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Abstract
The high-dimensional data are often characterized by more number of features with less number of instances. Many of the

features are irrelevant and redundant. These features may be especially harmful in case of extreme number of features

carries the problem of memory usage in order to represent the datasets. On the other hand relatively small training set,

where this irrelevancy and redundancy makes harder to evaluate. Hence, in this paper we propose an efficient feature

selection and classification method based on Particle Swarm Optimization (PSO) and rough sets. In this study, we propose

the inconsistency handler algorithm for handling inconsistency in dataset, new quick reduct algorithm for handling

irrelevant/noisy features and fitness function with three parameters, the classification quality of feature subset, remaining

features and the accuracy of approximation. The proposed method is compared with two traditional and three fusion of

PSO and rough set-based feature selection methods. In this study, Decision Tree and Naive Bayes classifiers are used to

calculate the classification accuracy of the selected feature subset on nine benchmark datasets. The result shows that the

proposed method can automatically selects small feature subset with better classification accuracy than using all features.

The proposed method also outperforms the two traditional and three existing PSO and rough set-based feature selection

methods in terms of the classification accuracy, cardinality of feature and stability indices. It is also observed that with

increased weight on the classification quality of feature subset of the fitness function, there is a significant reduction in the

cardinality of features and also achieve better classification accuracy as well.

Keywords Feature selection � Rough sets � New quick reduct � Inconsistency handler � Classification � Fitness function �
Particle Swarm Optimization

1 Introduction

Feature selection and classification are two important tasks

in the fields of machine learning, pattern recognition and

data mining [1]. Feature selection is the process of

choosing a feature subset by eliminating irrelevant and

redundant features from the given original feature set to

form the pattern in a dataset. The selected subset should be

sufficient to describe the target class with higher accuracy

[2]. To handle imprecise and inconsistent information (i.e.,

noisy, irrelevant and relevant) in the real-world task, there

is a need of feature selection [3]. Rough sets [4–6] can

handle uncertainty and vagueness, discovering patterns in

inconsistent data. It is a useful feature selection method in

pattern recognition [7], in which selected feature subset can

be predict the target concepts and the original feature set as

well. The aim for feature selection based on rough set is to

find minimal reduct with high classification accuracy

according to the selected feature subset [7–9]. The

advantages of feature selection are to reduce the dimen-

sionality, computational complexity and search space for

classification algorithms, and improve the classification

performance [10].

There are two important part of feature selection

methods as evolution criteria and search strategy. Based on

evaluation criteria, the feature selection methods are clas-

sified into wrapper approaches, filter approaches and
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hybrid approaches [11]. Wrapper approach incorporates a

learning algorithm as a part of the evaluation procedure,

while filter approach does not. Therefore, wrappers

approach can regularly accomplish the preferred outcomes

over filter approach [12], but its computational cost is high.

Filter approach is computationally less expensive and more

general than wrappers approach, but appropriate evaluation

criteria is needed for filter approach. Hybrid approach uses

the independent measure to decide the best subsets for a

given cardinality and uses the mining algorithm to select

the final best subset among the best subsets [12]. Based on

search strategy, feature selection is a difficult problem

mainly due to the large search space, which increases

exponentially with respect to available number of features

[13]. Therefore, an exhaustive search is practically

impossible in most of the situations. Several heuristic

search techniques have been applied for feature selection as

greedy search-based techniques [2]. However, most of the

existing algorithms are still stuck at local optima or being

computationally costly [14]. So, an efficient global search

technique like Evolutionary Computing (EC) is introduced

for better addressing the feature selection problem. EC

technique has been applied for feature selection problems

such as Genetic Algorithms (GAs) [15, 16], Genetic Pro-

gramming (GP) [17], Ant Colony Optimization (ACO)

[18], Particle Swarm Optimization (PSO) [19]. PSO is a

relatively recent EC technique, which is computationally

less costly and gives better result than some other EC

algorithms [20, 21].

In this paper, an efficient feature selection method is

proposed that explores how PSO and rough set techniques

can be viable to discover optimal reduct. Kennedy and

Eberhart [22, 23] proposed evolutionary computation

technique like PSO. It mimics the behavior of flying birds

and their means of information exchange to solve opti-

mization problems [24]. It is especially alluring for feature

selection, in which particle swarms will discover the best

feature subset as they fly within the problem space. PSO

with rough set has been successfully applied to find the

reduced feature subset from original feature set, and results

demonstrate that it beats some conventional and EC-based

existing feature selection methods as far as features car-

dinality, classification accuracy and computational cost

[25]. The performance of the proposed method is computed

on six datasets. It can be observed that PSO and rough set

have strong search capability in problem space and can

discover quick reduct.

1.1 Objective and contribution

This paper aims to develop a feature selection and classi-

fication algorithm with the expectation of selecting a small

feature subset while achieving higher classification

accuracy. This has been achieved with rough set and PSO

as described in Algorithm 3 (EPSORSNA). The proposed

method is examined on nine benchmark datasets with dif-

ferent numbers of features, classes and instances. Specifi-

cally, with the following considerations:

(a) To develop a new quick reduct algorithm using

rough set theory for handling redundant and noisy

features (i.e., Algorithm 1).

(b) To develop an inconsistency handler algorithm for

handling the inconsistency in datasets using rough

set theory (i.e., Algorithm 2).

(c) To develop a fitness function by considering three

parameters such as classification quality of feature

subset, remaining features and accuracy of approx-

imation (i.e., Eq. 16).

(d) To develop an efficient feature selection and classi-

fication method based on rough sets and PSO in

high-dimensional data (EPSORSNA) (i.e., Proposed

Algorithm 3).

(e) To investigate whether this proposed algorithm can

perform better on reduced feature subsets than the

whole feature sets and existing algorithm as well.

(f) To investigate whether there is an significant effect

on results for tunable parameters of the algorithm

using different weights for parameter of fitness

function, so that the performance may increase to

some extent (i.e., cardinality of feature subsets and/

or classification accuracy).

(g) To investigate the effect on the performance of

stability indices for assigning different weights as

mentioned above.

The rest of this paper is structured as follows. Section 2

describes the fundamentals of rough set theory, PSO, sta-

bility indices and related works on feature selection.

Existing feature selection methods based on PSO and rough

set and proposed approaches are introduced in Sect. 3. The

effectiveness of the proposed method and comparison with

other existing methods are demonstrated in Sect. 4. Finally,

Sect. 5 shows the conclusions and future work.

2 Preliminaries

2.1 Rough set theory

Rough set theory (RST) [4] is a mathematics based

approach used to handle imprecision, vagueness and risk-

iness. Every instance (object) of universe has some infor-

mation in an information system. Objects characterized by

the similar information are indiscernible according to the

present information about them. Any union of elementary

sets (any set of indiscernible objects) are known as crisp
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set, and other than crisp set is rough (imprecise, vague).

Vague concepts cannot be categorized according to infor-

mation they are having. A rough set is the approximation of

a vague concept based on two basic concepts, known as

lower and upper approximation of set.

The fundamental favorable position of rough set is that

it need not bother with any earlier information about the

data. Feature selection is performed in rough set using only

the granularity structure of the data [5].

Let Z ¼ ðU, l, M, NÞ be an information system, where

universe (U) is a non-empty finite set of objects, M, N � L,

and they are known as condition and decision attributes and

L is a non-empty finite set of attributes, respectively [6].

