �
Y

i

pXijYiðxijyiÞ: ð2Þ

The assumption underlying the graphical representation is

that Xi given Yi is conditionally independent from Yj and

Xj, for all j 6¼ i. Namely, the generative probabilities of the

features given the class of each node are assumed to be

conditionally independent.

Let us use the notations

Fig. 1 Toy example of the Markov random field. There are two nodes

per user i in the graph, Yi being her class and Xi her individual data
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wðyi; xiÞ :¼ pXijYiðxijyiÞ /
pYijXi

ðyijxiÞ
pYiðyiÞ

: ð3Þ

As w is defined over the random variables associated with

each node of the social network G, it is called the node

potential. It corresponds to the likelihood of the ith user’s

individual data knowing her class. Besides, factoriza-

tion (2) entails the joint distribution pYðyÞ of the labels.

The Hammersley–Clifford theorem indicates that the latter

can be factored as a product of nonnegative functions

defined over cliques in GM . We choose to represent pair-

wise interactions for pYðyÞ, i.e., we define a clique potential
over each edge binding two yi’s. According to our PGM, as

illustrated in Fig. 1, the factorization hence develops as

pY ;Xðy; xÞ ¼
1

Z

Y

i

wðyi; xiÞ
Y

ðj;kÞ2E
Wðyj; ykÞ; ð4Þ

where Z is the partition function (a normalization constant)

and w and W, respectively, denote the node and edge

potentials. The ith node potential wðyi; xiÞ can be estimated

using the first predicted class probability bpYijXi
ðyijxiÞ and an

estimated class prior bpYiðyiÞ, which can be defined as the

proportion of users initially predicted as yi. Besides, in

order to reflect either the label assortativity or disassorta-

tivity of each link, the edge potential Wðyj; ykÞ for each pair

of adjacent users j and k can be defined as

Wðyj; ykÞ ¼
sjk; if yj ¼ yk

1� sjk; if yj 6¼ yk

�
ð5Þ

with sjk 2 ½0; 1� and yj, yk 2 Y. It is noteworthy that if sjk is

greater than 0.5, Wðyj; ykÞ will encourage users j and k to

share the same class. At the opposite, an sjk value smaller

than 0.5 will favor neighboring users j and k to have dif-

ferent labels (anti-homophilic contacts). This parameter of

label compatibility over the edges can hence be interpreted

as the probability for edge (j, k) to be homophilic.

Depending on the application, one may have access to

some edge weights, which can be used to model these sjk.

Section 4.4 provides an example of such a refinement in

the context of a real-world application. Another option is to

employ a constant sjk value for all the edges.

3.2 Inference algorithm

Along with factorization (4) of the joint probability dis-

tribution, the defined PGM structure enables efficiently

inferring the posterior probabilities pYijX , from which

enhanced predictions of the users’ label are derived. Exact

inference on the loopy MRF is intractable, as it would

require using the junction tree algorithm [20] which, even

if all the maximal cliques in G were identified, has an

exponential complexity in the size of the largest one. This

motivates relying on factorization (4), with pairwise

potentials only, and leads to the loopy belief propagation

(LBP) algorithm [20]. As further detailed hereunder, LBP

provides estimates of the posterior probabilities bpYijXðyijxÞ
for each node i in the graph and for all yi 2 Y. These
estimates approximate the true posterior probabilities

pYijXðyijxÞ in the Bethe–Kikuchi sense [47]. The predicted

class for user i is then given by argmaxyi2Y bpYijXðyijxÞ.
Computing the conditional probability of a random

variable Yi, given the observed variables, consists in

marginalizing over the remaining unobserved variables. A

normalization step at the end ensures that we have a valid

conditional distribution. The intuition behind belief prop-

agation algorithms is to perform these marginalizations

efficiently, by avoiding to repeatedly compute the same

intermediate sums. As a result, LBP is an iterative algo-

rithm in which, at each iteration t, every node j sends a

message mt
jk to each of its neighboring nodes k defined as

mt
jkðykÞ
k1

¼
X

yj2Y
wðyj; xjÞWðyj; ykÞ

Y

u2NðjÞnk
mt�1

uj ðyjÞ

0
@

1
A; ð6Þ

for yk 2 Y and where NðjÞ is the set of neighbors of user j.
The normalization constant k1 is chosen such that the

messages on each edge and direction sum to 1:P
yk2Y mt

jkðykÞ ¼ 1. The initial messages m0
jk are set to

1=jYj. The summation over the values of the random

variable Yj consists in marginalizing this variable. The

message mt
jkðykÞ can be interpreted as all the information

the sender (node j) can provide to the receiver (node k) on

the probability for node k to lie in state yk. After the con-

vergence of the 2N messages after t� iterations and a nor-

malization step, estimates of the posterior probabilities

pYijXðyijxÞ, termed as beliefs and denoted by bðyiÞ, can be

computed for each node i in the graph and for all yi 2 Y as

follows:

pYijXðyijxÞ � bðyiÞ :¼ k2 � wðyi; xiÞ
Y

u2N ðiÞ
mt�

uiðyiÞ; ð7Þ

where k2 is a normalization constant such thatP
yi2Y bðyiÞ ¼ 1. The predicted class for user i is the one

maximizing the estimated posterior probability:

y�i ¼ argmax
yi2Y

bðyiÞ: ð8Þ

This procedure enables handling large graphs as the com-

plexity of a single message-update iteration is OðjEj � jYj2Þ.
In comparison, a brute-force marginalization has a com-

plexity of O(N � jYjN). It can also be noted that (6) high-

lights the influence of the edge potential W: An sjk larger

than 0.5 on a given edge encourages neighboring users to

share the same class.
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3.3 Parameter tuning

The sjk values of the edge potential (5) need to be deter-

mined. As these parameters reflect the confidence in the

(dis-)assortative character of the edges, their tuning should

be related to the network assortativity. The latter quantity

hence has to be quantified, which is detailed in Sect. 3.3.1.

Then, after defining synthetic networks with adjustable as-

sortativity in Sect. 3.3.2, Sects. 3.3.3 and 3.3.4 study the

influence of the assortativity on the model parameters and

on the performances. This is done both by simulating

individual predictions and by assuming that a subset of

labels are known.

3.3.1 Assortativity coefficient

To quantify the assortativity of a network for a given node

attribute, Newman introduced the assortativity coefficient,

denoted by r [31]. It assesses the correlation between the

attributes of adjacent nodes, which can be categorical such

as the gender or the political affiliation. For scalar, discrete

or continuous, attributes such as the user’s age or the node

degree, a numeric assortativity coefficient is defined. In the

following, we focus on the assortativity coefficient defined

for categorical attributes on an undirected graph.

The assortativity coefficient can be derived thanks to the

symmetric mixing matrix M ¼ mij

� �L
i;j¼1

, where mij is half

the fraction (resp. the fraction) of edges connecting a

vertex of class i to a vertex of class j when i 6¼ j (resp.

when i ¼ j), and L ¼ jYj is the total number of classes of

the attribute of interest. Each of the row sums of the mixing

matrix, denoted by mi :¼
P

j mij, gives the proportion of

ends of edges from class i. It corresponds to the sum of

degrees of the nodes from class i divided by the number of

ends of edges (i.e., twice the number of edges). For a

discrete attribute on an undirected graph, the assortativity

coefficient expresses as

r ¼
P

i mii �
P

i m
2
i

1�
P

i m
2
i

2 ½�1; 1�: ð9Þ

If all the edges lie between pairs of people of the same

class, the network is perfectly assortative and it is

straightforward to derive that r ¼ 1. At the opposite, in a

perfectly disassortative network, r will range in ½�1; 0½, as
detailed in [31]. In the intermediate case, a random mixing

occurs when the classes of two connected users are inde-

pendent. Hence, mii ¼ m2
i which implies that r ¼ 0. Many

studies show that social networks tend to be more assor-

tative than other ones (e.g., technological or biologi-

cal) [8], with positive assortativity coefficients ranging up

to 0.6 [32] for attributes like race of partners in a bipartite

graph of sexual partnerships. According to McPherson

et al. [24], the latter attribute is among the most homophilic

ones.

