
ORIGINAL ARTICLE

VLCI approach for optimal capacitors allocation in distribution
networks based on hybrid PSOGSA optimization algorithm

Mohamed A. Tolba1,2 • Ahmed A. Zaki Diab1,3 • Vladimir N. Tulsky1 • Almoataz Y. Abdelaziz4

Received: 15 May 2017 / Accepted: 28 December 2017 / Published online: 6 January 2018
� The Natural Computing Applications Forum 2018

Abstract
The use of Shunt Capacitor Banks (SCB) as a convenient compensation source of reactive power in distribution networks

has an efficient role in enhancement voltage profile, correction of power factor and minimizing the network power losses.

In this regard, this article investigates the enforcement of a modern robust and effective hybridization of Particle Swarm

Optimization besides a Gravitational Search Algorithm (PSOGSA) as an optimization mechanism for solving the problem

of optimum SCB allocation with minimizing the annual operating cost and enhancement of the system power quality.

Moreover, a new Voltage-Loss-Cost Index (VLCI) has been associated with the proposed optimization technique as an

efficient objective function to increase the voltage levels, minimize active power losses and the annual operating cost of the

grid. Furthermore, the implemented methodology is introduced in two stages. Firstly, the most appropriate buses for

locating SCB are estimated using Loss Sensitivity Factor (LSF). Then, the hybrid PSOGSA optimization algorithm is

structured to detect the optimum sitings of SCB and their sizing from the elected buses based on VLCI as the main

objective function. The suggested mechanism has been applied on 33-bus besides 69-bus IEEE radial distribution net-

works. In addition, it is applied on a practicality case study of 111-bus Moscow region radial distribution network. With a

view to making certain of the validation of the suggested methodology, the acquired results have been compared with other

mechanisms and techniques. The numerical results demonstrated that the suggested optimization technique has superiority

with high performance to deduce the optimum decision of SCB allocation for minimizing the network power losses,

enhancing the profile of voltage level, and maximizing the net savings as compared to other different techniques.

Keywords Distribution power networks � Shunt Capacitor Banks location � Voltage-Loss-Cost Index � Power losses �
Energy losses � Voltage profile � Sensitivity factor � Hybrid PSOGSA � Net saving

List of symbols
SCB Shunt Capacitor Banks

N Number of branches

Pij, Qij The active and reactive power that inflow

over line ‘‘N’’

PLj, QLj Active and reactive load that connected at

node ‘‘j’’

et Epsilon tolerance ‘‘error’’ = 0.000001

nb Number of buses

i 1: nb (no. of buses)

PTLoss Base total active power losses

Th The time in hour

Ke The cost per kW h

ETLoss Base total active energy losses

PSCB;TLoss Total active power losses with SCB

ESCB;TLoss Total active energy losses with SCB

PlinelossðijÞ The active power losses through branches

mtiit The velocity of particle ‘‘it’’
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ti Number of iteration

Mak The active gravitational mass

e A small constant of gravitational force in

GSA

RlkðtÞ Euclidian distance between two agents’ l and

k

d Dimension of problem space

Ml The mass of object l during time ‘‘t’’

w Random number within [0, 1]

d Dimension of problem space

DPlSCB Power loss index

DVDev Voltage deviation index

V1 Base per unit voltage

TOC Total operating cost with SCB

TOCbase Base total operating cost without SCB

KSCB The cost per kVAr

Qc
j The value of reactive power installation at

j bus (kVAr)

Kb The number of compensated buses

Kf The cost per installation

DOC Cost index (net operating cost)

kk k1, k2, k3 Parameter considered as weight

factors of the proposed objective function

Pj;eff , Qj;eff Total effective active and reactive power

supplied beyond bus ‘‘j’’

LSFðijÞ Loss sensitivity factor

VSF Voltage sensitivity factor

c1 and c2 Weighting factors constants

G(t) Gravitational constant at time ‘‘t’’

Mpl Passive gravitational mass

GO and a Initial value and descending coefficient

respectively

iter Current iteration

maxitere Maximum number of iterations

aclðtÞ Acceleration of all agents at time ‘‘t’’

r1, r2 Two random numbers (variables) generated

in the range [0, 1]

rk Random number

1 Introduction

The power distribution networks analysis and study are

important areas of research because these networks are the

last connection between the bulk of electrical power system

and consumers. Therefore, they are suffering from distur-

bances of power quality [1]. The flow of the reactive power

in radial distribution networks (RDN) always leads to high

system power loss, high voltage drop, and low power

factor. The deviation in voltage profile because of high

voltage drop is represented as one of the power quality

problems [1]. These disturbances and effects can be

minimized by providing Shunt Capacitor Banks (SCB) as a

convenient source of reactive power compensation [2]. The

optimal allocation of SCB has an efficient role in power

system planning to insure the minimum system power

losses, maximum net savings with improving voltage pro-

file, and system power factor [3].

In recent years, optimal allocation of SCB has a huge

competition among many types of research based on dif-

ferent optimization techniques and methods. These algo-

rithms and mechanisms are presented as in the following

studies. Swarup [4] implemented Genetic Algorithm (GA)

as an optimization tool for optimal SCB in RDS. Sarma

and Rafi [5] employed sensitivity factors to detect the

appropriated buses for capacitor installation and then Plant

Growth Simulation Algorithm (PGSA) is prepared for

optimal SCB size and location from the elected buses.

