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Abstract
The artificial bee colony (ABC) algorithm is a recently introduced swarm intelligence algorithm for optimization, which

has already been successfully applied for the training of artificial neural network (ANN) models. This paper thoroughly

explores the performance of the ABC algorithm for optimizing the connection weights of feed-forward (FF) neural network

models, aiming to accurately determine one of the most critical parameters in reinforced concrete structures, namely the

fundamental period of vibration. Specifically, this study focuses on the determination of the vibration period of reinforced

concrete infilled framed structures, which is essential to earthquake design, using feed-forward ANNs. To this end, the

number of storeys, the number of spans, the span length, the infill wall panel stiffness, and the percentage of openings

within the infill panel are selected as input parameters, while the value of vibration period is the output parameter. The

accuracy of the FF–ABC model is verified through comparison with available formulas in the literature. The results

indicate that the artificial neural network, the weights of which had been optimized via the ABC algorithm, exhibits greater

ability, flexibility and accuracy in comparison with statistical models.

Keywords Artificial intelligence techniques � Artificial bee colony algorithm � Artificial neural networks �
Fundamental period � Infilled frames � Soft computing techniques

1 Introduction

The fundamental period of vibration is a critical parameter

for the seismic design of structures in accordance with the

modal superposition method. Nevertheless, the so far

available in the literature proposals for its estimation are

often conflicting, making their use uncertain. The majority

of these proposals are usually based on deterministic

methods using experimental or analytical data, and they do

not take into account the presence of infill walls (with or

without opening, in the structure), even though infill walls

increase the stiffness and mass of the structure and, thus,

lead to significant changes in the fundamental period

[7, 9, 10].

The lack of a reliable and robust method for the pre-

diction of the value of the fundamental period of structures

is mainly due to the large number of parameters affecting

its nonlinear behavior. To the best of our knowledge, the

available proposals in the literature, which are based on

analytical semi-empirical formulas, depict considerable

variation [9, 10, 13, 15], thus revealing the need for further

investigation and refinement of the proposals. As the

deterministic methods have failed to offer reliable predic-

tions in the last two decades, soft computing techniques,

such as the artificial neural networks models, have started

to contribute to the problems’ solutions in a significant

way.

Artificial neural network (ANN) models are receiving

increased attention in the last decades, while they have

been used by many researchers for a variety of engineering

applications. The basic strategy for developing ANN

models for material behavior is to train ANN models on the
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results of a series of experiments in relation to that mate-

rial. If the experimental results contain the relevant infor-

mation about the material behavior, then the trained ANN

models will contain sufficient information about the

material’s behavior, enabling them to qualify as a material

model. It should be noticed that the achieved optimum

ANN model is valid for structures with values of geo-

metrical and mechanical characteristics (input parameters)

within the range of the values in the data sets used for the

ANN model training and development. Such trained ANN

models are not only able to reproduce the experimental

results, but can also approximate the results of other

experiments through their generalization capability.

In the field of civil engineering, the use of artificial

neural networks has been widely adopted for a plethora of

structural engineering problems, such as the determination

of concrete mechanical properties. Specifically, the use of

ANNs and fuzzy logic models has been used for the pre-

diction of the compressive strength of concrete

[14, 28, 29, 35, 36, 42, 43]. ANNs have been also used for

the modeling of special cases of concrete materials, such as

the soilcrete materials [8, 11] and for concrete containing

fly ash [41]. In the same direction, that is for the prediction

of concrete compressive strength, the use of evolutionary

ANNs has been proposed and applied as well [39]. The

application of ANNs has also been used for the estimation

of mechanical properties of masonry materials [32, 44].

Furthermore, ANNs have been successfully used for the

modeling of the masonry failure criterion under plane

stress [6, 37]. Soft computing techniques (such as the

imperialist competitive algorithms) have also been pro-

posed for the prediction of the corrosion current density in

reinforced concrete [38]. Besides the modeling of the

materials mechanical properties, ANNs have been also

successfully applied for the determination of the crack

pattern of reinforced concrete buildings [12, 24, 30, 34].

Detailed and in-depth state-of-the-art relevant works can be

found in Adeli [1] and Asteris and Kolovos [5].