In the special case of a binary attribute, the mixing

matrix becomes

M ¼
m11 m12

m21 m22

� �
; ð10Þ

and the assortativity coefficient is defined as

r ¼ m11 þ m22 � m2
1 � m2

2

1� m2
1 � m2

2

: ð11Þ

In this particular setting, the assortativity of a perfectly

disassortative network reaches �1. Indeed, there can only

be as many nodes from each of the two classes at the ends

of the edges of such a network, since each edge is between

two users from distinct classes. Hence, m1 ¼ m2 ¼ 0:5 and

r is equal to �1.

As it is most of the time unknown, r should be reliably

estimated in a real setting. An efficient possibility consists

in edge sampling, as described in Sect. 4.4 in the case of

gender prediction in a mobile phone network. We hence

assume in the following that an accurate estimate of r is

provided.

For a given network, the model parameters sjk of the

edge potential W can be optimized according to our con-

fidence in the (dis-)assortativity of each link (j, k). If our

sole knowledge about assortativity is r, a constant sjk value

(denoted by s) can be used for all the edges. This s char-

acterizes the confidence in the network information, which

is proportional to rj j: as indicated by (4), large j0:5� sj
values dilute the initial predictions contained in the node

potential w and give a heavy weight to the network, while

at the opposite an s value close to 0.5 will not change the

initial predictions by much, since W will remain roughly

constant when its arguments (i.e., the class labels) are

either equal or different. Synthetic networks, defined in the

next section, with assortativity coefficients close to a given

r, enable us to find an optimal s. To this aim, a grid search

is performed: LBP is applied on the MRF with each s value

from the grid, and the one achieving the highest average

performances on different synthetic networks is kept as

optimal. Employing a grid search is convenient as it yields

robust results. Its usage is affordable thanks to the effi-

ciency of LBP and since a single parameter needs to be

optimized. Alternative optimization schemes will be con-

sidered in future works and may only be beneficial for the

performances of our approach.

To get a clear picture of our approach and to identify

more easily the meaning of the following sections, the

different steps are summarized in Fig. 2.

18028 Neural Computing and Applications (2020) 32:18023–18043

123



3.3.2 Synthetic networks

The construction of the synthetic networks relies on the

same principle as the Watts–Strogatz small-world

graphs [30]. It first starts with a regular circular lattice

GR ¼ ðVR; ERÞ, each of the n nodes being linked to its

k closest neighbors in a ring topology, where k is even. The

attribute values yi’s that need to be inferred are randomly

assigned to each node i by sampling a given distribution.

Some edges are then rewired in the graph until the obtained

assortativity coefficient is sufficiently close to the targeted

one, denoted by r. This last step is detailed by the fol-

lowing procedure, illustrated in Fig. 3:

It can be noted that if one makes additional assumptions

on the graphs structure, different steps in the generation of

the synthetic networks could also be considered. For

instance, the LFR model allows to control the community

structure (the community size distribution and the propor-

tion of within-community edges) and the degree distribu-

tion to obtain more realistic graphs [33]. Besides, if the

mixing matrix was constrained, it could be used to refine

the network simulations [31]. Our simulated networks are

chosen here to only control the assortativity with respect to

the node label, without additional constraint on the graphs

properties.

It remains to endow the synthetic network nodes with

prior class probability estimates bpYijXi
ðyijxiÞ. In practice,

these probabilities can either be obtained from a machine

learning algorithm applied on the individual features xi of

each user, or from a subset of labeled users. Both of these

situations can be handled in the context of the synthetic

networks, as detailed in the two next sections.

3.3.3 Individual predictions

In a given application, a machine learning algorithm pre-

dicting the classes yi from the individual features xi gives

access to a prior information for all the users of the real

network. Sampling the distribution of these individual

predictions bpYijXi
ðyijxiÞ enables assigning prior class prob-

ability estimates to the nodes of the synthetic graphs, which

may afterward be employed to determine the optimal

model parameters. Nevertheless, in order to analyze the

behavior of our method when it is confronted to different

uncertainty patterns, we here generate these prior proba-

bilities for a binary label according to three synthetic dis-

tributions: linear, exponential and bi-uniform, as depicted

in Fig. 4. The proportion of correct initial predictions, i.e.,

the initial accuracy, has to be controlled as it will influence

the performances of the subsequent algorithms employed

to refine these predictions using the network information.

The initial classification rule amounts to predict

yIi ¼ argmaxyi bpYijXi
ðyijxiÞ. Therefore, the initial accuracy,

denoted by b, corresponds to the fraction of users i for

whom bpYijXi
ðcijxiÞ	 0:5 when the label is binary, where ci

is the true class of user i. The distributions of the class

probabilities cover three situations with different levels of

difficulty for the subsequent classification task, depending

on whether the amplitude of bpYijXi
ðyijxiÞ is more or less

Estimating assortativity r
• Edge sampling (Sect. 4.4.3)
• Social theories: e.g. [44]

Build synth. netw.
with assortativity r
(Sect. 3.3.2)

Fit edge potential param. sjk :
grid search on synth. netw.
for constant s (Sect. 3.3.3)

Compute the node potential
ψ(yi , xi ): Eq. (3)

Individual predictions or subset of known labels:
provide estimate pYi |Xi

(yi |xi )

Apply LBP with node
and edge potentials
(Sect. 3.2)

Predicted class
proba. pYi |X (yi |x)

= pYi |X (yi |{xi }N
i=1 )

A B C

D E

F G
Ψ

ψ

Fig. 2 Summary of the proposed method. To apply the LBP algorithm

to infer the node labels using the label assortativity, the edge potential

(box C) and node potential (box E) have to be defined. The edge

potential can be deduced from the network assortativity r (box A),

which can be estimated thanks to social theories or edge sampling, as

detailed in Sect. 4.4.3. The estimated r can then be employed to

generate synthetic graphs enabling to tune the edge potential

parameters (box B). On the other hand, the initial individual

predictions (box D) are used to define the node potentials. The LBP

algorithm (box F), using the node and edge potential, yields predicted

class membership probabilities bpYi jXðyijxÞ (box G). It is noteworthy

that X ¼ fXigNi¼1 concatenates all the Xi’s. Therefore, the predictions

bpYi jXðyijxÞ (box G) rely on the whole network structure, whereas the

initial predictions bpYi jXi
ðyijxiÞ (box D) are only based on the

individual node-level information

1: rR ← assortativity of GR ;
2: while |rR − r| > tolerance do
3: if rR < r then
4: Randomly select an edge (i, j) ∈ ER

which is not a bridge and such that yi �= yj
5: ER ← ER \ (i, j)
6: Add a random edge (i, l) in GR such that yi = yl
7: else
8: Randomly select an edge (i, j) ∈ ER

which is not a bridge and such that yi = yj
9: ER ← ER \ (i, j)

10: Add a random edge (i, l) in GR such that yi �= yl
11: end if
12: rR ← assortativity of GR;
13: end while
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related to the prediction correctness. With the linear and

exponential distributions, the probability for a prediction to

be actually correct increases with the available confidence

level, whereas with the bi-uniform distribution, when

bpYijXi
ðyijxiÞ	 0:5, the proportion of correct predictions

does not increase with the confidence level bpYijXi
ðyijxiÞ. All

the three distributions are sampled by inverse transform

sampling [9].