Shuaib et al. [6] employed sensitivity analysis to reduce the

search space of optimization technique for recognizing the

suitable sitings of SCB. The Gravitational Search Algo-

rithm (GSA) was used as an optimization algorithm. The

results are compared with the Interior-Point algorithm (IP)

as an analytical technique and Simulation Annealing (SA)

as a local search meta-heuristic, in addition to other

methods. Abdelaziz et al. [7] proposed Flower Pollination

Algorithm (FPA) and LSF for optimal placement and size

of SCB in RDN. Das [8] implemented a hybrid Fuzzy set

and Genetic Algorithm (Fuzzy-GA) to get the optimum

installation of fixed and switched SCB. Hamouda et al. [9]

proposed a sensitivity-based heuristic solution (heuristic)

based on Markov chains as optimization algorithm for SCB

locations in RDN. Raju et al. [10] implemented Direct

Search Algorithm (DSA) for optimal reactive power

compensation based on SCB allocation in RDN. Sultana

[11] presented teaching learning-based optimization algo-

rithm (TLBO) approach depending on two educational

concepts teaching and learning phases to evaluate the

optimal solution for SCB installation. El-Fergany [12]

constructed a combination of Differential Evolution

besides Pattern Search (DE-PS) that is used as a meta-

heuristic optimization tool for solving the optimum

level/size of SCB. In addition, LSF was utilized to find the

most critical buses. Devabalaji et al. [13] performed

Voltage Stability Index (VSI) for reaching to the optimum

SCB location besides the Cuckoo Search Algorithm (CSA)

to find the optimal capacity of SCB from the elected buses.

Ali et al. [14] introduced the Power Loss Index (PLI) to

determine the highest candidate buses for SCB allocations.

Then, the proposed Improved Harmony Algorithm (IHA) is

implemented to deduce the optimum decision of SCB

placement and sizing in RDN.

Notwithstanding, these algorithms and techniques may

not reach to the optimal solutions for minimizing the power

losses and the total operating cost with maximizing the net
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savings due to many reasons. Some researchers employed

many buses for reactive power compensation in the RDN

[4, 12]. In addition, some works [5, 8, 9] were limited to

small systems scale. Other studies focused on reducing the

number of compensated buses with minimum sizing

without caring about the optimal minimizing of costs and

system power losses [6, 7, 11–14]. Moreover, the main goal

of all optimization techniques is to be carried out to find the

best global optimum to optimization problems. Further-

more, the meta-heuristic techniques should have two

essential characteristics that are exploitation and explo-

ration [15]. Consequently, the connotation of integrating

the optimization techniques deals with balancing between

the exploration and exploitation ability [16]. In hybrid

mechanisms, the Particle Swarm Optimization (PSO) is

one of the most widely used evolutionary technique,

because of convergence speed, ability of searching global

optimum, and less complex performing [17]. However, the

PSO is combined with other optimization techniques for

proposing the hybridized mechanisms [18]. The Gravita-

tional Search Algorithm (GSA) is considered as one of the

presently improved meta-heuristic techniques that is based

on Newton’s law of gravity and low motion by Rashedi

et al. [19]. The GSA has been confirmed by high perfor-

mance in solving optimization problems [15]. The hybrid

PSO and GSA approach has been implemented by Mirjalili

and Hashim [20], by merging the PSO using its exploring

feature pending the subsequent stages based on the social

thinking in the method, and the GSA using its exploiting

feature in the beginning stages of search process based on

the local search in the method [21].

In this paper, the PSOGSA technique has been proposed

to reduce drastically the computational difficulties and time

required to solve the problems of optimal allocation of DGs

and SCBs in distribution grids. Also, LSF is produced to

evaluate the most candidate buses to compensate reactive

power for reducing the search space of the optimization

approach. Furthermore, a Voltage-Loss-Cost Index (VLCI)

approach is integrated with the suggested scheme as an

effective objective function to enhance the voltage level,

minimize the system active power losses and the total

annual operating cost. The Backward/Forward Sweep

(BFS) algorithm is implemented for power flow determi-

nations [21, 22]. The proposed schemes are applied and

tested on 33-bus and 69-bus IEEE RDS, in addition,

practical case study of Moscow Region 111-bus RDN [23].

To insure the proposed methodology capability and per-

formance, the numerical results are compared with other

various optimization techniques.

2 Problem formulation

2.1 Formulation of power flow

The Backward/Forward Sweep (BFS) algorithm is imple-

mented for power flow evaluations [22, 23]. Figure 1

illustrates the sample of a distribution network, considering

a line N is connected between two buses ‘‘i’’ and ‘‘j.’’

The analysis of BFS method is constructed including

three-main steps, which they based on the Kirchhoff’s

voltage and currents law (KVL and KCL, respectively).

The three steps comprise of (1) backward sweep, (2) for-

ward sweep, and (3) nodal current analysis. These steps

based upon convergence achievements if a maximum

mismatch between voltages is less than the epsilon toler-

ance ‘‘error’’ (in this work, et is considered = 0.000001).

However, the active and reactive power losses for radial

distribution system can be evaluated easily after the con-

vergence. The determinations of BFS power flow are as the

following:

The Pij and Qij flow through branch ‘‘N’’ from node ‘‘i’’

to node ‘‘j’’ can be derived in (1) backward sweep direction

from the last node and are given as,

Pij ¼ P0
j þ Rij

P02
j þ Q02

j

� �

V2
j

ð1Þ

Qij ¼ Q0
j þ Xij

P02
j þ Q02

j

� �

V2
j

ð2Þ

where P0
ij ¼ Pj þ PLj and Q0

ij ¼ Qj þ QLj.