In this context, the main objective of the present work is

to utilize the artificial bee colony algorithm in order to

optimize artificial neural networks weights (as a new

optimization algorithm) aiming to specify the fundamental

period in Infilled RC Frame Structures. For the develop-

ment of the artificial neural network models, the number of

storeys, the number of spans, the span length, the infill wall

panel stiffness, and the percentage of openings within the

infill panel are used as input parameters, whereas the value

of vibration period is considered as output parameter. It is

worth noticing that the center for each one opening is

identified through the center of the infill wall panels. For

this case, we have the great reduction in stiffness.

2 Comprehensive literature review
of estimation methods of the fundamental
period of structures

A plethora of methodological approaches have been pro-

posed for the estimation of the fundamental period of

vibration (T) of reinforce concrete (RC) frame structures

with/or without infill walls. Worldwide codes and several

research works provide simple empirical formulas. In most

cases, the methodological approaches and mathematical

expressions (formulae) are simply related to the overall

height of the buildings. The most common expression for

the calculation of the fundamental period of vibration T is

[3]:

T ¼ Ct � H3=4 ð1Þ

where H is the total height of the building (in meters) and

Ct is a coefficient depending on the structural typology.

The above expression was adopted for the first time in 1978

by the Applied Technology Council [3] for reinforced

concrete moment-resisting frames. The determination of

the coefficient Ct was based on the measurements of the

periods of buildings during the San Fernando earthquake

(1971). A regression analysis of the experimental data led

to a value of 0.075 for Ct. Eurocode 8 [19] and Uniform

Building Code [26], among others, adopt the same

expression, while building codes from different nations

adopt similar expressions assigning different values to Ct.

Among these, the New Zealand Seismic Code (New

Zealand Society of Earthquake Engineering, [33]) states a

value of 0.09 for reinforced concrete frames, 0.14 for

structural steel and 0.06 for other types of structures.

The Uniform Building Code (UBC) proposed formula

has been updated in FEMA-450 [20] based on the study by

Goel and Chopra [22] as well as on the measured period of

concrete moment-resisting frame buildings, monitored

during the California earthquakes (including the 1994

Northridge earthquake). Based on the lower bound of the

data presented by Goel and Chopra [22], FEMA proposed

an expression (similar to Eq. [1]) for RC frames that pro-

vides a conservative estimate of the base shear, namely:

T ¼ CrH
x
n ð2Þ

where Hn is the height of the structure (in meters), Cr is

equal to 0.0466, and x is 0.9.

Several researchers have proposed refined semi-empiri-

cal expressions for the fundamental period of RC frame

structures based on the height related formula (Table 1). In

2004, Crowley and Pinho [15] indicated the importance of

developing region-specific simplified period-height for-

mulae. Based on the assessment of 17 existing RC frames

(representative of the European building stock), they pro-

posed a period-height formula for displacement-based
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design. The simple relationships presented in Table 1 are

valid for RC buildings without masonry infills. The

examined RC frames corresponded to actual buildings

from five different south European countries designed and

built between 1930 and 1980 according to older design

codes. Later in 2006, Crowley and Pinho [16] using

eigenvalue analysis studied the elastic and yield period of

existing European RC buildings of varying height. Their

study led to a simplified period-height expression for the

assessment of existing RC buildings considering the pres-

ence of masonry infills.

Guler et al. [23] proposed a relationship derived by

ambient vibration tests and elastic numerical analyses

obtaining similar results to those by Hong and Hwang [25].

Detailed and in-depth state-of-the-art relevant works can be

found in Asteris et al. [8] and Asteris and Kolovos [5].

The main disadvantage available in the literature pro-

posals for the estimation of the fundamental period of

structures is that they often conflict one another, thus,

making their use uncertain. Moreover, these proposals do

not take into account parameters that crucially affect the

fundamental period’s value such as the number of spans,

the span length, the infill wall panel stiffness, and the

percentage of openings in infill walls. This considerable

variation on the predicted value of the period of vibration

reveals the need for further investigation and refinement of

the code provisions and proposals.

3 Introducing the artificial bee colony
algorithm (ABC)

3.1 Behavior of the real bee

Tereshko [40] proposed a model of foraging behavior of a

honeybee colony based on reaction–diffusion equations.