The results of the parameter tuning procedure are

depicted in Fig. 5 for an arbitrary binary attribute, such as

the gender. The best s value and the corresponding mean

accuracy gain, with respect to the accuracy b of the initial

individual predictions, are provided as a function of the

assortativity and the accuracy b. For each pair of b and r,

the optimal s value is selected as the one maximizing the

average accuracy over 30 random networks with 200 ver-

tices containing as many nodes from each one of the two

classes. The randomness covers the edge rewiring in the

networks, the attribute assignations and the sampling of the

prior probabilities. From the top to the bottom row of fig-

ures, the prior probabilities are simulated using the three

distributions illustrated in Fig. 4.

It can be observed that the optimal s values are almost

independent of b, and hence, the parameterization mainly

depends on the assortativity coefficient, using any of the

three distributions of initial predictions. Also, the chosen s

evolves in a consistent way as a function of the assorta-

tivity r, increasing from smaller values for disassortative

networks to higher values for assortative ones. Using these

optimal s values when prior probabilities are linearly or

exponentially distributed, Fig. 5b, d shows that the accu-

racy gain is almost always positive, except for some par-

ticular pairs of r and b, especially when the assortativity is

within the range ½� 0:1; 0:1�. This observation is consistent

as our PGM is designed to exploit the assortativity, which

is absent if r ¼ 0, corresponding to a randomly mixed

network according to the considered attribute. The results

obtained using initial predictions drawn from the linear and

exponential distributions are very similar. For the bi-uni-

form individual predictions however, much lower accuracy

gains are observed. These results can be explained as, in

this case, only the sign of bpYijXi
ðcijxiÞ � 0:5 brings infor-

mation on the true class probabilities, where ci is the true

class of user i. On the other hand, its amplitude also matters

for the linear and exponential distributions. It would also

most probably be the case in real settings: If an ML

algorithm outputs a high confidence level about an indi-

vidual prediction, the probability for this prediction to be

indeed correct should be higher than for another prediction

with a lower confidence level. From this respect, the bi-

uniform distribution may not be very realistic and could

correspond to a worst-case scenario. The extension to the

case of nonbinary attributes is straightforward, possibly by

employing the numeric assortativity coefficient, e.g., in the

case of the age attribute.

3.3.4 Labeled data

Prior information about the users’ class can also consist in

a subset of labeled users. In this case, the class of a fraction

b of all the network users is known, whereas no prior clue

is provided about the class of the remaining fraction 1� b
of users. The symbol b is again used in this section, by

analogy with the accuracy of the initial individual predic-

tions of Sect. 3.3.3. Figure 6 shows the optimal s parameter

computed and the accuracy of the predictions obtained on

the unlabeled nodes in synthetic networks, as a function of

the fraction b of known labels and the assortativity

(a) (b) (c)

Fig. 3 a Regular lattice,

b binary label assignation and

c final graph obtained after

some edges rewiring, with 15

nodes, a mean degree k ¼ 4 and

r � 0:3. The homogeneous

edges are depicted in red (color

figure online)

(a) (b) (c)

Fig. 4 a Linear, b exponential

and c bi-uniform distributions of

true class prior probabilities,

leading to an accuracy b of the

initial individual predictions for

a binary classification problem.

The true class of user i is
denoted by ci
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coefficient when considering a binary attribute. Similarly to

the results of Sect. 3.3.3, the evolution of the optimal s as a

function of the assortativity r is consistent: It roughly

increases from smaller values for disassortative networks to

higher values for assortative ones. However, by opposition

to what is observed when individual predictions are con-

sidered as in Fig. 5, the chosen s value is not independent

of the fraction b of labeled users: When b increases, the s

parameter tends toward more extreme values, no matter the

network assortativity. It can be explained as, with labeled

nodes, there is no wrong initial predictions to mitigate

through the inference process unlike in the initial individ-

ual prediction setting of Sect. 3.3.3. It is furthermore

noteworthy to observe that, for a fixed r, the performances

strictly increase with the training percentage b, without
saturating effect.

4 Mobile phone networks

The validation task considered in this section consists in

gender prediction in an undirected and weighted mobile

phone network from a developed European country.

Predicting gender is of great interest to assess a demo-

graphic structure. For instance, this information is required

to study gender disparities in diverse countries, allowing to

refine or even undermine the available reports using social

networks such as Googleþ [23], Twitter or mobile phone

networks. Among social networks, mobile phone data

currently raise the interest of the research community and

practitioners, as they become more and more ubiquitous,

while being freely accessible at massive scale, automati-

cally collected in real-time and powerful indicators of

people behaviors [6, 27]. They also often consist in the

most accessible type of population information in

Linear distribution of pYi|Xi
(yi|xi) (b)(a) Linear distribution of pYi|Xi

(yi|xi)

(c) Exponential distribution of
pYi|Xi

(yi|xi)

(d) Exponential distribution of
pYi|Xi

(yi|xi)

(e) Bi-uniform distribution of

pYi|Xi
(yi|xi)

(f)Bi-uniform distribution of

pYi|Xi
(yi|xi)

Fig. 5 Parameter tuning on

synthetic networks when

individual predictions are

considered. a, c, e Optimal s
parameter of the edge

potential (5), with a constant sjk
for all the edges of the networks

and b, d, f mean accuracy gain

(in %) over 30 random synthetic

networks, designed as detailed

in Sect. 3.3.2. The s parameter

is tuned by considering a grid

with a 0.05 step. Each network

has 200 nodes and a mean

degree k ¼ 8, a reasonable

value for common social

networks [32]. The results are

given as a function of the

accuracy b (in %) of the initial

individual predictions and the

assortativity coefficient when

considering a binary attribute.

The initial predictions are

simulated with a linear,

exponential and bi-uniform

distribution from the top to the

bottom row
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developing countries. A shortcoming to their use however

is that they often lack even the most basic information

about their carrier, such as the gender, age or socioeco-

nomic status. Indeed, most of the mobile phone connec-

tions worldwide are prepaid, as well in developing as in

developed countries. Although these connections provide

fine-grained information about the mobile phone usage,

they do not give any access to basic demographics.

The data set is first introduced in Sect. 4.1, detailing

some of its features suggesting significant gender homo-

phily which can be exploited for the inference process.

Section 4.2 quantifies the gender assortativity as well as its

dependence with some mobile communication attributes.

Section 4.3 builds on the conclusions of Sect. 4.2 to refine

the model parameter tuning, accounting for the communi-

cation patterns for the edge potential definition. Section 4.4

discusses the performances of the proposed methodology,

by comparing them with the results of state-of-the-art

classification methods based on label propagation and

feature extraction.

In the following, Xi denotes the individual metadata of

user i and Yi is the random variable for her gender, defined

on the alphabet Y ¼ fF;Mg with F and M, respectively,

for a female and male.