The voltage magnitude and angle at each node are

developed in (2) forward sweep direction. Consider a

voltage Vi \ di at node ‘‘i’’ and Vj \ dj at node ‘‘j,’’ then the

(3) the nodal current analysis flows through the branch ‘‘N’’

having an impedance, Zij ¼ Rij þ jXij connected between

‘‘i’’ and ‘‘j’’ is given as,

Iij ¼
Vi\di � Vj\dj
� �

Rij þ jXij

ð3Þ

and

Fig. 1 A sample of distribution network
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Iij ¼
Pi � jQið Þ
Vi\� di

ð4Þ

From Eqs. (3) and (4) the voltage at bus ‘‘j’’ can be written

as the following formula,

Vj ¼ V2
i � 2 � PiRij þ jQiXij

� �
þ R2

ij þ X2
ij

� �
�

P2
i þ Q2

i

� �
V2
i

� �0:5

ð5Þ

The magnitude and the phase angle equations can be

used, respectively, in (2) a forward sweep direction to get

the voltage and angle of all nodes of the radial distribution

grid. The active and reactive power losses of line ‘‘N’’

between buses ‘‘i’’ and ‘‘j’’ can be evaluated as,

PLossðijÞ ¼ Rij

P2
ij þ Q2

ij

� �

V2
i

ð6Þ

QLossðijÞ ¼ Xij

P2
ij þ Q2

ij

� �

V2
i

ð7Þ

The formulation of the total active power losses of RDN

can be written as,

PTLoss ¼
XN
j¼1

PLossðijÞ ð8Þ

Therefore, the total active energy loss can be derived

from,

ETLoss ¼ PTLossTh ð9Þ

2.2 Power loss calculation with SCB

After locating SCB in the distribution network, the power

losses through a line section in Fig. 1 can be deduced as,

PSCB;LossðijÞ ¼ Rij

P2
SCBðijÞ þ Q2

SCBðijÞ

� �

V2
i

ð10Þ

The mathematical formula of the total power loss with

SCB is written by (11),

PSCB;TLoss ¼
XN
j¼1

PSCB;LossðijÞ ð11Þ

Therefore, the formula of the total active energy loss can

be derived by (12),

ESCB;TLoss ¼ ThPSCB;TLoss ð12Þ

2.3 Power loss index

The ratio of total power loss with SCB to the total base

power loss without SCB is deemed as the power loss index

DPlSCB and is estimated as follows,

DPlSCB ¼ PSCB;TLoss

PTLoss

ð13Þ

The installation of SCB reduced the total power losses in

the network. According to (13), the minimizing of the total

network power losses can be realized by minimizing DPlSCB.

2.4 Voltage deviation index

The voltage deviation index DVDev can be expressed as,

DVDev ¼ max
V1 � Vi

V1

� 	
;

8 i ¼ 1; 2; . . .; nb ðNo: of busesÞ
ð14Þ

2.5 Minimization of operational cost

The operational cost minimization is provided as one of the

SCB location advantages in the distribution networks. The

operational cost is proposed in two components. The first

one is considered as the active energy supplied from the

substation. The second component is the cost of installation

and sizing of SCB that are located. The total operating cost

(TOC) can be written by (15),

TOC ¼ KeESCB;TLoss þ KSCB

XJ
j

Qc
j þ KbKf

" #
ð15Þ

The capacitor size Qc
j kVAr is considered as a discrete

value by step of 50 kVAr that placed at the jth location. The

net operating cost DOC that represents as cost index is con-

sidered as the ratio between TOC with SCB and TOCbase

before installing SCB can be minimized as in the following:

DOC ¼ TOC

TOCbase

ð16Þ

2.6 Objective function

The objective function in this article is represented as

Voltage-Loss-Cost Index (VLCI) multi-objective function

approach for minimizing the power loss, voltage deviation,

and total operating cost of the distribution network. It is

formulated by the following:

Minimize VLCIð Þ ¼ min k1DVDev þ k2DPlSCB þ k3DOCð Þ
ð17Þ

where
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X3
k¼1

kk ¼ 1:0 ^ kk 2 ½0; 1� ð18Þ

This objective function is minimized depending on the

following constraints:

A. The voltage at each bus Vi in radial system must be

kept within the acceptable maximum Vmax and mini-

mum Vmin limits, as the following,

Vmin �VðiÞ �Vmax ð19Þ

B. The limits of voltage drop,

V1 � Vij j �DVmax
D ð20Þ

C. The largest capacitor size Qmax
c is limited to the total

load reactive power QT
Load with keeping the system

power factor within lagging values as,

Qmax
c �QT

Load ð21Þ

D. Overall system power factor PFoverall should be kept

within desirable lower PFmin and upper PFmax limit to

maintain the system PF within lagging values and

injecting the leading one as,

PFmin �PFoverall �PFmax ð22Þ

E. The apparent power line flow ‘‘S’’ through the lines is

limited by its maximum rating as,

SlðiÞ � SratedlðiÞ ð23Þ

3 Sensitivity factors analysis

Loss sensitivity factor (LSF) is implemented to estimate the

most candidate buses for the SCB installations. A distri-

bution line connected between ‘‘i’’ and ‘‘j’’ buses and a

load of Pj;eff þ jQj;eff are performed as the total effective

active and reactive power supplied beyond bus ‘‘j’’ as seen

in Fig. 1. Therefore, the active power losses through lines

beyond bus ‘‘j’’ can be derived as,

PlinelossðijÞ ¼ Rij

P2
j;eff þ Q2

j;eff

� �

V2
j

ð24Þ

The loss sensitivity factor (LSFðijÞ) can be formulated by

submitting the first derivative of PlinelossðijÞ in (24) with

respect to the reactive power load Qj;eff as in the following:

LSFðijÞ ¼
oPlineloss

oQj;eff
¼ 2 � Qj;eff � Rij

V2
j

ð25Þ

The voltage sensitivity factor (VSF) is formulated by the

ratio of the base case voltage magnitudes at buses V(i) to the

minimum limit of voltage (0.95 p.u.). The results of LSF

are sorted (from largest to smallest values) in descending

order for all the lines of the given system depending on

VSF values [3]. The buses with largest values of LSF and

smallest values of VSF are chosen as the critical buses for

capacitors position. The VSF is chosen to be\ 1.01 to

increase the possibilities of choosing the most candidate

buses for SCB placement [3].