This model, leading to the emergence of collective intel-

ligence of honeybee swarms, consists of three essential

components: food sources, employed foragers, and unem-

ployed foragers; in addition, two leading modes of

honeybee colony behavior are defined: one is the

recruitment of a food source and the other is the source

abandonment. Tereshko explains his model’s main com-

ponents as follows:

• Food sources In order to select a food source, a forager

bee evaluates several properties related to the food

source, such as distance from the hive, richness of the

energy, nectar taste, and ease or difficulty of extracting

this energy. For the sake of simplicity, the quality of a

food source can be represented by only one variable

(although it depends on various aforementioned param-

eters) [27].

• Employed foragers An employed forager is occupied at

a specific food source, which she is currently exploiting.

She carries information of this specific source and

shares it with other bees waiting in the hive. The

information includes the distance, direction and prof-

itability of food source [27].

3.2 Honey bee performance

In the ABC algorithm, food source location represents a

possible solution to the optimization problem and food

source nectar amount corresponds to the quality (fitness) of

the associated solution [27]. The basic idea behind bee

colony optimization (BCO) is to build a multi-agent system

(colony of artificial bees), which will search for good

solutions of various combinatorial optimization problems,

by adopting the principles used by honey bees during

nectar collection process. An artificial bee colony usually

consists of a small number of individuals. Artificial bees

explore the search space looking for feasible solutions. In

order to find the best possible solution, autonomous artifi-

cial bees collaborate and exchange information. Using

collective knowledge and information sharing, artificial

bees concentrate on the more promising areas and slowly

abandon the less promising ones. Step by step, artificial

bees collectively improve the solutions. The BCO search is

running in iterations until some predefined stopping crite-

rion is satisfied. The number of the employed bees or the

onlooker bees equals to the number of solutions in the

population. At the first step, ABC generates an initial

randomly distributed population (C = 0) of SN solutions

(food source positions), where SN denotes the size of

employed bees or onlooker bees. Each solution xi (i = 1, 2,

…., SN) is a D-dimensional vector. Here, D is the number

of optimization parameters. After the initialization, the

population of the locations (solutions) is subjected to

repeated cycles, C = 1, 2, …, MCN (maximum cycle

number); of search processes of employed bees, a bee

produces an amount of nectar from the new source (the

new solution) [27].

Table 1 Expressions for the evaluation of the fundamental period of

vibration

Expression Author

T = 0.053 H0.9 Goel and Chopra [22]

T = 0.0294 H0.804 Hong and Hwang [25]

T = 0.1 H Crowley and Pinho [15]

T = 0.055 H Crowley and Pinho [16]

T = 0.026 H0.9 Guler et al. [23]
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If the new nectar amount is higher than that of the

previous, the bee memorizes the new position and forgets

the old one. In the opposite case, the bee remembers the

previous one. Once all employed bees complete the search

process, information of food sources and location data is

shared with onlooker bees. An onlooker bee evaluates the

nectar information taken from all employed bees and

chooses a food source with a probability related to the

nectar amount [27]. The employed bee, for instance,

modifies the source location in her memory and checks the

nectar amount of the candidate source. If the nectar amount

is higher than that of the previous one, the bee memorizes

the new position and forgets the old one. The main steps of

the algorithm are as follows [27]:

1. Initialize population

2. Reiteration

3. Positioning employed bees on food sources

4. Positioning onlooker bees on food sources depending

on nectar amounts

5. Sending the scouts to search area for discovering new

food sources

6. Memorizing the best food source found so far

7. Until requirements are met.

4 Materials and methods

4.1 Experimental details and database

The database used herein consists of 4026 data sets

obtained from literature [4]. Specifically, a total of 4026

infilled plane reinforced concrete frames (Fig. 1) have been

investigated; the quantitative outcomes of these cases are

included in the FP4026 Research Database [4]. The number

of storeys ranged from 1 to 22 and was investigated by

upgrading the number of storeys by unit increments. The

storey height for all buildings was kept constant and equal

to 3.0 m. The number of spans varied between 2, 4 and 6.

For each case, four different span lengths have been con-

sidered, namely 3.0 m, 4.5 m, 6.0 m and 7.5 m. In the

perpendicular direction, the span length was constant and

equal to 5 m for all cases. All the buildings have been

designed in accordance with Eurocodes 2 and 8 [17, 18].

The building parameters used for the development of the

model are listed in Table 2. In total, 4026 different cases of

infilled RC frames were analyzed in order to investigate the

influence of several parameters on the fundamental period

of a frame structure. The 4026 values of the fundamental

period of all cases of infilled frames studied are presented

in Asteris [4].