For 8a 2 L determines a function Fa : U �! Va. If T� L,

there is an associated equivalence relation:

INDðTÞ ¼ fðg; hÞ 2 U � Uj8a 2 T;FaðgÞ ¼ FaðhÞg:
ð1Þ

If two objects in U satisfy IND(T), they are indiscernible

with respect to T. The IND(T) equivalence relation origi-

nates a partition of U denoted by U/T, which originates the

concept of the equivalence classes. The equivalence class

of U/T containing g is given by ½g�P ¼ ½g�L ¼ h 2 U j
(g;h) 2 IND(T). The equivalence classes are the basic

blocks to construct rough set approximations. For D � U, a

lower approximation(TD) and an upper approximation

( �TD) of D with respect to IND(T) are defined as follows

[10, 25].

TD ¼fg 2 U j ½g�T � Dg; ð2Þ
�TD ¼fg 2 U j ½g�T \ D 6¼ £g; ð3Þ

where TD and �TD represent those objects which are surely

belong to the target set D, and the objects which are surely

or probably belong to the target set D, respectively. The

C-positive region of N is the set of all objects from the

universe U which can be classified with certainty to classes

of U/N employing attributes from M, i.e., Let M,N � L be

equivalence relation over U, and then the positive, negative

and boundary region can be defined as:

POSMðNÞ ¼
[

D2U=N

MD:

NEGMðNÞ ¼U �
[

D2U=N

�MD

BNDMðNÞ ¼
[

D2U=N

�MD�
[

D2U=N

MD:

The M-positive region of N is the set of all objects from the

universe U which can be classified with certainty to classes

of U/N employing attributes from M, i.e., where MD

denotes the lower approximation of the set D with respect

to M, i.e., the set of all objects from U that can be with

certainty classified as elements of D based on attributes

from N. Rough set reduct can be found by using the degree

of dependency [25]. The dependency function calculates

the approximating power of a feature set (i.e., Eq. 4).

cMðNÞ ¼ jPOSMNj
jUj : ð4Þ

Dispensable and indispensable features: Let m 2 M, if

POSM�mðNÞ = POSMðNÞ; then a feature m is dispensable in

Z; otherwise, feature m is indispensable in Z. If m is an

indispensable feature, deleting it from Z will cause Z to be

inconsistent. Z is independent if all m 2 M are

indispensable.

Reduct: A set of features R �0 M is called a reduct of M, if

Z
0
= (U, L, M, N) is independent and POSRðNÞ =

POSMðNÞ. In other words, a reduct is the minimal feature

subset that follows the above condition.

Core: The set of all the features indispensable in M is

denoted by Core(M), in which Core(M) =
T

Red(M) where

Red(M) is the set of all reduct of M.

An ordered pair (TD, �TD ) is known as an rough set. A

reduct is the imperative piece of Z = (U, L) (rough set),

which can able to achieve same approximation power of

classification like as original feature set L. There could be a

wide range of reduct, but the goal of feature selection using

RST is to eliminate redundant and irrelevant attributes to

search for the reduced reduct. Therefore, researchers

explore the probabilistic RST to relax the definitions of the

lower and upper approximation [25]. The lower estimate is

re-imagined as Eq. (5), where lT [d] demonstrates is char-

acterized as an approach to compute the fitness of a given

instance d2D shown in Eq. (6).

apr
T
D ¼ fd j lT ½d� � ag; ð5Þ

where

lT ½d� ¼
j ½D�T \ D j

j½D�T j
; ð6Þ

where a can be fixed to restrict or loosen up the lower

approximation. In the event that most number of objects

(D) are in the goal set yet a little number are not in a given

equivalence class, it can incorporate them in the lower

approximation. apr
T
½D� at the point when a ¼ 1.

According to the theoretical perspective, Yao and Zhao

[25] suggest that RST can be a better approach for feature

selection tasks. However, it has not proven experimentally.

2.2 Particle swarm optimization

For D-dimensional search space and N particles, let X be

the particle of the population, pbest is the personal infor-

mation or self-best solution obtained so far, gbest is the
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best solution obtained by the particle population so far, and

V be the velocities of the particles. X and V are represented

by NxD matrix, and pbest and gbest are represented by 1xD

vector.

For the initialization of the particle population, Eq. (7) is

used.

Xi;jð0Þ ¼ Lmin
j þ r

j
i � ðUmax

j � Lmin
j Þ; ð7Þ

where i ¼ 1; 2; . . .;N; j ¼ 1; 2. . .;D, Lmin
j is the lower

bound of the search space for jth dimension, Umax
j is the

upper bound of the search space for jth dimension and r
j
i is

a random number produced for each particle for each

dimension, in range of [0,1].

Vi;jð0Þ ¼ ½Lmin
j þ r

j
i � ðUmax

j � Lmin
j Þ � Xi;jð0Þ�=2; ð8Þ

where i ¼ 1; 2; . . .;N and j ¼ 1; 2. . .;D. The initialization

of velocities of the particles depends on both the upper and

lower bounds of search space and the current particle

positions (Eq. (8) [26]). In the initialized stage, the current

particle positions are assigned as self-best solution (pbest)

of the particles.

The best solution of the population in the initialized

phase is determined using Eq. (9).

gbest ¼ Bestf ðanypbestÞ; where i ¼ 1; 2; . . .;N: ð9Þ

PSO is an iterative algorithm. So, Eqs. (9–12) are executed

repeatedly until a pre-determined termination is met.

Xtþ1
i;j ¼ xti;j þ vtþ1

i;j i ¼ 1; 2; . . .;N and j ¼ 1; 2; . . .;D

ð10Þ

Vtþ1
i;j ¼ w � xti;j þ c1 � r1i;j � ðpbest

ðtÞ
i;j � xti;jÞ

þc2 � r2i;j � ðgbest
ðtÞ
j � xti;jÞ

ð11Þ

pbestitþ1 ¼
Xtþ1
i if f ðXðtþ1Þ

i better than pbest
ðtÞ
i Þ

pbest
ðtÞ
i otherwise

(

ð12Þ

In Eq. (10), w is inertia weight [21] and it is not in the basic

PSO algorithm but it is used in all contemporary versions

of PSO algorithm.

2.3 Stability indices

The stability indices are also important characteristics for

feature selection methods, in which the relevant features

should not change for different samples of data, when the

target concept of datum is fixed. There are several stability

calculation methods for the purpose of calculating stability

indices for feature selection methods, and these methods

are categorized according to index based, rank based and

weight based [8].

So, here we are going to discuss some common stability

indices methods like as Dice, Tanimoto and Jaccards

indices:

(a) Dices coefficient: Dice index is used to evaluate the

overlap value between two feature sets, and it takes

the value between 0 and 1, where 1 means both

feature sets are identical and 0 means no overlap-

ping. The dice index between two feature sets L1 and

L2 is given by:

Dice(L1’,L2’)= (2jL01 \ L02j)/(jL01 [ L02j).
(b) Tanimoto index and Jaccards index: They calculate

the value of overlap between two feature sets the

range of overlap is same as dice index: Jaccard

(L1’,L2’) = (2jL01 \ L02j)/(jL01 [ L02j), Tani-

moto(L1’,L2’) = (jL01j?jL02j-2jL01 \ L02j)/(jL01j?jL02j-
2jL01 [ L02j. In general, all three stability measure-

ment methods behave same in all cases. But, it notice

that dice index gives result slightly better than other

with respect to the intersection between two feature

subsets and set of different feature subsets. All three

takes number of features into account rather than

dimensionality d into account [27].