4 A hybrid PSOGSA optimization algorithm

A new hybrid PSOGSA is implemented with the amalga-

mation of PSO and GSA [19]. In PSO, Eberhart Kennedy

[24, 25] provided PSO that is deemed as an evolutionary

technique. The PSO is insufflated from the social attitude of

bird flocking. However, it employs several particles as can-

didate decisions that fly around in the search space to detect

the best solution. To modify and update the sitting of each

particle in PSO, it must be done based on the current velocity

and position in addition to the distances of pbest and gbest.

The mathematical formulation of PSO can be submitted

as the following [19],

m1þti
it ¼ w � mtiit þ c1 � r1 pbesttiit � xtiit


 �
þ c2

� r2 gbesttiit � xtiit

 �

ð26Þ

x1þti
it ¼ xtiit þ Dt � mtiþ1

it ð27Þ

where mtiit and positive constants ‘‘c1’’ and ‘‘c2’’ are the

acceleration constants that are responsible for varying the

particle speed toward pbest and gbest, respectively. Equa-

tion (27) produced the position update, depending on its

previous position and its velocity, considering Dt = 1.

Equation (26) consists of three parts; first part presents

exploration ability of PSO. Second and third parts are

deemed as private thinking and cooperation of particles,

respectively [19]. In (26), after evaluating velocities, the

position of masses can be provided by (27). The iteration of

the process will continue updating the particles’ placement

till achieving the PSO its objective.

In GSA, Rashedi et al. [18] structured GSA as a modern

heuristic optimization tool. Theory of this technique is

produced from Newton’s gravitational force behavior that

is called ‘‘action at a distance’’ [18, 19] and [26].

GSA can be implemented as a hybrid of agents ‘‘elected

solutions’’ that have masses proportional directly to their

value of fitness function. These masses are enticed between

each other during generations. During the masses
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processes, the heavier masses that have a huge attraction

force are possibly within easy reach the global optimum

attracts other masses proportional directly to their

distances.

For proposing GSA arithmetically, it is suggested that

the system begins with randomly ‘‘Na’’ agents that are

realized in the search space. The gravitational force is

acquainted from k to l at time ‘‘t’’ as follows [18],

Fd
lkðtÞ ¼ GðtÞMplðtÞ �MakðtÞ

RlkðtÞ þ e
xdkðtÞ � xdl ðtÞ
� �

ð28Þ

The gravitational constant is formulated as,

GðtÞ ¼ Go � expð� a � iter=maxitareÞ ð29Þ

The total force, which effects on agent l, is deduced as,

Fd
l ðtÞ ¼

XNa

k¼1;l 6¼k

rkF
d
lkðtÞ ð30Þ

The agent acceleration is concluded according to the law

of motion by (31),

acdl ðtÞ ¼
Fd
l ðtÞ

MlðtÞ
ð31Þ

The velocity and position of agents are derived by (32)

and (33),

veldl ðt þ 1Þ ¼ rl � veldl ðtÞ þ acdl ðtÞ ð32Þ

xdl ðt þ 1Þ ¼ xdl ðtÞ þ veldl ðt þ 1Þ ð33Þ

The GSA process is worked according to the previous

equations from (29) to (33), and then it will be finished

until amounting to the end of its criterion.

In this article and according to Mirjalili in Ref. [19], the

PSO and GSA are hybridized based on the low-level co-

evolutionary heterogeneous combination. The big merit in

this modern mechanism is that the hybridized techniques run

in parallel with each other. The basic connotation of PSOGSA

is to incorporate the ability of social thought in PSO (gbest)

with the local search capability (acceleration of all agents) of

GSA aclðtÞ. Agents here are deemed as SCB sizes ‘‘PSCBðjÞ’’

that can be estimated according to the following formula:

Vlðt þ 1Þ ¼ w � VlðtÞ þ c01 � r � aclðtÞ þ c02 � r
� gbest � XlðtÞð Þ ð34Þ

where VlðtÞ is the velocity,c01, c
0
2, and w are considered as

weighting factors. The positions of these particles (agents)

are updated according to the following equation:

Xlðt þ 1Þ ¼ XlðtÞ þ Vlðt þ 1Þ ð35Þ

These positions are deemed as the SCB allocations.

In this paper, the PSOGSA operates according to the

following steps:

A. Run the power flow program BFS without applying

optimization algorithm and evaluate the voltage at

each bus, system total active power losses, and LSFs

depending on VSF to deduce the candidate buses.