4.1 Data description

Two undirected and weighted mobile phone networks,

denoted by GS and GL, are used in this section: The data

analysis of this work is only conducted on GL, while the

performance assessment is performed on GS. This allows to

avoid overfitting the particular network GL. In both GL and

GS, each node refers to one individual and an undirected

edge binds any pair of users who exchanged at least one

phone call or text during a fixed time period. The gender is

known for the majority of the users. The communication

attributes, extracted from the Call Detail Records (CDRs),

of any edge e are the number of texts (sms), the number of

calls (calls) and the total duration of the calls (call dur).

Different functions of these edge attributes can be defined.

For example, the sum of sms and calls is denoted by

s and c and counts the number of contacts between two

given persons, which is well suited to characterize the

strength of a social link [34].

Table 1 provides general features of both networks, as

well as the mean values of the three attributes of the edges

between persons of both the same and different genders. As

indicated, the average communication patterns differ

between hetero- and homogeneous (M–M and F–F) con-

tacts. This reflects the stronger relationships occurring

within the couples. Indeed, for instance in GL, there are on

average 6.4 and 9.7 contacts (calls and texts), respectively,

between any homo- and heterogeneous pairs during the

observation period. The same behavior is observed for the

number of texts or calls distinctly. However, as shown in

Fig. 7, there is no obvious dichotomy between the distri-

butions of each attribute on the homo- and heterogeneous

edges.

It can be mentioned that the mobile phone use of each

individual according to her gender is not analyzed in this

study, since this kind of information is typically exploited

to provide the individual predictions. Finally, as the gender

is binary, its assortativity coefficient is defined by (11). In

GS and GL, a moderate gender assortative mixing is

observed.

4.2 Observational analysis

Since the strength of the heterogeneous communications, in

terms of number of texts and calls exchanged, tends to

overcome the one of the homogeneous contacts, the

weights of an edge might give clues on its likelihood to be

rather hetero- or homogenous. The subset of the strongest

edges may hence have a completely different assortativity

(a) (b)

Fig. 6 Parameter tuning on synthetic networks when a fraction of

node labels are known, defining a training set. a Optimal s parameter

of the edge potential (5), with a constant sjk for all the edges of the

networks and b mean accuracy (in %) on the unlabeled nodes over 30

random synthetic networks. The s parameter is tuned by considering a

grid with a 0.05 step. Each network has 200 nodes and a mean degree

k ¼ 8. The results are given as a function of the fraction of known

node labels (in %) and the assortativity coefficient when considering a

binary attribute
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than the whole network. As the performances of our

approach increase with the assortativity amplitude, identi-

fying stronger (anti-)homophilic subgroups is of great

interest. This section shows that the assortativity r can

indeed significantly change when considering subsets of

the edges with specific weights. This kind of information

can afterward be used to refine the edge potential, as

indicated in box A of Fig. 2.

We analyze the evolution of the assortativity coefficient

when subgraphs are constructed by only considering the

edges with a scalar combination of their attributes above a

threshold, the latter being progressively increased. For a

given threshold and attribute combination, the strongest

edges, according to the considered combination, constitute

the strong part of the graph, while the weaker part refers to

the rest. Several attribute combinations have been consid-

ered, including the attributes themselves. The most sig-

nificant evolution of the assortativity r is obtained using

s and c as a measure of link strength and is depicted in

Fig. 8. The assortativity coefficient in the strong part (i.e.,

with edges such that s and c is higher than the threshold

on the x-axis) is denoted by rstrong, while rweak is the one of

the weak part. The number of edges in the strong part is

denoted by nstrong. The dotted lines indicate the threshold

and the corresponding rweak, rstrong and nstrong values such

that there are 1% of the edges in the strong part of GL.

Using this partition, rweak is still equal to about 0.3, but

rstrong reaches � 0:3 meaning that the strong part is rather

anti-homophilic, as suggested by Table 1. From a more

general point of view, as the threshold on s and c

increases, rstrong decreases toward disassortative values.

Meanwhile, rweak remains quite stable since most edges

have small s and c, as indicated by the evolution of nstrong
in logarithmic scale.

A refinement of the previous analysis consists in com-

bining two thresholds on two different edge attributes in

order to study how rstrong behaves. Figure 9 depicts such an

evolution using the sms and calls attributes. The evolution

of rweak as a function of the two thresholds is negligible: It

stays around 0.3, as in Fig. 8. Again, this figure highlights

that the strongest edges are more disassortative. However,

the strong part cannot be very large and have a significantly

negative r in the mean time, as most of the edges have low

sms and calls values.

4.3 Refining the parameter tuning

In Sect. 3.3, we show how to select a constant sjk parameter

of the edge potential for all the edges of a network with a

given r (boxes B and C in Fig. 2). On the other hand, the

analysis of Sect. 4.2 suggests that the assortativity signifi-

cantly varies in distinct parts of a mobile phone network,

decreasing as the strength of the links increases. This can

be interpreted as a social theory (box A of Fig. 2). This

information can be exploited by defining different s values

in the strong and weak parts of the network, respectively,

denoted by sstrong and sweak, defined from the tuning on

synthetic networks (box C of Fig. 2). However, modeling

sjk as a step function is questionable. Indeed sjk is the

posterior probability for the edge (j, k) to be homophilic

given its weights. Since this posterior probability is unli-

kely to abruptly change for some weight value, a smooth

function should model it, with upper and lower plateaus

corresponding to sweak and sstrong, respectively. Determin-

ing whether the edge (j, k) is hetero- or homophilic can

moreover be seen as a binary classification problem, with

the edge weights as features. Thus, inspired by logistic

regression, we model sjk as a sigmoid function parame-

terized by a fixed linear combination s and c of the edge

weights,

sjkðs and cÞ ¼ sweak � sstrong

1þ e
G�ðs and c�x0Þ

þ sstrong; ð12Þ

where G and x0 are two parameters to determine. Follow-

ing the observations of Sect. 4.2, the strong part of the

network is defined as the set of the 1% strongest edges in

terms of number of contacts. The plateaus sweak and sstrong
are tuned using the synthetic networks with constant sjk
values, according to rweak and rstrong. Let us further denote

by xU and xL the x-values at which the sigmoid reaches

sstrong þ 0:99 sweak � sstrong
� �

and sstrong þ 0:01 sweak �ð
sstrongÞ. The parameters G and x0 are fixed such that there

are approximately 1% of the edges with a number of

contacts lower (resp. higher) than xU (resp. xL). Figure 10

Table 1 Some features of the networks

Edge Net. GL Net. GS

Covered time period 15 days 3 months

Number of nodes 160,818 19,779

Number of edges 390,778 78,441

r (for gender) 0.3 0.26

Homo. edges (%) 66.47 63.5

Male nodes (%) 56.38 53.44

Mean sms homo. 3.58 15

hetero. 5.74 25.8

Mean calls homo. 2.84 5.3

hetero. 3.96 7.9

Mean call dur homo. 13 min 40 s 16 min

hetero. 15 min 20 s 19 min 20 s

If ‘edge type’ is omitted, the characteristic concerns the whole net-

work. ‘Homogeneous’ (homo.) and ‘heterogeneous’ (hetero.) refer to

the gender of the persons linked by the edges
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presents the resulting smooth model of the sjk’s for GS,

which is used in Sect. 4.4 to assess our methodology. The

estimated rweak and rstrong in GS lead us to choose sweak ¼
0:55 and sstrong ¼ 0:4. The percentages below the curve

indicate quantiles of the s and c distribution.