2.4 Related work on feature selection

2.4.1 Traditional feature selection methods

Hall [28] proposes the method based on correlation

between attributes and class labels for feature selection

(Cfs). Filter algorithm, FOCUS [29] is based on the con-

cept of exhaustive search, which means it examines all

possible feature subsets and then selects smaller feature

subset, which is very costly. Two generally used methods

as Sequential Forward Selection (SFS) and Sequential

Backward Selection (SBS) are based on the concept of

greedy search. In SFS [30], once a feature is added, it

cannot be deleted later on, and in SBS [31], once a feature

is deleted, it cannot be added later on. However, this causes

the problem of the so-called nesting effect. Stearns [32]

proposed a method ‘‘plus-l-take away-r’’ for overcoming

the problem of nesting effect in which there were l times

forward selection and r times backward selection. How-

ever, finding the optimal value for (l,r) is a difficult

problem.

2.4.2 Evolutionary computing methods for feature
selection

EC techniques have been used to address feature selection

tasks. Based on fuzzy sets, GA, PSO, ACO and GP,

Chakraborty proposed a GA [33] and PSO [34]-based
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feature selection methods. The comparison shows that PSO

outperformed GA method. Based on GP, the multi-objec-

tive filter feature selection problem in binary classification

was proposed by Kourosh and Zhang [35]. Based on ACO

and fuzzy-rough theory, feature selection method for web

content classification and complex system monitoring were

proposed by Jensen [36]. Mohamed Abd El Azizet et al.

[37] proposed the feature selection method based on

modified cuckoo search and rough set.

Wang et al. [38] proposed an improved binary PSO and

rough set methods for feature selection. Chen et al. [39]

proposed an ACO-based rough set approach for feature

selection. Cervante et al. [40] proposed dimensionality

reduction approach based on PSO and rough set theory.

Rman et al. [41] proposed feature selection and recognition

using rough set methods. Yang et al. [38] proposed a fea-

ture selection based on PSO and rough sets. Xue et al.

[11, 42] proposed a multi-objective feature selection

method using BPSO and RST. However, the RST for

feature selection has not been fully explored for feature

selection in terms of classification accuracy, cardinality of

feature (reduct) and computational cost. Therefore, the

development of efficient method based on PSO and RST

for feature selection is still an open issue.

3 Existing and proposed methods

We have proposed an efficient feature selection method

using PSO and probabilistic RST (EPSORSNA). To com-

pare the performance of proposed method, three existing

feature selection methods are briefly described (PSOPRS,

PSOPRSN and PSOPRSE), which provide an idea about

proposal method. When using RS for feature selection, a

dataset should be represented as an information system

Z = (N, E), where E represents a number of attributes or

features. According to the equivalence relation described

by E, N can be partitioned as N1,N2,N3, . . . ,Nn, where n

represents the number of classes in datasets. After per-

forming feature selection, the result is achieved as feature

subset P2E. Therefore, the fitness of P can be calculated by

how well P represents each target set in N, i.e., a class in

the datasets.

3.1 Existing feature selection methods based
on PSO and rough set

• PSOPRS: As discussed in Sect. 2.1, the definition of

lower and upper approximation limits the application of

standard RST. Therefore, a feature selection method

(PSOPRS) based on PSO and probabilistic rough set

(PRS) was proposed [40]. In PSOPRS, for target set N1

in PRS defined by Eq. (6) where lP½x� quantifies the

proportion of ½x�P is in N1; aprPN1 in Eq. (5) defines the

lower approximation of P according to N1. ½x�P only

contains instances in N1. a can be adjusted to restrict or

relax apr
P
N1. Therefore, how well P depicted the target

class in N can be assessed by Eq. (13), which is the

objective function in PSOPRS. Equation (13) essen-

tially measures the number of instances that P correctly

makes indistinguishable from others of the same

classification.

FitnessðPÞ ¼
Pn

i¼1 japrPNij
jNj : ð13Þ

• PSOPRSN: PSOPRS based on probabilistic RST, in

which the cardinality of the feature is not considered as

a part of fitness function, if two feature subsets have

same fitness values, PSOPRS does not necessarily

select the smaller one. Therefore, cardinality of feature

is added into the fitness function to introduce the new

fitness function (new algorithm PSOPRSN)[40], which

aims to maximize the representation power of the

feature subset and with same time minimize the size of

the feature subset, according to Eq. (14).

FitnessðPÞ ¼ c �

Pn

i¼1

japr
p
Xij

jNj þ ð1� cÞ � 1�M

T

� �
:

ð14Þ

where M is the number of selected attributes, T is the

total number of attributes, and c 2[0,1] indicates how

much importance is given to representation power of

the attributes subset, while (1-c) indicates how much

importance is given to the cardinality of feature. When

c = 1.0, PSOPRSN regenerates PSOPRS.

• PSOPRSE: Improving the performance of PSOPRSN,

Cervante et al. [11] uses probabilistic RST to develop a

new function to minimize the size of reduct, which

aims to minimize the number of equivalence classes

and maximize the number of instances in each equiv-

alence class. According to these parameters, PSOPRSE

is introduced [42], in which Eq. (15) uses as a objective

function.

FitnessðPÞ¼
Pn

i¼1 japrpNij
jNj þ

Rx2equivlenceclasses
jxj
jNj

no. of equivalence classes
:

ð15Þ

3.2 Supportive proposed algorithms

We have proposed two new algorithms, first algorithm is

used for evaluation of quick reduct (feature subset) from
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given datasets. Second algorithm is used for handling

inconsistency in datasets and it is fruitful for small dataset.

3.2.1 New quick reduct algorithm (NQR)

Nowadays, finding feature reduct of a decision table has

been got much more intention in research point of view.

The proposed algorithm (i.e., Algorithm 1) calculates the

minimal reduct without examine all exhaustive generated

subsets. It starts with empty set and then add l features and

delete r feature at a time, according to dependency degree,

until this procedure its maximum possible value for dataset.

According to the new quick reduct algorithm, first take

the subset of l features and then calculate the dependency

degree of {R [ l}, if dependency degree is greater than

dependency degree of previous features of R, then add l

with R. Second, take subset of r features from R and then

calculate the dependency degree of {R-{r}}, if dependency

degree is greater than dependency degree of only R and

then delete r from R. However, it is not guaranteed to find

minimal feature subset as its to greedy. Using dependency

degree to discriminate the features most of the time gives

the optimal feature subset.

The proposed New Quick reduct (NQR) algorithm also

has been compared with existing feature reduct methods,

Supervised Quick Reduct (SQR) [43] and Supervised

Relative Reduct [43] in terms of size of reduct. The

experimental results and comparison can be seen in

Sect. 4.2.2.