Fig. 2 111 nodes of radial distribution network (the PS bus is bus no. 1)
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B. Run the optimization algorithm PSOGSA with the

power flow BSF based on the Eqs. (28), (29), (30),

(31), (32), (34), and (35) as the following processes

[19]:

1. Generation of initial population,

2. Evaluation process of the fitness function for all

agents,

Fig. 3 The measured voltage profile in the (a) winter and (b) summer

Fig. 4 The measured voltage profile at the loaded buses in the summer and winter seasons
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3. Update the gravitational constant (G) and (gbest) for

the population according to (28), (29), and (34),

4. Obtain M, forces, and accelerations for all agents

according to (28), (29), (30), and (31),

5. According to Eqs. (34) and (35), update velocity

and position,

6. Check if the proposed system meets end criterion,

If ‘‘No,’’ repeat processes from ‘‘2’’ to ‘‘5.’’ If

‘‘Yes,’’ the program will be stopped and will go to

the next step,

7. Type the results such as voltage at each bus, active

and reactive power losses, ESCB;TLoss, TOC, and

VLCI.

5 Analysis of 111-bus of Moscow region
distribution network

The measurements and analysis have been carried out for

many distribution systems in Moscow region to define the

power quality disturbances and then to mitigate and

improve the problems of these systems with considering

the Russian GOST standard [1]. This work is deemed as a

project to enhance the power quality for Moscow distri-

bution networks.

In Fig. 2, the 111-bus of Moscow region case study is

shown. The measurement of this system is recorded over

two-weeks; one week in summer and the other week in the

winter season at the importantly loaded nodes. The rest of

nodes are evaluated from the previous measurements.

Figure 3 explains that the small screenshot of voltage

profile with time at 6 load buses (at buses: 29, 34, 50, 56,

67, 111, and the primary substation bus ‘‘PS’’) from all

measurement nodes is presented as a case study in winter

and in summer seasons. The primary substation bus ‘‘PS’’

was measured at medium voltage 6 kV, and the load buses

were measured at low voltage 0.4 kV. As shown in Fig. 3,

in the winter season, the voltage profile located below the

standard limits which is selected as one of the power

quality disturbances. In addition to, the summer season is

located within the standard limit.

In Fig. 4, the measured profile of voltage at the loaded

buses in the summer and in winter seasons of the proposed

distribution network is introduced. In the winter, the volt-

age decreased remarkably below the standard limits (\ 0.9

U, p.u.) at the loaded buses than in the summer that caused

disturbances in the profile of voltage and increases the

power losses and voltage drop of the distribution network.

Therefore, in this article, the worst case from the mea-

surements in winter season is provided to improve voltage

profile, decrease voltage drop, and power losses by reactive

power compensation depending on the optimal SCB.

6 Test Results

The proposed methodology using PSOGSA algorithm has

been implemented via MATLAB package [27], which is

installed in an Intel� CoreTM i5-5200U CPU @ 2.20 GHz,

2.19 GHz with a set up memory of 6.00 GB and 64-bit

operating system. The proposed methodology has been

applied and tested on two IEEE standard RDNs: 33-bus

Table 1 The definition of used parameters

Th ¼ 8760 h Ke ¼ 0:06 $=kWh

0:9�PFoverall � 1; lagging Kf ¼ 1000$

50 kVAr�Qc � 2100 kVAr KSCB ¼ 3$=kVAr

0:90�VðiÞ � 1:1 c01 ¼ 0:5; c02 ¼ 1:5

Maximum iteration = 20 Population size = 20

GO = 1 a = 23

k1, k2 and k3 are taken as 0.5, 0.4, and 0.1

Table 2 The results of LSF and VSF of 33-bus distribution network

Bus no. LSF VSF Bus no. LSF VSF

6 0.0168 0.9996 14 0.0014 0.9669

28 0.0136 0.9829 7 0.0013 0.996

29 0.0103 0.9742 12 0.0013 0.9757

30 0.006 0.9705 17 0.0012 0.9618

9 0.0046 0.9843 16 0.0009 0.9639

13 0.0044 0.9692 15 0.0008 0.9654

10 0.0044 0.9782 11 0.0008 0.9773

8 0.0041 0.9909 32 0.0006 0.9651

27 0.0037 0.9949 18 0.0004 0.9612

31 0.003 0.9661 33 0.0002 0.9648

26 0.0027 0.9976

Bold items represent the first 10 rows of LSF and VSF results that will

be selected by PSOGSA

Fig. 5 The line diagram of IEEE 33-bus RDN
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[28] and 69-bus [29]. In addition, the suggested algorithm

has been applied on the practical case study of Moscow

Region RDN [1, 21]. The parameters definitions of the

proposed methodology PSOGSA are introduced in Table 1,

in addition to all system parameters. The numerical results

illustrated the superiority of the proposed PSOGSA

methodology as the following.

6.1 The results of 33-bus IEEE system

The suggested mechanism is applied on 33-bus IEEE radial

distribution test system, which the rated voltage of this test

model is 12.66 kV as shown in Fig. 5. The system data are

given in [28]. The results of LSF and VSF are illustrated in

Table 2. The PSOGSA selected the most critical buses

from the first 10 rows of LSF that are 8, 13, and 30. In

Table 3, the total power losses are reduced from initial

value of 202.65–134.0725 kW, the minimum voltage is

increased from 0.9131 to 0.94 p.u., the TOC is minimized

from 106,510 to 78,418.506 $/year with maximizing the

net savings to 26.3745%. Figure 6 shows the effect of

compensated devices on voltage profile for the 33-bus

Table 3 The results of 33-bus distribution network

Items Un-

comp.