4.4 Results

The overall assortative character of GL, along with the

observed differences between its strong and weak parts,

indicates that the genders of the neighbors of an individual

may be useful to predict her own gender. Our methodology

is now tested on GS in two settings: (1) when we simulate

individual prior predictions and (2) when we assume that a

subset of the node labels are known and that no information

is provided for the remaining ones. In these two settings,

the obtained performances are compared with the results of

a state-of-the-art, baseline method, termed as the reaction–

diffusion algorithm [37]. When a subset of the labels are

observed, i.e., in the second setting, the methods are also

compared to three machine learning classifiers relying on

features extracted by Node2vec, a well-known graph

embedding approach. Since this latter method is not

designed to employ prior class probabilities as in the first

setting, it is only tested in the second one.

(a) (b)

(c) (d)

Fig. 7 Distribution of the edge

attributes in GL, with

logarithmic y-scales.
‘Homogeneous’ (homo.) and

‘heterogeneous’ (hetero.) refer

to the gender of the persons

linked by the edges

Fig. 8 Gender assortativity coefficient in GL when the edges with

s and c values larger than some increasing thresholds are kept

(strong part) or discarded (weak part). The red curve (right y-axis in
logarithmic scale) indicates the number of edges in the strong part,

denoted by nstrong (color figure online)

Fig. 9 Gender assortativity coefficient in GL when only the edges with

sms and calls values larger than some increasing thresholds are

preserved. The top (resp. right) histogram gives the number ne of

edges with calls (resp. sms) larger than the corresponding value on

the x-axis (resp. y-axis), using a logarithmic scale
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4.4.1 Reaction–diffusion algorithm

The reaction–diffusion (RD) algorithm iteratively updates

the predicted gender probability of each user by computing

a weighted sum of its initial gender probability and the

current one of her direct neighbors. It is hence based on

initial prediction probabilities for each user, as in our

approach. The notation pti :¼ bpXi
ðMÞ denotes the estimated

probability for user i to be a male at iteration t. These

probability estimates are updated at each iteration for each

user i 2 V as

ptþ1
i ¼ 1

2
� p0i þ

1

jN ðiÞj �
X

j2N ðiÞ
ptj

0
@

1
A

0
@

1
A 8i 2 V; ð13Þ

until convergence, where NðiÞ is the set of neighbors of

user i and p0i :¼ bpYijXi
ðyi ¼ MjxiÞ is the initial male prob-

ability for user i.

The RD method is a variant of the previously introduced

and largely studied consistency method [50], with a regu-

larization parameter fixed to 0.5. Indeed, let us note A 2
f0; 1gN�N

the adjacency matrix of the graph, with Ai;j ¼ 1

if there is an edge between nodes i and j and 0 otherwise.

We also define the diagonal matrix of degrees D 2 RN�N

where Di;i ¼
P

j2V Ai;j. We can express (13) in a matrix

form as

ptþ1 ¼ 1

2
� p0 þ D�1Apt
� �

; ð14Þ

where the column vector pt :¼ ½pti�
N
i¼1. It follows that RD is

the first variant of the consistency method introduced

in [50]. The only difference between the original consis-

tency method and this variant is that the random walk

normalized Laplacian W :¼ D�1ðD� AÞ used in RD is

replaced by the symmetric normalized Laplacian S ¼
D�1=2ðD� AÞD�1=2 in the original consistency method.

We compare our approach to (14) as it was designed in a

similar setting as the one of this paper.

The regularization parameter k 2 ½0; 1� was set to 0.5 in

the present study, as recommended in previous

works [37, 38]. It has indeed been observed that the per-

formances were robust to changes of this parameter as long

as it does not take an extreme value of 0 or 1.

4.4.2 Node2vec algorithm

Node2vec is a graph embedding technique which auto-

matically defines node features describing each node

neighborhood. These neighborhoods are defined based on

second-order random walks which are biased to allow

favoring, to a controlled extent, the preservation of

the node structural properties and/or of the community

co-memberships (node homophily) [15]. The chosen bias,

controlled by the return and in–out parameters p and q,

determines the sampling strategy S defining the neighbor-

hood N SðiÞ � V of each node i 2 V. A small value of

p (\1) increases the probability for a random walker to

come back to the source node, while a small value of

q (\1) encourages the walk to move further away.

Therefore, small p and q, respectively, favor breadth-first

searches (BFS) and depth-first searches (DFS) through the

network when defining the neighborhoods. Decreasing

their values hence tends to define graph embeddings,

respectively, preserving the node structures and the com-

munity co-memberships. Let us denote by d the dimension

of the feature space defined by Node2vec and by f : V !
Rd the function assigning the features to each node. This

function is determined by Node2vec by maximizing the log

probability of observing the neighborhood of each node i

given its features:

max
f

X

i2V
logðPðN SðiÞjf ðiÞÞÞ: ð15Þ

The idea in defining f is to describe nodes with similar

neighborhoods with close features in the embedding space.

Further details are provided in the paper of Grover and

Leskovec [15]. Once the node features are computed, a

classification algorithm can be used to predict the labels of

test nodes. In this work, we consider three machine

learning algorithms for this task: logistic regression with

L2 regularization (logReg), Gaussian naive Bayes (GNB)

and k-nearest neighbors (kNN). Logistic regression (with

L2 regularization) and Gaussian naive Bayes were suc-

cessfully employed in previous works [14, 15]. On the

other hand, kNN provides further baseline comparison.

Although using support vector machines (SVMs) is another

Fig. 10 Sigmoid function defining the sjk values of the edge potential
used for GS. The threshold on the number of contacts defining the

edges as strong, indicated by the vertical line, is determined to induce

1% of strong edges. The top histogram gives the distribution of the

number of contacts (s and c) in GS in logarithmic scale
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appealing alternative for our two-class problem, it induced

unaffordable computation times during the experiments

with our network. The respective hyper-parameters (HPs)

of each algorithm are selected through stratified tenfold

cross-validation (CV) protocols on the labeled subsets of

nodes. It can be noted that we employ Node2vec as a

baseline among the feature extraction-based approaches, as

it has been shown to overcome several other embedding

techniques for classification tasks in complex net-

works [14, 15]. The bias weights p and q are each learned

in the grid f0:25; 0:5; 1; 2; 4g within the CV, i.e., they are

considered as HPs to tune in addition to the HPs of the

classification algorithms. These p and q hyper-parameters

are hence chosen among 25 possible combinations, which

is as much as in the paper defining the method [15] and

more than in a recent review of graph embedding tech-

niques [14]. The best combination of these parameters is

individually chosen for each of our 50 simulations asso-

ciated with each considered proportion of known labels.

Similar values for the remaining Node2vec hyper-param-

eters are employed as in previous studies [14, 15]: d ¼ 32,

a context size of 10, walk length of 80 and number of walks

of 10. The bias weights are not assigned to constant values

as they control the nature of the considered node neigh-

borhoods, which in turn determine the closeness of the

nodes in the embedding space. The class labels to predict

could indeed be related to a structural equivalence between

the nodes or to a community membership or to a combi-

nation of both. Finally, we also considered two variants of

the Node2vec feature extraction: using the edge weights or

not. Following the results of the data analysis in Sect. 4.2,

the number of contacts between each pair of users

(s and c attribute) is used as weight.