Algorithm 1: Find Speedy Reduct(NQR(P,D))
Input : P: Represent the set of all condition feature;

D: Represent the set of decision feature;
l,r: Represents the set of feature for add and

delete purpose;
Output: Return γR(D). where, R is the Reduct

1 R← {}
2 Do
3 M← R
4 ∀l ⊂ (P − R)

5 γR∪{l}(D)=
|PosR∪{l}(D)|

|U |
6 if γR∪{l}(D) > γM (D) then
7 R ← R ∪ {l}
8 end
9 R← M

10 T=R
11 r ⊆ l
12 R=R-{r}
13 γR∪(D)=

|PosR(D)|
|U |

14 if γR∪(D) > γT (D)) then
15 R ← R − {r}
16 end
17 R=T
18 While(γR(D)= γP (D))

3.2.2 Inconsistency handler algorithm

When decisions are inconsistent because of not clear

information present in decision table. Therefore, decision

makers hesitate to take the clear decision because of

inconsistency. These inconsistencies are not taking as

simple error or noise. They can create problem at the time

of constructing decision makers preference model. The

rough set varies good to deal with inconsistency.

According to Algorithm 2, first separate the conflicting

instances from tables and than remove the instances with

less support according to quality measure of lower and

upper approximation.
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Algorithm 2: Inconsistency Handler Procedure
Input : X ⊆ U ;

U=Number of Objects;
D= Decision Variable and D ∈ {0,1};

Output: Return X1;
1 X= XD=0+ XD=1;
2 Calculate upper and lower approximation BXD=1,

BXD=0, BXD=1 and BXD=0;
3 Calculate the accuracy of lower and upper

approximations γD=1=
|BXD=1|

|X| , γD=0=
|BXD=0|

|X| ,

γD=1=
|BXD=1|

|X| and γD=1=
|BXD=1|

|X|
4 if γD=1 < γD=0 then
5 X1 = XD=0 + {XD=1 - BXD=1 }
6 end
7 else
8 X1 = XD=1 + {XD=0 - BXD=1}
9 end

10 OR
11 ifγD=1 < γD=0) X1 = XD=0 + {XD=1 - BXD=1 }

else
12 X1 = XD=1 + {XD=0 - BXD=1}
13 end

3.3 Proposed method (EPSORSNA)

In PSOPRSN, cardinality of feature is directly considered

in the objective function. By setting the value of c, it is
anticipated that it would choose smaller feature subset with

better (equal) or slightly reduced classification accuracy in

PSOPRSN. Be that as it may, in PSOPRSN it may be not

accomplished as a result of probabilistic nature of RST. In

order to solve this problem, PSOPRSE was presented in

which the size of equivalence classes and representation

power of feature subset into fitness function were consid-

ered and a new method was proposed to select reduced

reduct. The aim of this fitness function is to minimize the

number of equivalence classes and maximize the number

of instances in each equivalence class. PSOPRSE can

obtain a small reduct with average good classification

accuracy, but it not performs well on unseen test dataset

every time and takes more computational time.

In order to solve this issue, we proposed EPSORSNA

method in which the classification quality of feature subset,

the number of features and accuracy of approximation are

directly considered in fitness function. By adjusting the

values of a, b and c, we expected to find a smaller feature

subset with high classification accuracy. However, this

might be achieved by EPSORSNA (i.e., Algorithm 3).

3.3.1 Proposed fitness function

We define the fitness function in Eq. (16):

FitnessðPÞ ¼ a	 NQRðP;DÞ þ c	 aPðXÞ þ b

	 1� jRj
jTj

� �
:

ð16Þ

where |R| is the number of selected features, |T| is the total

number of features, NQR(P,D) is the classification quality

of conditional attribute set P relative to decision D, which

is evaluated according to Algorithm 1 and ap(X) is the

accuracy of approximation and its calculated according to

Eq. (17). The a ,b, and c are three parameters crossroading

to the importance of the classification quality of feature

subset, number of features and accuracy of approximation,

a, b, c 2 f0; 1g. where, (a ? b ? c = 1), b = rand(0,

1 - a) and c = (1 - a - b)
Accuracy of approximation:

aPðNiÞ ¼
jPNij
jPNij

: ð17Þ

where jPXj and jPXj are lower and upper approximation,

respectively. If aPðXÞ ¼ 1, then it is called crisp set;

otherwise, it is called non-crisp set.

Algorithm 3: EPSORSNA Algorithm
Input : M: The swarm size, D: The dimensional

c1 and c2,: Positive acceleration constants ;
W: Inertia weight;
Vmax: Represent max velocity of particles;
Genmax: Represent max generation;
Fitmax: Represent highest fitness value;

Output: Compute the performance of the selected
feature subset on Test set;
Return best feature subset(gbest);
Return the classification accuracy of Test

set;
1 Divide data into training and test set;
2 Handle the inconsistency of training set with set of

attributes according to Algorithm(2);
3 Swarm{xid, vid}= Generate(M); /*Initialization is

done by Eq. (6) and (7) on D dimensional*/
4 pbest(i)=0; i=1......M, D=1.......S;
5 gbest=0, Iter=0;
6 while Iter< Genmax and gbest<Fitmax do
7 Compute the fitness value of every particle on

Training set (According to Eq. (16));
8 for i=1 to M do
9 The pbest of particle i is updated by Eq. (12);

10 The gbest of particle i is updated by Eq. (9);
11 end
12 for i=1 to M do
13 for D=1 to S do
14 Velocity of the particle i updated by using

Eq. (11);
15 Position of the particle i updated by using

Eq. (10);
16 end
17 end
18 end
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In this fitness function, the classification quality of

feature subset, cardinality of feature subset and accuracy of

approximation have different importance for feature

selection task. In our experiment, we take different values

of a , b, and c for finding reduced feature subset with high

classification accuracy. The goodness of each position is

evaluated by this fitness function. The criteria are to

maximize fitness value.

3.3.2 Procedure

In this experiment, we used PSO for selection of optimal

feature subset in which the number of feature subsets are

there in feature space. Every feature subset represents

position in feature space. If N is the number of features,

then the total 2N possible number of feature subsets, and

these all are different from each and other with respect to

size or number of features contained by feature subset. The

optimal position (feature subset) is having a small number

of features with high classification accuracy in the given

feature space. The procedure for selecting optimal feature

subset using proposed Algorithm 3, it finds the reduct set

without generating all possible subset. It starts with

dividing the dataset into two parts, training set and testing

set. Apply step 2 handling the inconsistency in training set,

if the training set has less number of features; otherwise,

directly go to step 3. In next steps, we consider particle

swarm into this feature space, in which every particle is

occupied by one position. The particles fly in this feature

space and try to find best position. For every iteration, all

the particles change their position, communicate with each

other and try to find local best and global best according to

fitness function (Eq. 16). After that, eventually they should

converge on good, possibly optimal position. Therefore, we

can say that PSO with rough set has the exploration ability

of particle swarms to converge on global optima for dis-

cover optimal feature subset.

To apply PSO for optimal feature subset, the below

given subsection is important.