Compensated

GA [4] PSGA [5] GSA [6] SA [6] IP [6] FPA [7] Proposed

PSOGSA

Year – 2005 2011 2015 2015 2015 2016 2017

Total losses (kW) 202.6529 135.5 135.4 134.5 151.75 171.78 134.47 134.0725

Loss reduction % – 33.14 33.19 33.63 25.12 15.24 33.65 33.84

Vmin (p.u.), bus-18 0.9131 0.9349 0.9463 0.9672 0.9591 0.9501 0.9365 0.9400

PF over all 0.8493 NA NA NA NA NA NA 0.9820

Optimal location buses and size of capacitors

(KVAr)

8 300 6 1200 13 450 10 450 9 450 6 250 8 450

15 300 28 760 15 800 14 900 29 800 9 400 13 300

20 300 29 200 26 350 30 350 30 900 30 950 30 900

– 21 300

24 300

26 300

28 300

27 600P
QC, kVAr – 2700 2160 1600 1700 2150 1600 1650

Annual Energyloss - cost ($/year) 106,510 71,218.8 71,166.24 70,693.2 79,759.8 90,287.568 70,677.432 70,468.506

Total Qc - cost ($/year) – 24,600 9480 7800 8100 9450 7800 7950

TOC ($/year) 106,510 95,818.8 80,646.24 78,493.2 87,859.8 99,737.568 78,477.432 78,418.506

Net saving ($/year) – 10,691.2 25,863.76 28,016.8 18,650.2 6772.432 28,032.568 28,091.49

Saving (%) – 10.0377 24.2829 26.3043 17.5102 6.3584 26.3192 26.3745

VLCI – NA NA NA NA NA NA 0.3685

CPU(s)/iteration – NA NA NA NA NA NA 2.32/(3)

Bold items represent the numerical results based on PSOGSA

Fig. 6 The effect of compensated devices on voltage profile for

33-bus IEEE system
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system by PSOGSA optimization algorithms. The objec-

tive function (VLCI) convergence is illustrated in Fig. 7. In

these regards, the computational time (CPU) required by

the proposed scheme with the PSOGSA reached to the

optimal solutions after 3 iterations is 2.32 s. Therefore, the

system has high speed and performance to find the optimal

Table 4 The results of switched SCB at different loads condition for 33-bus radial distribution system

Items 50% loading (light) 100% loading (nominal) 150% loading (heavy)

Uncompensated Compensated Uncompensated Compensated Uncompensated Compensated

Total active power losses (kW) 47.0640 32.4265 202.6529 134.0725 496.2936 319.0642

Total reactive power losses (kVAr) 31.3466 21.6702 135.13 89.483 331.36 213.34

Vmin (p.u.) 0.9583 0.9688 0.9131 0.9400 0.8634 0.9114

PF over all 0.8498 0.9760 0.8493 0.9820 0.8487 0.9869

Optimal location buses and size of

capacitors (KVAr)

13 150 8 450 8 600

– 30 600 – 13 300 – 13 600

30 900 30 1500P
QC, kVAr – 750 – 1650 – 2700

Energyloss - cost ($/year) 24,737 17,043 106,510 70,468.506 260,850 167,700

Total Qc - cost ($/year) – 4250 – 7950 – 11,100

TOC ($/year) 24,737 21,293 106,510 78,418.506 260,850 178,800

Net saving ($/year) – 3444 – 28,091.49 – 82,050

Saving (%) – 13.9224 – 26.3745 – 31.4548

VLCI – 0.3773 – 0.3685 – 0.3700

Sum of injected Qc in kVAr Fixed 150 kVAr at Bus 13, 600 kVAr at Bus 30

Switched at

Nominal

450 kVar at Bus 8, 300 kVAr at Bus 13, 900 kVAr at Bus 30

Switched at

heavy

150 kVar at Bus 8, 300 kVAr at Bus 13, 600 kVAr at Bus 30

Fig. 7 The change of objective

function (VLCI) with iterations

number for 33-bus IEEE system
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solutions early. Table 4 illustrates the switched SCB at

various load condition to validate the proposed algorithm.

The fixed SCBs are 150 kVAr at Bus 13 and 600 kVAr at

Bus 30 that required at light loads (50% loading). The

switched SCBs are 450 kVAr at Bus 8, 300 kVAr at Bus

13, 900 kVAr at Bus 30 required at nominal loads (100%

loading) and additional 150 kVAr at bus 8, 300 kVAr at

Bus 13, 600 kVAr at Bus 30 switched SCB at heavy loads

(150% loading). The superiority of PSOGSA is assured

with high performance by realizing the lowest active power

and energy losses and highest net saving in the case of

fixed/switched SCB at the different loads condition.

6.2 The results of 69-bus IEEE system

The PSOGSA is satisfied on 69-bus radial distribution test

system, which the rated voltage of this test model is

12.66 kV and the schematic diagram of the tested network

is presented in Fig. 8. The system data is available in [29].

The LSF and VSF results are shown in Table 5. The

PSOGSA selected from the first 10 rows of LSF values

only two buses for the optimal size of SCB, which they are

17 (300 kVAr) and 31 (1350 kVAr). The results from

Table 6 are produced as the following: active power losses

are decreased from 224.8948 kW to 145.2075 kW, the

minimum voltage is improved from 0.9091 p.u. to 0.9330

p.u., the TOC is minimized from 118,202.184 $/year to

83,271 $/year with maximizing the net savings to

29.5520%. Although, the FPA method has the lowest total

injected reactive power, the proposed PSOGSA as com-

pared with the FPA method and other methods has the

lowest active power and energy losses and has the highest

net saving. Figure 9 illustrates the effect of compensated

devices on voltage profile for the 69-bus system by the

optimization methodology. The objective function (VLCI)

convergence is illustrated in Fig. 10. In this regard, the

computational time (CPU) required by the proposed

scheme with the PSOGSA reached to the optimal solutions

after 3 iterations is 3.30 s. Therefore, the system has high

performance with a suitable speed to get the optimal

solutions early. The PSOGSA has the highest performance

and accuracy to get the capacitors allocation and sizing

than other mechanisms and algorithms.