Each input training vector p is of dimension 1 9 5 and

comprises the values of the five infilled frame parameters

(R = 5), namely the Number of Storeys, the number of

Spans, the Length of Spans, the Opening Percentage and

the Masonry Wall Stiffness (Et). The corresponding output

training vectors are of dimension 1 9 1 and consist of the

Fundamental Period. Their mean values together with the

minimum and maximum values are listed in Table 3.

4.2 Research methodology

In the present study, we use a back-propagation neural

network (BPNN). A BPNN is a feed-forward, multilayer

network, i.e., information flows only from the input toward

the output with no back loops and the neurons of the same

layer are not connected to each other, but they are con-

nected with all the neurons of the previous and subsequent

layer. A BPNN has a standard structure that can be written

as

N�H1 �H2 � � � � �HNHL �M ð3Þ

where N is the number of input neurons (input parameters);

Hi is the number of neurons in the ith hidden layer for

i ¼ 1; . . .;NHL, where NHL is the number of hidden

layers and M is the number of output neurons (output

parameters).

Fig. 1 Cross section details of an infilled RC frame [4]
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Each BPNN model was trained with over 2817 datasets

out of a total of 4025 datasets, (70% of the total data) and

the validation and testing of the trained ANN were per-

formed with the remaining 1208 datasets. More specifi-

cally, 604 datasets (15%) were used for the validation of

the trained ANN and 604 (15%) datasets were used for the

testing (estimating the Pearson’s correlation coefficient

R2).

The number of nodes in the hidden layer was obtained

using the following empirical formula [21]

NH � 2Nþ 1 ð4Þ

where NH is the maximum number of nodes in hidden

layers and N is the number of inputs. The number of

obtained effective inputs equals 5, and the maximum

number of nodes in the hidden layer is 11.

In order to find the training algorithm that is more

suitable to tackle the nonlinear behavior of the SCC’s

compressive strength, the performance of various opti-

mization techniques such as the quasi-Newton, Resilient,

One-step secant, Gradient descent with momentum and

adaptive learning rate and the Levenberg–Marquardt

method has been investigated. It should be mentioned that

Table 2 Building parameters

[4]
Concrete strength 25.00 MPa

Modulus of elasticity of concrete, Ec 31.00 GPa

Steel tensile yield strength 500.00 MPa

Size of beams 250/600 mm

Slab thickness 150 mm

Dead loads 1.50 kN/m2 ? 0.90 kN/m2

Live loads 3.50 kN/m2

Number of floors 1 to 22 by 1

Storey height 3.00 m

Span length 3.00 m, 4.50 m, 6.00 m, 7.50 m

Number of spans 2, 4, 6

Masonry compressive strength, fm 1.50 MPa, 3.00 MPa, 4.50 MPa, 8.00 MPa, 10.0 MPa

Modulus of elasticity of masonry, Em 1.50 GPa, 3.00 GPa, 4.50 GPa, 8.00 GPa, 10.00 GPa

Thickness of infill panel, tw 150 mm, 250 mm

Infill wall opening percentage 0% (fully infilled), 25%, 50%, 75%, 100% (bare frame)

The center for each one opening is identified with the center of the infill wall panels. For this case we have

the great reduction of stiffness

Table 3 Research data

Parameter Parameter type MAX MIN AVE STD (standard deviation)

Number of storeys Input 22.00 1.00 11.50 6.35

Number of spans Input 6.00 2.00 4.95 1.55

Length of spans (m) Input 7.50 3.00 4.99 1.58

Opening percentage (%) Input 100.00 0.00 63.08 40.14

Masonry wall stiffness Et (9 105 kN/m) Input 25.00 2.25 11.76 7.79

Fundamental period (s) Output 3.57 0.04 1.11 0.79

Table 4 Characteristics of bee colony algorithm and FF neural network

Characteristics of neural network Initialization parameters in ABC

Number

of input

Number of

output

Number of

hidden layer

Number of nodes in

hidden layer

Transfer function Training

algorithm

number

of bee

bee source

number

Maximum

cycle number

5 1 2 6–5 Hyperbolic

tangent

sigmoid

Levenberg–

Marquardt

10 5 50
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all the ANNs under investigation (which are presented in

detail in the next section) have been investigated by means

of all the aforementioned training algorithms. Among these

algorithms, the best—by far—ANN prediction of the out-

put parameter was achieved by using the Levenberg–

Marquardt algorithm as implemented by levmar via the

MATLAB trainlm function. This algorithm appears to be

optimum for training moderate-sized (up to several hun-

dred neurons per layer) feed-forward neural networks

dealing with non-linear problems [31]. It should also be

noted that the Hyperbolic tangent sigmoid transfer function

(MATLAB tansig function) has been used as activation

function. Furthermore, the rng MATLAB function has been

used in order to control random number generation.