3.3.3 Encoding

For applying the proposed method, each particle position is

represented as binary string of length N, where N is the

total number of attributes. Every bit represents an attribute,

the value ‘1’ means the corresponding attributes is selected,

while ‘0’ means not selected. For example, if x, y and z are

attributes and if the selected random particle is (1, 1, 0),

then the attribute subset is (x, y)

3.3.4 Representation of velocity and updating position

Each particle of the PSO is associated with positive

velocity within range 1 and Vmax. It indicates the number

of particles bits (i.e., feature) change as global best position

in particular moment of time. So, velocity of the particle is

flying according to the best position of the particle. The

difference between two positions of the particle is same as

the different bits lie between two particles. An example

illustrates as follows:

Let Pi ¼ ½0 1 0 0 1 0 1 1 1 0� and

Pgbest ¼ ½1 1 0 0 1 0 1 0 1 1�, and then the difference between

the current position of the particle and gbest is Pgbest-Pi =

[1 0 0 0 0 0 0 -1 0 1]. ‘1’ means that, this bit compared

with gbest, this feature (bit) should be selected but it is not,

which will decrease classification performance. On the

other hand, ‘-1’ means that , this bit compared with gbest,

this feature (bit) should not be selected but it is. Both the

cases lead to a lower fitness value.

3.3.5 Position updating strategies

After updation of velocity, the position of particle updated

according to the new velocity. if V is the new velocity and

xg is the number of different bits between Pgbest and Pi (i.e.,

xg = Pgbest-Pi ). Then position updation done according two

situation [43]:

1. V 
 xg. In this situation, if the velocity of particle less

than or equal to the number of different bits between

current particle and gbest. V bits of particle are

randomly changed, which is different from that of

gbest. The particle then moves toward the global best

while keeping its exploration ability.

2. V[xg. In this situation, in addition to changing all the

different bits to be same as that of gbest, a further (V-

xg) bits should be randomly changed. So, after the

particle reaches the global best position, it keeps on

moving some distance toward other directions,

enabling further search.

3.3.6 Velocity limitation

In experiment, the velocity of particle was initially limited

to the range [1,N]. However, it was observed that after

several iteration the swarm converges to be the best solu-

tion but not guarantees optimal solution, and during these

iteration, the gbest remained stationary. Hence, this shows

that the velocity varies high and particles often ‘fly past’

the optimal solution. This problem is overcome by limiting

the range of velocity with in [1, (1/3)*N] and setting the

Vmax = (1/3)*N. After limiting the Vmax, the particles
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cannot fly too far away from the optimal solution. Once

finding a global best position, other particles will adjust

their velocities and positions, searching around the best

position [43].

4 Experimental results and discussion

4.1 Experimental setup

To assess the performance of the proposed method, a set of

experiments have been led on given datasets (i.e., Table 1)

[44]. These nine datasets have diverse numbers of instan-

ces, features and classes that are utilized as representative

example of the issue where the proposed method will be

examined. RST only works on discrete or categorical data.

In Table 1, first six datasets are categorical, where RST can

work easily. All the discrete datasets have a small number

of features. To further test the performance of proposed

method, we added three more datasets (i.e., Musk 1,

Semeion and Madelon), which are continuous dataset. To

keep RST in mind, we applied filter discretization tech-

niques in WEKA [45] tool to pre-process continuous data

to discrete data. In each dataset, 70% and 30% instances

are picked as the training and testing sets. The proposed

method first runs on training set and selects set of features,

and this process is also independent on any classification

algorithm. The performance of test set is evaluated by

classification algorithm according to the selected training

attributes. Decision Trees (DT) and Naive Bayes (NB) are

used in the experiment as classifier (Table 2).

The values of a ought to be greater than 0.5 in light of

the fact that the lower approximation in RST characterizes

that 50% instances in each equivalence class have a place

with target set. In view of existing work [40], the value of

ais 0.8 (for Eq. 5) for all methods in this experiment. In

each method, every particle is represented by binary string,

whose length is the aggregate number of attributes in the

dataset, which likewise represents the dimension of the

solution space. Binary strings ‘1’ and ‘0’ represent that

corresponding feature is chosen and that corresponding is

not chosen, respectively. The swarm size is 30, the fully

connected topology, w = 0.7298, vmax = 6.0, c1 = c2 =

1.49618 [21], and the maximum iteration is 200 uses for all

methods. In EPSORSNA, c is set as 0.9, 0.8, 0.7 and 0.5 to

demonstrate the distinctive significance of the classification

accuracy and the cardinality of features. Every algorithm is

conducted for 50 independent runs on every dataset.

To additionally analyze the accuracy of the proposed

method, two existing conventional methods (CfsF and

CfsB) in WEKA [45] are utilized as performance com-

parison. Hall proposed CfsF and CfsB [28] in view of idea

of correlation measure, which measure the correlation

between class label and attributes. The search technique

used in WEKA for forward selection (CfsF) and backward

selection (CfsB) methods is greedy search, and DT uses as

a classifier for computing the performance.

4.2 Experimental results and comparisons

Tables 3, 4 and 5 show the results of existing methods (i.e.,

PSOPRS, PSOPRSN and PSOPRSE) and the proposed

method (i.e., EPSORSNA). In Tables 3, 4 and 5, the result

of PSOPRSN is tested with values of c = 0.9 and 0.5,

respectively (i.e., PSOPRSN 0.9 and PSOPRSN 0.5).

The DT and NB are two classifiers used for computing

the performance of the selected attributes set on test set of

every dataset. In Tables 3, 4 and 5, ‘‘All’’ represents,

original feature set used for classification. ‘‘Size’’ repre-

sents average cardinality of feature subset selected in 50

independent runs. ‘‘Best’’ (i.e., Best accuracy) and ‘‘Ave’’

(i.e., Average accuracy) accuracy represent the best values

and the average values of the testing classification perfor-

mance achieved by every method throughout 50 indepen-

dent runs, respectively.

Table 6 shows the result of existing methods (i.e., SRR

and SQR) and proposed new quick reduct method (i.e.,

NQR) in terms of selected feature subset (i.e., reduct).

Table 7 shows the comparison result between proposed and

existing methods in terms of stability indices. Table 8

shows the experimental results of the proposed method

(i.e., EPSORSNA) for different weights in fitness func-

tions. In the Table 8, ‘‘Size’’, ‘‘Ave’’ (i.e., Average accu-

racy) and ‘‘Best-Acc’’ (i.e., Best accuracy) have the same

meaning as in Tables 3, 4 and 5. Figure 1 shows the

comparison between existing methods and the proposed

method on nine given datasets in which, Fig. 1a shows the

comparison between existing methods and EPSORSNA in

terms of number of feature, where ‘‘X-Axis’’ represents

particular dataset and ‘‘Y-Axis’’ represents the size of

Table 1 Datasets

Dataset #Features #Classes #Instances

Lymphography 18 4 148

Waveform 40 3 5000

Dermatology 33 6 366

Soybean large 37 19 307

Chess 36 2 3196

Statlog 36 6 6435

Musk Version 1(Musk 1) 166 2 476

Semeion 256 2 1593

Madelon 500 2 4400
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Table 2 Result of traditional

algorithm with DT as classifier
Dataset Waveform Dermatology Soybean large Chess Statlog Lympho graphy

Methods Size (Acc) Size (Acc) Size (Acc) Size (Acc) Size (Acc) Size (Acc)

CfsF 32 (72) 16 (87.63) 13 (83.79) 5 (77.43) 4 (71.71) 4 (86.37)

CfsB 32 (72) 19 (87.71) 14 (86.61) 6 (79.21) 4 (71.71) 3 (85.43)