To insure the proposed method validation, Table 7

shows the switched SCB at various load condition. The

fixed SCB is 600 kVAr at Bus 61 that required at light

loads (50% loading). The switched SCBs are 300 kVAr at

Bus 17, 1350 kVAr at Bus 61 needed at nominal loads

(100% loading) and additional 300 kVAr at Bus 17, 1350

kVAr at Bus 61 switched SCBs at heavy loads (150%

loading). The robust of PSOGSA is insured with high

quality by realizing the lowest active power and energy

losses and highest net saving with fixed and switched SCB.

Table 5 The results of LSF and VSF for 69-bus radial distribution

system

Bus no. LSF VSF Bus no. LSF VSF

57 0.026861 0.9898 21 0.000585 1.0070

58 0.013559 0.9780 19 0.000563 1.0078

61 0.008555 0.9603 63 0.000448 0.9596

60 0.006404 0.9682 20 0.000362 1.0075

59 0.005312 0.9735 62 0.000334 0.9600

15 0.003256 1.0098 25 0.000206 1.0066

64 0.002204 0.9576 24 0.000191 1.0067

17 0.001002 1.0083 23 0.000088 1.0069

65 0.000666 0.9570 26 0.000085 1.0065

16 0.000606 1.0093 27 0.000024 1.0065

Bold items represent the first 10 rows of LSF and VSF results that will

be selected by PSOGSA

Fig. 8 The schematic diagram

of IEEE 69-bus RDN
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6.3 The practical case study 111-bus system
of Moscow region results

The rated voltage of this test model is 6 kV, and the model

data have been given in [1]. The schematic diagram of

111-bus Moscow region is shown in Fig. 2. The results of

LSF are deduced in Fig. 11. The most candidate buses are

as: {13, 15, 11, 16, 29, 20, 19, 9, 12, 14, 72, 17, 18, 22, 33,

70, 30, 21, 63, 32, 45, and 23}. The total active power

losses 637.1711 kW, minimum voltage 0.7709 p.u. at bus

111, over all power factor 0.8200, and TOC 334,900 $/year

are shown in Table 8. After applying the PSOGSA algo-

rithm at nominal load condition, the most critical buses are

{13, 32, and 72} as illustrated in Fig. 11 and Table 8. Also,

the fixed and switched SCB are proposed at different load

conditions. Figure 12 shows the effect of compensated

devices on voltage profile of 111-bus system at nominal

load condition. Figure 13 illustrates the convergence of the

objective function (VLCI). The computational time (CPU)

needed by the schematic methodology to reach the optimal

solutions with 7 iterations is 25.15 s. From the results, the

PSOGSA method proved its superiority to realize the

optimal solutions for SCB in large RDN.

7 Statistical Evaluation of PSOGSA
Algorithm

To evaluate and prove the performance of the PSOGSA

algorithm, it is required to define a set of metrics that can

be valuable for the evaluation. Table 9 has various quality

metrics to evaluate the PSOGSA optimization algorithm.

Such indexes contain; the relative error RE, mean absolute

Fig. 9 The effect of compensated devices on voltage profile for

69-bus IEEE system

Fig. 10 The change of objective

function (VLCI) with iterations

number for 69-bus IEEE system
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error (MAE), root-mean-square error (RMSE), standard

deviation (STD), and median. These metrics measure the

values of the best minimum value of objective function

(VLCImin) and the value of objective function at each time

of run (VLCIi) which is obtained by the optimization

algorithm. In Table 9, (nr) is the number of data-set groups

(runs of power system). The parameters of each algorithm

are set as the original references of the number of iterations

(20) and the size of population (20). As well as, PSOGSA

algorithm has been executed 30 times.

Table 10 shows the performance evaluation of PSOGSA

for different three systems. From this table, it is observed

that PSOGSA has acceptable RMSE. Moreover, the STD

demonstrates that the results do not change along the

iterative process, which indicated the stability of the pro-

posed algorithm.

Table 7 The results of switched SCB at different loads condition for 69-bus radial distribution system

Items 50% loading (light) 100% loading (nominal) 150% loading (heavy)

Uncompensated Compensated Uncompensated Compensated Uncompensated Compensated

Total active power losses (kW) 51.5680 35.6270 224.89 145.2075 557.4797 349.8937

Total reactive power losses (kVAr) 23.6920 16.6078 102.61 67.381 251.07 160.57

Vmin (p.u.) 0.9568 0.9658 0.9091 0.9330 0.8565 0.8970

PF over all 0.8184 0.9303 0.8214 0.9660 0.8247 0.9706

Optimal location buses and size of

capacitors (KVAr)

61 600 17 300 17 600

– – 61 1350 – 61 2100P
QC, kVAr – 600 – 1650 – 2700

Energyloss - cost ($/year) 27,104.1933 18,696 118,202.18 76,321 293,010 183,610

Total Qc - cost ($/year) – 2800 – 6950 – 10,100

TOC ($/year) 27,104.1933 21,496 118,202.18 83,271 293,010 193,710

Net saving ($/year) – 5608.1933 – 34,931.18 – 99,300

Saving (%) – 20.6912 – 29.5520 – 33.8896

VLCI – 0.3728 – 0.3621 – 0.3680

Sum of injected Qc in kVAr Fixed 600 kVAr at Bus 61

Switched at

Nominal

300 kVar at Bus 17, 1350 kVAr at Bus 61

Switched at

heavy

300 kVar at Bus 17, 1350 kVAr at Bus 61

Fig. 11 The values of LSF for

111-bus system of Moscow

region
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The objective function (VLCI) convergence for the three

systems over 30 times of run is illustrated in Figs. 14, 15,

and 16. In this regard, the computational time (CPU)

required by the proposed scheme with the PSOGSA

reached to the optimal solutions in average after 3 itera-

tions is 3.30 s as shown from figures. Therefore, the system

has high performance with a suitable speed to get the

optimal solutions early. The PSOGSA has the highest

performance and accuracy to get the capacitors allocation

and sizing than other mechanisms and algorithms.