To assign the optimized weight of any artificial neural

network model, the bee colony is used as a new meta-

heuristic algorithm in civil engineering. Table 4 indicates

the optimized structure of each model along with the

characteristics of the bee colony algorithm.

According to the results, it is inferred that the feed-

forward model (the weights of which are optimized via bee

colony algorithm) is optimized with the 5–6–5–1 structure

(Fig. 2); furthermore, properties of 10 bees, 5 bee sources

and 50 optimized replications offered the best results in the

desired models.

Figure 3 shows the FF–ABC network cost graph. In

Figs. 4 and 5, performance of the artificial neural network

has been presented in three phases of training, validation

and testing.

Bias

Hidden LayersInput Layer Output Layer

Number of Spans 

Length of Span 

Opening Percentage

Masonry Wall 
Stiffness (Et)

Number of Storeys 

Fundamental Period

Infilled Frame 
Parameters b3b1 b2

 

Fig. 2 A 5–6–5–1 feed-forward

BPNN

Fig. 3 Cost graph for 50 replications in ABC_FF model, as the best

model Fig. 4 Best validation performance in artificial neural network model
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Figure 6 depicts the comparison of the exact experi-

mental values with the predicted values of the optimum NN

model with topology 5–6–5–1. These results clearly show

that the values of the fundamental period of infilled frame

structures predicted from the multilayer feed-forward

neural network are very close to the values of the ‘‘exact’’

period.

4.3 Final values of weights of the NN model

It is common practice, in the majority of the published

articles on NNs Models, for authors to present the archi-

tecture of the optimum NN model without any information

about the final values of NN weights. Any architecture

without the values of final values of NN model weights has

very little value for others researchers and practicing

engineers. In order to be useful, a proposed NNFig. 5 The training state for the artificial neural network model

Fig. 6 The Pearson’s correlation coefficient R2 of the ‘exact’ and of the predicted values of the period for the FF–ABC–NN model (5–6–5–1)
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architecture should be accompanied by the (quantitative)

values of weights. Thus, the NN model can be readily

implemented in an MS-Excel file, available to anyone

interested in the problem of modeling.

To this end, in Table 5 the final weights for both hidden

layers and bias are presented. By employing the properties

defined in Table 3 and using the weights and bias values

between different layers of ANN, the value of the funda-

mental period can be estimated (predicted).

4.4 Model validation

Three different statistical parameters were employed to

evaluate the performance of the derived FF–ABC–NN

model as well as the available formulae in the literature,

including the root-mean-square error (RMSE), the mean

absolute percentage error (MAPE), and the Pearson Cor-

relation Coefficient R2. Lower RMSE and MAPE values

are indicative of more accurate prediction results. Higher

Table 5 Final values of weights and bias of the optimum FF–ABC–NN model 5–6–5–1

iw{1,1} b{1,1} b{2,1} b{3,1}

- 0.64252 0.95635 0.0099421 - 1 0.89387 - 0.19541 - 0.11309 - 0.76339

1 - 0.67449 0.048684 - 0.94305 - 0.21426 - 0.3233 - 0.6878

- 0.67748 - 0.099443 - 0.63574 - 0.068904 - 0.51573 0.32387 0.14408

- 1 - 1 - 0.84926 0.082087 - 0.33769 - 0.7126 - 0.4386

- 0.15938 0.47688 - 0.53489 - 0.36979 0.91493 - 0.72821 0.264

- 0.77022 0.9713 - 0.94289 0.85791 - 0.75598 0.9114

iw{2,1}

- 0.061347 - 1 - 0.29106 - 0.44029 0.39387 - 0.67128

0.78652 0.949 0.11447 0.070623 - 0.2411 - 0.27997

0.98984 - 0.67629 - 0.066193 0.98063 - 0.21585 0.46133

0.2716 - 0.48324 - 0.50113 - 0.53153 0.3069 - 0.49367

0.1068 0.10051 - 0.62024 0.53849 0.023641 0.7201

iw{3,2}

- 0.89361 - 0.97999 - 0.7507 0.9131 0.53366

iw{1,1} weights values for input layers, iw{2,1} weights values for first hidden layers, iw{3,2} weights values for second hidden layers, b{1,1}

bias values for first hidden layer, b{2,1} bias values for second hidden layer, b{3,1} bias values for output layer