Table 3 Result of Chess,

dermatology and lymphography

datasets

Dataset Method Size DT NB

Best (Ave Acc)% Best (Ave Acc)%

Chess All 36 98.5 87.89

PSOPRS 30.49 98.57 (98.37) 91.11 (88.47)

PSOPRSN 0.9 17.03 98.5 (98.01) 93.45 (91.39)

PSOPRSN 0.5 8.4 97.63 (94.98) 93.08 (92.03)

PSOPRSE 28.9 98.6 (98.43) 92.03 (89.31)

EPSORSNA 0.5 7.9 98.6 (97.99) 92.13 (91.71)

Dermatology All 34 82.79 95.79

PSOPRS 20.92 97.51 (86.03) 98.21 (92.76)

PSOPRSN 0.9 8.91 95.98 (93.31) 94.91 (80.10)

PSOPRSN 0.5 7.79 89.91 (83.91) 90.16 (82.44)

PSOPRSE 11.4 97.51 (92.03) 96.72 (92.67)

EPSORSNA 0.5 6.98 97.51 (91.92) 95.79 (91.07)

Lymphography All 18 75.51 87.76

PSOPRS 11.39 80.41 (73.38) 92.07 (84.83)

PSOPRSN 0.9 5.19 72.42 (65.78) 83.67 (78.16)

PSOPRSN 0.5 4.96 68.39 (63.79) 89.78 (81.46)

PSOPRSE 6.56 75.51 (70.12) 85.71 (81.70)

EPSORSNA 0.5 4.6 75.71 (72.79) 92.01 (89.31)

Table 4 Result of waveform,

Statlog and Soybean large

datasets

Dataset Method Size DT NB

Best (Ave Acc)% Best (Ave Acc)%

Waveform All 40 74.79 79.71

PSOPRS 24.47 77.37 (74.81) 81.27 (77.72)

PSOPRSN 0.9 8.36 77.17 (73.91) 75.75 (69.86)

PSOPRSN 0.5 7.7 72.92 (69.71) 75.01 (79.59)

PSOPRSE 18.3 77.17 (72.5) 81.27 (74.87)

EPSORSNA 0.5 7.1 75.91 (71.92) 77.0 (71.97)

Statlog All 36 86.39 82.61

PSOPRS 24.97 87.57 (85.47) 82.61 (82.06)

PSOPRSN 0.9 13.6 86.37 (83.92) 82.03 (81.39)

PSOPRSN 0.5 9.8 85.98 (84.32) 81.79 (80.21)

PSOPRSE 20.13 87.13 (85.91) 83.14 (81.91)

EPSORSNA 0.5 8.8 86.39 (85.19) 82.04 (80.91)

Soybean large All 35 81.94 90.31

PSOPRS 21.3 87.77 (80.01) 92.94 (85.39)

PSOPRSN 0.9 10.34 81.18 (72.36) 81.94 (76.9)

PSOPRSN 0.5 9.01 78.79 (72.98) 85.9 (76.04)

PSOPRSE 19.12 85.46 (80.9) 85.46 (81.22)

EPSORSNA 0.5 8.13 79.99 (73.13) 80.91 (72.79)
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selected feature subset. Figure 1b, c shows the comparison

between existing methods and EPSORSNA in terms of

classification performance, where ‘‘X-Axis’’ represents

particular dataset and ‘‘Y-Axis’’ represents the classifica-

tion accuracy (DT or NB as classifier) of selected feature

subset. And, color bar represents the particular method.

Figure 2 shows the comparison of the proposed method

with different a values on nine given datasets, in which

Fig. 1a shows the selected number of features by

EPSORSNA with different a values, where ‘‘X-Axis’’

represents particular dataset and ‘‘Y-Axis’’ represents the

size of selected feature subset. Figure 1b, c shows classi-

fication performances of EPSORSNA with different a
values, where ‘‘X-Axis’’ represents particular dataset and

‘‘Y-Axis’’ represents the classification accuracy (DT or NB

Table 5 Result of Musk 1,

Semeion and Madelon datasets
Dataset Method Size DT NB

Best (Ave Acc)% Best (Ave Acc)%

Musk 1 All 166 70.25 71.87

PSOPRS 101.1 77.85 (72.22) 78.09 (73.27)

PSOPRSN 0.9 44.77 77.22 (71.14) 81.14 (73.48)

PSOPRSN 0.5 44.77 77.22 (71.14) 81.14 (73.48)

PSOPRSE 81.13 76.58 (70.34) 80.81 (72.13)

EPSORSNA 0.5 37.09 79.01 (77.08) 82.52 (79.32)

Semeion All 256 94.35 87.31

PSOPRS 159.67 94.35 (92.52) 88.53 (84.05)

PSOPRSN 0.9 84.07 94.92 (92.35) 89.77 (86.92)

PSOPRSN 0.5 84.07 94.92 (92.35) 89.77 (86.92)

PSOPRSE 143.07 94.35 (92.27) 90.11 (88.21)

EPSORSNA 0.5 62.17 95.19 (93.37) 91.14 (89.77)

Madelon All 500 62.36 71.11

PSOPRS 301.97 82.91 (76.52) 83.27 (78.11)

PSOPRSN 0.9 183.43 82.68 (66.73) 84.29 (78.81)

PSOPRSN 0.5 183.43 82.68 (66.73) 84.29 (78.81)

PSOPRSE 301.97 82.91 (76.52) 84.72 (80.1)

EPSORSNA 0.5 160.13 84.09 (81.71) 85.72 (82.33)

Table 6 Results of RST-based proposed (i.e., NQR) and existing

methods (i.e., SRR and SQR)

Dataset SRR SQR NQR Min_Reduct

Lymphography 21 19 15 15

Waveform 19 22 7 7

Dermatology 9 8 6 6

Soyabean 29 27 13 13

Chess 22 20 24 20

Statlog 14 15 10 10

Musk 1 93 101 52 52

Semeion 253 250 74 74

Madelon 251 244 159 159

Table 7 Result of stability

indices
Dataset PSOPRS PSOPRSN PSOPRSE EPSOR EPSOR EPSOR

-SNA-0.9 -SNA-0.8 -SNA-0.7

Lymphography 0.99 1 1 1 1 1

Waveform 1 1 0.99 1 1 1

Dermatology 1 1 1 1 1 1

Soyabean 0.97 1 1 1 1 1

Chess 0.99 1 1 1 1 1

Statlog 0.96 0.98 0.97 1 1 1

Musk 1 0.96 1 1 1 1 1

Semeion 0.96 1 0.97 1 1 1

Madelon 0.96 1 1 1 1 1
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as classifier) of selected feature subset. And, color bar

represents the particular method. Figure 3 shows the

reduction in feature set, where ‘‘X-Axis’’ represents par-

ticular dataset and ‘‘Y-Axis’’ represents the size of selected

feature subset (i.e., reduct). And, color bar represents the

particular method.

4.2.1 Result of existing and proposed methods

PSOPRS: According to Tables 3, 4 and 5, PSOPRS selects

subset with around 75% features of available total features

in dataset and gets equal or higher classification accuracy

than using original feature set in almost all cases. Best

classification accuracy always better than using all feature

in all cases, but average classification accuracy not better

than using all features in some of cases. The outcomes

suggest that PSOPRS can be effectively selects reduced

feature subset with better or equal classification accuracy.