4.4.3 Estimating the assortativity

The best edge potential for a given assortativity r can be

estimated using the synthetic networks, as detailed in

Sects. 3.3.3 and 3.3.4. However, the assortativity of a

given real network still needs to be estimated. To this end,

we propose to collect the gender of an a priori fixed number

of pairs of adjacent users in the considered graph G, for
example by carrying out a mobile phone survey, and then

to use these edges to compute an estimate of r in G. This
procedure has been tested on GL, since it is larger than GS,

which allows to consider more independent edge sam-

plings. Figure 11 presents the results. The assortativity

estimates are roughly unbiased, while the variance of the

estimator decreases toward 0.029, 0.022 and 0.014 when

the gender of, respectively, 1000, 2000 and 5000 pairs of

adjacent users is known. Hence, knowing the gender of

about 1k pairs of neighbors is sufficient to reliably estimate

r, as it yields an error with an order of magnitude smaller

than the actual assortativity value. Furthermore, an error of

0.05 on the estimation of r induces at worst a small 0.05

error on the s value, as indicated in Figs. 5 and 6.

It is noteworthy that using distinct edge potential

parameters sstrong and sweak in the strong and weak parts of

the network requires to estimate r within these two parts.

As the strong part tends to be significantly smaller, the

estimation of rstrong in a real setting should be carefully

performed. Meanwhile, the users linked by the edges

selected to estimate r may be, for instance, used as a

training set to provide initial individual gender predictions.

4.4.4 Performances

This section presents the experimental results of the pro-

posed method and of the baseline approaches (reaction–

diffusion algorithm and classifiers based on Node2vec

features), both on simulated initial individual predictions

and on a growing subset of network users with known

labels. For all the comparisons, statistical tests are con-

ducted using Welch’s t test with a significance level of

0.05. Whenever multiple hypotheses are tested simultane-

ously, Holm–Bonferroni correction is employed to bound

by 0.05 the probability to consider as significant at least

one nonsignificant difference [41].

Individual predictions Figure 12 shows the accuracy and

recall gains over simulated initial predictions on GS, both

for our approach based on LBP and for the baseline RD.

The different distributions of the initial individual predic-

tions introduced in Sect. 3.3 are used, and the perfor-

mances are given for varying initial accuracies b. As

indicated by the stars at the bottom of each plot, the

accuracies obtained with LBP always statistically signifi-

cantly overcome the ones of RD, except when the initial

accuracy is 50%, in which case LBP and RD are not

Fig. 11 Estimated assortativity r as a function of the number of

randomly selected pairs of adjacent users with known gender in GL.

For each number in abscissa, the edge selection is performed 50

times. The vertical distance between each mean estimated r (red

squares) and the green lines gives the standard deviation of the

estimation. The horizontal blue line indicates the true assortativity r
in GL, equal to 0.3 (color figure online)
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significantly different. This last point was expected since

the case b ¼ 50% corresponds to a random guessing for the

first predictions. Furthermore, the well-balanced recalls

obtained with LBP indicate that the weighting by the class

prior in the node potential w is effective, avoiding to favor

the dominant class (M) to the expense of the other one. It

can, however, be noted that neither the baseline RD nor

LBP improve the predictions when the bi-uniform distri-

bution of the individual predictions is used. These poor

performances confirm the observations of Sect. 3.3.3 on

the synthetic networks. They can be explained as, in this bi-

uniform case, only the sign and not the amplitude of

bpYijXi
ðMjxiÞ � 0:5 brings information on the true gender

that needs to be inferred, which is very unlikely in practice.

Although optimal s values are quite independent of the

initial accuracy b, the performances are not, with highest

accuracy gains in the range [70, 85]%. This range covers

the accuracies reached by state-of-the-art techniques aim-

ing to predict gender using individual-level fea-

tures [11, 12, 17, 37]. Likewise, for an assortativity

coefficient similar to the one of GS (� 0:25), the accuracy

gains on synthetic networks are significant when

b 2 ½0:62; 0:92�. This result is intuitive, as near-perfect

initial accuracies do not let many opportunities to improve

the predictions, while almost random ones induce too

rough node potentials. It is interesting to observe that,

depending on the distribution of the initial class probabil-

ities employed, the profiles of the accuracy gains as a

function of b are similar for RD and LBP, suggesting that

the considered distribution shape highly determines the

achievable performances.

Table 2 gives the average accuracy and recall gains of

both RD and LBP in GS over the initial predictions with an

initial accuracy b ¼ 0:75. LBP increases the accuracy by

more than 3 and 2.5% when the linear and exponential

distributions are, respectively, chosen, outperforming the

RD algorithm. On the other hand, as observed above, both

RD and LBP deteriorate the individual predictions when

the bi-uniform distribution is used.

Labeled data The results of LBP, RD and the classifiers

using Node2vec features as a function of the percentage b
of known labels are presented in Fig. 13. Table 3 further

LBP with linear
pYi|Xi

(yi|xi)
LBP with exponential

pYi|Xi
(yi|xi)

(c)(b)(a) LBP with bi-uniform
pYi|Xi

(yi|xi)

(d) RD with linear

pYi|Xi
(yi|xi)

(e) RD with exponential

pYi|Xi
(yi|xi)

(f) RD with bi-uniform

pYi|Xi
(yi|xi)

Fig. 12 Accuracy and recall gains on GS of our LBP-based approach

and of the RD method over the initial accuracies and recalls. The

performances are provided as a function of the initial accuracy b and

are averaged over 50 random simulations of the initial individual

predictions generated using the linear (a, d), exponential (b, e) and bi-
uniform (c, f) distributions. The filled areas delimit intervals of one

standard deviation around the mean gains. A star (resp. a gray square)

for an initial accuracy b drawn under one curve indicates that the

accuracy of the corresponding method is higher (resp. not statistically
significantly smaller) than the one of the other method for the same b
and distribution of initial predictions
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details the mean accuracy and recalls obtained by all

methods when 50% of the nodes are labeled and the per-

formances are computed on the 50% remaining ones. We

observe that LBP statistically significantly outperforms all

the other schemes when the fraction of known labels is

higher than b ¼ 25%, while RD is superior for smaller

percentages of labeled users. For all the explored per-

centages of labeled nodes, all methods lead to more than

50% accuracy on the unlabeled users. We can note, how-

ever, that LBP tends to provide highly unbalanced male

and female recalls for small fractions b of known labels.

The dominant class (male) is always favored, even though

the data set is hardly unbalanced. Further works will aim at

overcoming this behavior. This last observation is in con-

trast to the results obtained for the initial individual pre-

dictions in Fig. 12, suggesting that the probabilistic

framework of our approach is especially suited when prior,

possibly noisy, class probabilities are available for the

network users. Graphical models have indeed already

proven to be particularly relevant for the sake of denoising

local node information by accounting for the global net-

work structure. Common applications include the largely

studied hidden Markov models (HMM) in the field of

speech recognition, error correcting codes or diverse bio-

logical networks [18].

Besides, Fig. 13 shows that the performances of the

feature extraction-based methods tend to less improve

when the training set size increases (especially concerning

GNB and LogReg), whereas LBP and RD seem to benefit

more from additional data. This suggests that learning the

whole network structure allows to build richer models

enabling to enhance the classification performances.

Regarding the algorithms based on Node2vec features,

Fig. 13 and Table 3 show that all their performances are

inferior to LBP and RD, even though this kind of feature

extraction has proven to be a powerful graph embedding

technique for node classification. To analyze the sorts of

neighborhoods which were preserved in the extracted

features, Fig. 14 shows the bias weights selected in the CV

for the 50 different samplings of b ¼ 50% labeled nodes.