Table 6 Statistical results of

FF–ABC–NN and results

available in the literature

formulae

Data Method Mean Standard deviation RMSE MAPE R2

Training FF–ABC–NN 1.1113 0.7873 0.0222 0.0294 0.9992

FEMA 1.1638 0.5915 0.5068 0.5061 0.5878

EC8 1.0356 0.4599 0.5320 0.4827 0.5479

Goel and Chopra [22] 1.2691 0.6450 0.5295 0.5646 0.5654

Validation FF–ABC–NN 1.0648 0.7954 0.0249 0.0309 0.9990

FEMA 1.1245 0.6042 0.4913 0.5235 0.6205

EC8 1.0042 0.4708 0.5193 0.5155 0.5761

Goel and Chopra [22] 1.2263 0.6588 0.5137 0.5850 0.5991

Test FF–ABC–NN 1.1155 0.7601 0.0239 0.0303 0.9990

FEMA 1.1667 0.5848 0.4903 0.4694 0.5863

EC8 1.0379 0.4566 0.5112 0.4553 0.5529

Goel and Chopra [22] 1.2723 0.6378 0.5150 0.5267 0.5602

All FF–ABC–NN 1.1050 0.7845 0.0229 0.0297 0.9991

FEMA 1.1583 0.5924 0.5021 0.5032 0.5928

EC8 1.0313 0.4611 0.5271 0.4835 0.5531

Goel and Chopra [22] 1.2632 0.6461 0.5250 0.5620 0.5701
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R2 values demonstrate an increased fit between the ana-

lytical and predicted values. The aforementioned statistical

parameters are calculated by the following expressions [2]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

xi � yið Þ2
s

ð5Þ

MAPE ¼ 1

n

X

n

i¼1

xi � yi

xi

�

�

�

�

�

�

�

�

ð6Þ

R2 ¼ 1�
Pn

i¼1 xi � yið Þ2
Pn

i¼1 xi � �xð Þ2

 !

ð7Þ

where n denotes the total number of datasets, and xi and yi
represent the predicted and target values, respectively.

The advantages of the derived FF–ABC–NN model

compared to the code provisions and other research for-

mulae for training, validation, test and all data set are

shown in Table 6. It is clearly shown that the FF–ABC–NN

present a high correlation coefficient R2 between the pre-

dicted and the exact period, a low root-mean-square error

(RMSE) and a low mean absolute percentage error

(MAPE), consistent with the above results. It is worth

noting that the values 0.9939, 0.9942, 0.9933 and 0.9939 of

the Pearson Correlation Coefficient R2 are higher than

those presented in the relative literature.

Moreover, in Fig. 7 the results from the eigenvalue

analysis of the 4025 examined structures (mentioned as

‘‘Exact’’) have been compared with the predicted results

from the proposed FF–ABC–NN model. Additionally, the

‘‘Exact’’ results are also compared with the empirical

expressions of EC8 [18], FEMA-450 [20] and Goel and

Chopra [22]. These results clearly show that the values of

the fundamental periods of infilled frame structures pre-

dicted from the artificial bee colony-based neural network

Fig. 7 Comparison of the proposed FF–ABC–NN model (5–6–5–1) with formulae from the literature
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model offer a much better fit than the values of the fun-

damental periods predicted by code provisions.

5 Conclusions

In this work, the artificial bee colony algorithm, which is a

new, simple and robust optimization algorithm, has been

used to train feed-forward artificial neural networks for the

prediction of the fundamental period of vibration of infilled

frame reinforced concrete structures. The obtained results

show that artificial bee colony algorithm can be success-

fully applied to train feed-forward neural networks.

Specifically, the artificial bee colony algorithm can serve as

a powerful tool in optimizing the weights of artificial

neural networks models. Furthermore, the proposed FF–

ABC–NN model seemed to fit the data better than other

models and formulae available in the literature, as

demonstrated by the high correlation R2 coefficient

between the predicted and the exact period, as well as by

the low root-mean-square error (RMSE) and mean absolute

percentage error (MAPE).
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