PSOPRSN: According to Tables 3, 4 and 5, PSOPRSN

further reduces the feature subset and improves the clas-

sification performance. PSOPRSN with small c selects less
number of feature unless large c because PSOPRSN with

Table 8 Result of EPSORSNA

algorithm with different a
values

Dataset Method Size DT NB

Best (Avg Acc)% Best (Avg Acc)%

Chess EPSORSNA 0.5 7.9 98.6 (97.99) 92.13 (91.71)

EPSORSNA 0.7 8.2 98.6 (98.01) 93.47 (91.81)

EPSORSNA 0.8 11.3 97.7 (95.69) 93.47 (91.81)

EPSORSNA 0.9 13.2 98.9 (98.10) 93.98 (91.82)

Dermatology EPSORSNA 0.5 6.98 97.51 (91.92) 95.79 (91.07)

EPSORSNA 0.7 6.99 97.51 (91.13) 95.84 (91.31)

EPSORSNA 0.8 7.17 97.98 (91.90) 95.97 (89.78)

EPSORSNA 0.9 7.37 98.07 (92.93) 98.31 (93.32)

Lymphography EPSORSNA 0.5 4.6 75.71 (72.79) 92.01 (89.31)

EPSORSNA 0.7 4.7 79.0 (73.73) 91.78 (84.79)

EPSORSNA 0.8 4.7 79.0 (72.73) 92.78 (89.07)

EPSORSNA 0.9 4.9 85.27 (79.16) 92.88 (89.14)

Waveform EPSORSNA 0.5 7.1 75.91 (71.92) 77.0 (71.97)

EPSORSNA 0.7 7.2 79.92 (77.12) 80.17 (72.79)

EPSORSNA 0.8 7.4 79.98 (76.63) 83.0 (72.4)

EPSORSNA 0.9 7.9 83.98 (78.11) 86.85 (82.69)

Statlog EPSORSNA 0.5 8.8 86.23 (85.19) 82.04 (80.91)

EPSORSNA 0.7 9.07 86.71 (86.01) 81.31 (80.17)

EPSORSNA 0.8 10.17 86.71 (84.21) 81.79 (79.33)

EPSORSNA 0.9 11.3 87.37 (85.79) 82.50 (79.98)

Soybean large EPSORSNA 0.5 8.13 79.79 (73.13) 84.91 (73.79)

EPSORSNA 0.7 8.13 81.98 (80.11) 87.81 (79.81)

EPSORSNA 0.8 8.27 87.16 (83.71) 89.37 (86.77)

EPSORSNA 0.9 8.39 88.92 (86.63) 94.79 (91.03)

Musk 1 EPSORSNA 0.5 37.09 79.01 (77.08) 82.52 (79.32)

EPSORSNA 0.7 38.17 79.07 (77.41) 83.02 (80.22)

EPSORSNA 0.8 39.31 79.87 (78.31) 83.22 (80.31)

EPSORSNA 0.9 39.97 80.02 (78.38) 83.87 (81.33)

Semeion EPSORSNA 0.5 62.17 95.19 (93.37) 91.14 (89.77)

EPSORSNA 0.7 64.11 95.88 (93.11) 92.16 (89.91)

EPSORSNA 0.8 68.05 96.01 (94.17) 92.16 (89.91)

EPSORSNA 0.9 68.05 96.01 (94.21) 92.79 (90.03)

Madelon EPSORSNA 0.5 160.13 84.09 (81.71) 85.72 (82.33)

EPSORSNA 0.7 162.37 84.09 (81.13) 85.72 (82.7)

EPSORSNA 0.8 167.42 86.93 (82.92) 84.83 (82.24)

EPSORSNA 0.9 167.42 86.93 (82.92) 86.95 (83.02)
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small c means given more importance to the cardinality of

feature and less importance to the classification perfor-

mance, vise versa for PSOPRSN with large c. Therefore,
the objective function will play important role in

PSOPRSN to search for resulted space with reduced feature

subset. The results show when the cardinality of features

reduces, the classification accuracy also decreases in most

of the situations. In PSOPRSN 0.9 and PSOPRSN 0.5,

classification accuracy is always better than using all fea-

tures in all cases, but average classification accuracy is not

better than using all features in some of cases. This sug-

gests that the parameter cprovides balance to the classifi-

cation accuracy and the cardinality of features.

PSOPRSE: According to Tables 3, 4 and 5, PSOPRSE

selects subset with around 50% features of available total

features in dataset and gets equal or higher classification

accuracy than using original feature set in almost all cases.

Classification performance always better than using all

features in all cases, but average classification accuracy is

not better than using all features in some of cases. The

results recommend the PSOPRSE considering the repre-

sentation power of the selected features and the number of

equivalence classes; both are part of fitness function, which

can successfully select reduced subset with better classifi-

cation performance than using original feature set.

EPSORSNA: According to Tables 3, 4 and 5, in most

cases, EPSORSNA 0.5 selects less than 25 % of the

available features and in terms of accuracy obtained better

accuracy than using all features (except classification

accuracy for soybean large dataset). Although, in some

cases, the average classification accuracy of the selected

features is little worse than using original feature set. The

results show that EPSORSNA 0.5 considering all three

parameter, representation power (classification perfor-

mance) of the selected attributes, cardinality of feature and

accuracy of approximation can successfully select reduced

feature subset with higher classification accuracy than

using original feature set.
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Fig. 1 Comparison between existing methods and the proposed

method on nine given datasets. a Comparison between existing

methods and EPSORSNA in terms of number of features. b Compar-

ison between existing methods and EPSORSNA in terms of

classification performances, where DT is a classifier. c Comparison

between existing and EPSORSNA in terms of classification perfor-

mances, where NB is a classifier
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4.2.2 Results and comparison of proposed algorithm (i.e.,
NQR) with SQR and SRR

The performance of the proposed RST-based new quick

reduct method is studied and compared with some existing

methods, SQR and SRR. The proposed method is applied

for feature selection and reduces the dimension of the

dataset. The experimental results are recapitulated in

Table 6. The first column consists of dataset names, and

the second and third columns consist of the result of pro-

posed and existing algorithms. The last column (i.e.,

Min_Reduct) consists of the minimum size of reduct

among three methods (i.e., SRR, SQR and NQR). Figure 3

shows the comparisons of the proposed algorithm with

existing methods, where ‘‘X-Axis’’ represents the size of

feature subset (i.e., reduct) and ‘‘Y-Axis’’ represents the

datasets, and color bar represents the particular method.

According to Table 6, the proposed method always

selects smaller feature subset (reduct) in all cases (except

Chess dataset). For example in waveform dataset, SQR and

SRR selected around 22 and 19 from the 40 original feature

set. The proposed method further reduces almost 68% and

63% feature of SQR and SRR, respectively. According to

Fig. 3, the proposed method outperformed the existing

methods in terms size of reduct in almost all cases.
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Fig. 2 Comparison of the proposed method with different a values on

nine given datasets. a Selected number of features by EPSORSNA

with different a values. b Classification performances of EPSORSNA

with different a values, where DT as a classifier. c Classification

performances of EPSORSNA with different a values, where DT is a

classifier
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4.2.3 Comparison of proposed algorithm (i.e., EPSORSNA)
with traditional algorithms

Experiments have been performed on traditional (CfsF and

CfsB) methods for dimensional reduction using WEKA as

a tool. Table 2 shows the experimental results of CfsF and

CfsB methods, where DT was used as a classifier. Tables 3,

4 and 5 show the experimental results of PSOPRS,

PSOPRSN, PSOPRSE and EPSORSNA methods, where

DT and NB were used as a classifier. Comparing the result

of Tables 3, 4 and 5 with experiment results of CfsF and

CfsB methods, we can see in all cases that PSOPRS,

PSOPRSN, PSOPRSE and EPSORSNA achieved much

more better classification accuracy than traditional meth-

ods, but CfsF and CfsB selected a equal number of

features.