These parameters are the ones that were selected to obtain

the results in Table 3. We can observe that from one run to

the other (i.e., for different subsets of observed labels), the

selected parameters are not always the same. Nevertheless,

we can note some trends:

• In the weighted case (in Fig. 14b), lower q values tend

to be favored, especially with logistic regression. This is

in accordance with a previous study which has reported

that low values of the in–out parameter q allow to

improve subsequent classification based on the

extracted features [14]. The embeddings therefore

mostly preserve the community co-memberships of

the nodes (highly interconnected nodes are embedded

closely together) [15].

• In the unweighted case (in Fig. 14a), p and q are mostly

selected close to 1 except with kNN where almost all

combinations of values are chosen from one run to the

other. Moderate p and q values seem coherent since,

without the edge weights, a random walker is only

guided by the presence of the edges and is as likely to

move in any direction starting from the source node. If

DFS was favored (by setting a small q) as in the

weighted case, it would be likely that, without the edge

weights, the genders among the neighbors sampled

further away from the source node will not be related to

the source user’s gender and hence that the extracted

features will not be helpful for the classification task.

Surprisingly, it appears that using the edge weights for

Node2vec deteriorates the reached performances in all

tested cases. This confirms the observation that there is no

straightforward link between the users’ communication

patterns and their labels. In addition, the overall weaker

performances of the Node2vec-based classifiers can at least

partly be explained by the moderate gender assortativity as

well as its nonuniformity across the social network.

Table 2 Mean performances on GS of the baseline update (RD)

scheme (13) and of LBP, for 50 different assignations of the first

predictions

LBP RD

Initial distribution

Linear

DAccuracy 3.2 (0.2) 2.01 (0.16)

DRecallM 3.39 (0.66) 2.63 (0.35)

DRecallF 2.98 (0.76) 1.3 (0.33)

Exponential

DAccuracy 2.6 (0.17) 1.52 (0.17)

DRecallM 2.88 (0.46) 2.07 (0.29)

DRecallF 2.25 (0.59) 0.9 (0.29)

Bi-uniform

DAccuracy - 0.46 (0.25) - 1.43 (0.19)

DRecallM - 0.94 (0.88) - 0.98 (0.29)

DRecallF 0.1 (0.95) - 1.93 (0.34)

The three defined distributions of the first predictions are considered

with an initial accuracy b ¼ 75%. The notation D refers to the gains

over the accuracy of the initial predictions. The best result per row is

highlighted in bold. A result is in italic values when it is not statis-
tically significantly worse than the best one of the same row, based on

Welch’s t test. The standard deviations are indicated in brackets
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5 Discussion

Different researches exploit mobile phone data for health-

care, epidemics containment, determination of socioeco-

nomic status or marketing study purposes [4, 6, 28, 39, 45].

In each context, the knowledge of the users’ gender is of

great importance. Most of the recent works on demo-

graphics prediction use classical machine learning algo-

rithms on mobile phone data for predicting gender, age,

income level or even personality [11, 12, 16, 26]. These

algorithms rely on features defined for each user and

reflecting their mobile phone usage at an individual scale,

such as the recharge rate of their prepaid cards, spending

speed, total call duration. Some studies further refine such

standard metadata by deriving diverse behavioral indica-

tors [27], enhancing the prediction capabilities of the

models. All these studies are thus based on an ‘individual’

part of the mobile phone data. For example, Felbo et al. and

Sarraute et al. predicted the gender with, respectively,

79.7% and 77.1%2 accuracy, either by harnessing their

temporal information using deep learning or by using linear

SVM and logistic regression [11, 37]. Other works tackle

LBP RD

GNB using Node2vec
features without the edge
weights

LogReg using Node2vec
features without the edge
weights

kNN using Node2vec
features without the edge
weights

GNB using Node2vec
features with the edge
weights

LogReg using Node2vec
features with the edge
weights

kNN using Node2vec
features with the edge
weights

(c) (d)

(a) (b)

(e)

(f) (g) (h)

Fig. 13 Accuracy and recalls obtained on the unlabeled nodes of GS

when varying the training percentage b (i.e., the fraction of the nodes

with known labels) using our LBP-based approach (a), the RD

method (b) and classifiers using features extracted by Node2vec (c–
h). The performances are averaged over 50 random selections of the

known labels and the filled areas delimit intervals of one standard

deviation around the mean scores. A star for a training percentage

drawn under one curve indicates that the accuracy of the correspond-

ing method on the remaining unlabeled nodes is the highest among all

8 considered methods. A gray square indicates that the corresponding

accuracy is not statistically significantly smaller than the best one for

the same b according to Welch’s t test with 5% significance level,

with Holm–Bonferroni correction as multiple hypotheses are tested

2 But with only 25% coverage.

Neural Computing and Applications (2020) 32:18023–18043 18039

123



the gender prediction problem in a similar way using dif-

ferent kinds of data sets, such as Twitter or LinkedIn data,

the first name of a person or even chat texts [19, 21, 35].

In addition to the individual-level metadata, the struc-

ture of social networks carries important features that can

be exploited to further refine the prediction of node-level

demographics. The task of predicting missing node labels

in networks, known as node classification, makes use of the

known labels and the graph structure [14], which embeds

some properties such as the label assortativity. A node

classification method can be categorized as being based

either on feature extraction or on a random walk [5]. Dif-

ferent methods of the both kinds were recently developed.

Some feature extraction-based approaches are defined to

exploit network assortativity [1, 16]. Al Zamal et al. [1]

exploited the homophily in a Twitter network to predict the

users’ gender, age and political affiliation, by analyzing

how the knowledge of the data from some immediate

friends of a given user can improve the prediction quality.

This question is studied in a usual machine learning

framework: Feature vectors are defined for each user, either

augmented with data from her neighbors or not. Consid-

ering the neighbors’ information in the feature vectors

improves the accuracy from 3 to 5% for the age and

political affiliation prediction, whereas including the

immediate neighbors’ features does not improve the gender

predictions. More generally, the idea of feature extraction

approaches is, for each node, to build a feature vector

which summarizes information from the node neighbor-

hood. A machine learning algorithm can then be trained to

predict the unknown labels based on these extracted fea-

tures. In this setting, the definition of the neighborhood of

each node used to extract the features is highly important

and can be carried out in different ways. The exclusive

preservation of the node structural properties is obtained by

breadth-first sampling among the neighbors in the graph,

while depth-first sampling allows to reflect the network

clusters or communities [15]. Diverse graph embedding

techniques can be considered to build feature vectors for

each node describing its neighborhood [14]. For instance,

Grover and Leskovec automated the feature extraction to

preserve neighborhoods which are defined based on sec-

ond-order random walks, which is a successful approach to

reflect complex network interactions as it allows to trade-

off the preservation of the local network structures and of

the community co-memberships [15].