8 Conclusion

This paper presents a strategy based on novel PSOGSA

optimization methodology with LSFs to produce the opti-

mal installations and sizing of SCBs in the different RDN.

For power flow calculations, the Backward/Forward Sweep

(BFS) algorithm is implemented. Moreover, the sensitivity

factors are used to evaluate the most candidate buses that

are needed for reactive power compensation to minimize

the search space of the optimization algorithms. On the

other hand, the proposed methodology PSOGSA is

employed to find the optimal sizing of SCB and their

locations from candidate buses of LSF. A novel VLCI is

constructed as the main objective function to increase the

robustness and superiority of the proposed mechanism

reaching to the most optimum solutions. The proposed

Table 8 The results of switched SCB at different loads condition for 111-bus radial distribution system

Items 50% loading (light) 75% loading (light) 100% loading

(nominal)

125% loading (heavy)

Uncompen. Compen. Uncompens. Compen. Uncompen. Compen. Uncompens. Compen.

Total active power losses (kW) 112.4078 86.83 292.68 190.65 637.17 374.455 1460.1 678.253

Total reactive power losses (kVAr) 110.38 85.52 287.40 187.08 625.61 367.19 1433.2 663.54

Vmin (p.u.) 0.9632 1.0085 0.8782 0.9748 0.7709 0.9503 0.5950 0.9230

PF over all 0.8365 0.9540 0.8293 0.9968 0.8200 0.9988 0.8043 0.9998

Optimal location buses and size of

capacitors (KVAr)

32 450 13 750 13 750 13 900

– – 32 450 – 32 600 – 32 850

72 450 72 800P
QC, kVAr – 450 – 1200 – 1800 – 2550

Energyloss - cost ($/year) 59,082 45,638 153,840 100,210 334,900 196,810 767,430 356,490

Total Qc - cost ($/year) – 2350 – 5600 – 8400 – 10,650

TOC ($/year) 59,082 47,988 153,840 105,810 334,900 205,210 767,430 367,140

Net saving ($/year) – 11,094 – 48,030 – 129,690 – 400,290

Saving (%) – 18.777 – 31.2207 – 38.7249 – 52.1598

VLCI – 0.4318 – 0.3862 – 0.3644 – 0.3141

Sum of injected Qc in kVAr Fixed 750 kVAr at Bus 13, 450 kVAr at Bus 32

Switched

(nominal)

750 kVAr at Bus 13, 600 kVAr at Bus 32, 450 kVAr at Bus 72

Switched

(heavy)

150 kVAr at Bus 13, 250 kVAr at Bus 32, 350 kVAr at Bus 72

Fig. 12 The effect of compensated devices on voltage profile for

111-bus distribution system
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methodology has been tested on different radial distribu-

tion systems. In addition, the optimal allocation of fixed/

switched SCB is achieved at different loading conditions.

The results of the suggested scheme have been compared

with other algorithms and mechanisms to insure its effec-

tiveness. The concluded results as compared to other

mechanisms prove that the suggested approach (PSOGSA)

has a highest accuracy and superiority to overcome the

problems of optimum siting and sizing of the SCBs in

various distribution networks. It is shown that the

upgrading in the profile of voltage, minimizing the active

power and energy losses besides TOC of the network and

the correction of power factor are sufficiently realized.

Table 9 Quality indexes employed for evaluating the performance of

PSOGSA algorithm

Metric Abbreviation Formula

Relative error RE
Pnr

i¼1
VLCIi�VLCIminð Þ
VLCImin

� 100%
Mean absolute error MAE

Pnr

i¼1
VLCIi�VLCIminð Þ

nr

Root-mean-square error RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnr

i¼1
VLCIi�VLCIminð Þ

nr

r

Standard deviation SD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnr

i¼1
VLCIi�VLCIð Þ
nr

r

Efficiency – VLCImin

VLCIi
� 100%

Table 10 Performance evaluation of PSOGSA algorithm under different cases of Study ‘‘number of runs is 30’’

System Best minimum value of

objective function

VLCIBest

Worst value of

objective function

VLCIworst

Median SD

(%)

Average

RE

MAE mean

absolute

error

RMSE root-

mean-square

error

Number

of failed

runs

Efficiency

(%)

33-bus 0.3685 0.3717 0.3685 0.0577 0.0102 1.2573e-04 5.9056e-04 2 99.9661

69-bus 0.3625 0.3729 0.3625 0.1912 0.0289 3.4904e-04 0.0019 1 99.9064

11-bus 0.3644 0.3689 0.3644 0.0823 0.0124 1.5027e-04 8.2305e-04 1 99.9593

Fig. 13 The change of objective

function (VLCI) with iterations

number for 111-bus of Moscow

region
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Fig. 14 The change of objective

function (VLCI) with iterations

number for 33-bus IEEE system

over 30 times of run

Fig. 15 The change of objective

function (VLCI) with iterations

number for 69-bus IEEE system

over 30 times of run

Fig. 16 The change of objective

function (VLCI) with iterations

number for 111-bus Moscow

region over 30 times of run
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