4.2.4 Comparison of proposed algorithm (i.e., EPSORSNA)
with PSOPRS, PSOPRSN and PSOPRSE

According to Table 3, 4 and 5, comparing the results of

EPSORSNA with PSOPRS, EPSORSNA obtained better or

equal classification accuracy and the cardinality of selected

feature subset in EPSORSNA is always much smaller than

in PSOPRS. For example, PSOPRS selected around 31

features from the 36 original feature sets and its best

classification accuracy is 98.57% for Chess dataset when

DT is used as classification algorithm. EPSORSNA further

reduced almost 75% of the features and obtained the best

classification accuracy to 98.67%. Because the proposed

method considers accuracy of approximation, the number

of features and the classification quality of feature subset

are the part of fitness function, which can further reduce the

cardinality of selected feature subset with better accuracy.

Both PSOPRSN and PSOPRSE are considered the

classification power of the features represented by reduct

and the cardinality of features, which are seen as the

number of features and the number of equivalence classes

in PSOPRSN and PSOPRSE, respectively. Compared

PSOPRSN with EPSORSNA , the EPSORSNA includes

two new parameters in fitness function, which is the clas-

sification quality of the feature subset and the accuracy of

approximation. Whenever, increasing the value of a
PSOPRSN always selects the reduced feature subset and

achieve good classification performance. But, it may loss

the generality and not able to achieve better performance

on unseen dataset. According to Tables 3, 4 and 5, com-

paring the results of EPSORSNA with PSOPRSN,

EPSORSNA obtained better or equal classification per-

formance and the cardinality of selected feature subset in

EPSORSNA is always smaller than in PSOPRSN. For

example, PSOPRSN 0.9 selected around 84 features from

the 256 original feature set and its best classification

accuracy is 77.22% for Semeion dataset when DT used as

classification algorithm. EPSORSNA 0.5 further reduced

almost 26% of the features and obtained the best classifi-

cation accuracy to 79.01%. Therefore, EPSORSNA out-

performed the PSOPRSN in terms of number of feature and

classification accuracy.

According to Tables 3, 4 and 5 and 8, comparing the

results of proposed method (EPSORSNA) with PSOPRSE,

the proposed method achieved better or equal classification

accuracy than PSOPRSE. But, cardinality of selected fea-

ture subset in EPSORSNA is always smaller than

PSOPRSE. Initially, PSOPRSE performed better than

EPSORSNA in terms of classification accuracy for small

value of a in EPSORSNA. But, after increasing the value

of a, the EPSORSNA outperformed the PSOPRSN in terms

of number of feature, stability indices and classification

performance. For example, in Chess dataset DT as classi-

fier, PSOPRSE selected almost 29 features out of 36

original feature set and its best classification accuracy is

98.6%. EPSORSNA-0.9 further minimizes around 60% of

the features and improves the best classification accuracy

to 98.9%.

Table 7 shows the comparison result of proposed and

existing methods in terms of stability indices. The out-

comes suggest that EPSORSNA 0.9, EPSORSNA 0.8 and

EPSORSNA 0.7 methods achieved stability indices value 1

in all cases. Hence, the proposed methods (i.e.,

EPSORSNA 0.9, EPSORSNA 0.8 and EPSORSNA 0.7)

are more stable compared to other existing methods.

Figure 1 shows the comparison between existing meth-

ods and the proposed method on nine datasets. According

to Fig. 1a, it can be clearly observed that EPSORSNA,

PSOPRSN, PSOPRSE and PSOPRS obtained ranks first,

second, third and fourth in terms of selected number of

feature. According to Fig. 1b, c, it can be clearly observed

that EPSORSNA outperforms the existing methods in

terms of classification accuracy for almost all cases.

4.3 Results of proposed method (i.e., EPSORSNA)
with different values of a, b and c

According to Table 8, the EPSORSNA with any value of a
can select the reduced feature set while achieving higher or

equal classification accuracy than using all features. The

proposed algorithm (i.e., EPSORSNA) is tested on four

values of a 0.5, 0.7, 0.8 and 0.8, in which increasing the

value of a, gives more importance to the classification

quality of feature subset and less importance to the number

of features and accuracy of approximation.

Outcomes suggest that for increasing values of a,
EPSORSNA may select equal or few more number of

feature while achieving higher classification accuracy. For

example, in the Chess dataset DT and NB are used as the
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classification algorithms, EPSORSNA selects average 8.2

features from the 36 original feature set and its best

accuracy is 98.6% for a = 0.7 and EPSORSNA selected

around 13.2 features from the 36 available features and its

best classification accuracy is 98.9% for a = 0.9.

Figure 2 shows the comparison of proposed method

with different a values on nine datasets. According to

Fig. 1a, it can be clearly observed that EPSORSNA 0.5

obtained fist rank, EPSORSNA 0.7 the second,

EPSORSNA 0.8 third, and EPSORSNA 0.9 gets the fourth

rank in terms of selected number of features. According to

Fig. 1b, c, it can be clearly observed that the EPSORSNA

0.9 obtained the fist rank, EPSORSNA 0.8 the second,

EPSORSNA 0.7 third, and EPSORSNA 0.5 gets the fourth

rank in terms of classification accuracy for almost all cases.

Therefore, EPSORSNA outperformed the three existing

single objective methods and two traditional feature

selection methods, in terms of number of feature, stability

indices and classification performance.

5 Conclusion and future work

The goal of this work to propose the feature selection and

classification method to select reduced feature subset with

higher classification accuracy than original feature set. The

goal was fulfilled by proposed an efficient feature selection

method using PSO and rough sets (i.e., EPSORSNA). The

aim of the proposed method to improve the classification

accuracy and reduce the size of feature subset, which

depends on fitness function, which includes three parame-

ters, the classification quality of feature subset, number of

feature and accuracy of approximation. The performance of

EPSORSNA was observed and compared with five feature

selection methods (including three existing and two tradi-

tional). Experiments were conducted on nine datasets with

different number of instances, number of attributes and

number of classes. DT and NB are two learning algorithms

used to test the generality of the proposed method. The

result shows that EPSORSNA outperformed PSOPRS,

PSOPRSN, PSOPRSE and traditional algorithms in terms

of the number of features, stability indices and the classi-

fication performance. Although it is also observed that with

increased weight on the classification quality of feature

subset of the fitness function, there is a significant reduc-

tion in the number of features while achieving higher

classification accuracy.

In the future, we will investigate the ways to further

reduce the feature subset with maximize classification

accuracy and also explore multi-objective PSO and rough

set for feature selection and classification for more than one

objective.
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