As the former studies do not take the global network

structure into account, they could hence further benefit

from its properties. Indeed, the feature extraction is con-

strained by the subsequent classification algorithm that is

used: The number of features always has to be the same for

each node, and the set of features has somehow to be

ordered (since a given feature indexed i will be treated

‘equally’ for the different nodes). This cannot easily reflect

complex relationships, observed in social networks for

instance: A given user might have a few strong ties, each of

which having a strong influence on her label, while other

users from the same graph may rather have a large amount

Table 3 Mean performances on GS of our LBP-based method, of the RD update scheme (13) and of three classifiers using features extracted by

Node2vec for 50 different samplings of b ¼ 50% labeled nodes

LBP RD Algorithms using Node2vec features

Without edge weights With edge weights

GNB LogReg kNN GNB LogReg kNN

Accuracy 69.07 (0.45) 68.18 (0.34) 57.16 (1.15) 59.37 (0.36) 61.38 (0.48) 55.01 (0.45) 57.31 (0.33) 58.79 (0.48)

RecallM 75.53 (0.83) 72.46 (0.82) 52.23 (5.39) 69.85 (1.1) 68.92 (5.07) 66.07 (0.82) 76.1 (0.73) 68.02 (4.34)

RecallF 61.67 (1.09) 63.27 (0.96) 62.81 (4.39) 47.34 (1.12) 52.72 (5.66) 42.31 (0.93) 35.75 (0.83) 48.18 (5.33)

The best performances per row are depicted in bold. A result is in italic values when it is not statistically significantly worse than the best one of

the same row according to Welch’s t test with Holm–Bonferroni correction. The standard deviations are indicated in brackets

Without edge weights With edge weights(a) (b)

Fig. 14 Bias weights p and q of Node2vec selected with the tenfold

CV within the grid f0:25; 0:5; 1; 2; 4g � f0:25; 0:5; 1; 2; 4g for 50

different samplings of b ¼ 50% labeled nodes, and for the three

considered classification algorithms. Some jitter (Gaussian noise with

small variance) has been added to enable visualizing the overlapping

data points as they are all on the same discrete grid. This figure is best

viewed with colors (color figure online)
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of weaker ties, influencing their classes in a different

way [34]. In addition, this kind of approach is not intended

to directly exploit uncertain label predictions with confi-

dence levels (i.e., initial class probabilities), which can

only, for instance, be incorporated in the definition of the

features [40].

Besides, random walk-based approaches allow to

account for the whole network structure by propagating the

labels through iterative updates [50, 51]. Several variants

and adaptations of this principle are proposed to solve

diverse labeling tasks, such as video suggestions [3] or

demographics prediction in networks [38]. The latter work

adopts a two-step approach, first computing uncertain

individual predictions using the individual part of the data

and then improving them using the reaction–diffusion (RD)

method exploiting the network structure [37]

Although the aforementioned random walk-based

methods aim to model the network structure as a whole,

they are based on an implicit model of the joint probability

distribution of all the node labels [5]. As a refinement,

inference approaches using probabilistic graphical models

(PGMs) are proposed as this framework allows to make the

models explicit and fully describes the interactions

between the nodes [10]. Dong et al. [10] introduced a

double dependent-variable factor graph model in order to

jointly predict the users’ age and gender by benefiting from

the links between these two demographic attributes in a

network. Knowing 50% of the labels, the remaining

unknown genders are predicted with up to 80% accuracy.

However, as they do not quantify the assortativity of their

network, these performances cannot be easily compared to

our study. Our results may nevertheless qualitatively partly

explain the success of their approach. Combining age and

gender implicitly delineates in an automated manner some

rather (anti-)homophilic subgraphs, as illustrated by their

data analysis. As highlighted by the present work, this

definition of strong and weak network parts with accentu-

ated (anti-)homophily improves the inference perfor-

mances. The latter observation is essential, as several

studies mention that gender assortativity is generally rather

weak [1, 24] and thus not sufficient by itself to infer the

gender. For instance, the RD algorithm introduced by

Sarraute et al. [37] is used to infer the age group of some

users, but not their gender. Their network indeed bears a

strong age homophily. When 70% of the known age labels

are propagated through the network to infer the 30%

remaining ones, the age group among four categories is

predicted with 43.4% accuracy.

However, these recent studies focus on the propagation

of known labels through a network and do not consider the

improvement of uncertain predictions, which can be

obtained by a classical machine learning algorithm pre-

dicting the labels based on individual information. In

addition, to the best of our knowledge, no research quan-

tifies the relation between the assortativity strength and the

performances of label prediction in a network.

In this setting, we introduce a general framework based

on PGMs to exploit the global social network topology for

the improvement of uncertain predictions and to infer

missing labels. Our study makes use of an objective mea-

sure of the assortativity to provide guarantees about the

performances generalization. This quantitative measure of

the network homophily is typically not provided by

graphical representations [10]. It enables us to describe to

which extent the sole network information improves indi-

vidual demographics prediction, as a function of the

assortativity. The proposed methodology easily permits to

take advantage of some known labels, as well as first

individual predictions obtained using individual data.

Finally, the model can benefit from assortativity variations

in different subgraphs. By modeling the statistical depen-

dencies between adjacent labels, it can favor heterogeneous

as well as homogeneous contacts depending on the edge

weights. The experiments of Sect. 4.4.4 first show the

superiority, in most settings, of our approach over the

reaction–diffusion algorithm and three classifiers using

Node2vec features, especially to improve uncertain pre-

dictions. Second, in the studied application, the methods

exploiting the entire network structure either through label

propagation (RD) or using PGM are superior to feature

extraction-based approaches. Third, although it can create

embeddings of nodes based on diverse types of neighbor-

hood, the Node2vec feature extraction technique is prob-

ably not best suited when the assortativity is moderate and/

or nonuniform across a network. In such cases, there is no

unique relationship between a set of extracted features

representing the node neighborhoods and the associated

node labels.

6 Conclusion

This work presents how assortativity can be exploited to

infer individual demographics in social networks. To this

aim, a general approach is introduced, using a probabilistic

graphical model. It can both improve noisy initial predic-

tions performed at an individual level and propagate a

subset of known labels to predict the remaining unknown

ones. The achieved performances are studied on simulated

networks as a function of the assortativity and the quality

of the provided initial information, both in terms of accu-

racy and distribution in the initial individual predictions

case, and in terms of the fraction of users with known

labels otherwise. Indeed, the relevance of the network

information compared to individual features depends on (1)

the assortativity amplitude and (2) the quality of the prior
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information: In the initial individual predictions context,

poor prior information is misleading, while excellent one

does not leave much room for improvement. Also, the

distribution of the initial class probabilities highly influ-

ences the achievable performances, as highlighted by the

results of both our approach and the reaction–diffusion

method obtained with different distributions of these first

probabilities. The graph simulations allow tuning the

model parameters. Our method is further validated on a

real-world mobile phone network, and the model is refined

to predict gender, exploiting both weak, homophilic and

strong, anti-homophilic links. In this context, our approach

statistically significantly overcomes, in most settings, the

performances of the reaction–diffusion label propagation

technique and of machine learning classifiers based on

features extracted by the Node2vec graph embedding

method. In particular, the approach allows individual-based

gender predictions to be improved by up to 3%. On the

other hand, when the gender of 60% of the users is known

and no information is provided for the remaining users, the

proposed approach can infer the missing labels with 70%

accuracy, solely based on the network assortativity.

The analysis performed on synthetic networks illustrates

that a strong assortativity can be easily exploited through

our methodology. Moreover, an almost randomly mixed

network may still be composed of several parts which are,

if considered in isolation, assortative and disassortative.

Thus even in the latter configuration, the network topology

may still be useful. As a further work, the generalization of

the proposed methodology to multivariate predictions

would be of great interest. The model could then benefit

from the relationships between the target variables and

automatically make use of sub-networks presenting more

pronounced homophily.
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